JPWO2003009017A1 - 光学部材の製造方法 - Google Patents

光学部材の製造方法 Download PDF

Info

Publication number
JPWO2003009017A1
JPWO2003009017A1 JP2003514302A JP2003514302A JPWO2003009017A1 JP WO2003009017 A1 JPWO2003009017 A1 JP WO2003009017A1 JP 2003514302 A JP2003514302 A JP 2003514302A JP 2003514302 A JP2003514302 A JP 2003514302A JP WO2003009017 A1 JPWO2003009017 A1 JP WO2003009017A1
Authority
JP
Japan
Prior art keywords
optical
ingot
crystal
plane
plane orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003514302A
Other languages
English (en)
Other versions
JP4238727B2 (ja
Inventor
弘之 平岩
弘之 平岩
佐久間 繁
繁 佐久間
安住 美菜子
美菜子 安住
昌昭 持田
昌昭 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JPWO2003009017A1 publication Critical patent/JPWO2003009017A1/ja
Application granted granted Critical
Publication of JP4238727B2 publication Critical patent/JP4238727B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10S117/901Levitation, reduced gravity, microgravity, space
    • Y10S117/902Specified orientation, shape, crystallography, or size of seed or substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本発明の光学部材の製造方法は、フッ化物結晶インゴットを育成する育成工程と、インゴットの2つ以上の結晶面方位を測定する面方位測定工程と、面方位測定工程で得られる結晶面方位のいずれかに沿ってインゴットから光学素材を切り出す切り出し工程と、光学素材に所定の加工処理を施して光学部材を得る加工工程と、を有する。

Description

技術分野
本発明は、フッ化物結晶からなる光学部材の製造方法に関するものであり、詳しくは、カメラ、顕微鏡、望遠鏡などの光学機器、ステッパーなどの光リソグラフィー装置における光学系などに使用される光学部材の製造方法に関するものである。
背景技術
近年、ウエハ上に集積回路パターンを描画するリソグラフィー技術が急速に発展している。集積回路の高集積化の要求は益々高まっており、その実現のためには投影露光装置の投影光学系の解像力を高める必要がある。投影レンズの解像力は、使用する光の波長と投影レンズのNA(開口数)により支配される。解像力を高めるためには、使用する光の波長をより短くし、投影光学系のNAをより大きく(大口径化)すれば良い。
投影露光装置に使用する光の短波長化は、既にg線(波長436nm)、i線(波長365nm)と進められており、さらに波長の短いKrFエキシマレーザー光(波長248nm)、ArFエキシマレーザー光(波長193nm)等の使用も検討されている。このように光の短波長化が進むと、投影光学系等の結像光学系において一般的な多成分系の光学ガラスをレンズ材料として使用することは、透過率低下の点からもはや不可能である。このため、エキシマレーザーステッパーの光学系には、石英ガラスまたはフッ化物結晶(例えばフッ化カルシウム(蛍石))を光学部材として使用するのが一般的となっている。
また、エキシマレーザーステッパーの光学系に用いる光学部材としての光学性能を満たすためには、結晶材料が単結晶であることが好ましいとされている。さらに、投影露光装置の高性能化に伴い、近年では口径がφ120mm〜φ350mm程度である大口径のフッ化カルシウム単結晶が要求されている。フッ化カルシウム(蛍石)単結晶は、一般の光学ガラスに比べて屈折率が低く、かつ分散(屈折率の波長依存性)が小さいため、他の材料からなる光学部材と共に用いたときに色収差を補正できるという点で非常に有効である。また、他のフッ化物結晶(フッ化バリウム等)に比べて市場での入手が容易であり、直径φ120mm以上の大口径単結晶も入手可能である。
これらの利点を有するフッ化カルシウム単結晶は、ステッパー用光学材料の他に、カメラ、顕微鏡及び望遠鏡のレンズ材料としても従来から用いられている。また最近では、フッ化カルシウム単結晶以外のフッ化物単結晶であるフッ化バリウム、フッ化ストロンチウムの単結晶も同じ等軸晶系に属し、性質が似ているという点で、次世代の光学材料として注目を集めている。
フッ化物単結晶の結晶育成方法としては、融液法であるブリッジマン法(ストックバーガー法または引き下げ法)や、タンマン法など多くの方法が知られている。ここで、ブリッジマン法等によって製造されたフッ化物結晶の成長方位に優位性はないと考えられている。実際、得られるインゴットの水平面は結晶成長毎にランダムな結晶面方位を示す。
結晶成長後、取り出したインゴットには大きな残留応力が存在するため、通常、インゴットの形状のままで簡単な熱処理が行われる。次いで、目的の製品に応じてインゴットが適当な大きさに切断加工され、切り出された素材に所望の光学性能(屈折率の均質性、複屈折など)を得るための熱処理が施される。
結晶面方位を考慮しない場合、インゴットを水平に切断(輪切り)することで、より大きな光学素子(レンズ等)作製用素材をインゴットから効率よく切り出すことができる。
また、フッ化物単結晶の{111}面は他の結晶面に比べて面に垂直な方向の光学性能が高いことが知られている。そのため、光学性能の良いフッ化物単結晶を得るために、フッ化物単結晶インゴットの{111}面を測定し、該{111}面が平行2平面となるように光学素子作製用素材を切り出した後で熱処理する方法、あるいは結晶育成により得られたフッ化物単結晶のインゴットに対して熱処理を施した後、対向する2平面が{111}面となるように光学素子作製用素材を切り出す方法が適用されることがある。
ところで、複屈折とは、光(電磁波)の偏光方向によって異なる屈折率を示す現象であり、通常、光が物質の単位長さを通過するときの光路差(レターデーションと呼ばれる)で表され、その単位にはnm/cmが用いられる。また、複屈折が歪(ひずみ)に起因している場合には、この複屈折のことを歪と呼ぶことも多い。
従来、フッ化カルシウム等の等軸晶系の単結晶は物質固有の複屈折を持たないと考えられていた。そして、フッ化カルシウムの単結晶の場合、製造工程で発生する熱応力により複屈折が生じても、その複屈折は自由な光学設計の妨げとならないレベルまで低減できると考えられていた。実際、633nmの比較的長波長の光に対しては、所定の熱処理を施すことにより複屈折の値を1〜2nm/cm程度まで低減することが可能であった。
このような背景の下、インゴットから光学素材を切り出す方法としては、結晶の劈開という現象を利用して簡易的に{111}面の方向を求める方法が一般的であった。そして、その光学素材から得られる光学部材を用いて光学系を組み上げる場合、{111}面の法線が光軸と一致させるように光学部材が配置されるが、{111}面以外の結晶面方向における複屈折は考慮されていなかった。
発明の開示
しかしながら、近年の研究により、フッ化カルシウムの単結晶においては、仮に完全に熱応力起因の応力を除去しても、結晶方位によってはフッ化カルシウムの単結晶に固有の複屈折が生ずることが明らかになってきた。この固有の複屈折は使用する光の波長が短くなると増大する。例えば光の波長が633nm、193nm、157nmと短くなるにつれて、{110}面の法線方向に進む光の複屈折はそれぞれ0.2nm/cm以下、3.4nm/cm、11.2nm/cmとなる。
そして、従来の方法によりフッ化物単結晶インゴットから光学素子作製用素材を切り出して製造された光学部材にあっては、短波長の光と共に使用した場合にフッ化物単結晶の固有の複屈折が問題となりやすい。特に、複数の光学部材で構成されるステッパーの光学系等の場合、当該固有の複屈折の影響が光学系全体で積算されるため、収差が増大して結像性能が低下したりする。
そのため、短波長の光との併用に耐え得る光学部材を選定して光学系に適用しているのが実情であるが、十分な結像性能を得ることは必ずしも容易でない。また、そのような光学部材は、従来の方法による光学素材からは非常に少ない枚数しか作製できず、製造工程における歩留まりの点でも克服すべき課題は多い。
本発明は、かかる問題点に鑑みてなされたものであり、結晶面方位を管理して複屈折の影響を十分に低減することが可能な光学部材の製造方法を提供することを目的とする。
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、フッ化物結晶インゴットの2つ以上の結晶面方位を測定し、それらの結晶面方位のいずれかに沿ってインゴットから光学素材を切り出すことによって、複屈折の影響の低減が可能な光学部材が容易に且つ確実に得られることを見出し、本発明を完成するに至った。
すなわち、本発明の光学部材の製造方法は、フッ化物結晶インゴットを育成する育成工程と、インゴットの2つ以上の結晶面方位を測定する面方位測定工程と、面方位測定工程で得られる結晶面方位のいずれかに沿ってインゴットから光学素材を切り出す切り出し工程と、光学素材に所定の加工処理を施して光学部材を得る加工工程と、を有するものである。
なお、本発明でいう光学素材とは、インゴットから切り出された後の半製品をいい、光学部材とは、加工処理、あるいはさらに熱処理が施された後の最終製品(レンズ等)をいう。
本発明では、結晶面方位を示す際にミラー指数を用いる。ミラー指数とは、結晶の単位格子の原点から面が結晶軸と交わる点までの距離の、結晶軸の単位の長さに対する比の逆数である。フッ化カルシウム等の立方晶系の場合、各結晶軸の単位長さがaであり、原点から所定の結晶面と各結晶軸との交点までの距離がそれぞれa/h、a/k、a/lであるとき、その結晶面はミラー指数を用いて(hkl)で表される。
ここで、立方晶系においては、方向[hkl]は同じ指数の面(hkl)に対して常に垂直である。そのため、対称関係にある方向はひとつの指数で代表されて<hkl>で示され、また、対称関係にある等価な格子面もひとつの指数で代表されて{hkl}で示される。例えば、立方体の体対角線[111]軸、[1−11]軸、[−1−11]軸、[−111]軸などは全て<111>軸によって代表され、立方体の表面(100)面、(010)面、(−100)面、(0−10)面、(001)面、(00−1)面は{100}面によって代表される。立方晶であるフッ化物単結晶の軸([100]軸、[010]軸、[001]軸、[110]軸、[101]軸、[011]軸、[111]軸)を図1に示す。
なお、結晶面方位の測定は、結晶軸の測定と等価である。例えば、{111}面方位を測定することは<111>軸を測定することと等価である。
例えばフッ化カルシウムの場合、{111}面を基準とした光学部材において、<111>軸を中心として120°の回転方向に3回の複屈折のピーク(複屈折対称軸<110>)が存在する。この光学部材の光軸と、<111>軸を中心として60°回転させた光学部材(図2B)の光軸とを一致させて光学系を作製することによって、2つの光学部材は<110>軸が重なり合わないように配置されるので、フッ化物結晶固有の複屈折による影響を十分に低減することができる。
また、図3Aに示すように、{100}面を基準とした光学部材においては、<100>軸を中心として90°の回転方向に4回の複屈折のピーク(複屈折対称軸<110>)が存在する。この光学部材の光軸と、<100>軸を中心として45°回転させた光学部材(図3B)の光軸とを一致させて光学系を作製することによって、2つの光学部材は<110>軸が重なり合わないように配置されるので、この場合もフッ化物結晶固有の複屈折による影響を十分に低減することができる。
さらに、図4Aに示すように、{110}面を基準とした光学部材においては、<110>軸を中心として90°の回転方向に2回の複屈折のピーク(複屈折対称軸<111>及び<100>)が存在する。この光学部材の光軸と、<110>軸を中心としてそれぞれ45°、90°、135°回転させた光学部材(図4B、図4C、図4D)の光軸とを一致させて光学系を作製することによって、4つの光学部材は<111>軸及び<100>軸の双方が重なり合わないように配置されるので、この場合もフッ化物結晶固有の複屈折による影響を十分に低減することができる。
また、このように光学部材ごとの結晶面方位を管理することにより、様々な面方位を持つ光学部材を組み合わせて光学系を組み上げることができ、設計の自由度を大きくすることができる。
本発明においては、結晶面方位が、{111}面、{100}面及び{110}面から選ばれる2つ以上であることが好ましい。
また、本発明においては、面方位測定工程において結晶面方位に対する基準線をインゴットに設け、切り出し工程において該基準線に基づいてインゴットから光学素材を切り出すことが好ましい。
また、本発明においては、面方位測定工程が、インゴットのトップ部又はコーン部を切断して得られるテストピース部分の2つ以上の結晶面方位を測定し、測定されたテストピースの結晶面方位からインゴットの結晶面方位を求めるものであることが好ましい。なお、ここでいうコーン部とはインゴット先端の円錐部分を意味し、トップ部とはインゴットのコーン部と反対側の端部を意味する。
また、本発明においては、面方位測定工程が、被検物にX線を照射して結晶面方位を測定するラウエ法を利用するものであることが好ましく、ラウエ法は側面反射法によるものであることが好ましい。
また、本発明においては、切り出し工程における光学部材の結晶面方位からのずれ角が3°以内であることが好ましい。
発明を実施するための最良の形態
本発明の光学部材の製造方法は、フッ化物結晶インゴットを育成する育成工程と、インゴットの2つ以上の結晶面方位を測定する面方位測定工程と、面方位測定工程で得られる結晶面方位のいずれかに沿ってインゴットから光学素材を切り出す切り出し工程と、光学素材に所定の加工処理を施して光学部材を得る加工工程と、を有するものである。
図5は本発明にかかる各工程におけるフッ化物の状態を示すフローチャートである。図5中、フッ化物の粉末原料501は、ステップ502において熔融などの前処理を受けて多結晶バルク503となり、さらにステップ504で結晶育成されて単結晶インゴット505となる。次いで、ステップ506において、インゴット505について2つ以上の結晶面方位が測定され、得られた結晶面方位のいずれかに沿って光学素材が切り出される。この光学素材に所定の加工処理(丸め、研削等)、あるいはさらに熱処理(アニール処理)が施されて、目的の光学部材507が得られる。
本発明の製造方法は、例えば図6に示すフローチャートに従って行うことができる。図6に示した製造方法は、フッ化物単結晶のインゴットを育成するステップ601、インゴットの結晶面方位を測定するステップ602、切断方位を決定するステップ603、光学素材を切り出すステップ604、アニール処理を行うステップ605、光学素材の面方位を測定するステップ606、レンズ加工及びコートを行って光学部材を得るステップ607を含むものである。また、図6に示すフローチャートは、得られる光学部材(レンズ等)を組み立てて光学系を作製するステップ608をさらに含むものである。
以下、図6に示したフローチャートに従い本発明の製造方法について説明する。
ステップ601はフッ化物単結晶のインゴットを育成する工程である。フッ化物単結晶インゴットの育成方法としては、融液法であるブリッジマン法(ストックバーガー法または引き下げ法)やタンマン法などが適用可能である。育成工程の好ましい例として、ブリッジマン法(ストックバーガー法又は引き下げ法)による育成工程を以下に詳述する。
図7A〜図7Cはそれぞれブリッジマン法による育成工程で用いられる育成装置の一例を示す断面図である。図7A〜図7C中、断熱性及び気密性を有する育成炉701内にはペンシル型(すなわち上部が円柱状、下部が円錐状)のカーボン製坩堝702が配置されている。坩堝702の下部先端には支持体703が連結されており、坩堝702は支持体703を介して鉛直方向に移動可能となっている。また、育成炉701内には、上部に高温側ヒーター704、下部に低温側ヒーター705がそれぞれ炉701の内周面に沿って配置されており、炉701内の上部よりも下部が低温となるように加熱可能となっている。また、育成炉701の下部には炉内を減圧する排気ライン706が設けられている。
育成工程においては、先ず、図7Aに示したように、フッ化物単結晶の原料が充填された坩堝702を育成炉701内の上部に配置し、排気ライン706から排気して育成炉701内を10−3〜10−4Paの真空雰囲気に保つ。次いで、ヒーター704、705により育成炉701内の温度をフッ化物の融点以上(フッ化カルシウムの場合は1370〜1450℃)まで上昇させることにより、原料を熔融させて融液707を得る。この際、定電力出力による制御又は高精度なPID制御によりヒーター704、705を制御することで、育成炉701内の温度の時間的変動を抑制することができる。
ここで、紫外乃至真空紫外域で使用されるフッ化物単結晶の場合、原料として天然物(天然の蛍石など)を用いるのではなく、化学合成により得られる高純度原料を用いることが好ましい。また、原料は粉末のまま使用することが可能であるが、粉末原料の場合は熔融したときの体積減少が激しいため、半熔融品やその粉砕品を用いることが好ましい。
なお、坩堝702の先端部に種結晶を入れると、得られるインゴットの結晶面方位が比較的制御される傾向にあるが、実際には、得られるインゴットの水平面は結晶成長毎にランダムな結晶面方位を示す。
次に、図7Bに示したように、支持体703を介して坩堝702を所定の速度(好ましくは0.1〜5mm/h)の速度で引き下げて、融液707を坩堝702の下部側から徐々に結晶化させてフッ化物単結晶708の育成(結晶成長)を行う。
そして、図7Cに示したように、坩堝702を育成炉701内の下部まで引き下げて、融液707が坩堝702の最上部まで結晶化したところで結晶の育成を終了する。育成した結晶709(インゴット)が割れないように急冷を避けて、育成炉701内の温度が室温程度となるまで徐冷した後、育成炉701を大気開放してインゴット709を取り出す。なお、インゴットの残留応力は、通常、非常に大きいため、炉701内で室温までゆっくり降温させることが好ましい。
ステップ602は、ステップ601で得られたフッ化カルシウム単結晶インゴットの結晶面方位を測定する工程であり、ステップ603は、ステップ602で得られた結晶面方位に基づいて光学素材の切り出し位置を決定する工程である。
本発明では、X線による方法、機械的方法、光学的方法などを利用して結晶面方位を測定することができる。
X線による方法としては、結晶を静止したままX線を照射するラウエ法,結晶を回転させながらX線を照射する回転法、結晶を振動させながらX線を照射させる振動法、これらの方法を改良したワイセンベルグ法、プリセッション法などがある。
次に、機械的方法について述べる。一般に、結晶に適当な手段で塑性変形を与えると、その表面に結晶面方位により特徴付けられる種々の表面模様が現れる。かかる表面模様としては、結晶面に特有の形状を持つ圧像(あるいは打像)、特定結晶面に沿ったすべり帯、双晶、劈開などが挙げられる。なお、双晶には塑性変形によって生ずる双晶変形の他に焼鈍双晶及び成長双晶があるが,これらも表面模様を形成するものである。双晶とは、互いに対照的な関係を持つ2つの結晶面方位を有する結晶であり、例えば、<111>軸は同一であり{100}面が180°反転しているような異なった結晶面方位を有するものである。
機械的方法としては、具体的には、圧像を利用する方法、すべり楕円を用いる方法、すべり線,双晶,その他の表面模様の間の交叉角を利用する方法、劈開面を利用する方法、すべり,双晶,および劈開を解析する方法などが挙げられる。
また、光学的方法としては、測角法、食像法、光像法、偏光法などが挙げられる。
これらの測定法のなかで、X線による方法は、測定精度が高くスピードも速いので、本発明において好ましく適用される。以下、X線による方法について詳述する。
X線を用いる場合、X線管と試料との間に背面反射用ラウエカメラが取り付けられる。試料面とフィルムの距離は数十mmに設定される。X線管はMoターゲットで、管電圧40kV管電流50mA、露出時間60secで撮影する。方位解析は得られたラウエパターンのポラロイド写真から手計算で行うか、写真をスキャナでコンピュータに取り込み計算する。
ラウエ法はX線回折法のひとつで、固定された単結晶に白色X線を照射するものである。ブラッグ角θは結晶のあらゆる面に対して固定されているため、それぞれの面はそれぞれの面間隔dとブラッグ角θに対してブラッグ条件λ=2d・sinθを満たすような波長λのX線を選択して回折する。
ラウエ法は、X線源、結晶、フィルム又はCCDカメラの相対的位置の変化に応じて、透過法、背面反射法、側面反射法の三通りに分類される。透過法では、フィルム又はCCDカメラは結晶の前方への回折ビームを記録するため結晶の後方に置かれる。背面反射法では、フィルムは結晶とX線源の中間に置かれ、入射ビームがフィルムに開けた穴を通り、結晶の後方への回折ビームが記録される。側面反射法では、結晶に対して所定の入射角ωで入射するようにX線源を置き、結晶の任意の側面方向への回折ビームを記録するためにフィルムまたはCCDカメラは入射ビームに対して角度ψだけ回転した位置に置かれる。いずれの方法においても、回折ビームはフィルムまたは蛍光板上にラウエ斑点を形成する。そして、ラウエ斑点の位置は入射ビームに対する結晶方位の相対的関係によって決まるので、このことを応用して結晶方向が決定される。
図8はラウエ法を利用した結晶面方位の測定装置(自動測定装置)の一例を示す概略構成図である。図8に示した装置は、試料ステージ810、X線管820及びCCDカメラ830を備えている。
試料ステージ810の所定の位置には上下面を連通するX線照射部811が形成されており、試料ステージの上面には試料800を固定するためのガイドバー812が設けられている。
また、X線管820にはコリメータ821が設けられており、これらはX線照射部811に照射されるX線と試料800のX線照射面とのなす角度がωとなるように配置されている。X線管820としてはWターゲットで最大出力2kw、管電圧50kV管電流40mAのもの、コリメータ421としては1mmφ程度のダブルピンホールコリメータが好適に用いられる。
また、CCDカメラ830は、X線照射部811側の面に蛍光板831を備えるもので、蛍光板831に垂直な直線と試料800のX線照射面とのなす角度がωとなるように配置されている。さらに、CCDカメラ830にはカメラコントロール832を介してコンピュータ833が電気的に接続されており、試料800へのX線照射により得られる回折ビームがラウエパターンとしてコンピュータ833により解析される。CCDカメラ830においては、ペルチェ素子により所定の温度(例えば−50℃)に冷却することで、SN比の改善が図られている。
本発明においては、φ300×t60ブロックのような大きな試料の結晶面方位を測定する際には、以下の方法を用いることが好ましい。
まず、試料800をステージ810に平置きし、その下にX線源(X線管820及びコリメータ821)とCCDカメラ830の光学系を上述のように設置する。試料800をステージ810に平置きすることで、大きな試料に対応することができる。さらに、側面反射法により、X線照射による試料のダメージを十分に低減できる。
本発明においては、インゴットのトップ部又はコーン部を切断して得られるテストピースを面方位測定工程に供することが好ましい。なお、テストピースの向きは特に制限されないが、例えば後述する位置基準線が前面に位置するように設置される。また、コーン部のテストピースは円錐形なので、円錐の底面が下側(ステージ側)に向けて設置され、面方位の測定値はテストピースを裏返して他の部分と照合される。
次に、X線管820で発生し、コリメータ821により略平行化されてビーム径2mm程度に絞られたX線を試料800に照射する。X線照射時間は10秒程度で十分である。
そして、試料800へのX線照射による回折ビームが蛍光板831に投影され、CCDカメラ830で撮像されてラウエパターンがコンピュータ832に取り込まれる。取り込まれたラウエパターンは方位解析画面で解析される。ラウエパターンは複数の点列から構成され、一つの点列は同じ晶帯軸からの回折斑点を表している。このような回折斑点の中から複数の晶帯軸に属する斑点(点列の交点)のうちの4点をマウスで指定すれば自動的に指数付けが行われ、シミュレーションパターンがラウエパターンとマッチしたときに両者が重ねて表示される。両パターンの一致度は測定者が判断する。指数が決定されると、結晶面方位の解析結果としてステレオ投影図、ステレオ三角形及び各面の面方位角度が出力される。
図9は円筒形状の部材における面方位角度の概念を示す説明図である。(111)面の面方位角度を例に説明すると、面方位角度は、試料ステージ810の奥をx軸の正方向とし、試料ステージ810の鉛直下向きをz軸の正方向とした座標系で、z軸と[111]軸のなす角度をα、[111]軸を測定面に投影した線のx軸の正方向から反時計回りになす角度をβとして表される。
ラウエ法は、様々な結晶面方位を簡便に測定することができ、測定精度が高く、測定に要する時間が短いので好ましい。また、側面反射ラウエ法により得られたラウエ斑点から試料面と結晶面の角度ずれを測定することが好ましい。ラウエ法は、背面反射法または透過法が用いられることが一般的であるが、これらの方法は試料へのダメージは大きい。これに対して側面反射法では、所定の入射角(例えば60°)で試料面にX線を入射させるので、X線の浸透深さが浅くなり、試料に対するダメージを十分に低減することができる。
次に、ステップ604において、測定された結晶面方位に基づいてインゴットから光学素材が切り出される。ステップ605では、切り出された光学素材にアニール処理が施される。ステップ606では、アニール処理後の光学素材について、品質管理のための面方位測定が行われる。このようにして得られた光学素材は、ステップ607で所定の加工処理及びコーティング処理が行われて光学部材となり、レンズを組み立てるステップ608に供される。なお、ステップ604〜608の詳細については後述する。
次に、上記各工程におけるインゴット、光学素材及び光学部材の状態についてより具体的に説明する。図10A〜図10C、図12A〜図12C、図14A〜図14B、図16A〜図16C、図18A〜図18C、図20A〜図20Cはそれぞれ所定のステップにおけるインゴット又は当該インゴットから切り出された光学素材を示す上面図である。また、図11A〜図11C、図13A〜図13C、図15A〜図15B、図17A〜図17C、図19A〜図19C、図21A〜図21Cはそれぞれ所定のステップにおけるインゴット又は当該インゴットから切り出された光学素材を示す側面図である。
図10A及び図11Aはそれぞれ育成工程で得られたフッ化物単結晶のインゴットを示している。このインゴットの側面の所定の位置(例えば炉内で正面を向いていた部分)をワイヤーブラシで削り平滑にし、さらにガラス鉛筆で1本の直線を引いて位置基準線を設ける(図10B及び図11B)。
次いで、インゴット先端の円錐形状部分(コーン部)と、コーン部の反対側の端部(トップ部)とを所定の厚さ(例えば30mm)となるように切断し、結晶面方位の測定のためのテストピースを得る(図10C及び図11C)。この2個のテストピースの結晶面方位をラウエ法により測定し、その測定結果に基づいてインゴット本体の面方位を推定する。このとき、2個のテストピースとインゴット本体の位置関係は、上述の位置基準線を指標として確認することができる。
なお、コーン部及びトップ部を切断せずにインゴット全体をそのまま面方位測定工程に供することも可能であるが、インゴット重量が数十kgにも及ぶことでハンドリングが困難であること、また、フッ化カルシウムの場合は膨張率が大きく、機械的強度も大きくないためインゴットは破損の危険性もあること等の理由により、上述のようにトップ部及びコーン部から得られるテストピースを用いることが好ましい。さらに、上記テストピースは、面方位測定後にエキシマレーザー耐性の評価に用いることができるので、テストピース作製のための切り出し工程を繰り返し行わなくてよいというメリットもある。
なお、フッ化カルシウム、フッ化バリウムなどの単結晶は{111}面において劈開性を有するので、熱応力などによりインゴットが割れるときには、通常、{111}面で割れる。また、劈開していないインゴットの場合でも、端部をたがねのようなもので軽く叩くと劈開する。この劈開面を基準にして、その面と平行になるようにインゴットを切断することにより、光学素子作製用の素材を採取することが一般的であり、これにより対向する2平面が{111}面である素材が得られる。このように劈開面を基準にする方法もあるが、ラウエ法等によれば、{111}面だけでなく、{110}面、{100}面などの結晶面方位を非破壊で瞬時に測定することができる。
一方、コーン部及びトップ部が切断されたインゴット本体は、丸め加工を行い、円筒表面部分を砂かけ仕上げ相当面とする(図12A及び図13A)。また、コーン部及びトップ部が切断されたインゴット本体の側面を数cmの幅で平面研削して内部を観察することも可能である(図14A及び15A)。砂かけ面の表面からの観察に加え、屈折率のマッチングオイルを塗布しての暗室での内部観察、クロスニコル光学系による界面の応力集中などの観察を行い、サブグレインバンダリー、ポリクリスタルの状態、その界面の位置、泡や異物の状態などを確認する。インゴット全体が単結晶である場合、コーン部、トップ部のいずれか一方について1カ所の面方位を測定すれば、インゴット全体の面方位が推定できるが、念のため、コーン部、トップ部のそれぞれについて面方位を測定し、それらの面方位に矛盾がないことを確認することが望ましい。さらに、インゴットが多結晶である場合や、サブグレインバンダリーが存在している場合も多いが、このような場合は、インゴットの中の単結晶部分ごとに結晶方位を測定する必要がある。
上記のテストピースにより求めた面方位角度(図9中のα、β)に基づいてインゴットの切断方向を決定する(図12C及び図13C、あるいは図14B及び図15B)。トップ部から作製したテストピースの面方位角度を用いる場合、インゴットをトップ部側から見たときに、トップ部切断面の面法線を中心として基準線方向から反時計回りを正としたときの(90°−β)方向の側面が座面(加工基準面)であり、トップ部切断面を基準面として時計回りを正としたときαの方向が切断方向である。また、コーン部から作製したテストピースの面方位角度を用いる場合、インゴットをコーン部側向から見たときに、コーン部切断面の面法線を中心として基準線方向から反時計回りを正としたときの(90°−β)方向の側面が加工基準面であり、トップ部切断面を基準面として時計回りを正としたときのαの方向が切断方向である。このとき、インゴット内部の泡や異物を避けながら、アニール工程などの後工程における加工しろ(マージン)を考慮して、厚さ及び径が目的とする部品の寸法よりも5〜10mm大きくなるように切断位置を決定することが好ましい。
インゴットを切断する際には、先ず、面方位角度から定めたインゴット側面の座面方向に沿って、インゴットの軸に並行な研削面(座面)を作る。次に、座面が下向きとなるようにインゴットを切断機のステージに設置し、トップ部の切断面を基準面としてインゴットを角度αだけ回転させて切断する。図16A及び図17Aはそれぞれ切断によって得られた楕円状のディスクを示す上面図及び側面図である。このディスクについて、屈折率のマッチングオイルを塗布しての暗室での内部観察、クロスニコル光学系による界面の応力集中などの観察を行い、サブグレインバンダリー、ポリクリスタルの状態、その界面の位置を確認する。そして、アニール工程などの後工程における加工しろ(マージン)を考慮して、厚さ及び径が目的とする部品の寸法よりも5〜10mm大きくなるように切断位置を決定し、切断(ラフカット)(図16B及び図17B)、丸め(図16C及び図17C)を行う。
次に、丸め工程後の素材について、結晶面方位を検査するための粗研削及び面取りを行い、円筒形状を有する素材(φ260×t50、φ200×t60など)を得る(図18A及び図19A)。この際、素材に再度マーキングを行い、そのマーキングを後工程で維持することで、インゴットからトップ部及びコーン部を切断する前に付した基準線と面方位との関係が明確となり、最終的に得られる光学部材の面方位を管理することができる。また、得られた素材には、熱処理(アニール処理)を施すことによって、複屈折の値を低減して品質をさらに向上することができる。アニール処理に供する素材に結晶方位維持のためのマーキングを行う場合、フッ化カルシウム表面に傷を付けず、不純物汚染を生じない軟質鉛筆や赤い油性インクを用いることが好ましい。赤い油性インクはアニール後、黒色に変わるので、アニール前後の識別も可能になる。
また、熱処理を行う前に、円筒形状素材の面方位のマッピング測定を行うことが好ましい。この段階の素材は、最終的なレンズ形状に駄肉が2.5〜5mm付いているものであるため、マッピング測定に適している。なお、ラウエ法のようなX線照射を伴う面方位測定の場合、レンズ形状に近い素材をマッピング測定に用いると、X線照射によるダメージを受けてカラーセンターが生じる現象が起こりやすく、光学設計上の有効径外、即ち周辺の数mmの範囲しか測定できなくなってしまう。
円筒形状の素材にアニール処理を施す場合、熱処理装置の炉内に素材の両平面が上下となるように設置して、ヒーターにより所定温度(例えば1080℃)に加熱する。このとき、熱処理装置の炉が真空構造であると、フッ化カルシウムのニゴリの原因となる酸素の混入を防ぐことができる。このような炉としては、外部構造(炉本体)がステンレス製で、内部にカーボンヒーターとカーボン容器が設置されたものが例示される。
アニール処理の際には、所定量(通常100g程度)の酸性フッ化アンモニウム約100gを光学素材と共に封入することが好ましい。これにより、炉内の酸素を完全に排除し、炉の内部表面に露出する金属をフッ化物でコートすることができる。その状態で真空ポンプにより炉内を排気した後、昇温を開始する。炉内温度が500℃付近になると酸性フッ化アンモニウムの気化が始まり、炉内の圧力は微小な正圧(2〜8kPa)となる。この圧力を保つように圧力を制御しながら、昇温、所定温度(例えば1080℃)での保持、徐冷を行う。
なお、上述のアニール処理を実際に行う前に、炉内に酸性フッ化アンモニウムのみを封入して、炉内の状態、圧力の変化に異常がないかを確認する予備実験を行うことが好ましい。さらに、透過率測定用のテストピースと酸性フッ化アンモニウムとを炉内に封入して熱処理を行い、熱処理による汚染などでテストピースの透過率が低下しないことを確認する透過率実験を行うことが好ましい。
以上のようなアニール処理を行うことにより、フッ化物結晶の全ての結晶面方位における、熱応力に起因する複屈折量を十分に低減することができる。本発明においては2つ以上の結晶面方位を管理するため、結晶面方位に関わらず複屈折量の絶対値を小さくすることが好ましい。より具体的には、波長633nmの光に対する複屈折の絶対値が2.0nm/cm以下であることが好ましく、1.0nm/cm以下であることがより好ましい。複屈折の絶対値が2.0nm/cmを超えると、結晶面方位に起因する固有の複屈折の制御が困難となる傾向にある。また、波長633nmの光に対する複屈折は、実際に光学部材として使用する波長(例えば193nm等)では、固有複屈折の影響が著しく大きくなる。このため、熱応力に起因する複屈折量をあわせて管理することは非常に有効である。
次に、アニール処理した円筒形状素材の側面を窓加工し、上下面をそれぞれ所定量(例えば厚み2.5〜5mm)ずつ均等に研削する(図18C及び図19C)。得られた光学素材について側面の複屈折及び屈折率の均質性を確認した後(図20A及び図21A)、丸めが施され(図20B及び図21B)、さらに研磨(仮艶)、面取りが施されて目的の光学部材が得られる(図20C及び図21C)。このようにして得られた光学部材は、複屈折の測定による品質検査が行われた後、出材される。光学部材の複屈折は、例えばオーク製作所およびユニオプト製自動複屈折測定装置を用い、測定波長633nmで約200点の自動測定を行うことにより得ることができる。
このように本発明の製造方法によれば、得られる光学部材の2つ以上の結晶面方位を容易に且つ確実に管理することができる。その結果、当該光学部材を用いて光学系を作製する際に、フッ化物結晶固有の複屈折による影響を十分に低減し、高水準の結像性能を達成することが可能となる。
また、得られる光学部材において、所定の結晶面方位と切断面とのずれ角を所望の範囲内に設定することができる。このずれ角は、最もずれた状態で最大6°程度まで使用することは可能であるが、4°以下であることが好ましく、3°以下であることがより好ましく、2°以下であることが特に好ましい。
ラウエ法によれば、結晶面方位のみならず、双晶の存在の有無も確認できるという利点を有する。すなわち、双晶の境界が光軸に垂直な面内に含まれるように材料を切り出すことにより、双晶の光学部材を用いたときに光学系の光学性能に及ぼす影響を最小限にすることが可能となる。
次に、本発明で得られたフッ化物結晶からなる光学部材を搭載する投影露光装置の例を示す。
図22に示す投影露光装置は、紫外域の照明光を供給する光源11としてFレーザ(波長157nm)を備えている。光源11から出射された光は、照明光学系12を介して、所定のパターンが形成されたマスク13を均一に照明する。
なお、光源11から照明光学系12までの光路には、必要に応じて光路を変更するための1つ又は複数の折り曲げミラーが配置されている。また、照明光学系12は、例えばフライアイレンズや内面反射型インテグレータ等で構成されており、所定のサイズ、形状の面光源を規定するための視野絞り、視野絞りの像をマスク13上に投影する視野絞り結像光学系等の光学系を有するものである。更に、光源11と照明光学系12との間の光路はケーシング(図示せず)で密閉されており、光源11から、照明光学系12中のマスク13に近い側に配置された光学部材までの空間は、露光光の吸収率が低い不活性ガス(窒素、ヘリウム等)で置換されている。
マスク13は、マスクホルダ14を介して、マスクステージ15上においてXY面に並行に保持されている。マスク13には転写すべきパターンが形成されており、パターン領域全体のうちY軸方向に沿って長辺を有し且つX軸方向に沿って短辺を有するスリット状のパターン領域が照明される。
マスクステージ15は、マスク面(XY面)に沿って二次元的に移動可能であり、その位置座標はマスク移動鏡16を用いた干渉計17によって計測され且つ制御されるように構成されている。
このように、照明光学系12と投影光学系18との間に配置されたマスク13、マスクホルダ14、マスクステージ15はケーシング(図示せず)に収容されており、ケーシング内は不活性ガス(窒素、ヘリウム等)で置換されている。
マスク13上に形成されたパターンからの光は、反射屈折型の投影光学系18を介して、感光性基板であるウエハ19上にマスクパターン像を形成する。ウエハ19は、ウエハホルダ20を介して、ウエハステージ21上においてXY面に平行に保持されている。そして、マスク13上でのスリット状の照明領域に光学的に対応するように、ウエハ19上ではY軸方向に沿って長辺を有し且つX軸方向に沿って短辺を有するスリット状の露光領域にパターン像が形成される。
ウエハステージ21は、ウエハ面(XY面)に沿って二次元的に移動可能であり、その位置座標はウエハ移動鏡22を用いた干渉計23によって計測され且つ制御されるように構成されている。
ウエハ19、ウエハホルダ20、ウエハステージ21はケーシング(図示せず)に収容されており、ケーシング内は不活性ガス(窒素、ヘリウム等)で置換されている。
このように、図22に示す投影露光装置においては、光源11からウエハ19までの光路の全域にわたって露光光の吸収が抑制された雰囲気が形成されている。また、上述の通り、投影光学系18によって形成されるマスク23の照明領域(視野領域)及びウエハ19上の投影領域(露光領域)の形状は、X軸方向に沿って短辺を有するスリット状である。従って、駆動系及び干渉計17、23等を用いてマスク13及びウエハ19の位置制御を行いながら、スリット状の照明領域及び露光領域の短辺方向(X軸方向)に沿って、マスクステージ15、ウエハステージ21、あるいは更にマスク13、ウエハ19を同期的に移動させることによって、ウエハ19上において、露光領域の長辺に等しい幅を有し且つウエハ19の走査量(移動量)に応じた長さを有する領域に対して走査露光される。
そして、照明光学系12及び投影光学系18を構成する光学部材(レンズ、プリズム等)として、本発明の2つ以上の結晶面方位の管理された光学部材を用いることが有用である。
図23は、本発明の投影露光装置に用いられる投影光学系の一例を示す概略構成図である。
図23において、投影光学系は、投影原板としてのレチクルR上のパターンの中間像を形成する反射屈折型の第一結像光学系G1と、第一結像光学系G1による中間像をワークとしてのウエハW上に再結像させる屈折型の第二結像光学系G2とを有している。光軸AX1上には、レチクルRから第一結像光学系G1に向けての光路を90°偏向させるための反射面S1と、第一結像光学系G1から第二結像光学系G2に向けての光路を90°偏向させるための反射面S2とを有する光路折り曲げ用の反射鏡31を備える光路折り曲げ用部材が配置されている。
第一結像光学系G1は、光路AX1に沿って配置された複数のレンズ成分と凹面反射鏡とを有しており、ほぼ等倍か若干の縮小倍率をもって中間像を形成する。
第二結像光学系G2は、光軸AX1と直交する光軸AX2上に沿って配置された複数のレンズ成分と、コヒーレンスファクタを制御するための可変開口絞りASとを有しており、中間像からの光に基づいて、所定の縮小倍率をもって2次像を形成する。
ここで、図23中の光軸AX0は、第一結像光学系G1の光軸AX1と直交する、レチクルRと反射鏡31との間の光軸であり、光軸AX0と光軸AX2とは同一直線状にあっても良い。
また、図23には、それぞれ複数のレンズ成分を備える第一結像光学系G1及び第二結像光学系G2を備える投影光学系を示したが、光軸AX1、AX2に沿って配置されるレンズ成分は単数、複数のいずれであってもよい。
更に、光軸AX0と光軸AX1とのなす角度は必ずしも90°でなくてもよく、例えば凹面反射鏡CMを半時計回りに回転させた角度としても良い。このとき、反射面S2での光軸の折り曲げ角度をレチクルRとウエハWとが平行になるように設定することが好ましい。
また、本発明においては、図24に示すように、2つの反射鏡31、32を備える投影光学系を用いることもできる。
更に、本発明においては、図25に示す構成を有する投影光学系を用いることもできる。図25において、投影光学系は投影原板としてのレチクルR上のパターンの中間像を形成する反射屈折型の第一結像光学系G1を備えている。第一結像光学系G1が形成する第一中間像の近傍には第一光路折り曲げ用反射鏡31が配置されており、第一光路折り曲げ用反射鏡31によって、第一中間像へ向かう光束又は第一中間像からの光束が第二結像光学系に向かって偏向される。第二結像光学系G2は、凹面反射鏡CMと少なくとも1つの負レンズ33とを有しており、第一中間像からの光束に基づいて第一中間像とほぼ等倍の第二中間像(第一中間像の像であってパターンの二次像)を第一中間像の近傍に形成する。
第二結像光学系G2が形成する第二中間像の形成位置の近傍には、第二光路折り曲げ用反射鏡32が配置されており、第二光路折り曲げ反射鏡32によって、第二中間像へ向かう光束又は第二中間像からの光束が第三結像光学系G3に向けて偏向される。なお、第一光路折り曲げ用反射鏡31の反射面と第二光路折り曲げ用鏡32の反射面とは互いに空間的に重複しないように配置されている。
第三結像光学系G3は、第二結像光学系からの光束に基づいて、レチクルRのパターンの縮小像(第二中間像の像であって反射屈折光学系の最終像)を、第二面に配置されたワーク(感光性基板)としてのウエハW上に形成する。
上記図23〜図25に示した投影光学系は、例えば露光光源がFレーザーである場合に好適に使用される。
一方、露光光源がArFエキシマレーザーである場合には、例えば図26に示すレンズ構成を有する投影光学系が好適に用いられる。
図26においては、第1物体としてのレチクルR側より順に、正のパワーの第1レンズ群G1と、正のパワーの第2レンズ群G2と、負のパワーの第3レンズ群G3とが形成されており、物体側(レチクルR側)及び像側(ウエハW側)においてほぼテレセントリックとなっており、縮小倍率を有するものである。また、この投影光学系のN.A.は0.6であり、投影倍率は1/4であり、像側の露光領域の直径は30.6である。
投影光学系が図26に示すレンズ構成を有する場合、通常、色収差を補正するために各レンズの材料が適宜選択される。例えば、第1レンズ群G1を構成する14個のレンズL11〜L114の材料として石英ガラス、第2レンズ群G2を構成する4個のレンズL21〜L24の材料として石英ガラス、第3レンズ群G3を構成する11個のレンズL31〜L311のうち6個の材料としてフッ化カルシウム結晶、その他の5個の材料として石英ガラスを用いることによって、色収差の補正を好適に行うことができる。
なお、従来用いられていた光学部材では、光学有効径内での複屈折が全て2nm/cm以内という良好な値であっても、レンズ加工、コートを行いNA0.8以上という斜入射光の影響の大きいステッパー投影レンズの光学系を組んだ場合、投影レンズとしての性能を得ることができなかった。
これに対して本発明の光学部材の製造方法においては、光学部材の側面の所定位置に光軸に平行な位置基準線を引き、面方位測定装置の前面に合わせてラウエ法により結晶面方位を測定する。そして、得られた結晶面方位に基づき、切断面と結晶面方位とのずれ角が3°以内となる精度で光学素材を切り出し、さらに、光学素材を研磨又はコートする際にも結晶面方位を管理する。このようにして得られる光学部材を用いて光学系を作製する際に、図2Aと図2B、図3Aと図3C、さらには図4A〜図4Dに示した位置関係となるように配置することによって、フッ化物結晶固有の複屈折による影響を低減することができ、高水準の結像性能を達成することができる。
さらに、本発明においては、残留した複屈折の影響は、複屈折の分布をコントロールし、フッ化カルシウムの複屈折を打ち消すように製造した石英ガラス、フッ化カルシウム、フッ化バリウムなどの結晶の複屈折分布を測定し、これらを光学系内に挿入することで補正し、光学性能をさらに向上させることができる。この場合も、結晶面方位の管理を行うことは言うまでもない。
以上説明したように、本発明によれば、レンズ1枚1枚の結晶面方位をより精密に管理すること、また、様々な面方位を持つ光学部材を組み合わせることにより、フッ化物結晶が持つ固有複屈折の光学系性能に与える影響を最小限に抑えることが可能となる。従って、本発明により得られる光学部材は、光学系の性能を確保するための重要な要素として非常に有用である。
[実施例]
以下、実施例及び比較例に基づいて本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
(実施例1)
<フッ化カルシウム単結晶の育成工程>
図7A〜図7Cに示した装置を用いて、ブリッジマン法によりフッ化カルシウム単結晶のインゴットを製造した。原料として化学合成で作られた高純度原料を使用した。ペンシル型のカーボン製坩堝(φ300mm)に高純度原料を充填し、それらの坩堝を育成炉内に積み重ねて置き、育成装置内を10−3〜10−4Paの真空雰囲気に保った。次に、育成炉内の温度を蛍石の融点以上まで上げて原料を熔融し後室温まで降温した。このとき、育成炉内の温度の時間的変動を抑えるために、PID制御を行った。また、粉末原料にはフッ素化剤としてフッ化鉛を添加した。また、坩堝の下端に位置する円錐部の先端部分に種結晶を入れ、結晶成長の面方位を制御した。
このようにして得られた半溶融品を結晶育成炉に移し、再度溶融温度まで昇温した後、0.1〜5mm/hの速度で坩堝を引き下げることにより、坩堝の下部から徐々に結晶化させた(結晶育成工程)。融液の最上部まで結晶化したところで結晶育成を終了し、育成した結晶(インゴット)が割れないように徐冷した。育成炉内の温度が室温程度まで下がったことを確認し、育成炉を大気開放してφ290×t300mmのペンシル型インゴットを取り出した。
<面方位測定工程>
このようにして得られたフッ化カルシウム単結晶のインゴットについて、インゴット側面の炉内で正面を向いていた部分をワイヤーブラシで削って平滑にし、さらにガラス鉛筆で1本の直線を引いて位置基準線を設けた。
次に、インゴットのコーン部及びトップ部から、それぞれ厚さ30mm、径290mmのテストピースを切り出した。これらの2個のテストピースについて、図8に示した装置を用い、ラウエ法(側面反射法)により{111}面、{100}面及び{110}面の結晶面方位を測定した。テストピースについて得られた面方位からインゴット本体の結晶面方位を決定した。2個のテストピースとインゴット本体の位置関係は、上記位置基準線に基づいて確認した。
試料ステージの奥をx軸方向、試料ステージの鉛直下向き方向をz軸方向とした座標系において、z軸と[111]軸のなす角度をα、[111]軸を測定面に投影した線のx軸の+x方向から反時計回りになす角度をβとして表すとき、上記測定で得られた面方位角度はα=5°、β=85°であった(図9参照)。
コーンとトップ部が切断されたインゴット本体は、丸め加工を行い、円筒表面部分を砂かけ仕上げ相当面とした。砂かけ面での表面からの観察に加え、屈折率のマッチングオイルを塗布しての暗室での内部観察、クロスニコル光学系による界面の応力集中などを観察し、サブグレインバンダリー、ポリクリスタルの状態、その界面の位置を確認すると共に、泡や異物の状態も同時に確認した。本実施例のインゴットでは、コーンとトップの面方位は矛盾無く一致した。また、インゴット表面の観察ではサブグレインバンダリーは観察されず、また、インゴット内部に多結晶の境界線は観察されなかったので、単結晶が得られていることが確認された。
<切り出し工程>
上記面方位測定工程で得られたα、βに基づいてインゴットの切断方向を決定し、円形面が{111}面に平行になるようにφ260×t50、φ200×t60の2つの円筒形状素材を切り出した。このとき、面方位測定工程で付した位置基準線と結晶面方位との関係が明らかになるようにマーキングを行った。このマーキングを以下の工程で維持することにより、光学部材(最終部品)における{111}面及び{100}面を管理した。
このようにして得られた光学部材についてラウエ法による面方位測定を行い、サブバンダリーや双晶がないことを確認した。得られた素材の結晶面方位は、インゴットの面方位と±3°の範囲内で一致していた。
その後、品質向上のためにアニール処理を行った後、複屈折の値を自動測定した。アニール処理前の光学素材における{111}面方向の複屈折は5nm/cm以上であったが、当該複屈折はアニール処理後に3nm/cm以下まで低減した。なお、複屈折の測定は波長633nmの光を用いて行った。
また、得られた光学素材について、ラウエ法により光学有効径外で60°ごとに結晶面方位を測定したところ、インゴットの結晶面方位、並びにアニール前の円筒形状素材の結晶面方位と±3°の範囲内で一致した。
(実施例2)
<光学部材の作製>
実施例1と同様の方法により、フッ化カルシウム単結晶インゴットを育成し、インゴットの{111}面、{100}面及び{110}面の結晶面方位を測定した。
次に、このインゴットから、{111}面が上下の2平面になるように、複数の円筒形状素材を切り出した。側面の任意の位置に光軸に並行に鉛筆で基準線を引き、面方位測定装置の前面にあわせてラウエ法により光学素材の結晶面方位を測定した。このとき、[100]軸、[010]軸、[001]軸を測定面に投影した線は各々測定面法線に関して3回対称となっていた。そのうち[100]軸の投影線のβ角度方向の素材側面に新たな基準線を鉛筆で引き、先程の任意の基準線は消しゴムで消した。
次に、新しい基準線を面方位測定装置の前面にあわせて再びラウエ法により結晶面方位を測定した。このとき、(010)、(100)、(001)の面方位角度のうちβ角度は60°、180°、300°のいずれかになり、新たな基準線位置は180°位置に相当するものであった。
このようにして<100>軸を管理しながら、光学素材に研磨、コートを施して光学部材を得た。
<ArFエキシマレーザー用投影光学系の作製>
得られた光学部材をレンズとして用いて、図26に示した投影光学系を作製した。この投影光学系において、第3レンズ群G3を構成する11個のレンズL31〜L311のうちL31、L33、L35、L37、L38、L310として本実施例で得られた光学部材を用いた。これらの光学部材同士は、図2A及び図2Bに示すように、各レンズの{110}面の方位が60°ずつずれるように配置した。
このようにして得られた光学系について、ArFエキシマレーザーを用いたときの複屈折分布によるストレール値を測定した。本実施例で得られた光学系のストレール値は0.99まで向上し、投影光学系として十分な結像性能を有していることが確認された。
(比較例1)
<光学部材の作製>
実施例1と同様にしてフッ化カルシウム単結晶のインゴットを作製した。
次に、インゴットを軽く叩いて劈開させ、その劈開面({111}面)に沿って光学素材を切り出し、実施例2と同様の研磨、コートを施して光学部材を得た。
<ArFエキシマレーザー用投影光学系の作製>
次に、得られた光学部材をレンズとして用い、図26に示す光学系を作製した。なお、図26中の第3レンズ群G3を構成する11個のレンズL31〜L311のうちL31、L33、L35、L37、L38、L310として本比較例で得られた光学部材を用いた点は実施例2と同様であるが、これらのレンズを配置する際にはそれぞれの{111}面を光軸と一致させただけであり、他の結晶面方位は考慮しなかった。このようにして得られた投影光学系について、実施例2と同様にしてストレール値を測定した。得られたストレール値は0.91であり、投影光学系としての性能が不十分であった。
(実施例3)
<光学部材の作製>
実施例1と同様の方法により、フッ化カルシウム単結晶インゴットを育成し、インゴットの{111}面、{100}面及び{110}面の結晶面方位を測定した。
このインゴットから、{111}面が上下の2平面になるように、複数の円筒形状素材を切り出した。このとき、素材の結晶面方位を測定し、{111}面、{100}面、{110}面のそれぞれが平行な2平面となるように素材を加工して光学部材を得た。得られた光学部材について、面方位の光学設計値とのズレが3°以内であることを確認した。
<Fレーザ用投影光学系の作製>
次に、得られた光学部材をレンズ及びプリズムとして用い、図25に示した投影光学系を作製した。すなわち、図25に示した投影光学系において、全てのレンズ及びプリズムとして本実施例の光学部材を用いた。また、これらの光学部材を配置する際、<111>軸を光軸と一致させた部材の場合は、<110>軸を光軸を中心に60度回転させた2枚のレンズを組み合わせて配置することで、これらの光学部材の複屈折を相殺した。また、<100>軸を光軸と一致させた部材の場合は、<110>軸を光軸を中心に45度回転させた2枚のレンズを組み合わせて配置することで、これらの光学部材の複屈折を相殺した。さらに、<110>軸を光軸と一致させた部材の場合は、<111>軸及び<100>軸をそれぞれ光軸を中心に45°、90°、135°回転させた4枚のレンズを組み合わせて配置することで、これらの光学部材の複屈折を相殺した。
このようにして得られた投影光学系について、Fレーザーを用いたときのストレール値を測定した。本実施例で得られた光学系のストレール値は0.92まで向上し、投影光学系として十分な結像性能を有していることが確認された。
(比較例2)
<光学部材の作製>
実施例1と同様にしてフッ化カルシウム単結晶のインゴットを作製した。
次に、インゴットを軽く叩いて劈開させ、その劈開面({111}面)に沿って光学素材を切り出し、実施例2と同様の研磨、コートを施して光学部材を得た。
<Fレーザー用投影光学系の作製>
次に、得られた光学部材をレンズ及びプリズムとして用い、図25に示す光学系を作製した。なお、図25中の全てのレンズ及びプリズムとして本比較例で得られた光学部材を用いた点は実施例3と同様であるが、これらのレンズを配置する際にはそれぞれの<111>軸を光軸と一致させただけであり、他の結晶面方位は考慮しなかった。
このようにして得られた投影光学系について、実施例3と同様にしてストレール値を測定した。得られたストレール値は0.56であり、投影光学系としての性能が不十分であった。
産業上の利用可能性
以上のように、本発明の光学部材の製造方法によれば、光軸方向と一致する結晶面方位だけでなく他の結晶面方位も管理された光学部材を容易に且つ確実に得ることができる。本発明により得られる光学部材を用いて光学系を作製する場合、光学部材同士の結晶面方位を上述のように所定の位置関係となるように配置することによって、フッ化物結晶固有の複屈折の影響を低減し、光学系における結像性能を十分に高めることができる。また、このように光学部材ごとの結晶面方位を管理することにより、様々な面方位を持つ光学部材を組み合わせて光学系を組み上げることができ、設計の自由度を大きくすることができる。
【図面の簡単な説明】
図1は立方晶であるフッ化物単結晶における結晶面の方位を示す説明図である。
図2A及び図2Bはそれぞれ、2つの光学部材を組み合わせるときの<111>軸及び<110>軸の関係を示す斜視図であり、実線の矢印は<111>軸、点線の矢印は<110>軸をそれぞれ示す。
図3A及び図3Bはそれぞれ、2つの光学部材を組み合わせるときの<100>軸及び<110>軸の関係を示す斜視図であり、破線の矢印は<100>軸、点線の矢印は<110>軸をそれぞれ示す。
図4A、図4B、図4C及び図4Dはそれぞれ、4つの光学部材を組み合わせるときの<111>軸、<100>軸及び<110>軸の関係を示す斜視図であり、実線の矢印は<111>軸、破線の矢印は<100>軸、点線の矢印は<110>軸をそれぞれ示す。
図5は本発明にかかる各工程におけるフッ化物の状態を示すフローチャートである。
図6は本発明の製造方法の一例を示すフローチャートである。
図7A〜図7Cはそれぞれ本発明にかかる結晶育成装置の一例を示す断面図である。
図8は本発明にかかる面方位測定装置の一例を示す概略構成図である。
図9は面方位角度α、βの概念を示す説明図である。
図10A〜図10C、図12A〜図12C、図14A〜図14B、図16A〜図16C、図18A〜図18C、図20A〜図20Cはそれぞれ所定のステップにおけるインゴット又は当該インゴットから切り出された光学素材を示す上面図である。
図11A〜図11C、図13A〜図13C、図15A〜図15B、図17A〜図17C、図19A〜図19C、図21A〜図21Cはそれぞれ所定のステップにおけるインゴット又は当該インゴットから切り出された光学素材を示す側面図である。
図22は投影露光装置の一例を示す概略構成図である。
図23は投影光学系の一例を示す概略構成図である。
図24は投影光学系の他の例を示す概略構成図である。
図25は投影光学系の他の例を示す概略構成図である。
図26は投影光学系の他の例を示す概略構成図である。

Claims (7)

  1. フッ化物結晶インゴットを育成する育成工程と、
    前記インゴットの2つ以上の結晶面方位を測定する面方位測定工程と、
    前記面方位測定工程で得られる結晶面方位のいずれかに沿って前記インゴットから光学素材を切り出す切り出し工程と、
    前記光学素材に所定の加工処理を施して光学部材を得る加工工程と、
    を有する光学部材の製造方法。
  2. 前記結晶面方位が、{111}面、{100}面及び{110}面から選ばれる2つ以上である、請求項1に記載の光学部材の製造方法。
  3. 前記面方位測定工程において前記結晶面方位に対する基準線を前記インゴットに設け、前記切り出し工程において該基準線に基づいて前記インゴットから前記光学素材を切り出す、請求項1に記載の光学部材の製造方法。
  4. 前記面方位測定工程が、前記インゴットのトップ部又はコーン部を切断して得られるテストピース部分の2つ以上の結晶面方位を測定し、測定された前記テストピースの結晶面方位から前記インゴットの結晶面方位を求めるものである、請求項1に記載の光学部材の製造方法。
  5. 前記面方位測定工程が、被検物にX線を照射して結晶面方位を測定するラウエ法を利用するものである、請求項1に記載の光学部材の製造方法。
  6. 前記ラウエ法が側面反射法によるものである請求項5に記載の光学部材の製造方法。
  7. 前記切り出し工程における前記光学素材の結晶面方位からのずれ角が3°以内である、請求項1に記載の光学部材の製造方法。
JP2003514302A 2001-07-17 2002-07-17 光学部材の製造方法 Expired - Fee Related JP4238727B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001217275 2001-07-17
JP2001217275 2001-07-17
PCT/JP2002/007278 WO2003009017A1 (fr) 2001-07-17 2002-07-17 Procede de fabrication d'un element optique

Publications (2)

Publication Number Publication Date
JPWO2003009017A1 true JPWO2003009017A1 (ja) 2004-11-11
JP4238727B2 JP4238727B2 (ja) 2009-03-18

Family

ID=19051633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003514302A Expired - Fee Related JP4238727B2 (ja) 2001-07-17 2002-07-17 光学部材の製造方法

Country Status (5)

Country Link
US (1) US6994747B2 (ja)
EP (1) EP1408348B1 (ja)
JP (1) JP4238727B2 (ja)
KR (1) KR100908587B1 (ja)
WO (1) WO2003009017A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10123725A1 (de) * 2001-05-15 2002-11-21 Zeiss Carl Projektionsbelichtungsanlage der Mikrolithographie, Optisches System und Herstellverfahren
US7239447B2 (en) * 2001-05-15 2007-07-03 Carl Zeiss Smt Ag Objective with crystal lenses
JP2004526331A (ja) 2001-05-15 2004-08-26 カール・ツアイス・エスエムテイ・アーゲー フッ化物結晶レンズを含む対物レンズ
JP3639807B2 (ja) * 2001-06-27 2005-04-20 キヤノン株式会社 光学素子及び製造方法
DE10162796B4 (de) * 2001-12-20 2007-10-31 Carl Zeiss Smt Ag Verfahren zur Optimierung der Abbildungseigenschaften von mindestens zwei optischen Elementen sowie photolithographisches Fertigungsverfahren
AU2002356590A1 (en) * 2002-05-08 2003-11-11 Carl Zeiss Smt Ag Lens consisting of a crystalline material
US7292388B2 (en) 2002-05-08 2007-11-06 Carl Zeiss Smt Ag Lens made of a crystalline material
JP2003347627A (ja) * 2002-05-29 2003-12-05 Gigaphoton Inc 紫外線レーザ装置
JP4078161B2 (ja) * 2002-09-12 2008-04-23 キヤノン株式会社 蛍石とその製造方法
US20040237880A1 (en) * 2002-10-01 2004-12-02 Nikon Corporation Method for manufacturing an optical member formed of a fluoride crystal
US7399360B2 (en) * 2003-07-03 2008-07-15 Hitachi Chemical Company, Ltd. Crucible and method of growing single crystal by using crucible
JP4776891B2 (ja) * 2004-04-23 2011-09-21 キヤノン株式会社 照明光学系、露光装置、及びデバイス製造方法
JP4731844B2 (ja) * 2004-06-30 2011-07-27 キヤノン株式会社 結晶製造方法及び装置
JP2006073921A (ja) * 2004-09-06 2006-03-16 Komatsu Ltd 紫外線ガスレーザ用光学素子及び紫外線ガスレーザ装置
JP4756630B2 (ja) * 2005-01-19 2011-08-24 三井金属鉱業株式会社 (100)結晶面の円筒状フッ化物単結晶の加工方法
JP4797447B2 (ja) * 2005-05-27 2011-10-19 株式会社ニコン 光学用被加工部材,光学部材,光学系及び光露光装置
US7994485B2 (en) * 2008-04-08 2011-08-09 Carestream Health, Inc. Apparatus and method for fluorescence measurements using spatially structured illumination
DE102008033548A1 (de) * 2008-07-17 2010-01-21 Schott Ag Verfahren zur Optimierung der Zerteilung eines kristallinen Körpers
DE102009009602A1 (de) * 2008-10-27 2010-04-29 Ifg - Institute For Scientific Instruments Gmbh Spektralauflösende elektronische Röntgenkamera
EP2390685A4 (en) * 2009-03-09 2012-09-26 Olympus Medical Systems Corp METHOD FOR MANUFACTURING A MONOCRYSTAL OPTICAL LENS
JP2011238976A (ja) * 2011-09-02 2011-11-24 Gigaphoton Inc ガスレーザ用光学素子及びそれを用いたガスレーザ装置
JP2013065903A (ja) * 2013-01-15 2013-04-11 Gigaphoton Inc ガスレーザ装置
KR102357452B1 (ko) * 2014-02-28 2022-01-28 가부시키가이샤 니콘 불화칼슘 광학 부재, 그 제조 방법, 기체 유지 용기 및 광원 장치
JP6264106B2 (ja) * 2014-03-10 2018-01-24 株式会社ニコン フッ化カルシウム光学部材及びその製造方法
DE102017105580A1 (de) * 2016-11-04 2018-05-09 Carl Zeiss Meditec Ag Operationsmikroskop
WO2018229854A1 (ja) * 2017-06-13 2018-12-20 ギガフォトン株式会社 レーザ装置及び光学素子の製造方法
JP6974133B2 (ja) * 2017-11-22 2021-12-01 株式会社ディスコ SiCインゴットの成型方法
CN112420505B (zh) * 2020-11-27 2024-03-26 郑州磨料磨具磨削研究所有限公司 一种衬底材料最优划片方向的确定方法
CN114030095B (zh) * 2021-06-01 2024-04-19 中国电子科技集团公司第十一研究所 激光辅助定向粘接装置及方法
DE102022118146B3 (de) 2022-07-20 2023-12-07 Carl Zeiss Jena Gmbh Verfahren zum Herstellen eines optischen Elements für eine Lithographieanlage

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2617870B1 (fr) * 1987-07-09 1989-10-27 Labo Electronique Physique Procede de realisation de plaquettes-substrats orientees, a partir de lingots massifs semi-conducteurs du groupe iii-v
DE3837672A1 (de) * 1988-11-05 1990-05-10 Sandoz Ag Hochwertige, orthorhombische kaliumniobat-einkristalle, ihre herstellung und anwendung
JP2985022B2 (ja) 1991-03-22 1999-11-29 株式会社トーキン 磁気光学素子及び光アイソレータ
JP3089955B2 (ja) * 1994-10-06 2000-09-18 株式会社ニコン 光リソグラフィー用光学部材及び投影光学系
JP3062031B2 (ja) 1995-02-15 2000-07-10 富士電気化学株式会社 ルチル単結晶からなる光学部品の製造方法
JP3823436B2 (ja) * 1997-04-03 2006-09-20 株式会社ニコン 投影光学系
JP4174086B2 (ja) 1997-07-02 2008-10-29 キヤノン株式会社 結晶成長用の種結晶及びフッ化物結晶
JP3413067B2 (ja) * 1997-07-29 2003-06-03 キヤノン株式会社 投影光学系及びそれを用いた投影露光装置
JP2000128696A (ja) * 1998-10-16 2000-05-09 Nikon Corp フッ化物単結晶からなる光学素子作製用素材とその製造方法
US6201634B1 (en) * 1998-03-12 2001-03-13 Nikon Corporation Optical element made from fluoride single crystal, method for manufacturing optical element, method for calculating birefringence of optical element and method for determining direction of minimum birefringence of optical element
JP4158252B2 (ja) 1998-11-09 2008-10-01 株式会社ニコン 蛍石単結晶、その熱処理方法及び蛍石単結晶素材の製造方法

Also Published As

Publication number Publication date
US6994747B2 (en) 2006-02-07
EP1408348A4 (en) 2008-05-07
EP1408348A1 (en) 2004-04-14
US20040089023A1 (en) 2004-05-13
WO2003009017A1 (fr) 2003-01-30
JP4238727B2 (ja) 2009-03-18
EP1408348B1 (en) 2012-12-19
KR100908587B1 (ko) 2009-07-22
KR20040020891A (ko) 2004-03-09

Similar Documents

Publication Publication Date Title
JP4238727B2 (ja) 光学部材の製造方法
JP3741208B2 (ja) 光リソグラフィー用光学部材及びその評価方法
US20030197946A1 (en) Projection optical system, fabrication method thereof, exposure apparatus and exposure method
JP4207389B2 (ja) 投影光学系、その製造方法、及びそれを用いた投影露光装置
US6672109B1 (en) Silica glass member, method for producing the same, and projection aligners using the same
CN1409175A (zh) 照明光学系统、曝光装置以及微元件的制造方法
JP2011201771A (ja) 合成石英ガラスの製造方法及び熱処理装置
EP1026548A2 (en) Optical member for photolithography and photolithography apparatus
JP3765329B2 (ja) フッ化カルシウム結晶、その製造方法 及びこれを用いた投影露光装置
EP1403663A1 (en) Optical member, process for producing the same, and projection aligner
JP4360161B2 (ja) フッ化物結晶から形成された光学部材の製造方法
US20040237880A1 (en) Method for manufacturing an optical member formed of a fluoride crystal
EP1464992A1 (en) Fluoride crystal material for optical device used for photolithographic apparatus and its manufacturing method
US7001462B2 (en) Method for making an oriented optical fluoride crystal blank
JP2004157349A (ja) 光学系の製造方法、投影光学系、露光装置、および露光方法
JP2001302255A (ja) 光学部材の製造方法、光学部材および投影露光装置
JP2003294611A (ja) 複屈折測定装置及び方法
JP4797447B2 (ja) 光学用被加工部材,光学部材,光学系及び光露光装置
JP2001019596A (ja) 紫外光学用人工結晶、これを用いた光学基材及び光リソグラフィー装置
JP2002154897A (ja) フッ化カルシウム単結晶の製造方法、フッ化カルシウム単結晶
JP2000349366A (ja) 蛍石の透過率検査方法
JP2004253583A (ja) 投影光学系の調整方法、投影光学系の製造方法、投影光学系、露光装置、および露光方法
TW200417637A (en) Method for making an oriented optical fluoride crystal blanks
JP2005308876A (ja) 光学部材、光学系および露光装置
JP2000235101A (ja) 紫外線透過光学用材料およびこれを用いた紫外線光学装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4238727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150109

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150109

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees