JPWO2002069464A1 - 光送信器 - Google Patents

光送信器 Download PDF

Info

Publication number
JPWO2002069464A1
JPWO2002069464A1 JP2002501226A JP2002501226A JPWO2002069464A1 JP WO2002069464 A1 JPWO2002069464 A1 JP WO2002069464A1 JP 2002501226 A JP2002501226 A JP 2002501226A JP 2002501226 A JP2002501226 A JP 2002501226A JP WO2002069464 A1 JPWO2002069464 A1 JP WO2002069464A1
Authority
JP
Japan
Prior art keywords
temperature
optical transmitter
current
temperature characteristic
detection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002501226A
Other languages
English (en)
Inventor
三木 誠
誠 三木
松山 哲
哲 松山
洋起 金坂
洋起 金坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2002069464A1 publication Critical patent/JPWO2002069464A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/502LED transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/504Laser transmitters using direct modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06804Stabilisation of laser output parameters by monitoring an external parameter, e.g. temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Abstract

本発明は、温度変化等による半導体発光素子の光出力特性の変動を高い精度で制御できる低コストの光送信器を提供することを目的とする。このため、本発明の光送信器は、半導体発光素子と、該半導体発光素子に駆動電流を供給する駆動回路と、半導体発光素子の光出力パワーを検出する光出力検出部と、半導体発光素子に供給される駆動電流に関する温度特性データおよび光出力検出部に関する温度特性データを含んだ温度特性情報を記憶する記憶部と、温度を検出する温度検出部と、温度検出部で検出された温度に応じて記憶部から読み出した温度特性情報および光出力検出部の検出結果に基づいて、駆動回路の動作を制御する制御部とを備えて構成される。

Description

技術分野
本発明は、レーザーダイオード(LD)や発光ダイオード(LED)等の半導体発光素子を利用し電気信号を光信号に変換して送信する光送信器に関し、特に、温度変化等による半導体発光素子の光出力特性の変動を抑える制御技術に関する。
背景技術
光送信器に利用される半導体発光素子の特性は温度に応じて変化し、また、その温度特性は、使用する個々の半導体発光素子ごとにばらつきが存在する。このため、従来の光送信器では、光出力パワーの個別調整が基本的に必要となり、調整部品点数の増加に伴う回路規模の増大、個別調整のためのコストの上昇などの問題点があった。
上記のような問題点を解決するための従来の技術としては、例えば、特開平9−162811号公報等に記載された技術が知られている。この従来の技術は、レーザーダイオードおよびその駆動回路についその温度特性データを予め取得し、その取得データを制御のための特性情報として光送信器内に格納し、温度と目標とする光出力とに応じて格納データから特性情報を選択し、該特性情報に基づいて、駆動回路がレーザーダイオードに供給する駆動電流を制御するものである。これにより、レーザーダイオードの温度特性とそれを駆動制御する回路の温度特性の相違による、消光不良や発光遅延などの解消を図っている。
しかし、上記のような従来の光送信器では、特性情報として光送信器内に予め格納される温度特性データが、所定の雰囲気温度および光出力に対応させて取得したレーザーダイオードの駆動電流(具体的には、順方向電流および閾値電流)だけであるため、温度変化による光出力パワーの変動を高い精度で制御することが難しいという問題点がある。
すなわち、従来の光送信器で行われる光出力パワーの制御は、レーザーダイオードから出力される光のパワーをモニタ用フォトダイオード(以下、モニタPDとする)で検出し、その検出した光出力パワーと、固定の基準信号(電池)とを比較して、その比較結果の相違が相殺されるようにレーザーダイオードへの駆動電流を制御する。上記モニタPDの光電変換効率は、例えば図12に示すように、温度に応じて変化することが知られているが、このモニタPDの温度特性の変動量は、一般的に、レーザーダイオードの温度特性の変動量に比べて小さく、従来の制御ではモニタPDの温度特性を無視していた。しかしながら、光出力パワーをより高い精度で制御しようとすると、モニタPDの温度特性による影響が無視できなくなるため、モニタPDの温度特性までを考慮した制御が必要になってくる。
また、従来の光送信器における光出力パワー制御では、モニタPDの検出結果を用いたAPC(オートパワーコントロール)が閾値電流に対してだけ行われ、変調電流については格納データから読み出した特性情報により直接制御される、いわゆるフィードフォワード制御が行われる。しかし、レーザーダイオードの経年劣化等による光出力特性の変化は、閾値電流に応じた変化であるのか、あるいは、変調電流に応じた変化であるのかを区別することが困難であるため、閾値電流に対してAPC等のフィードバック制御を行うだけでは、例えば25年間等の長期間におよぶ特性補償を行うことが難しいという問題点もある。
さらに、従来の光送信器では、格納する特性情報を作成するために、所要の温度範囲について雰囲気温度を所定の割合で変えながら温度特性データが取得される。しかし、このような特性情報の作成方法において、より高精度の光出力パワー制御を実現させるためには、非常に多くの温度について特性データを取得する必要が生じるため、光送信器の調整に費やされる時間が長くなり、調整工数の増大によるコスト上昇を招いてしまうという問題点がある。
本発明は上記のような問題点に着目してなされたものであり、温度変化等による半導体発光素子の光出力特性の変動を高い精度で制御できる低コストの光送信器を提供することを目的とする。
発明の開示
このため本発明にかかる光送信器は、半導体発光素子と、該半導体発光素子に駆動電流を供給する駆動回路と、半導体発光素子の光出力パワーを検出する光出力検出部と、該光出力検出部の検出結果に基づいて駆動回路の動作を制御する制御部とを備えた光送信器において、半導体発光素子に供給される駆動電流に関する温度特性データおよび光出力検出部に関する温度特性データを含んだ温度特性情報を記憶する記憶部と、温度を検出する温度検出部とを有し、前記制御部が、温度検出部で検出された温度に応じて記憶部から読み出した温度特性情報および光出力検出部の検出結果に基づいて、駆動回路の動作を制御するようにしたものである。
かかる光送信器では、半導体発光素子の駆動電流および光出力検出部に関する各温度特性データを含んだ温度特性情報が記憶部に予め記憶され、その記憶部の温度特性情報が、制御部によって、温度検出部で検出された温度に応じて読み出される。そして、制御部では、読み出した温度特性情報に基づいて、光出力検出部の検出結果についての温度変化に応じた誤差を補償しながら駆動回路の動作制御が行われる。これにより、半導体発光素子の光出力パワーの温度変動を高い精度で制御することができるようになる。
また、上記光送信器の具体的な構成として、半導体発光素子がレーザーダイオードであるとき、記憶部が、レーザーダイオードに供給される閾値電流および変調電流にそれぞれ相当する温度特性データと、光出力検出部に用いられる受光素子から出力されるモニタ電流の温度特性データと、を温度特性情報として記憶するようにしてもよい。さらに、上記光送信器の制御部は、温度検出部で検出された温度に応じて記憶部から読み出したモニタ電流の温度特性データと、光出力検出部で検出された光出力パワーに対応するモニタ電流値とが一致するように、駆動回路からレーザーダイオードに供給される閾値電流および変調電流の少なくとも一方をフィードバック制御するのが好ましい。閾値電流および変調電流の双方をフィードバック制御する場合には、閾値電流と変調電流の比の値が各温度において最適になるように駆動回路の動作を制御することが可能である。また、閾値電流および変調電流の一方をフィードバック制御する場合には、温度検出部で検出された温度に応じて記憶部から読み出した温度特性情報のみに基づいて、他方の電流をフィードフォワード制御するようにしてもよい。
上記のような具体的な構成によれば、閾値電流および変調電流の和に対応したレーザーダイオードの駆動電流が制御部によってフィードバック制御されることで、レーザーダイオードの光出力パワーを高い精度で所要のレベルに制御できるようになる。なお、前述した光送信器は、半導体発光素子を発光ダイオードとすることも可能であり、この場合には、発光ダイオードの光出力パワーを高い精度で制御できるようになる。
また、上述した光送信器の記憶部に記憶される温度特性情報は、使用温度範囲について、少なくとも3点の温度で測定したデータを基に定めた近似式を利用して取得するようにしてもよい。これにより、温度特性データの測定ポイントが比較的少なくても、使用温度範囲について精度の高い温度特性情報を取得することができるようになるため、光送信器の調整作業に要する時間の短縮を図ることが可能になる。
さらに、上述した光送信器については、記憶部に記憶された駆動電流に関する温度特性データのうちの温度検出部で検出された温度に対応するデータと、駆動回路で発生する駆動電流とを比較することによって、半導体発光素子に供給される駆動電流の増加または減少を検出可能な駆動電流モニタ回路を備えるようにしてもよい。加えて、記憶部に記憶された光出力検出部に関する温度特性データのうちの温度検出部で検出された温度に対応するデータと、光出力検出部で検出された光出力パワーに関する情報とを比較することによって、半導体発光素子の光出力パワーの変動を検出可能な光出力モニタ回路を備えるようにしても構わない。
上記のような構成とすることによって、半導体発光素子の駆動状態を外部等でモニタすることが可能になり、駆動電流や光出力パワーに異常が発生した場合の警報発出等にも利用することができるようになる。
発明を実施するための最良の形態
以下、本発明にかかる光送信器の実施形態を添付図面に基づいて説明する。
図1は、本発明にかかる光送信器の基本構成を示す機能ブロック図である。
図1において、本光送信器1は、例えば、レーザーダイオード(LD)10AおよびモニタPD(MPD)10Bを有するLDモジュール10と、レーザーダイオード10Aを駆動する主信号部11と、レーザーダイオード10Aおよびその駆動回路(ここでは主信号部11)並びにモニタPD10Bに関する温度特性情報を記憶する記憶部12と、モニタPD10Bからの出力信号を基に光出力モニタ信号を生成して主信号部11に伝える光出力モニタ信号生成部13と、温度を検出する温度検出部としての温度センサ14とを備えて構成される。
レーザーダイオード10Aは、主信号部11によって供給される駆動電流を光信号変換して光ファイバに出力する一般的な半導体発光素子である。モニタPD10Bは、レーザーダイオード10Aの光出力パワーを検出するための受光器であり、具体的には、例えばレーザーダイオード10Aの後方出射光を受光して電流信号に変換する受光素子等とすることができる。ここでは、上記のレーザーダイオード10AおよびモニタPD10Bがモジュール化された一般的なLDモジュール10を使用している。
主信号部11は、光送信器1の外部等から入力されるデータ信号DATAおよびクロック信号CLKに従って、レーザーダイオード10Aに供給する駆動電流を発生すると共に、記憶部12から読み取った温度特性情報、光出力モニタ信号生成部13から伝えられる光出力モニタ信号および温度センサ14から伝えられる温度モニタ信号に基づいて、上記駆動電流のレベルを調整する機能を備えた電気回路である。したがって、ここでは主信号部11が駆動回路および制御部に相当することになる。
図2は、主信号部11の具体的な構成例を示す回路図である。
図2の構成例において、主信号部11は、演算処理回路20と、外部等より入力されるデータ信号DATAおよびクロック信号CLKに従って、レーザーダイオード10Aに供給する駆動電流を制御して発光状態および消光状態を切り替えるオン/オフ制御回路21と、演算処理回路20からの出力情報に応じて、変調電流Imodの値を制御可能な変調電流制御回路22および閾値電流Ithの値を制御可能な閾値電流制御回路23と、を備えて構成される。
演算処理回路20は、光出力モニタ信号生成部13からの光出力モニタ信号および温度センサ14からの温度モニタ信号の入力を受け、入力された温度モニタ信号に応じて記憶部12に格納された温度特性情報を読み取り、その温度特性情報と入力された光出力モニタ信号とに基づいて、変調電流Imodおよび閾値電流Ithの各値を制御する制御信号を生成して出力する。なお、制御信号の具体的な生成方法については後述する。
オン/オフ制御回路21は、例えば、フリップフロップ回路(F/F)21A、パルス幅調整回路21BおよびMOSFET21Cを有する。フリップフロップ回路21Aは、外部等より入力されるデータ信号DATAをクロック信号CLKでリタイミングする。パルス幅調整回路21Bは、フリップフロップ回路21Aの出力信号のパルス幅を調整する。MOSFET21Cは、ゲート端子がパルス幅調整回路21Bの出力端子に接続され、ドレイン端子がレーザーダイオード10Aのカソード端子に接続されて、パルス幅調整回路21Bの出力信号に従いオン/オフ動作する。
変調電流制御回路22は、例えば、D/Aコンバータ(DAC)22AおよびMOSFET22B,22Cを有する。D/Aコンバータ22Aは、演算処理回路20から出力される、変調電流Imodに関する制御信号をディジタル信号からアナログ信号に変換する。MOSFET22Bは、ダイオード接続されていて、D/Aコンバータ22Aからの出力信号が入力される。MOSFET22Cは、ゲート端子がMOSFET22Bのゲート端子に接続され、ドレイン端子がMOSFET21Cのソース端子に接続され、ゲート端子に入力される信号に応じて変調電流Imodの値を制御する。
閾値電流制御回路23は、例えば、D/Aコンバータ(DAC)23AおよびMOSFET23B,23Cを有する。D/Aコンバータ23Aは、演算処理回路20から出力される、閾値電流Ithに関する制御信号をディジタル信号からアナログ信号に変換する。MOSFET23Bは、ダイオード接続されていて、D/Aコンバータ23Aからの出力信号が入力される。MOSFET23Cは、ゲート端子がMOSFET23Bのゲート端子に接続され、ドレイン端子がLDのカソード端子に接続されて、ゲート端子に入力される信号に応じて閾値電流Ithの値を制御する。
記憶部12は、レーザーダイオード10Aおよびその駆動回路となる主信号部11についての温度特性データと、モニタPD10Bについての温度特性データとを含んだ温度特性情報を記憶する。ここでは、温度特性情報の具体例として、レーザーダイオード10Aに供給される駆動電流のうちの変調電流Imodについての温度特性データImod(T)と、閾値電流Ithについての温度特性データIth(T)と、モニタPD10Bのモニタ電流Imについての温度特性データIm(T)とが、記憶部12にそれぞれ格納される。各々の温度特性データImod(T),Ith(T),Im(T)は、所要の温度範囲に対して予め測定等により取得したものである。なお、温度特性情報の具体的な作成方法については後述する。
光出力モニタ信号生成部13は、例えば図3の回路図に示すように、モニタPD10Bから出力されるモニタ電流Imを電圧に変換するための抵抗30と、その変換された電圧信号を平滑化するためのローパスフィルタ31としての抵抗31Aおよび容量31Bと、ローパスフィルタ31の出力信号を1倍の利得で増幅するバッファーとしての演算増幅器32と、を有し、演算増幅器32の出力信号を光出力モニタ信号として主信号部11に出力する。したがって、ここではモニタPD10Bおよび光出力モニタ信号生成部13が光出力検出部としての機能を備えることになる。
温度センサ14は、光送信器1上の任意の箇所(例えば、LDモジュール10や、主信号部11等を集積化したLSIなど)における温度を測定し、その測定結果を温度モニタ信号として主信号部11に出力する。
ここで、レーザーダイオード10Aの変調電流Imodおよび閾値電流Ith、並びに、モニタPD10Bのモニタ電流Imについての各温度特性について、具体的に説明する。
図4は、一般的なレーザーダイオードの温度特性を示す説明図であって、例えば、レーザーダイオードの雰囲気温度を−40℃、+25℃、+85℃にそれぞれ変化させた場合の駆動電流に対する光出力パワーの関係を示したものである。
図4に示すように、所要の光出力パワーを得るためには、雰囲気温度の上昇に伴って駆動電流を増加させる必要がある。各温度における駆動電流は、レーザーダイオードの閾値電流Ithと変調電流Imodの和、若しくは、レーザーダイオードの消光不良や発光遅延等を考慮して補正を行った閾値電流Ib(=k×Ith;k≦1.0)と変調電流Ip(=Imod+(1−k)×Ith)の和で表すことができる。雰囲気温度の変化に対する、閾値電流Ith(またはIb)および変調電流Imod(またはIp)の各変化量は、例えば図5の中段および上段に示すようにそれぞれ異なる。このため、温度変化による光出力変動の補償に用いる温度特性情報として、光送信器1の使用が想定される所要の温度範囲に対応した、閾値電流の温度特性データIth(T)および変調電流の温度特性データImod(T)が記憶部12にそれぞれ格納される。
また、モニタPD10Bのモニタ電流Imについても、上述の図12で説明したようにモニタPDの光電変換効率が温度に応じて変化するため、図5の下段に示すような温度特性が生じる。そこで本発明では、温度変化による光出力変動の補償に用いる温度特性情報として、所要の温度範囲に対応したモニタ電流の温度特性データIm(T)も記憶部12に格納される。
温度特性情報として記憶部12に格納される、図5に例示したような各温度特性データImod(T),Ith(T),Im(T)は、次のようにして取得することが可能である。
例えば、光送信器1の使用温度範囲として−40〜+85℃を想定した場合、まず、−40℃、+25℃、+85℃の3点を測定温度に設定して、閾値電流Ith(−40),Ith(+25),Ith(+85)の測定を行う。次に、各温度について、測定した閾値電流Ith(−40),Ith(+25),Ith(+85)をレーザーダイオード10Aに流した状態で、目標とする光出力パワーを得るのに必要な変調電流Imod(−40),Imod(+25),Imod(+85)の測定を行う。また、各温度での変調電流Imodの測定と同時に、目標の光出力パワーが得られた時におけるモニタ電流Im(−40),Im(+25),Im(+85)の測定も行う。
そして、各温度で測定した各々の電流値を用いて、次に示す各近似式(1),(2),(3)の各々の係数a〜c,d〜f,x〜zをそれぞれ算出する。ただし、各近似式における次数m,n,oは、各々の特性曲線に応じて予め設定しておくものとする。
Ith(T)≒aT+bT+c …(1)
Imod(T)≒dT+eT+f …(2)
Im(T)≒xT+yT+z …(3)
そして、算出した各係数を適用した各々の近似式(1)〜(3)を用いて、使用温度範囲に対する閾値電流Ith、変調電流Imod、モニタ電流Imの各テーブルを作成して、温度特性情報として記憶部12にそれぞれ格納する。
上記のように近似式(1)〜(3)を利用して温度特性情報を作成するようにすれば、比較的少ない測定点(ここでは各電流値に対して3点)でも精度の高い温度特性情報を取得できるため、光送信器1の調整に費やされる時間の短縮を図ることが可能になり、調整工数の削減による低コスト化を実現できるようになる。
なお、上記温度特性データの測定時にモニタする温度は、光送信器1を実際に使用するときに温度センサ14でモニタされる温度と同じ位置にするのが望ましい。あるいは、データ測定時と光送信器1の使用時とで温度をモニタする位置が異なる場合には、それぞれの位置における温度差を予め測定しておき、その温度差分だけ図5の特性曲線の横軸をシフトさせた近似式を用いて温度特性情報を取得し、記憶部12に格納するようにしても構わない。
また、上記温度特性情報の取得方法では、各近似式の項数を増やし次数をあげることで、高精のより高い温度特性情報を得ることが可能である。ただし、この場合には、測定する温度のポイントを増やす必要がある。
さらに、上記の取得方法では、各温度について各々の電流値を実測するようにしたが、例えば、光送信器1に使用するLDモジュール10単体の温度特性データが入手可能であれば、そのデータを用いて上記近似式の各係数を算出するようにしてもよい。このようにすることによって、組み立てた後の光送信器1としてのデータ取得作業は、ある1つの温度(例えば常温等)のみで実施可能となるため、光送信器1の調整時間を大幅に短縮することが可能になる。
上記のようにして、閾値電流、変調電流およびモニタ電流の各温度特性データIth(T),Imod(T),Im(T)が記憶部12に格納された光送信器1では、主信号部11において、光出力モニタ信号生成部13からの光出力モニタ信号および温度センサ14からの温度モニタ信号に応じて記憶部12内の温度特性情報が読み取られ、レーザーダイオード10Aの光出力パワーが目標とする値で一定となるように駆動電流の制御が行われる。ここでは、駆動電流の制御方式として、例えば、光出力モニタ信号に応じて変調電流Imodがフィードバック制御され、温度モニタ信号に対応した記憶部12の温度特性情報に応じて閾値電流Ithがフィードフォワード制御される方式を想定して、光送信器1の具体的な動作を説明することにする。図6は、上記の制御方式における光送信器1の動作を説明する概念図である。
図6に示すように、光送信器1では、まず、温度センサ14によってモニタされた光送信器1上の所要の部位の温度が温度モニタ信号として主信号部11の演算処理回路20に送られる。演算処理回路20では、入力された温度モニタ信号に対応する閾値電流Ith、変調電流Imodおよびモニタ電流Imの各値が記憶部12の温度特性情報から読み出される。そして、読み出した閾値電流Ithを初期値に設定する制御信号が、演算処理回路20から閾値電流制御回路23に送られ、閾値電流制御回路23によって制御された閾値電流Ithがレーザーダイオード10Aに供給される。
次に、光出力モニタ信号生成部13から出力される光出力モニタ信号が演算処理回路20に送られる。演算処理回路20では、記憶部12から読み出したモニタ電流Imの値をAPCの基準値として、光出力モニタ信号を用いた変調電流Imodのフィードバック制御が行われる。具体的には、モニタ電流Imの基準値に対する実測値の差が求められて、その差分に応じて変調電流Imodを調整する制御信号が演算処理回路20から変調電流制御回路22に送られ、MOSFET22Cを流れる変調電流Imodがフィードバック制御される。
このような制御方式においては、温度モニタ信号に応じてモニタ電流Imの目標値が読み出されフィードバック制御(APC)の基準値に設定されるため、従来のようにフィードバック制御用の基準値の初期調整を行う必要がなくなると共に、モニタPD10Bの光電変換効率の温度変化による光出力パワーの変動をも補償することが可能になる。これにより、光出力パワーを高い精度で制御できる低コストの光送信器が実現可能になる。
なお、上記の制御方式では、閾値電流Ithをフィードフォワード制御し、変調電流Imodをフィードバック制御する場合を考えたが、本発明による駆動電流の制御方式はこれに限られるものではなく、閾値電流Ithをフィードバック制御し、変調電流Imodをフィードフォワード制御する方式や、閾値電流Ithおよび変調電流Imodの双方をフィードバック制御する方式を採用することも可能である。
閾値電流Ithをフィードバック制御し、変調電流Imodをフィードフォワード制御する場合、具体的には図7の概念図に示すように、温度センサ14からの温度モニタ信号に対応して記憶部12から読み出した変調電流Imodの値を直接用いてレーザーダイオード10Aに供給する変調電流Imodが設定されると共に、温度モニタ信号に対応して記憶部12から読み出したモニタ電流Imの値をAPCの基準値として、光出力モニタ信号を用いた閾値電流Ithのフィードバック制御が行われる。
また、閾値電流Ithおよび変調電流Imodの双方をフィードバック制御する場合、具体的には図8の概念図に示すように、温度センサ14からの温度モニタ信号に対応して記憶部12から読み出したモニタ電流Imの値をAPCの基準値とし、さらに、閾値電流Ithに対する変調電流Imodの比(Imod/Ith)が温度モニタ信号に対応した温度特性情報に一致するように、閾値電流Ithおよび変調電流Imodのフィードバック制御が行われる。なお、Imod/Ithについての温度特性情報は、図8の例では、閾値電流Ithおよび変調電流Imodの各温度特性データを用いて予め算出して記憶部12に格納しておくようにしたが、温度モニタ信号に対応した閾値電流Ithおよび変調電流Imodの各値を記憶部12からそれぞれ読み出して、Imod/Ithの値を主信号部11の演算処理回路20で随時演算するようにしてもよい。このようにImod/Ithの値を随時演算するようにすれば、記憶部12の容量を削減できるため、回路規模の削減および低コスト化を図ることが可能である。
上記のように本発明による駆動電流の制御方式は、温度モニタ信号に対応して記憶部12から読み出したモニタ電流Imの値をAPCの基準値として、閾値電流Ithおよび変調電流Imodの少なくとも一方をフィードバック制御するものであり、そのような制御は上述の図1および図2に示したような比較的簡単な回路構成で実現可能である。
なお、本発明による光送信器1の構成によれば、閾値電流Ithおよび変調電流Imodをフィードフォワード制御する方式にも対応可能ではあるが、この場合には、モニタPD10Bでのモニタ結果を用いた制御が行われなくなるため、レーザーダイオード10Aの経時劣化等による光出力変動を補償することが難しくなる。
次に、本発明にかかる光送信器のより具体的な実施形態について説明する。
図9は、本発明にかかる光送信器の具体的な構成例を示す回路図である。ただし、上述の図1〜図3に示した構成と同様の部分には同じ符号が付してある。
図9において、本光送信器1’は、一般的なマイクロコンピュータ50を有し、該マイクロコンピュータ50は、例えば、バス51に結合されたCPU52、RAM53、メモリ54およびタイマー55を有すると共に、光出力モニタ信号生成部13および温度センサ14とのインターフェースとなるアナログ/ディジタル変換回路56と、変調電流制御回路22および閾値電流制御回路23とのインターフェースとなるディジタル/アナログ変換回路57と、その他のインターフェースとしてI/O58,59とを有する。
RAM53は、CPU52の作業領域またはデータの一時記憶領域として使用される。メモリ54は、上述した記憶部12に対応するものであって、予め測定等により取得した温度特性情報を格納するための領域である。I/O58は、メモリ54へのデータの書き込みおよび読み出し、並びに、各種ラッチ回路(LAT)に対する情報の書き込みおよび読み出しなどの制御を、外部のパソコン等を用いて行う際のインターフェース信号を処理する回路であって、インターフェースには一般的なシリアル伝送を用いている。また、I/O59は、ディジタル入出力信号のインターフェースであり、例えば、本光送信器1’の光出力を強制的に遮断するための外部からのシャットダウン制御信号XSDの入力や、CPU52が演算し出力する駆動電流の異常増加を知らせる警報信号LCAや、光出力パワーの異常な劣化を知らせる警報信号SOAなどを出力する。
アナログ/ディジタル変換回路56は、ここでは、A/Dコンバータ14A,33Aおよびラッチ回路14B,33Bから構成される。A/Dコンバータ14Aは、温度センサ14からの温度モニタ信号をディジタル信号に変換してラッチ回路14Bに出力する。ラッチ回路14Bは、A/Dコンバータ14Aからの出力信号をラッチしバス51に出力する。また、A/Dコンバータ33Aは、光出力モニタ信号生成部13からの出力信号をディジタル信号に変換してラッチ回路33Bに出力する。ラッチ回路33Bは、A/Dコンバータ33Aからの出力信号をラッチしバス51に出力する。
ディジタル/アナログ変換回路57は、ここでは、ラッチ回路22D,23DおよびD/Aコンバータ22A,23Aから構成される。ラッチ回路22Dは、バス51から出力される変調電流Imodについての制御信号をラッチし、D/Aコンバータ22Aに出力する。D/Aコンバータ22Aは、ラッチ回路22Dの出力信号をアナログ信号に変換して、ダイオード接続されたMOSFET22Bに出力する。また、ラッチ回路23Dは、バス51から出力される閾値電流Ithについての制御信号をラッチし、D/Aコンバータ23Aに出力する。D/Aコンバータ23Aは、ラッチ回路23Dの出力信号をアナログ信号に変換して、ダイオード接続されたMOSFET23Bに出力する。
また、本光送信器1’のマイクロコンピュータ50には、駆動状態を外部に出力するために、ラッチ回路60,62およびD/Aコンバータ61,63が設けられている。ラッチ回路60は、ラッチ回路22D,23Dに格納されている、CPU52が制御する変調電流Imodおよび閾値電流Ithの和と、メモリ54に格納されている変調電流Imodおよび閾値電流Ithの初期値の和との比をラッチしてD/Aコンバータ61に出力する。D/Aコンバータ61は、ラッチ回路60の出力信号をアナログ信号に変換し、駆動電流の制御状態を示すモニタ信号LCMとして外部に出力する。また、例えば図10に示すように、ラッチ回路60の出力信号レベルと、駆動電流の異常(劣化)を判断するために予め設定した警報発出レベルとを演算回路64で比較して、駆動電流の異常発生時に警報LCAを発出する機能を本光送信器1’に設けるようにしてもよい。
ラッチ回路62は、ラッチ回路33Bに格納されている光出力のモニタ電流Imに相当する信号と、メモリ54に格納されているモニタ電流Imの初期値との比をラッチしてD/Aコンバータ63に出力する。D/Aコンバータ63は、ラッチ回路62の出力信号をアナログ信号に変換し、光出力パワーの制御状態を示すモニタ信号SOMとして外部に出力する。また、例えば図11に示すように、ラッチ回路62の出力信号レベルと、光出力パワーの異常(劣化)を判断するために予め設定した警報発出レベルとを演算回路65で比較して、光出力パワーの異常発生時に警報SOAを発出する機能を本光送信器1’に設けるようにしてもよい。
上記のような構成の光送信器1’では、上述した光送信器1の場合と同様の作用効果が得られると共に、ラッチ回路60,62およびD/Aコンバータ61,63を介して出力されるモニタ信号LCM,SOMにより、各ラッチ回路22D,23D,33Bの状態を光送信器1’の外部からモニタすることが可能であり、さらには、駆動電流や光出力パワーの異常(劣化)発生を外部に警報することも可能である。このように、駆動電流や光出力パワーの制御状態をモニタし、異常発生時に警報を発出するような回路は、従来の回路構成でも、レーザーダイオードに供給される閾値電流Ithや変調電流Imod、モニタPDから出力されるモニタ電流Imをモニタするためのアナログ回路を別途設けることで実現可能ではある。しかし、上記のようなアナログ回路は、カレントミラーや抵抗の絶対値偏差、比較器のオフセットなどといった回路部品のばらつきによる誤差が大きいので、そのような誤差を補正するための初期調整を光送信器ごとに行う必要であり、調整工数の増大を招くことになると共に、抵抗や比較器などといった回路部品が必要となるため、回路規模が大きくなるという欠点もある。一方、本発明による駆動電流や光出力パワーのモニタおよび警報の発出は、フィードバック制御されている駆動電流の情報やモニタPDが出力するモニタ電流Imの情報と、メモリ54に格納されている温度特性情報とを比較し、その比較結果をモニタ信号として出力し、さらに、上記の比較結果と警報発出レベルを比較した結果を異常発生時の警報として発出するものである。したがって、モニタ信号の出力および警報の発出がマイクロコンピュータ50で処理される各種情報の比較演算だけで実現されるため、上記のような従来の回路における不都合を回避することが可能である。
なお、光出力パワーのモニタ出力および警報発出のために行うモニタ電流Imの比較処理は、駆動電流の制御方式によらずに実行可能であるため、駆動電流のフィードフォワード制御およびフィードバック制御のどちらに対しても有効である。
また、上述した実施の形態では、半導体発光素子としてレーザーダイオードを使用する場合を示したが、本発明はこれに限らず、発光ダイオード(LED)を利用した光送信器に対しても同様にして適用することが可能である。この場合には、レーザーダイオードにおける閾値電流以下の領域でLEDを駆動して変調を行うことになる。
産業上の利用可能性
本発明は、半導体発光素子の駆動電流および光出力検出部に関する各温度特性データを温度特性情報として記憶部に格納し、それらの温度特性情報を用いて駆動電流を制御するようにしたことで、半導体発光素子の光出力パワーを高い精度で制御できる低コストの光送信器を提供することが可能になる。このような本発明による半導体発光素子の制御技術は、例えば光通信分野などに用いられる各種の光送信器に適用することができ、産業上の利用可能性が大である。
【図面の簡単な説明】
図1は、本発明にかかる光送信器の基本構成を示す機能ブロック図である。
図2は、図1の光送信器に用いられる主信号部の具体的な構成例を示す回路図である。
図3は、図1の光送信器に用いられる光出力モニタ信号生成部の具体的な構成例を示す回路図である。
図4は、一般的なレーザーダイオードの温度特性を説明する図である。
図5は、本発明において、温度特性情報として記憶される、閾値電流、変調電流およびモニタ電流の各温度特性データの一例を示す図である。
図6は、本発明において、閾値電流をフィードフォワード制御し、変調電流をフィードバック制御する場合の動作を説明する概念図である。
図7は、本発明において、閾値電流をフィードバック制御し、変調電流をフィードフォワード制御する場合の動作を説明する概念図である。
図8は、本発明において、閾値電流および変調電流の双方をフィードバック制御する場合の動作を説明する概念図である。
図9は、本発明にかかる光送信器の具体的な構成例を示す回路図である。
図10は、図9の光送信器について、駆動電流の異常発生時に警報を発出する機能を設けた場合の一例を示す図である。
図11は、図9の光送信器について、光出力パワーの異常発生時に警報を発出する機能を設けた場合の一例を示す図である。
図12は、従来の光送信器におけるモニタPDの光電変換効率の温度変化を説明する図である。

Claims (10)

  1. 半導体発光素子と、該半導体発光素子に駆動電流を供給する駆動回路と、前記半導体発光素子の光出力パワーを検出する光出力検出部と、該光出力検出部の検出結果に基づいて前記駆動回路の動作を制御する制御部とを備えた光送信器において、
    前記半導体発光素子に供給される駆動電流に関する温度特性データおよび前記光出力検出部に関する温度特性データを含んだ温度特性情報を記憶する記憶部と、温度を検出する温度検出部と、を有し、
    前記制御部が、前記温度検出部で検出された温度に応じて前記記憶部から読み出した温度特性情報および前記光出力検出部の検出結果に基づいて、前記駆動回路の動作を制御することを特徴とする光送信器。
  2. 請求項1に記載の光送信器であって、
    前記半導体発光素子が、レーザーダイオードであり、
    前記記憶部が、前記レーザーダイオードに供給される閾値電流に相当する温度特性データと、前記レーザーダイオードに供給される変調電流に相当する温度特性データと、前記光出力検出部に用いられる受光素子から出力されるモニタ電流の温度特性データと、を前記温度特性情報として記憶することを特徴とする光送信器。
  3. 請求項2に記載の光送信器であって、
    前記制御部は、前記温度検出部で検出された温度に応じて前記記憶部から読み出したモニタ電流の温度特性データと、前記光出力検出部で検出された光出力パワーに対応するモニタ電流値とが一致するように、前記駆動回路から前記レーザーダイオードに供給される閾値電流および変調電流の少なくとも一方をフィードバック制御することを特徴とする光送信器。
  4. 請求項3に記載の光送信器であって、
    前記制御部は、前記駆動回路から前記レーザーダイオードに供給される閾値電流および変調電流の双方をフィードバック制御するとき、前記温度検出部で検出された温度に応じて前記記憶部から読み出した温度特性情報を用いて閾値電流と変調電流の比を算出し、該閾値電流と変調電流の比の値が各温度において最適になるように前記駆動回路の動作を制御することを特徴とする光送信器。
  5. 請求項4に記載の光送信器であって、
    前記記憶部が、閾値電流と変調電流の比に関する温度特性データを前記温度特性情報として記憶していることを特徴とする光送信器。
  6. 請求項2に記載の光送信器であって、
    前記制御部は、前記温度検出部で検出された温度に応じて前記記憶部から読み出した温度特性情報のみに基づいて、前記駆動回路から前記レーザーダイオードに供給される閾値電流および変調電流の一方をフィードフォワード制御することを特徴とする光送信器。
  7. 請求項1に記載の光送信器であって、
    前記半導体発光素子が、発光ダイオードであることを特徴とする光送信器。
  8. 請求項1に記載の光送信器であって、
    前記記憶部に記憶される温度特性情報は、使用温度範囲について、少なくとも3点の温度で測定したデータを基に定めた近似式を利用して取得することを特徴とする光送信器。
  9. 請求項1に記載の光送信器であって、
    前記記憶部に記憶された駆動電流に関する温度特性データのうちの前記温度検出部で検出された温度に対応するデータと、前記駆動回路で発生する駆動電流とを比較することによって、前記半導体発光素子に供給される駆動電流の増加または減少を検出可能な駆動電流モニタ回路を備えたことを特徴とする光送信器。
  10. 請求項1に記載の光送信器であって、
    前記記憶部に記憶された前記光出力検出部に関する温度特性データのうちの前記温度検出部で検出された温度に対応するデータと、前記光出力検出部で検出された光出力パワーに関する情報とを比較することによって、前記半導体発光素子の光出力パワーの変動を検出可能な光出力モニタ回路を備えたことを特徴とする光送信器。
JP2002501226A 2001-02-23 2001-02-23 光送信器 Pending JPWO2002069464A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/001375 WO2002069464A1 (fr) 2001-02-23 2001-02-23 Emetteur lumineux

Publications (1)

Publication Number Publication Date
JPWO2002069464A1 true JPWO2002069464A1 (ja) 2004-07-02

Family

ID=11737057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002501226A Pending JPWO2002069464A1 (ja) 2001-02-23 2001-02-23 光送信器

Country Status (4)

Country Link
US (1) US6748181B2 (ja)
EP (1) EP1282207A4 (ja)
JP (1) JPWO2002069464A1 (ja)
WO (1) WO2002069464A1 (ja)

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7346278B2 (en) * 2001-02-05 2008-03-18 Finisar Corporation Analog to digital signal conditioning in optoelectronic transceivers
US7149430B2 (en) * 2001-02-05 2006-12-12 Finsiar Corporation Optoelectronic transceiver having dual access to onboard diagnostics
US7302186B2 (en) * 2001-02-05 2007-11-27 Finisar Corporation Optical transceiver and host adapter with memory mapped monitoring circuitry
US20040197101A1 (en) * 2001-02-05 2004-10-07 Sasser Gary D. Optical transceiver module with host accessible on-board diagnostics
US7079775B2 (en) 2001-02-05 2006-07-18 Finisar Corporation Integrated memory mapped controller circuit for fiber optics transceiver
JP3588599B2 (ja) * 2001-07-05 2004-11-10 株式会社東芝 半導体バッファ能力調整方法、半導体バッファ能力調整システム、及び半導体装置
US6975642B2 (en) 2001-09-17 2005-12-13 Finisar Corporation Optoelectronic device capable of participating in in-band traffic
ATE389265T1 (de) * 2001-12-13 2008-03-15 Alcatel Lucent Lasersender und verfahren zur übertragung von gesteuerten optischen signalen
EP1788413A3 (en) * 2002-02-12 2007-06-13 Finisar Corporation Maintaining desirable performance of optical emitters at extreme temperatures
WO2003069378A2 (en) * 2002-02-12 2003-08-21 Finisar Corporation Maintaining desirable performance of optical emitters at extreme temperatures
US6947455B2 (en) * 2002-02-12 2005-09-20 Finisar Corporation Maintaining desirable performance of optical emitters at extreme temperatures
US6862302B2 (en) * 2002-02-12 2005-03-01 Finisar Corporation Maintaining desirable performance of optical emitters over temperature variations
US7251417B2 (en) * 2002-03-08 2007-07-31 Lucent Technologies Inc. Method and apparatus for optimization of dispersion-managed return-to-zero transmission by employing optical pulses having variable widths
JP3945308B2 (ja) * 2002-05-09 2007-07-18 住友電気工業株式会社 光送信装置
US7561855B2 (en) 2002-06-25 2009-07-14 Finisar Corporation Transceiver module and integrated circuit with clock and data recovery clock diplexing
US7809275B2 (en) 2002-06-25 2010-10-05 Finisar Corporation XFP transceiver with 8.5G CDR bypass
US7437079B1 (en) 2002-06-25 2008-10-14 Finisar Corporation Automatic selection of data rate for optoelectronic devices
US7664401B2 (en) * 2002-06-25 2010-02-16 Finisar Corporation Apparatus, system and methods for modifying operating characteristics of optoelectronic devices
US7486894B2 (en) * 2002-06-25 2009-02-03 Finisar Corporation Transceiver module and integrated circuit with dual eye openers
US6941080B2 (en) * 2002-07-15 2005-09-06 Triquint Technology Holding Co. Method and apparatus for directly modulating a laser diode using multi-stage driver circuitry
US7477847B2 (en) * 2002-09-13 2009-01-13 Finisar Corporation Optical and electrical channel feedback in optical transceiver module
US6990412B2 (en) * 2002-10-17 2006-01-24 Intel Corporation Techniques to manufacture optical signal transmitters
US7230961B2 (en) 2002-11-08 2007-06-12 Finisar Corporation Temperature and jitter compensation controller circuit and method for fiber optics device
US7317743B2 (en) * 2002-11-08 2008-01-08 Finisar Corporation Temperature and jitter compensation controller circuit and method for fiber optics device
US6922421B2 (en) * 2003-01-10 2005-07-26 Agilent Technologies, Inc. Control and calibration of laser systems
US7233740B2 (en) * 2003-09-29 2007-06-19 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Self-characterizing and self-programming optical transmitter
US7426586B2 (en) * 2003-12-15 2008-09-16 Finisar Corporation Configurable input/output terminals
TWI228850B (en) * 2004-01-14 2005-03-01 Asia Optical Co Inc Laser driver circuit for burst mode and making method thereof
TWI228849B (en) * 2004-01-14 2005-03-01 Asia Optical Co Inc Laser driver circuit for burst mode and making method thereof
JP2005302874A (ja) * 2004-04-08 2005-10-27 Hitachi Cable Ltd 光信号制御装置及びその調整方法
US7630631B2 (en) * 2004-04-14 2009-12-08 Finisar Corporation Out-of-band data communication between network transceivers
US7777643B2 (en) * 2004-05-06 2010-08-17 Halliburton Energy Services, Inc. Optical communications with a bottom hole assembly
US8639122B2 (en) * 2004-07-02 2014-01-28 Finisar Corporation Filtering digital diagnostics information in an optical transceiver prior to reporting to host
US7447438B2 (en) * 2004-07-02 2008-11-04 Finisar Corporation Calibration of digital diagnostics information in an optical transceiver prior to reporting to host
JP2006080677A (ja) * 2004-09-07 2006-03-23 Sumitomo Electric Ind Ltd 光データリンク
US7532820B2 (en) 2004-10-29 2009-05-12 Finisar Corporation Systems and methods for providing diagnostic information using EDC transceivers
JP2006156808A (ja) * 2004-11-30 2006-06-15 Sumitomo Electric Ind Ltd 光送信モジュールおよび光受信モジュールの製造方法
JP4729925B2 (ja) * 2005-01-05 2011-07-20 住友電気工業株式会社 光送信機
JP2006318733A (ja) * 2005-05-12 2006-11-24 Rohm Co Ltd 照明装置及びこれを用いた表示装置
US8036539B2 (en) * 2005-06-28 2011-10-11 Finisar Corporation Gigabit ethernet longwave optical transceiver module having amplified bias current
US7970288B2 (en) * 2006-10-30 2011-06-28 Mediatek Inc. Electronic system with APC
TW200840248A (en) * 2007-03-30 2008-10-01 Delta Electronics Inc Optical communication module and control method thereof
JP2008310845A (ja) * 2007-06-12 2008-12-25 Hitachi Ltd レーザダイオードの制御方法及びレーザダイオード制御装置並びにカムコーダ
JP2009026789A (ja) 2007-07-17 2009-02-05 Nec Corp 光モジュール、ホストボード、およびホストボードの製造方法
US8159956B2 (en) 2008-07-01 2012-04-17 Finisar Corporation Diagnostics for serial communication busses
JP2010040639A (ja) * 2008-08-01 2010-02-18 Sumitomo Electric Device Innovations Inc 光半導体装置の試験方法および光半導体装置の試験装置
JP5067335B2 (ja) * 2008-10-02 2012-11-07 住友電気工業株式会社 光送信モジュール
JP2010157662A (ja) * 2009-01-05 2010-07-15 Sumitomo Electric Ind Ltd レーザダイオード駆動回路及びレーザダイオード駆動方法
WO2010116476A1 (ja) * 2009-03-30 2010-10-14 富士通オプティカルコンポーネンツ株式会社 光装置
JP5439970B2 (ja) * 2009-06-18 2014-03-12 住友電気工業株式会社 レーザダイオード駆動方法及び光送信器
JP5604076B2 (ja) * 2009-10-13 2014-10-08 日本オクラロ株式会社 光通信モジュール及び光通信モジュールの制御方法
US8081883B2 (en) * 2010-03-24 2011-12-20 Avago Technologies Fiber Ip (Singapore) Pte. Ltd Method and apparatus for compensating for optical crosstalk in an optical output power feedback monitoring system of a parallel optical transmitter
JP2012142417A (ja) * 2010-12-28 2012-07-26 Sumitomo Electric Device Innovations Inc レーザダイオードの制御方法
JP5360612B2 (ja) * 2011-06-24 2013-12-04 住友電工デバイス・イノベーション株式会社 半導体レーザの駆動方法
US9749057B2 (en) 2012-12-28 2017-08-29 Juniper Networks, Inc. Detection and alignment of XY skew
US9184834B1 (en) * 2012-12-28 2015-11-10 Juniper Networks, Inc. Method and apparatus for detection and correction of time skew in an optical transmitter
KR20150054530A (ko) 2013-11-12 2015-05-20 한국전자통신연구원 자동 바이어스 및 변조 제어를 위한 레이저 드라이버
JP2016066854A (ja) * 2014-09-24 2016-04-28 住友電気工業株式会社 光送信器
TWI539763B (zh) * 2014-09-26 2016-06-21 財團法人工業技術研究院 光通訊裝置及其控制方法
JP6696264B2 (ja) * 2016-03-29 2020-05-20 沖電気工業株式会社 光回線終端装置及びプログラム
US9998232B2 (en) 2016-09-13 2018-06-12 Juniper Networks, Inc. Detection and compensation of power imbalances for a transmitter
JP6303057B1 (ja) 2016-09-29 2018-03-28 旭化成エレクトロニクス株式会社 受光装置及び受光装置の補償方法
KR102391818B1 (ko) * 2019-12-27 2022-04-29 주식회사 동운아나텍 광파워 출력 안정화 장치 및 그 방법
CN112436378B (zh) * 2020-11-23 2022-03-01 中国电子科技集团公司第四十四研究所 一种激光器驱动电流扩流系统
WO2023198605A1 (en) * 2022-04-12 2023-10-19 Ams Sensors Belgium Bvba Laser circuit with temperature sensor and method for operating a laser circuit

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558465A (en) * 1983-09-19 1985-12-10 Rca Corporation Switched bias scheme for high speed laser transmitter
JPS6413782A (en) * 1987-07-08 1989-01-18 Nec Corp Automatic optical output control circuit
US5073838A (en) * 1989-12-04 1991-12-17 Ncr Corporation Method and apparatus for preventing damage to a temperature-sensitive semiconductor device
JPH04152582A (ja) * 1990-10-16 1992-05-26 Mitsubishi Electric Corp 光送信器
US5309269A (en) * 1991-04-04 1994-05-03 Mitsubishi Denki Kabushiki Kaisha Light transmitter
FR2694423B1 (fr) * 1992-07-30 1994-12-23 France Telecom Dispositif de contrôle de la puissance de sortie des diodes laser.
JPH0661555A (ja) * 1992-08-11 1994-03-04 Fujitsu Ltd レーザダイオード駆動回路
JPH0690046A (ja) * 1992-09-09 1994-03-29 Brother Ind Ltd 光モニタ回路
US5502298A (en) * 1992-12-21 1996-03-26 Ericsson Raynet Apparatus and method for controlling an extinction ratio of a laser diode over temperature
JPH088831A (ja) * 1994-06-22 1996-01-12 Fujitsu Ltd 光送信機
US5978124A (en) * 1995-04-28 1999-11-02 Mitsubishi Denki Kabushiki Kaisha Light emitting control apparatus and optical transmitter
JP3596963B2 (ja) * 1995-12-06 2004-12-02 株式会社ルネサステクノロジ 半導体装置搭載モジュール、光トランスミッタ、レーザダイオードの特性情報作成方法及び光伝送装置
JP3583846B2 (ja) * 1995-12-26 2004-11-04 富士通株式会社 光変調器の駆動方法及び装置並びに光通信システム
US5844928A (en) * 1996-02-27 1998-12-01 Lucent Technologies, Inc. Laser driver with temperature sensor on an integrated circuit
US5812572A (en) * 1996-07-01 1998-09-22 Pacific Fiberoptics, Inc. Intelligent fiberoptic transmitters and methods of operating and manufacturing the same
US5978393A (en) * 1997-08-25 1999-11-02 Digital Optics Corporation Laser diode power output controller and method thereof
US6195371B1 (en) * 1997-09-16 2001-02-27 Hitachi, Ltd. Optical transmission device and method for driving laser diode
JPH11135871A (ja) * 1997-10-28 1999-05-21 Nec Corp レーザダイオード駆動方法および回路
JP3085274B2 (ja) * 1998-01-19 2000-09-04 日本電気株式会社 光送信器
US6219165B1 (en) * 1998-07-09 2001-04-17 Agere Systems Optoelectronics Guardian Corp. Burst-mode laser techniques
US6188498B1 (en) * 1998-07-15 2001-02-13 Maxim Integrated Products, Inc. Local control for burst mode optical transmitters

Also Published As

Publication number Publication date
WO2002069464A1 (fr) 2002-09-06
US20020118424A1 (en) 2002-08-29
EP1282207A4 (en) 2006-08-09
EP1282207A1 (en) 2003-02-05
US6748181B2 (en) 2004-06-08

Similar Documents

Publication Publication Date Title
JPWO2002069464A1 (ja) 光送信器
US5018154A (en) Semiconductor laser drive device
WO2018119637A1 (zh) 一种用于控制光发射组件波长的方法及装置
US7061950B2 (en) Drive circuit and drive method of semiconductor laser module provided with electro-absorption type optical modulator
JPH11135871A (ja) レーザダイオード駆動方法および回路
US6494370B1 (en) Electro-optic system controller and method of operation
US6829259B2 (en) Tunable laser control system with optical path length modulation
US6885684B2 (en) Laser control circuit and laser module
US20060098699A1 (en) Laser optics integrated control system and method of operation
JP5360612B2 (ja) 半導体レーザの駆動方法
US7680166B2 (en) Laser drive, optical disc apparatus, and laser-driving method
US20060189511A1 (en) Method for cytoprotection through mdm2 and hdm2 inhibition
JPH0697548A (ja) レーザダイオードの出力パワーを制御する装置
JPH11163462A (ja) 光波長安定制御装置、光送信器、光波長多重送信器
CN110447151B (zh) 光发送机
JP2011528209A (ja) 光リンクの閉ループ制御のための方法及びシステム
JP2006080677A (ja) 光データリンク
US6944562B2 (en) Temperature compensation device and method with low heat-generation
US7236506B2 (en) Method and apparatus for compensating for temperature characteristics of laser diode in optical communication system
US20060181327A1 (en) Operating current modifying device and method
US8378866B2 (en) Controller to control electrical power of load in constant
JP2000190563A (ja) マルチビ―ム半導体レ―ザアレイの駆動回路
JP2006100414A (ja) 光送信器
WO2003065524A1 (fr) Circuit integre a semi-conducteurs de commande de diode laser, module de transmission optique et procede de reglage de sortie optique
US6522675B1 (en) Wavelength control circuit and wavelength control method of light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930