JP3596963B2 - 半導体装置搭載モジュール、光トランスミッタ、レーザダイオードの特性情報作成方法及び光伝送装置 - Google Patents
半導体装置搭載モジュール、光トランスミッタ、レーザダイオードの特性情報作成方法及び光伝送装置 Download PDFInfo
- Publication number
- JP3596963B2 JP3596963B2 JP34488095A JP34488095A JP3596963B2 JP 3596963 B2 JP3596963 B2 JP 3596963B2 JP 34488095 A JP34488095 A JP 34488095A JP 34488095 A JP34488095 A JP 34488095A JP 3596963 B2 JP3596963 B2 JP 3596963B2
- Authority
- JP
- Japan
- Prior art keywords
- light output
- laser diode
- current
- temperature
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Optical Communication System (AREA)
- Semiconductor Lasers (AREA)
Description
【発明の属する技術分野】
本発明は、温度特性等の特性が相違される複数の半導体装置を搭載したモジュール、例えばレーザダイオードを備えた光トランスミッタに係り、特に、レーザダイオードの温度特性とそれを駆動制御する回路の温度特性の相違による不都合を解消する技術に関し、例えば、光伝送装置に適用して有効な技術に関するものである。
【0002】
【従来の技術】
ダブルヘテロ接合などを有するレーザダイオード(以下単にLDとも称する)は、それに順方向電流を流すと、それがある電流値以上になるとレーザ発振を開始して、レーザ光を放出する。このレーザ発振開始の電流をしきい値電流Ithと言う。レーザダイオードに流すべき順方向電流Idの大きさは、必要な光出力に応じて決定される。この順方向電流Idは、概略的に、Ith+Imodと表すことができる。Imodを変調電流と称し、必要な順方向電流のうち、変調電流をLDに流したりカットオフしたりすること(変調電流のオン/オフ制御と称する)によって、LDの光出力をオン/オフせることができる。LDを用いた光通信ではその光出力のオン/オフによって情報伝達を行う。光出力のオン/オフの高速応答性を実現するためには、順方向電流Idのうち、変調電流Imodをパルス状にオン/オフすることが最も望ましい。
【0003】
前記LDは、順方向電流に対する光出力に温度依存性を有する。そこで、例えば図9に示されるように、LDの駆動電流経路に配置した電流源としてのトランジスタTr50のベース電圧を温度に応じて補正するために、当該電流源トランジスタTr50のバイアス回路に、トランジスタTr51やダイオードDOのバンドギャップの温度依存性を利用したベースバイアス回路を採用することができる。トランジスタTr52,Tr53を相補的にスイッチ制御することによって、LDの光出力をオン/オフ制御することができる。
【0004】
【発明が解決しようとする課題】
しかしながら、LDにおける前記温度特性は、図10に例示されるように温度によって大きく相違される。しかも、しきい値電流と変調電流の特性も温度に応じてそれぞれ相違される。すなわち、所定の光出力を得る場合に必要なLDの順方向電流は温度によって相違され、このとき、前記順方向電流に含まれるしきい値電流も温度に応じて独自に相違される。したがって、前記順方向電流としきい値電流との差分である変調電流も温度に応じてそれぞれ変化される。図10において所定の光出力Pmを得るために必要なしきい値電流Ith(i),Ith(j),Ith(k)と変調電流Imod(i),Imod(j),Imod(k)とは、例示された温度T(i),T(j),T(k)の夫々において大きく相違されている。したがって、ある一定の光出力を得る場合に必要な順方向電流Idは、図11に例示されるように、温度に対して非線形的に変化される。同じく、しきい値電流と変調電流も非線形的に夫々変化される。これに対して、トランジスタやダイオードのバンドギャップの温度依存性を利用した回路の温度に対する電流特性は、線形的に変化されるに過ぎない。この相違により、トランジスタやダイオードのバンドギャップの温度依存性を利用したベースバイアス回路では、温度変化に対するLDの駆動電流を高精度に補償することができない。
【0005】
このとき、光通信等においてはLDから少なくとも所要の発光出力を得なければらない。そこで、LDに流す順方向電流をLDの温度特性に追従させるため、図9に例示されるように、LDの実際の発光出力をフォトダイオード(PD)でモニタし、モニタされた発光出力に応ずる電流が所要の発光出力に応ずる参照電位Vrefよりも小さいか大きいかをコンパレータ(CMP)で判定し、小さい場合にはトランジスタTr54を介してLDに流すバイアス電流を増す。しかしながら、そのようなフィードバック制御によってバイアス電流を増やし、LDに流れる全体的な順方向電流の合計をLDの温度特性に合わせるようなオートパワーコントロールを行っても、光出力のオン/オフ制御のためにトランジスタTr53によってオン/オフ制御される電流は、LDのそのときの温度特性に適合していない。例えば、図11において、温度T(j)でLDに所要の発光出力を得るために必要な順方向電流をId(j)、このときLDの駆動回路によって供給可能にされる駆動電流をIC(j)とすると、その差分の電流は前記オートパワーコントロールによってLDのバイアス電流に加えられる。この差分の電流は変調電流としてオン/オフ制御の対象にされない。これにより、変調電流をオフ状態(トランジスタTr53をオフ)にしたときの電流値がしきい値電流よりも大きくなって消光不良を生じたり、変調電流をオフ状態にしたときの電流値がしきい値電流よりも小さくなって発光遅延を生じたりする不都合が生ずる。
【0006】
例えば図10において、温度T(k)の雰囲気中において、図9のトランジスタTr50に流せるところの変調電流が、トランジスタTr50等の温度特性によってI1(I1<Imod(k))であるとすると、発光出力Pmを得るために、図9のトランジスタTr54にはバイアス電流I2(I2>Ith(k))が流される。そうすると、LDをオフ状態にするために変調電流I1がゼロにされたとき、LDに流れるバイアス電流は、そのときの温度T(k)におけるLDのしきい値電流Ith(k)を越え、これによってLDは完全に消光されない。また、図10において、温度T(i)の雰囲気中において、図9のトランジスタTr50に流せるところの変調電流が、トランジスタTr50等の温度特性によってI3(I3>Ith(i))であるとすると、発光出力Pmを得るために図9のトランジスタTr54にはバイアス電流I4(I4<Ith(i))が流される。この状態でLDをオフにするために変調電流I3がゼロにされると、LDに流れるバイアス電流は、そのときの温度T(i)におけるLDのしきい値電流Ith(i)よりも小さくされ、これによって、次にLDを点灯するときは、LDに流れようとする変調電流がそのしきい値電圧Ith(i)を越えるまでの遅延時間を待って初めてLDが発光される。
【0007】
本発明の目的は、レーザダイオードのような第1の半導体装置の特性とそれを駆動するような第2の半導体装置の特性とが相違する場合の不都合を解消することにある。具体的な態様としては、レーザダイオードの温度特性とそれを駆動制御する回路の温度特性の相違による不都合を解消することにある。例えば、変調電流をオフ状態にしたときの電流値がレーザダイオードのしきい値電流よりも大きくなって消光不良を生じたり、変調電流をオフ状態にしたときの電流値がレーザダイオードのしきい値電流よりも小さくなって発光遅延を生じたりする不都合を解消することになる。更に、そのような不都合を高い精度で解消できるようにすることにある。本発明の別の目的は、内部状態をLDの温度特性に適合させることを初めとして、光トランスミッタや光伝送装置の内部状態の設定を容易に且つ柔軟性をもって行うことができるようにすることにある。
【0008】
本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。
【0009】
【課題を解決するための手段】
本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。
【0010】
すなわち、相互に特性の異なる第1の半導体装置(20)と第2の半導体装置(21)とを有する半導体装置搭載モジュール(1)において、予め測定された、少なくとも前記第1の半導体装置又は第2の半導体装置の特性情報に応じて、少なくとも第1又は第2の半導体装置を制御するデータ処理装置(4)をそのモジュールに搭載するものである。
【0011】
具体的な態様として、前記半導体装置搭載モジュールの一例である光トランスミッタ(2)は、光通信用のレーザダイオード(200)と、前記レーザダイオードにその光出力を決定するための駆動電流を供給するドライバ回路(21、Tr1,Tr2)と、前記レーザダイオードの駆動電流を温度と目標とする光出力とに応じて決定するための特性情報を保持する不揮発性記憶手段(43)と、温度と目標とする光出力とに応じた特性情報を前記不揮発性記憶手段から選択し、それに基づいて前記ドライバ回路が供給する駆動電流を制御する制御手段(41,49)とを含む。これにより、レーザダイオードの温度特性とそれを駆動制御する回路の温度特性の相違による不都合を解消することができる。例えば、そのときの使用雰囲気温度におけるレーザダイオードのしきい値電流に対応する特性情報と、必要な光出力をその温度下で得るために前記しきい値電流に加えられるべき変調電流に対応される特性情報とを選択することにより、消光誤差や発光遅延無くレーザダイオードを発光駆動することが可能になる。
【0012】
更に、ドライバ回路の制御情報がセットされるデータラッチ手段(LAT5,LAT6)を含むことができる。前記特性情報は、レーザダイオードの駆動電流を温度と目標とする光出力とに応じて前記データラッチ手段に直接設定可能な情報とすることができる。
【0013】
前記レーザダイオードの駆動電流を検出する駆動電流検出手段(A/D1,LAT1A/D2,LAT2)を供えるとき、前記制御手段は当該駆動電流検出手段が検出した情報をアクセス可能である。そして、前記ドライバ回路の制御情報がセットされるデータラッチ手段(LAT5,LAT6)を含むとき、前記制御手段は、前記駆動電流検出手段から得られる駆動電流が前記不揮発性記憶手段から選択した特性情報に対応されるように、前記データラッチ手段に制御情報をセットするようにできる。このときの特性情報は、温度と目標とする光出力とに応じてレーザダイオードに供給すべき駆動電流情報とされ、データラッチ手段(LAT5,LAT6)に直接設定可能なデータとは相違される。
【0014】
前記レーザダイオードの光出力を検出する光出力検出手段(201,A/D3,LAT3)を供えるとき、前記制御手段は当該光出力検出手段が検出した情報をアクセスすることができる。
【0015】
前記不揮発性記憶手段は、電気的に書き込み可能な不揮発性半導体記憶装置で構成することができる。
【0016】
前記制御手段は、前記データラッチ手段(LAT5,LAT6)への制御情報を漸次減少又は増加させながら、前記データラッチ手段に設定した制御情報によって発光されるレーザダイオードの光出力を前記光出力検出手段(201,A/D3,LAT3)の検出情報に基づいて判定し、目標光出力に対応される前記駆動電流検出手段(A/D1,LAT1、A/D2,LAT2)による検出情報とそれ以下の規定の光出力に対応される前記駆動電流検出手段による検出情報を取得する処理を、所要の雰囲気温度と光出力毎に行って、目標光出力と雰囲気温度毎に前記レーザダイオードの駆動電流に関する特性情報を作成可能である。このように、特性情報を作成するために取得される情報は、個々の温度環境下で光トランスミッタを実際に発光駆動させて取得しているので、バイポーラトランジスタ等の温度特性も実質的に考慮されたことになり、信頼性の極めて高い制御が実現される。したがって、レーザダイオードとそれを駆動するための周辺回路がどんな温度特性を持っていても、高い信頼性をもってレーザダイオードの駆動電流など制御することができる。
【0017】
前記データラッチ手段、前記光出力検出手段による検出情報、前記駆動電流検出手段による検出情報及び前記不揮発性記憶手段を光トランスミッタの外部からアクセス可能にするインタフェース手段を更に含むことができる。これにより、インタフェース手段に評価用の外部装置を接続して、前記特性情報を作成することができる。
【0018】
前記制御手段は、それが選択した特性情報が目標とする光出力と、前記光出力検出手段によって検出される光出力とを比較し、その比較結果に基づいてレーザダイオードの発光特性の劣化を検出することができる。前記制御手段は、それが選択した特性情報が目標とする光出力と、前記光出力検出手段によって検出される光出力とを比較し、その比較結果の相違を相殺する方向に別の特性情報を選択して採用するもことができる。これによってレーザダイオードの駆動電流制御の信頼性を更に向上させることができる。
【0019】
光トランスミッタは更に、雰囲気温度を検出し、その検出情報を前記制御手段がアクセスすることを可能にする温度検出手段(10,A/D4,LAT4)を含むことが可能である。
【0020】
光トランスミッタに含まれるレーザダイオードの特性情報を作成するには、光トランスミッタの雰囲気温度を所定に設定し、前記データラッチ手段への制御情報を漸次減少又は増加させながら、前記データラッチ手段に設定した制御情報によって発光されるレーザダイオードの光出力を光出力検出手段の出力によって判定し、目標光出力に対応される前記駆動電流検出手段による検出情報とそれ以下の規定の光出力に対応される前記駆動電流検出手段による検出情報を取得する第1の処理と、光トランスミッタの雰囲気温度を所定の割合で変更し、前記データラッチ手段への制御情報を漸次減少又は増加させながら、前記データラッチ手段に設定した制御情報によって発光されるレーザダイオードの光出力を光出力検出手段の出力によって判定し、目標光出力に対応される前記駆動電流検出手段による検出情報とそれ以下の規定の光出力に対応される前記駆動電流検出手段による検出情報を取得する第2の処理と、必要に応じて第2の処理を繰り返す第3の処理と、前記目標光出力を変更し前記第1乃至第3の処理を繰り返す第4の処理と、前記第1乃至第4の処理によって得られた目標光出力と雰囲気温度毎に得られた前記駆動電流検出手段による検出情報に基づいて、目標光出力と雰囲気温度毎に、レーザダイオードの駆動電流に関する特性情報を取得する第5の処理とを含むことによって実現できる。この処理は、前記制御手段が行っても、また、外部に接続したテスト若しくは評価用のホスト装置によって行うことができる。
【0021】
光伝送装置は、前記光トランスミッタと共に光レシーバを含み、このとき、光レシーバは、前記制御手段によってその動作態様が決定される回路モジュールを含むことが可能である。例えば、光レシーバに含まれるプリアンプにおける受信信号のダイナミックレンジを前記制御手段でプログラマブルに設定することができる。
【0022】
【発明の実施の形態】
《光伝送装置》 図1には本発明の一実施例に係る光伝送装置のブロック図が示される。光伝送装置1は、光トランスミッタ2と光レシーバ3を一つの回路基板上に備えて成る。前記光トランスミッタ2は、それぞれ個別に半導体装置又は半導体集積回路化されたLDモジュール20、レーザドライバ21及びフリップフロップ回路22を備えて成る。第1の半導体装置の一例であるLDモジュール20はLD200とモニタ用のフォトダイオード(以下単にPDとも称する)201を有する。第2の半導体装置の一例であるレーザドライバ21はLD200を駆動するECL回路を主体とする。前記フリップ回路22は、クロック信号CLKinに同期して供給される入力データDATAinをリシェーピングしてレーザドライバ21に供給する。レーザドライバ21は、供給されたデータに従ってLD200の変調制御可能電流をオン/オフ制御して、LD200の光出力のオン/オフによって光ケーブルOPToutに情報を伝送する。
【0023】
前記光レシーバ3は、それぞれ半導体集積回路化されたピンフォトダイオード30、プリアンプ31、メインアンプ32及び出力バッファ33から成る。ピンフォトダイオード30は光ケーブルOPTinに伝送されてくる光入力を電流に変換し、変換された電流はプリアンプ31で検出され且つ増幅される。メインアンプ32はプリアンプ31の出力をECLレベルに昇圧する。出力バッファ32はメインアンプ32の出力に基づいて出力データDATAoutと同期クロックCLKoutを出力する。
【0024】
前記光トランスミッタ2と光レシーバ3は、その双方に共有される回路モジュールとして半導体集積回路化されたマイクロコンピュータ4を有する。このマイクロコンピュータ4は、光伝送装置1を全体的に制御する回路モジュールとされ、例えば、LD200の温度特性を検出可能にし、それに基づいて作成されたデータテーブルを利用し、LDモジュール20が必要とする光出力や温度等に応じて、当該LD200の温度特性に即して駆動電流を制御できるようにしたり、或いは、プリアンプ31における受信信号のダイナミックレンジを制御したりする。即ち、このマイクロコンピュータ4は、予め測定された半導体装置の特性情報に応じて半導体装置を制御するデータ処理装置の一例とされる。そしてこのマイクロコンピュータ4は、光伝送装置1の外部ともインタフェース可能にされている。
【0025】
《光伝送装置の適用例》 図2には図1の光伝送装置1の適用例が示される。光通信用の幹線(Trunk 2.4Gb/s)5にはマルチプレクサ6が配置され、マルチプレクサ6にはATM(Asyncronous transfer mode)−LAN(Local area network)、FTTC(Fiber to the home)、FTTH(Fiber to the curb)の光通信回線が集線され、例えばATM−LANは、PBX(Private branch exchenge)7、ATMハブ(HUB)8が代表的に接続され、ATMハブ8は、光通信回線やイーサネットを介して複数のPCに接続されている。例えばハブ8やPBX7はスイッチマトリクスを備えたATM交換機を内蔵し、ATM交換機と光通信回線とのインタフェース部分に前記光伝送装置1が回線対応で配置されている。また、光通信回線に接続されたPCカード9は当該光通信回線とのインタフェース部分に前記光伝送装置1を有する。
【0026】
《光トランスミッタ》 図3には前記光トランスミッタ2の詳細な一例が示されている。前記LDドライバ21は、LD200に流すバイアス電流を決定するトランジスタTr1と、LD200をオン/オフ制御する対象電流としての変調電流を決定するトランジスタTr2を、電流源用のトランジスタとして備える。トランジスタTr3,Tr4は変調電流のオン/オフを制御するスイッチング用のトランジスタである。前記トランジスタTr1〜Tr4はnpn型のバイポーラトランジスタとされる。
【0027】
前記トランジスタTr3,Tr4は並列接続され、その共通エミッタが前記トランジスタTr2のコレクタに接続され、当該トランジスタTr2のエミッタは抵抗R2を介して負の電源電圧Vee(例えば−5.2V)に結合されている。前記トランジスタTr3のコレクタにはLD200のカソードが結合され、当該PD200のアノードと前記トランジスタTr4のコレクタが接地電位のような他方の電源電圧(例えば0V)に共通接続されている。
【0028】
前記トランジスタTr3,Tr4のスイッチング制御回路202は、図4にその詳細な一例が示されるように、トランジスタTr5とTr6の直列回路と、トランジスタTr7とTr8の直列回路とが一対の電源電圧Vcc,Veeの間に配置されている。トランジスタTr5〜Tr8はnpn型バイポーラトランジスタとされる。トランジスタTr6,Tr8のベースは所定の電圧でバイアスされ、トランジスタTr5,Tr7の負荷抵抗として機能される。換言すれば、トランジスタTr5とTr6の直列回路と、トランジスタTr7とTr8の直列回路は、それぞれエミッタフォロア回路を構成し、トランジスタTr5のエミッタが前記トランジスタTr3のベースに、トランジスタTr7のエミッタが前記トランジスタTr4のベースに結合されている。
【0029】
前記トランジスタTr5,Tr7のベースは差動出力アンプ203の差動出力が供給され、その入力が反転されると、トランジスタTr3とTr4のベース電位の状態が反転されるようになっている。アンプ203には前記フリップフロップ回路22の出力が供給される。
【0030】
前記トランジスタTr3のベース電位が高レベルにされるとトランジスタTr3は飽和状態に移行され、トランジスタTr4のベースが高レベルにされるとトランジスタTr4は飽和状態に移行される。トランジスタTr3,Tr4の飽和状態への移行は相補的に行われ、これにより、トランジスタTr3,Tr4が相補的にスイッチング動作されることにより、電流源トランジスタTr2を介してLD200にパルス状に変調電流が供給されることになる。
【0031】
図3に示されるように、前記トランジスタTr1はそのコレクタが前記トランジスタTr3のコレクタに結合され、そのエミッタが抵抗R1を介して電源電圧Veeに結合されている。このトランジスタTr1はそれに印加されるベース電圧に従ってLD200にバイアス電流を流す。
【0032】
前記PD201は抵抗R3に直列接続されて一対の電源電圧Vcc,Veeの間に逆方向接続状態で配置されている。PD201はLD200から出力される発光出力に応じた電流を流す。
【0033】
前記マイクロコンピュータ4は、それぞれ内部バス40に結合された中央処理装置(CPU)41、RAM(ランダムアクセスメモリ)42、ROM(リードオンリメモリ)43,49及びタイマ(TMR)48を有し、外部とのインタフェース手段として、アナログ入力回路44、アナログ出力回路45及びその他の入出力回路46が内部バスに接続され、更に、CPU41の暴走等を検出するためのウオッチドッグタイマ47が設けられて構成され、それら回路モジュールは単一の半導体基板に形成されている。前記RAM42はCPU40の作業領域又はデータの一時記憶領域とされる。前記ROM43は、制御用のテーブルなどのデータを格納するための電気的に書き込み可能な不揮発性半導体記憶装置であり、例えば電気的に書き換え可能なフラッシュメモリ又はEEPROM(エレクトリカリ・イレーザブル・アンド・プログラマブル・リード・オンリ・メモリ)若しくは電気的に書き込み可能であって紫外線消去可能なEPROM(エレクトリカリ・プログラマブル・リード・オンリ・メモリ)を採用することができる。前記ROM43は、CPU41の動作プログラムの格納用とされ、書換え可能なマスクROMによって構成することも可能である。尚、プログラムとデータを単一のROMに格納してもよい。その場合に本実施例の説明に適合するには、当該ROMは、電気的に書込み可能なROMによって構成されることになる。
【0034】
前記アナログ入力回路44は、特に制限されないが、4個のアナログ/ディジタル変換器A/D1〜A/D4と夫々のアナログ/ディジタル変換器A/D1〜A/D4の出力をラッチして内部バス40に出力するラッチ回路LAT1〜LAT4を備える。特に制限されないが、前記アナログ/ディジタル変換器A/D1〜A/D4は、8ビットの変換精度を持っている。前記アナログ出力回路45は、特に制限されないが、2個のディジタル/アナログ変換器D/A1,D/A2と、夫々のディジタル/アナログ変換器D/A1,D/A2の入力ディジタル信号を内部バス40から受け取るラッチ回路LAT5,LAT6と、夫々のディジタル/アナログ変換器D/A1,D/A2の出力アナログ信号の波形を整形するバンドパスフィルタBPF1,BPF2を備える。特に制限されないが、前記ディジタル/アナログ変換器D/A1,D/A2は、8ビットのディジタル信号を256階調でアナログ信号に変換する。ラッチ回路LAT1〜LAT6はCPU41のアドレス空間に配置され、CPU41によって任意にアクセス可能にされる。また、マイクロコンピュータ4は、ラッチ回路LAT1〜LAT6等の内部回路を外部入出力回路46を介して外部から直接アクセス可能な動作モードを備えている。
【0035】
前記トランジスタTr2は、そのベースが前記バンドパスフィルタBPF2の出力に結合される。したがって、トランジスタTr2は、バンドパスフィルタBPF2の出力電圧によって、そのコンダクタンスが決定される。即ち、CPU41によってラッチ回路LAT6に設定されるディジタルデータが、光出力のオン/オフ制御に従ってトランジスタTr3に流れる変調電流を決定する。トランジスタTr2のコンダクタンス制御を変調電流制御と称する。
【0036】
前記トランジスタTr1は、そのベースが前記バンドパスフィルタBPF1の出力に結合される。したがって、トランジスタTr1は、バンドパスフィルタBPF1の出力電圧によって、そのコンダクタンスが決定される。即ち、CPU41によってラッチ回路LAT5に設定されるディジタルデータが、LD200に流れるバイアス電流を決定する。トランジスタTr1のコンダクタンス制御をLDのバイアス電流制御と称する。
【0037】
これにより、CPU41は、ラッチ回路LAT5,LAT6に設定するディジタルデータに従って、LD200に流すことができる変調電流とバイアス電流を個々にそして任意に制御することができる。したがって、光伝送装置1の使用条件に対してLD200等の温度特性に即したデータをCPU41がラッチ回路LAT5,LAT6に設定することにより、換言すれば、そのときの使用雰囲気温度におけるLD200のしきい値電流に対応するデータをラッチ回路LAT5に設定し、必要な光出力をその温度下で得るために前記しきい値電流に加えられるべき変調電流に対応されるデータをラッチ回路LAT6に設定することにより、消光誤差や発光遅延無くLD200を発光駆動することが可能になる。これについては以下にその詳細が記述されている。
【0038】
ここで、LD200は、図5に例示されるように、その変調電流Imodと、しきい値電流Ithは、それぞれ異なる温度特性を有し、その特性は温度に対して非線形的とされている。また、図6に代表されるように、LD200の温度特性は製造プロセスの誤差の影響を受け、個体差を有している。また、図7に代表されるように、トランジスタTr1,Tr2に流れる電流は、温度に対して線形的な温度特性を有している。このように多岐に亘る温度特性を有するLD200やそのドライバに対して、最適なデータをラッチ回路LAT5,LAT6に設定するために、各種条件の下で、必要な情報を当該光伝送装置1それ自体から取得できることが望ましい。前記アナログ入力回路44は、そのための利用が考慮され、必要な情報を取得できるようにされている。
【0039】
すなわち、前記アナログ/ディジタル変換器A/D1の入力は、図3に示されるように、前記トランジスタTr1のエミッタに結合され、CPU41は、トランジスタTr1に流れるバイアス電流のアナログ/ディジタル変換結果をラッチ回路LAT1を介して取り込むことができる。同様に、前記アナログ/ディジタル変換器A/D2の入力は前記トランジスタTr2のエミッタに結合され、CPU41は、トランジスタTr2に流れる電流のアナログ/ディジタル変換結果をラッチ回路LAT2を介して取り込むことができる。前記アナログ/ディジタル変換器A/D3の入力は前記モニタ用のPD201のアノードに結合され、CPU41は、PD201に流れる電流のアナログ/ディジタル変換結果をラッチ回路LAT3を介して取り込むことができる。前記アナログ/ディジタル変換器A/D4の入力は、光伝送装置1に実装され又は外付けされた温度センサ10の出力に結合され、CPU41は、温度センサ10の出力に対するアナログ/ディジタル変換結果をラッチ回路LAT4を介して取り込むことができる。
【0040】
前記モニタPD201はオートパワーコントロールにも利用できるようになっている。すなわち、LD200の実際の発光出力をPD201でモニタし、モニタされた発光出力に応ずる電流が所要の発光出力に応ずる参照電位Vrefよりも小さいか大きいかをコンパレータ11で判定し、その判定結果に応じ、トランジスタTr1を介してLD200に流すバイアス電流を増減するように構成されている。12は参照電位Vrefを形成するAPC(オートパワーコントロール)制御回路であり、LD200の実際の発光出力をPD201でモニタし、モニタされた発光出力に応ずる電流の平均値とそのときのバッファ203(図4参照)の入力信号に対する平均値(マーク率)とに基づいて参照電位Vrefを初期設定する。オートパワーコントロールは、前記ディジタル/アナログ変換器D/A1の出力に基づくバイアス電流制御に際しては必須ではない。何れか択一的に利用することができる。或いは、ディジタル/アナログ変換器D/A1の出力に基づいてバイアス電流制御を行う場合に、所要の発光出力が得られない場合を想定して、前記オートパワーコントロールによるフィードバック制御を重ねて行うようにしてもよい。但し、その場合には、オートパワーコントロールによるフィードバック系における制御量(バイアス電流の増減量)を比較的小さくしておくことが望ましい。
【0041】
図3において13はLD200の発光異常(発光出力の極度低下)を通知する制御信号である。CPU41はアナログ/ディジタル変換器A/D3とラッチ回路LAT3を介してPD201の出力電流をモニタし、それによって得られるLD200の実際の光出力とLD200の目標光出力とを比較し、実際の光出力が目標光出力に対して所定よりも低下した状態を検出する。14はトランジスタTr1,Tr2に流れるバイアス電流,変調電流の異常を通知する制御信号である。CPU41は、トランジスタTr1に実際に流れるバイアス電流をアナログ/ディジタル変換器A/D1とラッチ回路LAT1を介してモニタし、ラッチ回路LAT5とディジタル/アナログ変換器D/A1を介してトランジスタTr1に流そうとするバイアス電流と比較し、その相違に基づいて、バイアス電流の異常を検出する。同様にCPU41は、トランジスタTr2に実際に流れる変調電流をアナログ/ディジタル変換器A/D2とラッチ回路LAT2を介してモニタし、ラッチ回路LAT6とディジタル/アナログ変換器D/A2を介してトランジスタTr2に流そうとする変調電流と比較し、その相違に基づいて、変調電流の異常を検出する。前記制御信号13,14は、例えば光伝送装置1の内部又はその外部に設けられた表示手段15に与えられることにより、対応する状態を目視可能に表示させることができる。
【0042】
《温度特性データの作成》 LD200を駆動するための変調電流制御とバイアス電流制御のための温度特性データを作成する手順の一例を図8をも参照しながら説明する。温度特性データは、特に制限されないが、対象とされる光伝送装置1それ自体を図示しない評価用のホスト装置に接続して恒温チャンバーに入れ、以下詳述するように、所要の発光出力に対して種々の温度毎に、その光出力を得るために必要な全体としての順方向電流のデータと、そのときのしきい値電流に応ずるデータを取得する。このとき、変調電流に応ずるデータは、前記順方向電流に応ずるデータとしきい値電流に応ずるデータとの差分として演算にて取得することができる。光伝送装置1とホスト装置との接続はマイクロコンピュータ4の入出力回路46を介して行われる。このとき、マイクロコンピュータ4の内部は外部のホスト装置から自由にアクセス可能な動作モードとされる。
【0043】
先ず、光伝送装置1の使用温度Tの範囲Tmin<T<Tmaxと、データを取得する時の温度増加量del.Tをホスト装置に設定する(ステップS1)。次にその使用温度範囲における温度の初期値T0をホスト装置に設定する(ステップS2)。特に条件がない場合にはT0=Tminとする。更に、発光出力Pfの目的値L0をホスト装置に設定する(ステップS3)。そして、LD200に流す電流Ifの初期値を例えば0に設定し、更に段階的な電流増加量del.Ifをホスト装置に設定する(ステップS4)。これによってホスト装置は、電流値0を出発点として、LD200の電流増加量をdel.Ifずつ増加させるデータをラッチ回路LAT5に与える。これによってトランジスタTr1に流れる順方向電流が徐々に増加する。このときラッチ回路LAT6には、トランジスタTr2をカットオフ状態にするデータを与えておく。また、ホスト装置は、LD200に対する電流の増加と共に、LD200の発光出力に応ずるPD201からのデータをアナログ/ディジタル変換器A/D3とラッチ回路LAT3を介してサンプリングする。そして、サンプリングした発光出力PfがPf≧0.2L0であることを検出したときは(ステップS5)、そのときの電流値のデータIf0.2(T)を前記アナログ/ディジタル変換器A/D1とラッチ回路LAT1を介して取得し、図示しないワークメモリなどに格納する(ステップS6)。更に同様にして、トランジスタTr1に流れる順方向電流を徐々に増加させながら、LD200の発光出力に応ずるデータをラッチ回路LAT3からサンプリングし、サンプリングした発光出力PfがPf≧0.8L0であることを検出したときは(ステップS7)、そのときの電流値のデータIf0.8(T)をラッチ回路LAT1を介して取得し、図示しないワークメモリに格納する(ステップS8)。更に続けて、トランジスタTr1に流れる順方向電流を徐々に増加させながら、LD200の発光出力に応ずるデータをラッチ回路LAT3からサンプリングし、サンプリングした発光出力PfがPf≧L0であることを検出したときは(ステップS9)、そのときの電流値のデータIf(T)をラッチ回路LAT1から取得し、図示しないワークメモリに格納する(ステップS10)。前記ステップS8で若しくは後の一連のデータを取得してからまとめて、そのときの温度におけるしきい値電流Ith(T)を演算して取得する。演算式は、特に制限されないが、Ith(T)=If0.2(T)−1/3×(If0.8(T)−If0.2(T))とされる。この演算式で取得されるしきい値電流のデータIth(T)と前記電流のデータIf(T)は、そのときのLDの温度特性に即した値とされる。上記処理は、データ検出時の設定温度Tが使用範囲の上限Tmaxに到達するまで、温度をdel.Tづつ増加して繰り返される(ステップS11、ステップ12)。
【0044】
尚、ステップS5などにおいて、LD200の発光出力に応ずるPD201からのデータをアナログ/ディジタル変換器A/D3とラッチ回路LAT3を介してサンプリングして、そのときの発光出力Pfを検出するが、PD201の温度特性はLD200の温度特性に対してその変動量は3桁程度小さいので、PD201の温度特性を無視して発光出力Pfを検出しても、実質的に問題はない。仮にPDの温度特性を問題視しなければならないときは、校正された標準フォトダイオードを用いればよい。その場合には、PD201に代えて、LD200の発光出力を受ける標準フォトダイオードを搭載した測定治具を用いれば、PD201それ自体を標準フォトダイオードとする必要はない。
【0045】
これにより、所定の光出力を得るために必要な順方向電流に対応されるIf(T)と、そのときのしきい値電流(Ith)に対応されるIth(T)が、使用温度範囲Tmin<T<Tmaxにおいて、温度増加量del.Tの刻みで得ることができる。このときの各温度における変調電流(Imod)に対応される情報は、If(T)−Ith(T)によって得ることができる。発光出力の設定を順次変えて同様の処理を行うことにより、種々の発光出力に対して上記データを取得することができる。そのようにして取得されたデータは、LDの温度特性に関するデータとされる。したがって、上記データに従ってLDを駆動する場合には、CPU41がラッチ回路LAT1,LAT2の値をサンプリングし、ラッチ回路LAT1の出力がIth(T)になるようにラッチ回路LAT5にデータを設定し、ラッチ回路LAT2の出力がIf(T)−Ith(T)になるようにラッチ回路LAT6にデータを設定することになる。このとき、ラッチ回路LAT5,LAT6へのそのような設定データを、前記図8のステップ完了後に、予め取得して、種々の発光出力における各温度毎のIth(T)とIf(T)の情報に関連つけておくことができる。
【0046】
以上のようにして取得されたデータは、ホスト装置がマイクロコンピュータ4のROM43の所定領域にテーブル(温度特性データテーブル)として書き込む。書き込まれたデータがレーザダイオードの特性情報とされる。前記テーブルの構造については特に図示はしないが、第1の構造は、目標とする光出力にそれぞれ対応させて、温度毎に、前記If(T)とIth(T)の情報を持つ。この場合に、実際にLDを駆動するとき、CPU41は、目標とする光出力と温度に応じたIf(T)とIth(T)を選択し、If(T)−Ith(T)を演算し、その後で、ラッチ回路LAT1,LAT2の値をサンプリングして、ラッチ回路LAT1の出力がIth(T)になるようにラッチ回路LAT5にデータを設定し、ラッチ回路LAT2の出力がIf(T)−Ith(T)になるようにラッチ回路LAT6にデータを設定することになる。
【0047】
第2のテーブル構造は、目標とする光出力にそれぞれ対応させて、温度毎に、予めIf(T)−Ith(T)を演算しておき、If(T)−Ith(T)とIf(T)の情報を持つ。この場合には、実際にLDを駆動するとき、CPU41は、目標とする光出力と温度に応じたIf(T)−Ith(T)とIth(T)を選択し、ラッチ回路LAT1,LAT2の値をサンプリングして、ラッチ回路LAT1の出力がIth(T)になるようにラッチ回路LAT5にデータを設定し、ラッチ回路LAT2の出力がIf(T)−Ith(T)になるようにラッチ回路LAT6にデータを設定することになる。尚、第2のテーブル構造はIf(T)の情報を併せて持ってもよい。
【0048】
第3のテーブル構造は、予め、目標とする光出力にそれぞれ対応させて、温度毎に、If(T)−Ith(T)を演算し、ラッチ回路LAT1の出力をIth(T)にするのに必要なラッチ回路LAT5の設定データと、ラッチ回路LAT2の出力をIf(T)−Ith(T)にするのに必要なラッチ回路LAT6の設定データとを取得しておき、目標とする光出力にそれぞれ対応させて、温度毎に、上記ラッチ回路LAT5,LAT6に設定すべき情報を持つ。この場合、実際にLDを駆動するとき、CPU41は、目標とする光出力と温度に応じて選択した特性情報を直接ラッチ回路LAT5,LAT6に設定すればよい。尚、第3のテーブル構造は、前記第1又は第2ののテーブル構造と同じ情報を併せて持つことができる。
【0049】
上記処理はホスト装置が主体になって行う場合に限定されず、ホスト装置がステップS1〜S4までの初期設定をマイクロコンピュータ4の内部に対して行い、その後、ホスト装置がマイクロコンピュータ4に対して所定のコマンドを発行することにより、上記処理をマイクロコンピュータ4が行ってもよい。このとき、ROM43がEPROMの場合にはテーブルの作成はEPROMライタを使用しなければならない。ROM43が電気的に書換可能なEEPROM又はフラッシュメモリで構成されている場合には、書換プログラムをROM49が保有する場合には、前記テーブルの作成を含めて上記処理をマイクロコンピュータ41で行うことができる。
【0050】
《温度特性データテーブルの使用》 ROM43に温度特性データテーブルが形成された光伝送装置1をシステム上で利用する場合には、CPU1は、当該光伝送装置1が置かれている環境下での雰囲気温度を温度センサ10からアナログ/ディジタル変換器A/D4とラッチ回路LAT4を介して取得する。また、光伝送装置1が出力すべき発光出力は、それが置かれている通信環境に従って物理的に決定さる性質のものであり、例えば、CPU41の動作プログラム、又は外部からの指示、或いはディップスイッチのような回路からの信号によってCPU41に通知される。これによってCPU41は、必要な発光出力と、検出した使用環境温度に対応されるところの情報をROM43の温度特性データテーブルから選択する。例えば温度特性データテーブルの構造が前記第1の構造である場合には、CPU41は、目標とする光出力と温度に応じたIf(T)とIth(T)を選択し、If(T)−Ith(T)を演算し、その後で、ラッチ回路LAT1,LAT2の値をサンプリングして、ラッチ回路LAT1の出力がIth(T)になるようにラッチ回路LAT5にデータを設定し、ラッチ回路LAT2の出力がIf(T)−Ith(T)になるようにラッチ回路LAT6にデータを設定する。これにより、LD200の実際の温度特性に即したしきい値電流と変調電流がLD200に与えられ、消光誤差や発光遅延無くLD200を発光駆動することができる。とくに、温度特性データテーブルの作成のために取得される情報は、個々の温度環境下で光伝送装置1を実際に発光駆動させて取得しているので、バイポーラトランジスタ等の温度特性も実質的に考慮されたことになり、信頼性の極めて高い制御が実現される。したがって、LDとそれを駆動するための周辺回路がどんな温度特性を持っていても、高い信頼性をもって制御することができる。これにより、製造過程に置いては温度特性の調整が不要であり、製造コストも著しく低減することができる。
【0051】
上記雰囲気温度の検出とそれに応じた制御情報の設定は、タイマ48を利用して一定間隔で行うようにされる。これにより、使用温度条件が時間と共に変化する場合にも、その変化に対応して、LD200を適切なバイアス電流と変調電流で発光駆動することができる。タイマ48の設定はCPU41が行うことができる。
【0052】
そして、光通信の休止タイミング、又はタイマによって設定された一定時間毎に、CPU41は、ラッチ回路LAT2を介して実際の変調電流を検出し、ラッチ回路LAT1を介して実際のバイアス電流を検出し、さらに、ラッチ回路LAT3を介してLD200の実際の光出力を検出する。CPU41は、それら検出値を、目標値と比較し、大きく相違する場合、例えば20%以上の相違があるときは、例外処理を実行する。例えば、LD200の発光異常(発光出力の極度低下)を検出すると、CPU41は制御信号13にてそれを外部に通知する。これを受ける通信用のコントローラはエラーステータスを通信回線に乗せたり、或いは通信そのものを停止させたりすることができる。また、トランジスタTr1に流れるバイアス電流が異常に低下した場合には、CPU41は前記制御信号14によってその旨を外部に通知することができる。また、CPU41は、発光出力が所定の値(例えば目標値の20%減)よりも低下した状態を一定期間検出したときは、LD200の特性劣化と判定し、指定されている光出力に対して、設定すべき光出力を数段階増すように、ラッチ回路LAT5,LAT6にデータを設定するような処理を採用することができる。或いはそれに従って、温度特性データテーブルを更新することも可能である。この場合にはROM43はCPU41によって電気的に書き換え可能な不揮発性半導体記憶装置によって構成されていなければならい。
【0053】
以上本発明者によってなされた発明を実施例に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
【0054】
例えば、温度特性データの取得において図8に基づく説明では、トランジスタTr1に流れる電流をモニタしてLD200に流れる電流を観測したが、それとは逆に、トランジスタTr2に電流を流してLD200に流れる電流を観測してもよい。また、低しきい値電流のレーザダイオードを採用する場合には、しきい値電流分の温度特性を無視する事も可能である。即ち、データテーブルにおける温度と光出力にに応じたデータは変調電流に関してとし、しきい値電流に関しては一定、又は、制御幅を狭くすることが可能である。
【0055】
【発明の効果】
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記の通りである。
【0056】
すなわち、半導体装置搭載モジュールは、それに搭載された半導体装置につき予め測定された特性情報に基づいてデータ処理装置がその半導体装置を制御するから、搭載された複数の半導体装置間における特性の相違に基づく不都合を解消することができる。
【0057】
半導体搭載モジュールの一例である光トランスミッタは、温度と目標とする光出力とに応じた特性情報を不揮発性記憶手段から選択し、それに基づいて前記ドライバ回路がレーザダイオードに供給する駆動電流を制御するから、レーザダイオードの温度特性とそれを駆動制御する回路の温度特性の相違による不都合を解消することができる。例えば、そのときの使用雰囲気温度におけるレーザダイオードのしきい値電流に対応する特性情報と、必要な光出力をその温度下で得るために前記しきい値電流に加えられるべき変調電流に対応される特性情報とを選択することにより、消光誤差や発光遅延無くレーザダイオードを発光駆動することができる。
【0058】
個々の温度環境下で光トランスミッタを実際に発光駆動させて、前記特性情報を作成することにより、駆動回路に含まれるバイポーラトランジスタ等の温度特性も実質的に考慮されたことになり、信頼性の極めて高い制御が実現される。したがって、レーザダイオードとそれを駆動するための周辺回路がどんな温度特性を持っていても、高い信頼性をもってレーザダイオードの駆動電流を制御することができる。その上、製造過程に置いては温度特性の調整が不要であり、製造コストも著しく低減することができる。
【0059】
不揮発性記憶手段に格納された特性情報を利用することにより、レーザダイオードの経年的な特性劣化やによる光出力の変動や、駆動電流の変動に対して、異常と検出することができるので、この点においても、レーザダイオードの駆動電流制御の信頼性を向上させることができる。
【0060】
前記光トランスミッタと共に光レシーバを含んで光伝送装置を構成するとき、前記制御手段によってその光レシーバの動作態様も制御することにより、内部状態をレーザダイオードの温度特性に適合させることを初めとして、光トランスミッタや光伝送装置の内部状態の設定を容易に且つ柔軟性をもって行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る光伝送装置のブロック図である。
【図2】図1の光伝送装置を適用したネットワークのブロック図である。
【図3】光トランスミッタの一実施例を示す説明図である。
【図4】レーザダイオードの変調電流をオン/オフ制御するトランジスタのスイッチング制御回路の一例回路図である。
【図5】レーザダイオードにおける変調電流Imodと、しきい値電流Ithがそれぞれ異なる温度特性を有することを示す一例説明図である。
【図6】レーザダイオードの温度特性は製造プロセスの誤差の影響を受けて個体差を有することを示す一例説明図である。
【図7】レーザダイオードに駆動電流を流すためのバイポーラトランジスタの線形的な温度特性の一例を示す説明図である。
【図8】レーザダイオードを駆動するための変調電流制御とバイアス電流制御のための温度特性データを作成する手順の一例を示すフローチャートである。
【図9】本発明者の検討に係るレーザダイオード駆動回路の一例説明図である。
【図10】レーザダイオードの光出力とそれに必要な順方向電流との関係を数種類の温度をパラメータとして示したものにおいて消光不良と発光遅延を生ずる原因について説明した一例説明図である。
【図11】レーザダイオードで所定の光出力を得るための順方向電流と温度との関係の一例を示す説明図である。
【符号の説明】
1 光伝送装置
2 光トランスミッタ
20 LDモジュール
200 LD(レーザダイオード)
201 PD(モニタ用のフォトダイオード)
Tr1 バイアス電流用の電流源トランジスタ
Tr2 変調電流用の電流源トランジスタ
Tr3,Tr4 変調制御用のスイッチングトランジスタ
21 レーザドライバ
3 光レシーバ
30 ピンフォトダイオード
31 プリアンプ
4 マイクロコンピュータ
41 CPU(中央処理装置)
42 RAM
43 ROM
44 アナログ入力回路
45 アナログ出力回路
46 外部入出力回路
Claims (5)
- 光通信用のレーザダイオードと、
前記レーザダイオードにその光出力を決定するための駆動電流を供給するドライバ回路と、
前記レーザダイオードの駆動電流を温度と目標とする光出力とに応じて決定するための特性情報を保持する不揮発性記憶手段と、
温度と目標とする光出力とに応じた特性情報を前記不揮発性記憶手段から選択し、それに基づいて前記ドライバ回路が供給する駆動電流を制御する制御手段と、
前記レーザダイオードの駆動電流を検出する駆動電流検出手段と、
前記ドライバ回路の制御情報がセットされるデータラッチ手段と、
前記レーザダイオードの光出力を検出する光出力検出手段と、
前記データラッチ手段、前記光出力検出手段による検出情報、前記駆動電流検出手段による検出情報及び前記不揮発性記憶手段を光トランスミッタの外部からアクセス可能にするインタフェース手段と、を含み、
前記制御手段は、前記データラッチ手段への制御情報を漸次減少又は増加させながら、前記データラッチ手段に設定した制御情報によって発光されるレーザダイオードの光出力を前記光出力検出手段の検出情報に基づいて判定し、目標光出力に対応される前記駆動電流検出手段による検出情報とそれ以下の規定の光出力に対応される前記駆動電流検出手段による検出情報を取得する処理を、所要の雰囲気温度と光出力毎に行って、目標光出力と雰囲気温度毎に前記レーザダイオードの駆動電流に関する特性情報を作成可能であることを特徴とする光トランスミッタ。 - 前記制御手段は、それが選択した特性情報が目標とする光出力と、前記光出力検出手段によって検出される光出力とを比較し、その比較結果に基づいてレーザダイオードの発光特性の劣化を検出することを特徴とする請求項1記載の光トランスミッタ。
- 前記制御手段は、それが選択した特性情報が目標とする光出力と、前記光出力検出手段によって検出される光出力とを比較し、その比較結果の相違を相殺する方向に別の特性情報を選択して採用するものであることことを特徴とする請求項1記載の光トランスミッタ。
- 雰囲気温度を検出し、その検出情報を前記制御手段がアクセスすることを可能にする温度検出手段を更に備えて成るものであることを特徴とする請求項2又は3記載の光トランスミッタ。
- 請求項1乃至4の何れか1項記載の光トランスミッタと光レシーバとを含む光伝送装置であって、光レシーバは、前記制御手段によってその動作態様が決定される回路モジュールを含んで成るものであることを特徴とする光伝送装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34488095A JP3596963B2 (ja) | 1995-12-06 | 1995-12-06 | 半導体装置搭載モジュール、光トランスミッタ、レーザダイオードの特性情報作成方法及び光伝送装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34488095A JP3596963B2 (ja) | 1995-12-06 | 1995-12-06 | 半導体装置搭載モジュール、光トランスミッタ、レーザダイオードの特性情報作成方法及び光伝送装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09162811A JPH09162811A (ja) | 1997-06-20 |
JP3596963B2 true JP3596963B2 (ja) | 2004-12-02 |
Family
ID=18372712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34488095A Expired - Lifetime JP3596963B2 (ja) | 1995-12-06 | 1995-12-06 | 半導体装置搭載モジュール、光トランスミッタ、レーザダイオードの特性情報作成方法及び光伝送装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3596963B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9025165B2 (en) | 2010-08-17 | 2015-05-05 | Osaka University | Normal vector tracing ultra-precision shape measurement method |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11135871A (ja) * | 1997-10-28 | 1999-05-21 | Nec Corp | レーザダイオード駆動方法および回路 |
JP4019507B2 (ja) * | 1998-07-06 | 2007-12-12 | ソニー株式会社 | 光空間伝送装置及び光空間伝送方法 |
US7302186B2 (en) | 2001-02-05 | 2007-11-27 | Finisar Corporation | Optical transceiver and host adapter with memory mapped monitoring circuitry |
US7149430B2 (en) | 2001-02-05 | 2006-12-12 | Finsiar Corporation | Optoelectronic transceiver having dual access to onboard diagnostics |
US7346278B2 (en) | 2001-02-05 | 2008-03-18 | Finisar Corporation | Analog to digital signal conditioning in optoelectronic transceivers |
US7079775B2 (en) | 2001-02-05 | 2006-07-18 | Finisar Corporation | Integrated memory mapped controller circuit for fiber optics transceiver |
EP1282207A4 (en) * | 2001-02-23 | 2006-08-09 | Fujitsu Ltd | LIGHT STATION |
EP1320206B1 (en) | 2001-12-13 | 2008-03-12 | Alcatel Lucent | Laser transmitter and process for transmitting controlled light signals |
JP4712557B2 (ja) * | 2002-08-02 | 2011-06-29 | フィニサー コーポレイション | プログラム可能な信号パラメータを備えた送受信器 |
US6891866B2 (en) * | 2003-01-10 | 2005-05-10 | Agilent Technologies, Inc. | Calibration of laser systems |
US6922421B2 (en) * | 2003-01-10 | 2005-07-26 | Agilent Technologies, Inc. | Control and calibration of laser systems |
US7233740B2 (en) * | 2003-09-29 | 2007-06-19 | Avago Technologies Fiber Ip (Singapore) Pte. Ltd. | Self-characterizing and self-programming optical transmitter |
US7447438B2 (en) * | 2004-07-02 | 2008-11-04 | Finisar Corporation | Calibration of digital diagnostics information in an optical transceiver prior to reporting to host |
US7706692B2 (en) | 2004-09-29 | 2010-04-27 | Finisar Corporation | Consumer electronics with optical communication interface |
US7548675B2 (en) * | 2004-09-29 | 2009-06-16 | Finisar Corporation | Optical cables for consumer electronics |
US7729618B2 (en) | 2005-08-30 | 2010-06-01 | Finisar Corporation | Optical networks for consumer electronics |
JP4422661B2 (ja) | 2005-08-31 | 2010-02-24 | 富士通株式会社 | 差動4位相偏移変調器の駆動電圧設定方法 |
JP4663512B2 (ja) * | 2005-12-22 | 2011-04-06 | 富士通テレコムネットワークス株式会社 | レーザダイオード駆動回路 |
JP2008211735A (ja) | 2007-02-28 | 2008-09-11 | Mitsubishi Electric Corp | 光伝送制御回路 |
JP2009026789A (ja) * | 2007-07-17 | 2009-02-05 | Nec Corp | 光モジュール、ホストボード、およびホストボードの製造方法 |
JP2010141774A (ja) | 2008-12-15 | 2010-06-24 | Mitsubishi Electric Corp | 光送受信機 |
JP2010219878A (ja) * | 2009-03-17 | 2010-09-30 | Nec Corp | Ponシステム及び通信制御方法 |
JP5196009B2 (ja) | 2009-03-30 | 2013-05-15 | 富士通オプティカルコンポーネンツ株式会社 | 光装置 |
JP4893776B2 (ja) * | 2009-05-07 | 2012-03-07 | 富士通株式会社 | 光変調装置 |
JP5721903B2 (ja) | 2012-03-22 | 2015-05-20 | 三菱電機株式会社 | 光送信器 |
JP2016096191A (ja) * | 2014-11-12 | 2016-05-26 | 住友電気工業株式会社 | 光送信器及び駆動電流制御方法 |
JP6696264B2 (ja) * | 2016-03-29 | 2020-05-20 | 沖電気工業株式会社 | 光回線終端装置及びプログラム |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0738478B2 (ja) * | 1986-04-08 | 1995-04-26 | キヤノン株式会社 | 半導体レ−ザ駆動装置 |
JPH06152024A (ja) * | 1992-10-30 | 1994-05-31 | Konica Corp | 発光素子の駆動回路 |
JPH07111355A (ja) * | 1993-10-14 | 1995-04-25 | Mitsubishi Electric Corp | 光送信器 |
-
1995
- 1995-12-06 JP JP34488095A patent/JP3596963B2/ja not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9025165B2 (en) | 2010-08-17 | 2015-05-05 | Osaka University | Normal vector tracing ultra-precision shape measurement method |
Also Published As
Publication number | Publication date |
---|---|
JPH09162811A (ja) | 1997-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3596963B2 (ja) | 半導体装置搭載モジュール、光トランスミッタ、レーザダイオードの特性情報作成方法及び光伝送装置 | |
US7949025B2 (en) | Laser optics integrated control system and method of operation | |
JP3887026B2 (ja) | 光伝送装置及びレーザダイオードの駆動方法 | |
US6947456B2 (en) | Open-loop laser driver having an integrated digital controller | |
US7061953B2 (en) | Calibration of laser systems | |
US20020190666A1 (en) | Laser diode control apparatus | |
US5812572A (en) | Intelligent fiberoptic transmitters and methods of operating and manufacturing the same | |
US6195371B1 (en) | Optical transmission device and method for driving laser diode | |
JPH0697548A (ja) | レーザダイオードの出力パワーを制御する装置 | |
JPH11135871A (ja) | レーザダイオード駆動方法および回路 | |
US7400662B2 (en) | Calibration of laser systems | |
US7830936B2 (en) | Calibration of laser systems | |
KR950007489B1 (ko) | 반도체레이저소자 구동회로 | |
JP2004222291A (ja) | 光ファイバ装置の節電方法と、信号検出用の閾値レベルを調整するレーザシステムおよび方法 | |
JP4491184B2 (ja) | 発光モジュールの温度制御回路 | |
CN111726167A (zh) | 光发射器的控制器 | |
US20040245941A1 (en) | Driving device for a light-emitting component and a method for driving a light-emitting component | |
US6522675B1 (en) | Wavelength control circuit and wavelength control method of light emitting device | |
JPH07273388A (ja) | 光送信器 | |
JP2000278215A (ja) | 光伝送装置 | |
CN100555154C (zh) | 具有自动功率控制的电子系统 | |
JP4213945B2 (ja) | 半導体レーザ駆動装置 | |
JPS6376493A (ja) | レ−ザダイオ−ド駆動回路 | |
JPH0132372Y2 (ja) | ||
JPH10145305A (ja) | 光送信器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040824 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040907 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070917 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070917 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080917 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080917 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090917 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090917 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100917 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100917 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110917 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120917 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130917 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |