JPWO2002056405A1 - 発電装置 - Google Patents
発電装置 Download PDFInfo
- Publication number
- JPWO2002056405A1 JPWO2002056405A1 JP2002556965A JP2002556965A JPWO2002056405A1 JP WO2002056405 A1 JPWO2002056405 A1 JP WO2002056405A1 JP 2002556965 A JP2002556965 A JP 2002556965A JP 2002556965 A JP2002556965 A JP 2002556965A JP WO2002056405 A1 JPWO2002056405 A1 JP WO2002056405A1
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- power generation
- power generator
- proton conductor
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1007—Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/065—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Fuel Cell (AREA)
Abstract
本発明は、発電装置であり、フラーレン誘導体を含むプロトン伝導体部(6)と、プロトン伝導体部(6)の一方の面に貼設された水素電極(4)と、プロトン伝導体部(6)の他方の面に貼設された酸素電極(5)と、水素電極(4)に圧力が約0.2〜約3.5気圧の水素ガスを供給する水素ガス供給部(2)とを備えることにより、水素ガス及び酸素ガスの透過が効果的に抑制され、透過によって水素ガスが大気中に放出されたり、透過によって酸素ガスが水素電極に達し、発電に寄与することなく水素が消費されることが防止される。
Description
技術分野
本発明は、発電装置に関し、さらに詳細には、水素ガス及び酸素ガスの透過が効果的に抑制され、これによって発電効率が高められた発電装置に関する。
背景技術
従来、自動車などのエネルギー源としてはもちろん、電力製造などのエネルギー源として、ガソリン、軽油などの化石燃料が広く用いられてきた。この化石燃料の利用によって、人類は飛躍的な生活水準の向上や産業の発展などの利益を享受することができたが、その反面、地球は深刻な環境破壊の脅威にさらされ、さらに、化石燃料の枯渇の虞が生じてその長期的な安定供給に疑問が投げかけられる事態となりつつある。
そこで、水素は、水に含まれ、地球上に無尽蔵に存在している上、物質量あたりに含まれる化学エネルギー量が大きく、また、エネルギー源として使用するときに、有害物質や地球温暖化ガスなどを放出しないなどの理由から、化石燃料に代わるクリーンで、かつ、無尽蔵なエネルギー源として、大きな注目を集めるようになっている。
ことに、近年は、水素エネルギーから電気エネルギーを取り出すことができる電気エネルギー発生装置の研究開発が盛んに行われており、大規模発電から、オンサイトな自家発電、さらには、自動車用電源としての応用が期待されている。
水素エネルギーから、電気エネルギーを取り出すための電気エネルギー発生装置、すなわち、燃料電池は、水素が供給される水素電極と、酸素が供給される酸素電極とを有している。水素電極に供給された水素は、触媒の作用によって、プロトン(陽子)と電子に解離され、電子は水素電極の集電体で集められ、他方、プロトンは酸素電極に運ばれる。水素電極において集められた電子は、負荷を経由して、酸素電極に運ばれる。一方、酸素電極に供給された酸素は、触媒の作用により、プロトン伝導体膜を介して水素電極から運ばれたプロトン及び電子と結合して、水を生成する。このようにして、水素電極と酸素電極との間に起電力が生じ、負荷に電流が流れる。
この場合、水素電極側に供給された水素がそのまま酸素極側に到達して酸素と反応したり、逆に、酸素電極側に供給された酸素ガスがそのまま水素極側に到達して水素と反応すると、かかる反応により生成される電力は負荷を経由しないことから、発電効率が低下してしまう。このため、発電効率を高めるためには、水素電極と酸素電極との間に、プロトンを効率的に伝導させる一方、水素ガス及び酸素ガスの透過を効果的に抑制するプロトン伝導体膜を設ける必要がある。
このようなプロトン伝導体膜としては、従来より、パーフルオロスルホン酸樹脂が知られている。
パーフルオロスルホン酸樹脂は、水素ガス及び酸素ガスの透過を抑制する能力が十分でなく、このため、プロトン伝導体膜としてパーフルオロスルホン酸樹脂を用いた場合、発電効率を十分に高めることは困難であった。
発明の開示
本発明は、上述したような技術的な背景に基づき提案されたものであり、本発明の目的は、水素ガス及び酸素ガスの透過が効果的に抑制され、これによって発電効率が高められた発電装置を提供することである。
上述したような目的を達成するために提案される本発明に係る発電装置は、炭素を主成分とする炭素質材料を母体とし、これにプロトン解離性の基が導入されてなるプロトン伝導体部と、プロトン伝導体部の一方の面に貼設された水素電極と、プロトン伝導体部の他方の面に貼設された酸素電極と、水素電極に圧力が約0.2〜約3.5気圧の水素ガスを供給する手段とを備える。
本発明に係る発電装置は、プロトン伝導体部として炭素を主成分とする炭素質材料を母体とし、これにプロトン解離性の基が導入されてなる材料を用い、さらに、水素電極に対して、約0.2〜約3.5気圧の水素ガスを供給していることから、水素ガス及び酸素ガスの透過が効果的に抑制される。これにより、透過によって水素ガスが大気中に放出されたり、透過によって酸素ガスが水素電極に達し、発電に寄与することなく水素が消費されることがほとんどなく、発電効率が飛躍的に高められる。
本発明においては、プロトン伝導体部がフラーレン誘導体を含んでいることが望ましい。
本発明に係る発電装置は、水素吸蔵材料と、水素吸蔵材料が封入された密閉容器とを備える。
本発明において、水素吸蔵材料の水素放出平衡圧を、約0.2〜約3.5気圧とすることにより、レギュレータによって水素ガスの圧力を調整しなくとも水素ガス及び酸素ガスの透過が効果的に抑制される。
本発明に係る発電装置は、更に、水素電極に供給する水素ガスの圧力を約0.2〜約3.5気圧に調整するレギュレータを備えることにより、水素吸蔵材料の水素放出平衡圧が約0.2〜約3.5気圧でなくとも水素ガス及び酸素ガスの透過が効果的に抑制される。
本発明に係る発電装置は、更にまた、プロトン伝導体部、水素電極及び酸素電極からなる部分と、密閉容器とが着脱可能に構成されている。この発電装置は、ポータブル機器用の電源に特に好適である。
本発明に係る発電装置において、水素吸蔵材料には水素吸蔵合金が用いられ、水素吸蔵合金はLaNi5を含む。
また、水素吸蔵材料には、炭素質水素吸蔵材料が用いられる。炭素質水素吸蔵材料は、フラーレン、カーボンナノファイバー、カーボンナノチューブ、炭素スス、ナノカプセル、バッキーオニオン、カーボンファイバーからなる群より選ばれた少なくとも一の材料からなる。
更にまた、水素吸蔵材料には、アルカリメタルハイドライド又はその水溶液あるいはそのゲルが用いられる。
本発明において、プロトン伝導体部は、
C60−(OSO3H)x(OH)y:2≦x,y≦12
を含む。
本発明に係る発電装置は、更にまた、水素ボンベと、水素ボンベより供給される水素ガスの圧力を約0.2〜約3.5気圧に調整可能なレギュレータとを備える。
本発明の更に他の目的、本発明によって得られる具体的な利点は、以下に説明される実施例の説明から一層明らかにされるであろう。
発明を実施するための最良の形態
以下、本発明に係る発電装置を図面を参照しながら詳細に説明する。
本発明に係る発電装置は、図1に示すように、実際に発電が行われる発電部本体1と、発電部本体1に水素ガスを供給する水素ガス供給部2と、発電部本体1と水素ガス供給部2との間に設けられたバルブ3とを備えている。
発電部本体1は、燃料電極である水素電極4と、酸素電極5と、水素電極4及び酸素電極5に挟持されたフラーレン誘導体からなるプロトン伝導体部6と、水素電極4を覆う密閉容器7と、バルブ8とを備えている。尚、本明細書においては、水素電極4、酸素電極5及びプロトン伝導体部6からなる複合体を、MEA(Membrane Electrode Assembly)と呼ぶことがある。
水素電極4は、カーボンを含む電極基体9とその表面に形成された触媒層10によって構成され、同様に、酸素電極5は、カーボンを含む電極基体11とその表面に形成された触媒層12によって構成されている。触媒の種類としては、白金、白金合金、パラジウム、マグネシウム、チタン、マンガン、ランタン、バナジウム、ジルコニウム、ニッケル−ランタン合金、チタン−鉄合金、イリジウム、ロジウム、金などがあるが、好ましいのは、白金及び白金合金である。また、図1に示されるように、酸素電極5の電極基体11からは正極リード13が導出され、水素電極4の電極基体9からは負極リード14が導出されており、これら正極リード13及び負極リード14は、図示しない負荷に接続される。
プロトン伝導体部6は、水素ガスの透過を防止するとともにプロトンを透過させる膜であり、その材料は特に限定されないが、炭素を主成分とする炭素質材料を母体とし、これにプロトン解離性の基が導入されてなる材料を用いることが好ましい。ここで、「プロトン解離性の基」とは、「プロトンが電離により離脱し得る官能基」であることを意味する。
プロトン伝導体部6の母体となる炭素質材料には、炭素を主成分とするものであれば、任意の材料を使用することができるが、プロトン解離性の基を導入した後に、イオン導電性が電子伝導性よりも大であることが必要である。ここで、母体となる炭素質材料としては、具体的には、炭素原子の集合体である炭素クラスターや、カーボンチューブを含む炭素質材料を挙げることができる。
炭素クラスターには種々のものがあり、フラーレンや、フラーレン構造の少なくとも一部に開放端を持つもの、ダイヤモンド構造を持つもの等が好適である。もちろんこれらに限らず、プロトン解離性の基を導入した後にイオン導電性が電子伝導性よりも大であるものであれば、いかなるものであっても良い。
プロトン伝導体部6の母体となる炭素質材料としては、フラーレンを選択することが好ましく、これにプロトン解離性の基、例えば−OH基、−OSO3H基、−COOH基、−SO3H基、−OPO(OH)2基が導入された材料をプロトン伝導体部6の材料として用いることが好ましい。
また、密閉容器7は、バルブ3及びバルブ8を閉じることによって完全に密閉されるとともに、バルブ3を開放することによって水素ガス供給部2から水素ガスの供給を受けることができ、バルブ8を開放することによって大気中に開放される。
尚、図1に示されるように、酸素電極5は大気中に開放されている。
水素ガス供給部2は、密閉容器15と、密閉容器15内に設けられた水素吸蔵材料16と、バルブ17とを備える。水素吸蔵材料16の種類としては、水素吸蔵合金若しくは炭素質水素吸蔵材科を用いることができる。このような水素吸蔵材料16は、用いられる材料の種類によって異なる所定の圧力以上の圧力を有する水素ガスを供給することによってこれを吸蔵することが可能であり、吸蔵された水素ガスは、用いられる材料の種類によって異なる所定の圧力(水素放出平衡圧)以下になると放出される。また、水素吸蔵材料16として、アルカリメタルハイドライド又はその水溶液あるいはそのゲルを用い、ルテニウム触媒やニッケル触媒等によって水素ガスを放出させてもよい。
密閉容器15は、バルブ3及びバルブ17を閉じることによって完全に密閉されるとともに、バルブ3を開放することによって発電部本体1へ水素ガスを供給することができ、バルブ17を開放することによって、水素ボンベ18からレギュレータ19を介して水素ガスの供給を受けることができる。
このような構成からなる発電装置において、まず、水素ガス供給部2内の水素吸蔵材料16に水素を吸蔵させる方法について説明する。
水素吸蔵材料16に水素を吸蔵させる場合には、バルブ3を閉じる一方バルブ17を開放するとともに、レギュレータ19によって、水素ボンベ18より供給される水素ガスの圧力を、水素吸蔵材料16の水素放出平衡圧よりも十分に高い圧力に調整する。これにより、水素ガス供給部2の密閉容器15内は、水素吸蔵材料16の水素放出平衡圧よりも十分に高い圧力の水素ガスで満たされるので、水素吸蔵材料16にはかかる水素ガスが吸蔵されることになる。このようにして水素吸蔵材料16に水素を十分に吸蔵させた後、バルブ17を閉じることによって一連の操作が完了する。
次に、水素吸蔵材料16に吸蔵された水素を用いて、発電部本体1に発電させる方法について説明する。
発電部本体1に発電させる場合には、バルブ8を閉じる一方バルブ3を開放することによって、密閉容器7内に水素ガスを充満させる。この場合、密閉容器7内の水素ガスの圧力は、水素吸蔵材料16の水素放出平衡圧と実質的に等しい圧力となる。尚、密閉容器7内の水素ガスの純度を高めるためには、バルブ3を開放した直後の所定期間において一時的にバルブ8を開放すればよい。
このようにして密閉容器7内に供給された水素ガスは、カーボンを含む電極基体9を介してその表面に形成された触媒層10に達し、触媒作用によってプロトンと電子に解離される。このうち電子は、電極基体9を経由して負極リード14へ移動して図示しない負荷へ供給され、プロトンは、プロトン伝導体部6を経由して酸素電極5側へ移動する。一方、酸素電極5は大気中に開放されているので、空気に含まれる酸素ガスがカーボンを含む電極基体11を介してその表面に形成された触媒層12に達し、触媒作用によって、プロトン伝導体部6より供給されるプロトン及び正極リード13を介して負荷より供給される電子と結合して水となる。このようにして、所望の起電力が取り出される。
この場合、酸素電極5は大気中に開放されている一方、水素電極4は密閉容器7によって水素放出平衡圧と実質的に等しい圧力となっているので、プロトン伝導体部6にはかかる圧力差が加わることになる。プロトン伝導体部6は、かかる圧力差が所定の範囲内であれば、水素ガス及び酸素ガスの透過を防止できるものの、これが所定の範囲を超えれば、水素ガス及び/又は酸素ガスを透過させてしまう。
図2Aは、密閉容器7の圧力とプロトン伝導体部6の透過水素量との関係を示すグラフであり、図2Bは、密閉容器7の圧力とプロトン伝導体部6の透過酸素量との関係を示すグラフである。
図2A及び図2Bにおいては、プロトン伝導体部6として、フラーレン誘導体である
C60−(OSO3H)x(OH)y:2≦x,y≦12
を用い、これと塩化ビニルをTHFを溶媒として5:1の比率で混合したのち、ドクターブレード法によってガラス基板上に塗布し、乾燥後プレスを加えることによって厚さ25μmに薄膜化したものを用いた。プレスは、0.05〜10t/cm2で行うことが好ましい。
図2Aに示すように、密閉容器7の圧力が約3.5気圧以下であれば、水素ガスがプロトン伝導体部6を透過することはないものの、密閉容器7の圧力が約3.5気圧を越えると水素ガスがプロトン伝導体部6を透過しはじめ、これよりも密閉容器7の圧力が高くなるほどその透過量が増大することが分かる。このため、水素ガスの酸素電極5側への透過を防止することによって発電効率を高めるためには、密閉容器7の圧力を約3.5気圧以下に保つ必要がある。
一方、図2Bに示すように、密閉容器7の圧力が約0.2気圧以上であれば、酸素ガスがプロトン伝導体部6を透過することはないものの、密閉容器7の圧力が約0.2気圧を下回ると酸素ガスがプロトン伝導体部6を透過しはじめ、密閉容器7の圧力がこれよりも低くなるほどその透過量が増大することが分かる。このため、酸素ガスの水素電極4側への透過を防止することによって発電効率を高めるためには、密閉容器7の圧力を約0.2気圧以上に保つ必要がある。
以上より、密閉容器7の圧力が、約0.2気圧〜約3.5気圧であれば、水素電極4から酸素電極5へ水素ガスが透過したり、酸素電極5から水素電極4へ酸素ガスが透過したりすることが実質的になくなり、発電効率が高められることが分かる。
このように、本実施態様において、密閉容器7の圧力を約0.2気圧〜約3.5気圧に保つためには、水素吸蔵材料16の水素放出平衡圧が約0.2気圧〜約3.5気圧である材料を選択すればよい。このような水素吸蔵材料16としては、水素吸蔵合金としてLaNi5が挙げられ、炭素質水素吸蔵材料としてフラーレン、カーボンナノファイバー、カーボンナノチューブ、炭素スス、ナノカプセル、バッキーオニオン、カーボンファイバーが挙げられる。さらに、水素吸蔵材料16として、アルカリメタルハイドライド又はその水溶液あるいはそのゲルを用い、ルテニウム触媒やニッケル触媒によって水素ガスを放出させてもよい。
また、本実施態様においては、密閉容器7の圧力を約0.2気圧〜約3.5気圧に保つために、発電部本体1と水素ガス供給部2との間にレギュレータを介在させてもよい
図3は、発電部本体1と水素ガス供給部2との間にレギュレータ20を介在させた例を示す図である。
本例においては、水素ガス供給部2から発電部本体1へ供給される水素の供給圧力は、レギュレータ20によって約0.2気圧〜約3.5気圧に調整され、これによって密閉容器7の圧力が約0.2気圧〜約3.5気圧に保たれる。
また、本発明においては、水素ガス供給部2を省略し、レギュレータ19によって密閉容器7の圧力を約0.2気圧〜約3.5気圧に保ってもよい。
図4は、水素ガス供給部2を省略した例を示す図である。
本例においては、水素ボンベ18から水素ガスが直接、発電部本体1へ供給され、その供給圧力は、レギュレータ19によって約0.2気圧〜約3.5気圧に調整される。これによって密閉容器7の圧力は約0.2気圧〜約3.5気圧に保たれる。
また、本実施態様においては、発電部本体1を水素ガス供給部2に対して着脱可能に構成しても構わない。
図5は、発電部本体1を水素ガス供給部2に対して着脱可能に構成した例を示す図である。
本例においては、発電部本体1と水素ガス供給部2の間には、2つのバルブ3−1、3−2が設けられ、これらバルブ3−1とバルブ3−2との間に着脱機構21が設けられている。これにより、バルブ3−1及びバルブ3−2を閉じたのち、着脱機構21より発電部本体1を水素ガス供給部2から分離することができる。
このように、発電部本体1を水素ガス供給部2に対して着脱可能とすれば、ポータブル機器用の電源として用いる場合に特に好適である。
すなわち、現在、ポータブル機器用の電源として、一般的に用いられているのは、アルカリ電池、マンガン電池に代表される1次電池や、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン電池に代表される2次電池であり、これらはいずれも、閉じた空間内で化学反応が完結する化学電池であることから、これを構成する種々の要素、たとえば、正極材料、負極材料、セパレータ、電解液、安全装置及びこれらを密閉する密閉容器などは、一体不可分的に構成されている。
したがって、ポータブル機器の電源として化学電池を用いた場合、電池残量がなくなると、電池自体を交換する必要があり、その一部のみを補充することはできないため、電池切れを防止するためには、ユーザは多くの電池を携帯する必要がある。
これに対して、ポータブル機器の電源に燃料電池を用いた場合には、燃料となる水素及び酸素を、外部から供給するだけで、発電をすることが可能であるから、発電部本体1をポータブル機器側に設け、ユーザが水素を随時補給することによって、ユーザは、燃料電池の全てを複数個持ち運ぶ必要はなく、発電部本体1を一つだけを持ち運べば良い。したがって、ユーザの利便性は非常に高くなる。
次に本発明の実施例及び比較例について説明する。
実施例1
まず、フラーレン誘導体である
C60−(OSO3H)x(OH)y:2≦x,y≦12
と塩化ビニルとをTHFを溶媒として5:1の比率で混合したのち、ドクターブレード法によってガラス基板上に塗布し、乾燥後プレスを加えることによって厚さ25μmに薄膜化し、プロトン伝導体部6を作製した。プレスは、6t/cm2で行った。
次に、白金を担持させたカーボンブラックとパーフルオロスルホン酸樹脂の混合粉末とをカーボンシートに撒布し、水素電極4及び酸素電極5を作製した。
次に、プロトン伝導体部6を水素電極4及び酸素電極5によって挟持し、MEAとした。MEAの平面形状は、7cm2の円形とした。このようなMEAを、図1に示される発電部本体1として用いた。
次に、活性化された3.5gのLaNi5を用意し、これを図1に示される水素吸蔵材料16として用いることによって水素ガス供給部2とした。室温におけるLaNi5の水素放出平衡圧は、約2.5気圧である。
次に、バルブ17を開いて、水素ボンベ18より密閉容器15内に水素ガスを導入し、水素吸蔵材料16であるLaNi5に水素を吸蔵させた。このとき、水素ガスの供給圧力は、レギュレータ19によって室温で約3.0気圧に設定した。
次に、バルブ17を閉じ、バルブ3及びバルブ8を開くことによって密閉容器7を水素パージし、次いでバルブ8を閉じた。これにより、正極リード13と負極リード14との間には0.6Vの電圧が発生し、正極リード13及び負極リード14に接続された負荷には、200mAの電流が流れた。正極リード13と負極リード14との間の電圧及び負荷に流れる電流は、発電開始から5.2時間まで上記の値を維持したが、発電開始から5.2時間後には、水素ガスの欠乏により、正極リード13と負極リード14との間の電圧が急速に低下した。
仮に、LaNi5に吸蔵された水素が全て発電によって消費された場合、発電持続時間は5.4時間であるから、上述のように発電が5.2時間持続したということは、LaNi5に吸蔵された水素のうち96%の水素が発電に使用された計算となる。
以上より、LaNi5に吸蔵された水素のほとんどが発電に消費されたことが分かる。したがって、透過によって大気中に放出された水素ガスや、酸素ガスの透過によって発電に寄与することなく消費された水素ガスはほとんどないことが分かった。
実施例2
実施例1にて用いた発電部本体1に、レギュレータ19を介して水素ボンベ18を直接繋ぎ、図4に示される発電装置を作製した。
次に、バルブ3を開いて、水素ボンベ18より密閉容器7内に水素ガスを導入した。このとき、水素ガスの供給圧力は、レギュレータ19によって室温で約1.8気圧に設定した。また、バルブ3の近傍には、密閉容器7に導入された水素ガスの流量を測定する積算流量計を設置した(図示せず)。
次に、バルブ8を開くことによって密閉容器7を水素パージし、次いでバルブ8を閉じた。これにより、正極リード13と負極リード14との間には0.6Vの電圧が発生し、正極リード13及び負極リード14に接続された負荷には、200mAの電流が流れた。正極リード13と負極リード14との間の電圧及び負荷に流れる電流は、発電開始から5.3時間まで上記の値を維持したが、発電開始から5.3時間後には、水素ガスの欠乏により、正極リード13と負極リード14との間の電圧が急速に低下した。
積算流量計が示す量の水素が全て発電によって消費された場合、発電持続時間は5.4時間である。したがって、上述のように発電が5.3時間持続したということは、水素ボンベ18より供給された水素のうち98%の水素が発電に使用された計算となる。
以上より、水素ボンベ18より供給された水素のほとんどが発電に消費されたことが分かる。したがって、透過によって大気中に放出された水素ガスや、酸素ガスの透過によって発電に寄与することなく消費された水素ガスはほとんどないことが分かった。
実施例3
水素吸蔵材料16を、LmNi5に変更した以外は、実施例1と同じ条件で測定を行った。
ここで、Lmは、La,Ce,Pr,Nd,Ni,Co,Mn,Alであり、その組成比は、それぞれ12.94wt%,5.02wt%,3.14wt%,11.91wt%,60.22wt%,2.81wt%,3.26wt%,0.70wt%である。また、室温におけるLmNi5の水素放出平衡圧は、約1〜2気圧である。
本実施例においても、正極リード13と負極リード14との間には0.6Vの電圧が発生し、正極リード13及び負極リード14に接続された負荷には、200mAの電流が流れた。正極リード13と負極リード14との間の電圧及び負荷に流れる電流は、発電開始から4.9時間まで上記の値を維持したが、発電開始から4.9時間後には、水素ガスの欠乏により、正極リード13と負極リード14との間の電圧が急速に低下した。
仮に、LmNi5に吸蔵された水素が全て発電によって消費された場合、発電持続時間は5.1時間であるから、上述のように発電が4.9時間持続したということは、LmNi5に吸蔵された水素のうち96%の水素が発電に使用された計算となる。
以上より、LmNi5に吸蔵された水素のほとんどが発電に消費されたことが分かる。したがって、透過によって大気中に放出された水素ガスや、酸素ガスの透過によって発電に寄与することなく消費された水素ガスはほとんどないことが分かった。
比較例
レギュレータ19によって調節された水素ガスの供給圧力を、5.0気圧に変更した以外は、実施例2と同じ条件で測定を行った。
本比較例においては、正極リード13と負極リード14との間には0.4Vの電圧が発生し、正極リード13及び負極リード14に接続された負荷には、200mAの電流が流れた。正極リード13と負極リード14との間の電圧及び負荷に流れる電流は、発電開始から4.9時間まで上記の値を維持したが、発電開始から2.2時間後には、水素ガスの欠乏により、正極リード13と負極リード14との間の電圧が急速に低下した。
積算流量計が示す量の水素が全て発電によって消費された場合、発電持続時間は5.5時間である。したがって、上述のように発電が2.2時間持続したということは、水素ボンベ18より供給された水素のうち40%の水素が発電に使用された計算となる。
以上より、水素ボンベ18より供給された水素のうち、多くの部分が透過によって大気中に放出されたことが分かった。
以上説明したように、本実施態様にかかる発電装置では、プロトン伝導体部6としてフラーレン誘導体を用いた発電部本体1に対して、約0.2〜約3.5気圧の水素ガスを供給していることから、水素ガス及び酸素ガスの透過が効果的に抑制される。これにより、透過によって水素ガスが大気中に放出されたり、透過によって酸素ガスが水素電極4に達し、発電に寄与することなく水素が消費されることがほとんどなく、発電効率が飛躍的に高められる。
本発明は、以上の実施態様に限定されることなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
例えば、上記実施態様においては、プロトン伝導体膜としてセパレータを使用しない、いわゆる自立膜を用いているが、プロトン伝導体膜としてセパレータを使用したものを用いても構わない。具体的には、ポリプロピレン等からなり、多数の貫通孔が形成されたシート上に、フラレノール及びテトラハイドロフラン液からなる混合液を塗布し、乾燥させることによって作製されたプロトン伝導体膜を用いることができる。このようなプロトン伝導体膜を用いた場合であっても、上記実施態様による効果を得ることが可能である。
産業上の利用可能性
以上説明したように、本発明に係る発電装置は、水素ガス及び酸素ガスの透過が効果的に抑制され、これによって発電効率が高められる。
【図面の簡単な説明】
図1は、本発明に係る発電装置の概略的構成を示す図である。
図2Aは、密閉容器の圧力とプロトン伝導体部の透過水素量との関係を示すグラフであり、図2Bは、密閉容器の圧力とプロトン伝導体部の透過酸素量との関係を示すグラフである。
図3は、発電部本体と水素ガス供給部との間にレギュレータを介在させた例を示す図である。
図4は、水素ガス供給部を省略した例を示す図である。
図5は、発電部本体を水素ガス供給部に対して着脱可能に構成した例を示す図である。
本発明は、発電装置に関し、さらに詳細には、水素ガス及び酸素ガスの透過が効果的に抑制され、これによって発電効率が高められた発電装置に関する。
背景技術
従来、自動車などのエネルギー源としてはもちろん、電力製造などのエネルギー源として、ガソリン、軽油などの化石燃料が広く用いられてきた。この化石燃料の利用によって、人類は飛躍的な生活水準の向上や産業の発展などの利益を享受することができたが、その反面、地球は深刻な環境破壊の脅威にさらされ、さらに、化石燃料の枯渇の虞が生じてその長期的な安定供給に疑問が投げかけられる事態となりつつある。
そこで、水素は、水に含まれ、地球上に無尽蔵に存在している上、物質量あたりに含まれる化学エネルギー量が大きく、また、エネルギー源として使用するときに、有害物質や地球温暖化ガスなどを放出しないなどの理由から、化石燃料に代わるクリーンで、かつ、無尽蔵なエネルギー源として、大きな注目を集めるようになっている。
ことに、近年は、水素エネルギーから電気エネルギーを取り出すことができる電気エネルギー発生装置の研究開発が盛んに行われており、大規模発電から、オンサイトな自家発電、さらには、自動車用電源としての応用が期待されている。
水素エネルギーから、電気エネルギーを取り出すための電気エネルギー発生装置、すなわち、燃料電池は、水素が供給される水素電極と、酸素が供給される酸素電極とを有している。水素電極に供給された水素は、触媒の作用によって、プロトン(陽子)と電子に解離され、電子は水素電極の集電体で集められ、他方、プロトンは酸素電極に運ばれる。水素電極において集められた電子は、負荷を経由して、酸素電極に運ばれる。一方、酸素電極に供給された酸素は、触媒の作用により、プロトン伝導体膜を介して水素電極から運ばれたプロトン及び電子と結合して、水を生成する。このようにして、水素電極と酸素電極との間に起電力が生じ、負荷に電流が流れる。
この場合、水素電極側に供給された水素がそのまま酸素極側に到達して酸素と反応したり、逆に、酸素電極側に供給された酸素ガスがそのまま水素極側に到達して水素と反応すると、かかる反応により生成される電力は負荷を経由しないことから、発電効率が低下してしまう。このため、発電効率を高めるためには、水素電極と酸素電極との間に、プロトンを効率的に伝導させる一方、水素ガス及び酸素ガスの透過を効果的に抑制するプロトン伝導体膜を設ける必要がある。
このようなプロトン伝導体膜としては、従来より、パーフルオロスルホン酸樹脂が知られている。
パーフルオロスルホン酸樹脂は、水素ガス及び酸素ガスの透過を抑制する能力が十分でなく、このため、プロトン伝導体膜としてパーフルオロスルホン酸樹脂を用いた場合、発電効率を十分に高めることは困難であった。
発明の開示
本発明は、上述したような技術的な背景に基づき提案されたものであり、本発明の目的は、水素ガス及び酸素ガスの透過が効果的に抑制され、これによって発電効率が高められた発電装置を提供することである。
上述したような目的を達成するために提案される本発明に係る発電装置は、炭素を主成分とする炭素質材料を母体とし、これにプロトン解離性の基が導入されてなるプロトン伝導体部と、プロトン伝導体部の一方の面に貼設された水素電極と、プロトン伝導体部の他方の面に貼設された酸素電極と、水素電極に圧力が約0.2〜約3.5気圧の水素ガスを供給する手段とを備える。
本発明に係る発電装置は、プロトン伝導体部として炭素を主成分とする炭素質材料を母体とし、これにプロトン解離性の基が導入されてなる材料を用い、さらに、水素電極に対して、約0.2〜約3.5気圧の水素ガスを供給していることから、水素ガス及び酸素ガスの透過が効果的に抑制される。これにより、透過によって水素ガスが大気中に放出されたり、透過によって酸素ガスが水素電極に達し、発電に寄与することなく水素が消費されることがほとんどなく、発電効率が飛躍的に高められる。
本発明においては、プロトン伝導体部がフラーレン誘導体を含んでいることが望ましい。
本発明に係る発電装置は、水素吸蔵材料と、水素吸蔵材料が封入された密閉容器とを備える。
本発明において、水素吸蔵材料の水素放出平衡圧を、約0.2〜約3.5気圧とすることにより、レギュレータによって水素ガスの圧力を調整しなくとも水素ガス及び酸素ガスの透過が効果的に抑制される。
本発明に係る発電装置は、更に、水素電極に供給する水素ガスの圧力を約0.2〜約3.5気圧に調整するレギュレータを備えることにより、水素吸蔵材料の水素放出平衡圧が約0.2〜約3.5気圧でなくとも水素ガス及び酸素ガスの透過が効果的に抑制される。
本発明に係る発電装置は、更にまた、プロトン伝導体部、水素電極及び酸素電極からなる部分と、密閉容器とが着脱可能に構成されている。この発電装置は、ポータブル機器用の電源に特に好適である。
本発明に係る発電装置において、水素吸蔵材料には水素吸蔵合金が用いられ、水素吸蔵合金はLaNi5を含む。
また、水素吸蔵材料には、炭素質水素吸蔵材料が用いられる。炭素質水素吸蔵材料は、フラーレン、カーボンナノファイバー、カーボンナノチューブ、炭素スス、ナノカプセル、バッキーオニオン、カーボンファイバーからなる群より選ばれた少なくとも一の材料からなる。
更にまた、水素吸蔵材料には、アルカリメタルハイドライド又はその水溶液あるいはそのゲルが用いられる。
本発明において、プロトン伝導体部は、
C60−(OSO3H)x(OH)y:2≦x,y≦12
を含む。
本発明に係る発電装置は、更にまた、水素ボンベと、水素ボンベより供給される水素ガスの圧力を約0.2〜約3.5気圧に調整可能なレギュレータとを備える。
本発明の更に他の目的、本発明によって得られる具体的な利点は、以下に説明される実施例の説明から一層明らかにされるであろう。
発明を実施するための最良の形態
以下、本発明に係る発電装置を図面を参照しながら詳細に説明する。
本発明に係る発電装置は、図1に示すように、実際に発電が行われる発電部本体1と、発電部本体1に水素ガスを供給する水素ガス供給部2と、発電部本体1と水素ガス供給部2との間に設けられたバルブ3とを備えている。
発電部本体1は、燃料電極である水素電極4と、酸素電極5と、水素電極4及び酸素電極5に挟持されたフラーレン誘導体からなるプロトン伝導体部6と、水素電極4を覆う密閉容器7と、バルブ8とを備えている。尚、本明細書においては、水素電極4、酸素電極5及びプロトン伝導体部6からなる複合体を、MEA(Membrane Electrode Assembly)と呼ぶことがある。
水素電極4は、カーボンを含む電極基体9とその表面に形成された触媒層10によって構成され、同様に、酸素電極5は、カーボンを含む電極基体11とその表面に形成された触媒層12によって構成されている。触媒の種類としては、白金、白金合金、パラジウム、マグネシウム、チタン、マンガン、ランタン、バナジウム、ジルコニウム、ニッケル−ランタン合金、チタン−鉄合金、イリジウム、ロジウム、金などがあるが、好ましいのは、白金及び白金合金である。また、図1に示されるように、酸素電極5の電極基体11からは正極リード13が導出され、水素電極4の電極基体9からは負極リード14が導出されており、これら正極リード13及び負極リード14は、図示しない負荷に接続される。
プロトン伝導体部6は、水素ガスの透過を防止するとともにプロトンを透過させる膜であり、その材料は特に限定されないが、炭素を主成分とする炭素質材料を母体とし、これにプロトン解離性の基が導入されてなる材料を用いることが好ましい。ここで、「プロトン解離性の基」とは、「プロトンが電離により離脱し得る官能基」であることを意味する。
プロトン伝導体部6の母体となる炭素質材料には、炭素を主成分とするものであれば、任意の材料を使用することができるが、プロトン解離性の基を導入した後に、イオン導電性が電子伝導性よりも大であることが必要である。ここで、母体となる炭素質材料としては、具体的には、炭素原子の集合体である炭素クラスターや、カーボンチューブを含む炭素質材料を挙げることができる。
炭素クラスターには種々のものがあり、フラーレンや、フラーレン構造の少なくとも一部に開放端を持つもの、ダイヤモンド構造を持つもの等が好適である。もちろんこれらに限らず、プロトン解離性の基を導入した後にイオン導電性が電子伝導性よりも大であるものであれば、いかなるものであっても良い。
プロトン伝導体部6の母体となる炭素質材料としては、フラーレンを選択することが好ましく、これにプロトン解離性の基、例えば−OH基、−OSO3H基、−COOH基、−SO3H基、−OPO(OH)2基が導入された材料をプロトン伝導体部6の材料として用いることが好ましい。
また、密閉容器7は、バルブ3及びバルブ8を閉じることによって完全に密閉されるとともに、バルブ3を開放することによって水素ガス供給部2から水素ガスの供給を受けることができ、バルブ8を開放することによって大気中に開放される。
尚、図1に示されるように、酸素電極5は大気中に開放されている。
水素ガス供給部2は、密閉容器15と、密閉容器15内に設けられた水素吸蔵材料16と、バルブ17とを備える。水素吸蔵材料16の種類としては、水素吸蔵合金若しくは炭素質水素吸蔵材科を用いることができる。このような水素吸蔵材料16は、用いられる材料の種類によって異なる所定の圧力以上の圧力を有する水素ガスを供給することによってこれを吸蔵することが可能であり、吸蔵された水素ガスは、用いられる材料の種類によって異なる所定の圧力(水素放出平衡圧)以下になると放出される。また、水素吸蔵材料16として、アルカリメタルハイドライド又はその水溶液あるいはそのゲルを用い、ルテニウム触媒やニッケル触媒等によって水素ガスを放出させてもよい。
密閉容器15は、バルブ3及びバルブ17を閉じることによって完全に密閉されるとともに、バルブ3を開放することによって発電部本体1へ水素ガスを供給することができ、バルブ17を開放することによって、水素ボンベ18からレギュレータ19を介して水素ガスの供給を受けることができる。
このような構成からなる発電装置において、まず、水素ガス供給部2内の水素吸蔵材料16に水素を吸蔵させる方法について説明する。
水素吸蔵材料16に水素を吸蔵させる場合には、バルブ3を閉じる一方バルブ17を開放するとともに、レギュレータ19によって、水素ボンベ18より供給される水素ガスの圧力を、水素吸蔵材料16の水素放出平衡圧よりも十分に高い圧力に調整する。これにより、水素ガス供給部2の密閉容器15内は、水素吸蔵材料16の水素放出平衡圧よりも十分に高い圧力の水素ガスで満たされるので、水素吸蔵材料16にはかかる水素ガスが吸蔵されることになる。このようにして水素吸蔵材料16に水素を十分に吸蔵させた後、バルブ17を閉じることによって一連の操作が完了する。
次に、水素吸蔵材料16に吸蔵された水素を用いて、発電部本体1に発電させる方法について説明する。
発電部本体1に発電させる場合には、バルブ8を閉じる一方バルブ3を開放することによって、密閉容器7内に水素ガスを充満させる。この場合、密閉容器7内の水素ガスの圧力は、水素吸蔵材料16の水素放出平衡圧と実質的に等しい圧力となる。尚、密閉容器7内の水素ガスの純度を高めるためには、バルブ3を開放した直後の所定期間において一時的にバルブ8を開放すればよい。
このようにして密閉容器7内に供給された水素ガスは、カーボンを含む電極基体9を介してその表面に形成された触媒層10に達し、触媒作用によってプロトンと電子に解離される。このうち電子は、電極基体9を経由して負極リード14へ移動して図示しない負荷へ供給され、プロトンは、プロトン伝導体部6を経由して酸素電極5側へ移動する。一方、酸素電極5は大気中に開放されているので、空気に含まれる酸素ガスがカーボンを含む電極基体11を介してその表面に形成された触媒層12に達し、触媒作用によって、プロトン伝導体部6より供給されるプロトン及び正極リード13を介して負荷より供給される電子と結合して水となる。このようにして、所望の起電力が取り出される。
この場合、酸素電極5は大気中に開放されている一方、水素電極4は密閉容器7によって水素放出平衡圧と実質的に等しい圧力となっているので、プロトン伝導体部6にはかかる圧力差が加わることになる。プロトン伝導体部6は、かかる圧力差が所定の範囲内であれば、水素ガス及び酸素ガスの透過を防止できるものの、これが所定の範囲を超えれば、水素ガス及び/又は酸素ガスを透過させてしまう。
図2Aは、密閉容器7の圧力とプロトン伝導体部6の透過水素量との関係を示すグラフであり、図2Bは、密閉容器7の圧力とプロトン伝導体部6の透過酸素量との関係を示すグラフである。
図2A及び図2Bにおいては、プロトン伝導体部6として、フラーレン誘導体である
C60−(OSO3H)x(OH)y:2≦x,y≦12
を用い、これと塩化ビニルをTHFを溶媒として5:1の比率で混合したのち、ドクターブレード法によってガラス基板上に塗布し、乾燥後プレスを加えることによって厚さ25μmに薄膜化したものを用いた。プレスは、0.05〜10t/cm2で行うことが好ましい。
図2Aに示すように、密閉容器7の圧力が約3.5気圧以下であれば、水素ガスがプロトン伝導体部6を透過することはないものの、密閉容器7の圧力が約3.5気圧を越えると水素ガスがプロトン伝導体部6を透過しはじめ、これよりも密閉容器7の圧力が高くなるほどその透過量が増大することが分かる。このため、水素ガスの酸素電極5側への透過を防止することによって発電効率を高めるためには、密閉容器7の圧力を約3.5気圧以下に保つ必要がある。
一方、図2Bに示すように、密閉容器7の圧力が約0.2気圧以上であれば、酸素ガスがプロトン伝導体部6を透過することはないものの、密閉容器7の圧力が約0.2気圧を下回ると酸素ガスがプロトン伝導体部6を透過しはじめ、密閉容器7の圧力がこれよりも低くなるほどその透過量が増大することが分かる。このため、酸素ガスの水素電極4側への透過を防止することによって発電効率を高めるためには、密閉容器7の圧力を約0.2気圧以上に保つ必要がある。
以上より、密閉容器7の圧力が、約0.2気圧〜約3.5気圧であれば、水素電極4から酸素電極5へ水素ガスが透過したり、酸素電極5から水素電極4へ酸素ガスが透過したりすることが実質的になくなり、発電効率が高められることが分かる。
このように、本実施態様において、密閉容器7の圧力を約0.2気圧〜約3.5気圧に保つためには、水素吸蔵材料16の水素放出平衡圧が約0.2気圧〜約3.5気圧である材料を選択すればよい。このような水素吸蔵材料16としては、水素吸蔵合金としてLaNi5が挙げられ、炭素質水素吸蔵材料としてフラーレン、カーボンナノファイバー、カーボンナノチューブ、炭素スス、ナノカプセル、バッキーオニオン、カーボンファイバーが挙げられる。さらに、水素吸蔵材料16として、アルカリメタルハイドライド又はその水溶液あるいはそのゲルを用い、ルテニウム触媒やニッケル触媒によって水素ガスを放出させてもよい。
また、本実施態様においては、密閉容器7の圧力を約0.2気圧〜約3.5気圧に保つために、発電部本体1と水素ガス供給部2との間にレギュレータを介在させてもよい
図3は、発電部本体1と水素ガス供給部2との間にレギュレータ20を介在させた例を示す図である。
本例においては、水素ガス供給部2から発電部本体1へ供給される水素の供給圧力は、レギュレータ20によって約0.2気圧〜約3.5気圧に調整され、これによって密閉容器7の圧力が約0.2気圧〜約3.5気圧に保たれる。
また、本発明においては、水素ガス供給部2を省略し、レギュレータ19によって密閉容器7の圧力を約0.2気圧〜約3.5気圧に保ってもよい。
図4は、水素ガス供給部2を省略した例を示す図である。
本例においては、水素ボンベ18から水素ガスが直接、発電部本体1へ供給され、その供給圧力は、レギュレータ19によって約0.2気圧〜約3.5気圧に調整される。これによって密閉容器7の圧力は約0.2気圧〜約3.5気圧に保たれる。
また、本実施態様においては、発電部本体1を水素ガス供給部2に対して着脱可能に構成しても構わない。
図5は、発電部本体1を水素ガス供給部2に対して着脱可能に構成した例を示す図である。
本例においては、発電部本体1と水素ガス供給部2の間には、2つのバルブ3−1、3−2が設けられ、これらバルブ3−1とバルブ3−2との間に着脱機構21が設けられている。これにより、バルブ3−1及びバルブ3−2を閉じたのち、着脱機構21より発電部本体1を水素ガス供給部2から分離することができる。
このように、発電部本体1を水素ガス供給部2に対して着脱可能とすれば、ポータブル機器用の電源として用いる場合に特に好適である。
すなわち、現在、ポータブル機器用の電源として、一般的に用いられているのは、アルカリ電池、マンガン電池に代表される1次電池や、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン電池に代表される2次電池であり、これらはいずれも、閉じた空間内で化学反応が完結する化学電池であることから、これを構成する種々の要素、たとえば、正極材料、負極材料、セパレータ、電解液、安全装置及びこれらを密閉する密閉容器などは、一体不可分的に構成されている。
したがって、ポータブル機器の電源として化学電池を用いた場合、電池残量がなくなると、電池自体を交換する必要があり、その一部のみを補充することはできないため、電池切れを防止するためには、ユーザは多くの電池を携帯する必要がある。
これに対して、ポータブル機器の電源に燃料電池を用いた場合には、燃料となる水素及び酸素を、外部から供給するだけで、発電をすることが可能であるから、発電部本体1をポータブル機器側に設け、ユーザが水素を随時補給することによって、ユーザは、燃料電池の全てを複数個持ち運ぶ必要はなく、発電部本体1を一つだけを持ち運べば良い。したがって、ユーザの利便性は非常に高くなる。
次に本発明の実施例及び比較例について説明する。
実施例1
まず、フラーレン誘導体である
C60−(OSO3H)x(OH)y:2≦x,y≦12
と塩化ビニルとをTHFを溶媒として5:1の比率で混合したのち、ドクターブレード法によってガラス基板上に塗布し、乾燥後プレスを加えることによって厚さ25μmに薄膜化し、プロトン伝導体部6を作製した。プレスは、6t/cm2で行った。
次に、白金を担持させたカーボンブラックとパーフルオロスルホン酸樹脂の混合粉末とをカーボンシートに撒布し、水素電極4及び酸素電極5を作製した。
次に、プロトン伝導体部6を水素電極4及び酸素電極5によって挟持し、MEAとした。MEAの平面形状は、7cm2の円形とした。このようなMEAを、図1に示される発電部本体1として用いた。
次に、活性化された3.5gのLaNi5を用意し、これを図1に示される水素吸蔵材料16として用いることによって水素ガス供給部2とした。室温におけるLaNi5の水素放出平衡圧は、約2.5気圧である。
次に、バルブ17を開いて、水素ボンベ18より密閉容器15内に水素ガスを導入し、水素吸蔵材料16であるLaNi5に水素を吸蔵させた。このとき、水素ガスの供給圧力は、レギュレータ19によって室温で約3.0気圧に設定した。
次に、バルブ17を閉じ、バルブ3及びバルブ8を開くことによって密閉容器7を水素パージし、次いでバルブ8を閉じた。これにより、正極リード13と負極リード14との間には0.6Vの電圧が発生し、正極リード13及び負極リード14に接続された負荷には、200mAの電流が流れた。正極リード13と負極リード14との間の電圧及び負荷に流れる電流は、発電開始から5.2時間まで上記の値を維持したが、発電開始から5.2時間後には、水素ガスの欠乏により、正極リード13と負極リード14との間の電圧が急速に低下した。
仮に、LaNi5に吸蔵された水素が全て発電によって消費された場合、発電持続時間は5.4時間であるから、上述のように発電が5.2時間持続したということは、LaNi5に吸蔵された水素のうち96%の水素が発電に使用された計算となる。
以上より、LaNi5に吸蔵された水素のほとんどが発電に消費されたことが分かる。したがって、透過によって大気中に放出された水素ガスや、酸素ガスの透過によって発電に寄与することなく消費された水素ガスはほとんどないことが分かった。
実施例2
実施例1にて用いた発電部本体1に、レギュレータ19を介して水素ボンベ18を直接繋ぎ、図4に示される発電装置を作製した。
次に、バルブ3を開いて、水素ボンベ18より密閉容器7内に水素ガスを導入した。このとき、水素ガスの供給圧力は、レギュレータ19によって室温で約1.8気圧に設定した。また、バルブ3の近傍には、密閉容器7に導入された水素ガスの流量を測定する積算流量計を設置した(図示せず)。
次に、バルブ8を開くことによって密閉容器7を水素パージし、次いでバルブ8を閉じた。これにより、正極リード13と負極リード14との間には0.6Vの電圧が発生し、正極リード13及び負極リード14に接続された負荷には、200mAの電流が流れた。正極リード13と負極リード14との間の電圧及び負荷に流れる電流は、発電開始から5.3時間まで上記の値を維持したが、発電開始から5.3時間後には、水素ガスの欠乏により、正極リード13と負極リード14との間の電圧が急速に低下した。
積算流量計が示す量の水素が全て発電によって消費された場合、発電持続時間は5.4時間である。したがって、上述のように発電が5.3時間持続したということは、水素ボンベ18より供給された水素のうち98%の水素が発電に使用された計算となる。
以上より、水素ボンベ18より供給された水素のほとんどが発電に消費されたことが分かる。したがって、透過によって大気中に放出された水素ガスや、酸素ガスの透過によって発電に寄与することなく消費された水素ガスはほとんどないことが分かった。
実施例3
水素吸蔵材料16を、LmNi5に変更した以外は、実施例1と同じ条件で測定を行った。
ここで、Lmは、La,Ce,Pr,Nd,Ni,Co,Mn,Alであり、その組成比は、それぞれ12.94wt%,5.02wt%,3.14wt%,11.91wt%,60.22wt%,2.81wt%,3.26wt%,0.70wt%である。また、室温におけるLmNi5の水素放出平衡圧は、約1〜2気圧である。
本実施例においても、正極リード13と負極リード14との間には0.6Vの電圧が発生し、正極リード13及び負極リード14に接続された負荷には、200mAの電流が流れた。正極リード13と負極リード14との間の電圧及び負荷に流れる電流は、発電開始から4.9時間まで上記の値を維持したが、発電開始から4.9時間後には、水素ガスの欠乏により、正極リード13と負極リード14との間の電圧が急速に低下した。
仮に、LmNi5に吸蔵された水素が全て発電によって消費された場合、発電持続時間は5.1時間であるから、上述のように発電が4.9時間持続したということは、LmNi5に吸蔵された水素のうち96%の水素が発電に使用された計算となる。
以上より、LmNi5に吸蔵された水素のほとんどが発電に消費されたことが分かる。したがって、透過によって大気中に放出された水素ガスや、酸素ガスの透過によって発電に寄与することなく消費された水素ガスはほとんどないことが分かった。
比較例
レギュレータ19によって調節された水素ガスの供給圧力を、5.0気圧に変更した以外は、実施例2と同じ条件で測定を行った。
本比較例においては、正極リード13と負極リード14との間には0.4Vの電圧が発生し、正極リード13及び負極リード14に接続された負荷には、200mAの電流が流れた。正極リード13と負極リード14との間の電圧及び負荷に流れる電流は、発電開始から4.9時間まで上記の値を維持したが、発電開始から2.2時間後には、水素ガスの欠乏により、正極リード13と負極リード14との間の電圧が急速に低下した。
積算流量計が示す量の水素が全て発電によって消費された場合、発電持続時間は5.5時間である。したがって、上述のように発電が2.2時間持続したということは、水素ボンベ18より供給された水素のうち40%の水素が発電に使用された計算となる。
以上より、水素ボンベ18より供給された水素のうち、多くの部分が透過によって大気中に放出されたことが分かった。
以上説明したように、本実施態様にかかる発電装置では、プロトン伝導体部6としてフラーレン誘導体を用いた発電部本体1に対して、約0.2〜約3.5気圧の水素ガスを供給していることから、水素ガス及び酸素ガスの透過が効果的に抑制される。これにより、透過によって水素ガスが大気中に放出されたり、透過によって酸素ガスが水素電極4に達し、発電に寄与することなく水素が消費されることがほとんどなく、発電効率が飛躍的に高められる。
本発明は、以上の実施態様に限定されることなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
例えば、上記実施態様においては、プロトン伝導体膜としてセパレータを使用しない、いわゆる自立膜を用いているが、プロトン伝導体膜としてセパレータを使用したものを用いても構わない。具体的には、ポリプロピレン等からなり、多数の貫通孔が形成されたシート上に、フラレノール及びテトラハイドロフラン液からなる混合液を塗布し、乾燥させることによって作製されたプロトン伝導体膜を用いることができる。このようなプロトン伝導体膜を用いた場合であっても、上記実施態様による効果を得ることが可能である。
産業上の利用可能性
以上説明したように、本発明に係る発電装置は、水素ガス及び酸素ガスの透過が効果的に抑制され、これによって発電効率が高められる。
【図面の簡単な説明】
図1は、本発明に係る発電装置の概略的構成を示す図である。
図2Aは、密閉容器の圧力とプロトン伝導体部の透過水素量との関係を示すグラフであり、図2Bは、密閉容器の圧力とプロトン伝導体部の透過酸素量との関係を示すグラフである。
図3は、発電部本体と水素ガス供給部との間にレギュレータを介在させた例を示す図である。
図4は、水素ガス供給部を省略した例を示す図である。
図5は、発電部本体を水素ガス供給部に対して着脱可能に構成した例を示す図である。
Claims (13)
- 炭素を主成分とする炭素質材料を母体とし、これにプロトン解離性の基が導入されてなるプロトン伝導体部と、前記プロトン伝導体部の一方の面に貼設された水素電極と、前記プロトン伝導体部の他方の面に貼設された酸素電極と、前記水素電極に圧力が約0.2〜約3.5気圧の水素ガスを供給する手段とを備える発電装置。
- 前記プロトン伝導体部が、フラーレン誘導体を含むことを特徴とする請求の範囲第1項記載の発電装置。
- 前記手段が、水素吸蔵材料と、前記水素吸蔵材料が封入された密閉容器とを備えることを特徴とする請求の範囲第1項記載の発電装置。
- 前記水素吸蔵材料の水素放出平衡圧が、約0.2〜約3.5気圧であることを特徴とする請求の範囲第3項記載の発電装置。
- 前記手段が、前記水素電極に供給する水素ガスの圧力を約0.2〜約3.5気圧に調整するレギュレータをさらに備えることを特徴とする請求の範囲第3項記載記載の発電装置。
- 前記プロトン伝導体部、前記水素電極及び前記酸素電極からなる部分と、前記密閉容器とが着脱可能に構成されていることを特徴とする請求の範囲第3項記載の発電装置。
- 前記水素吸蔵材料が、水素吸蔵合金であることを特徴とする請求の範囲第3項記載の発電装置。
- 前記水素吸蔵合金が、LaNi5を含むことを特徴とする請求の範囲第7項記載の発電装置。
- 前記水素吸蔵材料が、炭素質水素吸蔵材料であることを特徴とする請求の範囲第3項記載の発電装置。
- 前記炭素質水素吸蔵材料が、フラーレン、カーボンナノファイバー、カーボンナノチューブ、炭素スス、ナノカプセル、バッキーオニオン、カーボンファイバーからなる群より選ばれた少なくとも一の材料からなることを特徴とする請求の範囲第9項記載の発電装置。
- 前記水素吸蔵材料が、アルカリメタルハイドライド又はその水溶液あるいはそのゲルであることを特徴とする請求の範囲第3項記載の発電装置。
- 前記プロトン伝導体部が、
C60−(OSO3H)x(OH)y:2≦x,y≦12
を含むことを特徴とする請求の範囲第2項記載の発電装置。 - 前記手段が、水素ボンベと、前記水素ボンベより供給される水素ガスの圧力を約0.2〜約3.5気圧に調整可能なレギュレータとを備えることを特徴とする請求の範囲第1項記載の発電装置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001006441 | 2001-01-15 | ||
JP2001006441 | 2001-01-15 | ||
PCT/JP2002/000055 WO2002056405A1 (fr) | 2001-01-15 | 2002-01-09 | Dispositif de production de puissance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2002056405A1 true JPWO2002056405A1 (ja) | 2004-05-20 |
Family
ID=18874330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002556965A Pending JPWO2002056405A1 (ja) | 2001-01-15 | 2002-01-09 | 発電装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US7045240B2 (ja) |
JP (1) | JPWO2002056405A1 (ja) |
KR (1) | KR20040004485A (ja) |
CN (1) | CN1496590A (ja) |
TW (1) | TW541751B (ja) |
WO (1) | WO2002056405A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006222062A (ja) * | 2005-01-12 | 2006-08-24 | Nitto Denko Corp | 携帯機器用電池駆動システム |
WO2006038519A1 (ja) * | 2004-10-05 | 2006-04-13 | Nitto Denko Corporation | 燃料電池及び発電方法 |
JP4660151B2 (ja) * | 2004-10-05 | 2011-03-30 | アクアフェアリー株式会社 | 燃料電池 |
WO2011050307A2 (en) * | 2009-10-22 | 2011-04-28 | Lawrence Livermore National Security, Llc | Nanodevices for generating power from molecules and batteryless sensing |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0690881B2 (ja) * | 1989-11-27 | 1994-11-14 | 工業技術院長 | 炭素質固体電解質材料およびこれを用いた固体電解質電池 |
US5458784A (en) * | 1990-10-23 | 1995-10-17 | Catalytic Materials Limited | Removal of contaminants from aqueous and gaseous streams using graphic filaments |
US5399184A (en) * | 1992-05-01 | 1995-03-21 | Chlorine Engineers Corp., Ltd. | Method for fabricating gas diffusion electrode assembly for fuel cells |
JP2859045B2 (ja) | 1992-08-12 | 1999-02-17 | 三洋電機株式会社 | 小型燃料電池電源 |
JP3576603B2 (ja) | 1994-07-14 | 2004-10-13 | 日本電池株式会社 | 電気化学セル及びその作動方法 |
JPH08115732A (ja) | 1994-10-17 | 1996-05-07 | Sanyo Electric Co Ltd | 水素吸蔵合金容器 |
JP4031537B2 (ja) | 1995-02-14 | 2008-01-09 | 三菱重工業株式会社 | 固体高分子型燃料電池システム |
DE19526434A1 (de) * | 1995-07-19 | 1997-01-23 | Studiengesellschaft Kohle Mbh | Verfahren zur reversilben Speicherung von Wasserstoff |
EP0817298A4 (en) | 1996-01-22 | 2005-04-20 | Matsushita Electric Ind Co Ltd | FUEL CELL SYSTEM |
DE69708715T2 (de) | 1996-02-05 | 2002-08-08 | Matsushita Electric Industrial Co., Ltd. | Brennstoffzelle zur Befestigung auf Geräten |
JP4028603B2 (ja) | 1996-02-05 | 2007-12-26 | 松下電器産業株式会社 | 機器搭載用燃料電池装置 |
JP3583857B2 (ja) * | 1996-03-26 | 2004-11-04 | 三洋電機株式会社 | 水素貯蔵利用装置 |
JP2000264602A (ja) | 1999-03-19 | 2000-09-26 | Seiji Motojima | 水素吸蔵材料、その製造方法及びその使用方法 |
EP1205942B1 (en) | 1999-07-19 | 2011-01-19 | Sony Corporation | Proton conducting material and method for preparing the same, and electrochemical device using the same |
US6495290B1 (en) * | 1999-07-19 | 2002-12-17 | Sony Corporation | Proton conductor, production method thereof, and electrochemical device using the same |
-
2002
- 2002-01-03 TW TW091100026A patent/TW541751B/zh not_active IP Right Cessation
- 2002-01-09 KR KR10-2003-7009041A patent/KR20040004485A/ko not_active Application Discontinuation
- 2002-01-09 US US10/466,860 patent/US7045240B2/en not_active Expired - Fee Related
- 2002-01-09 WO PCT/JP2002/000055 patent/WO2002056405A1/ja active Application Filing
- 2002-01-09 JP JP2002556965A patent/JPWO2002056405A1/ja active Pending
- 2002-01-09 CN CNA028037294A patent/CN1496590A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
TW541751B (en) | 2003-07-11 |
US7045240B2 (en) | 2006-05-16 |
KR20040004485A (ko) | 2004-01-13 |
CN1496590A (zh) | 2004-05-12 |
US20040058213A1 (en) | 2004-03-25 |
WO2002056405A1 (fr) | 2002-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3719178B2 (ja) | 水素ガス製造充填装置及び電気化学装置 | |
US6613471B2 (en) | Active material for fuel cell anodes incorporating an additive for precharging/activation thereof | |
US7282294B2 (en) | Hydrogen storage-based rechargeable fuel cell system and method | |
WO2002027828A1 (en) | Method for manufacturing gas diffusion electrode and method for manufacturing electrochemical device | |
KR100812403B1 (ko) | 전기화학 디바이스 및 그 제조방법 | |
US20070141464A1 (en) | Porous metal hydride electrode | |
CN1901261A (zh) | 一种新型的高性能碱性燃料电池 | |
US20020015869A1 (en) | Liquid fuel cell | |
US7056423B2 (en) | Apparatus for producing hydrogen, electrochemical device, method for producing hydrogen and method for generating electrochemical energy | |
CN1986894B (zh) | 一种产氢储氢一体化方法和装置 | |
JPH0831444A (ja) | 電気化学セル及びその作動方法 | |
JPWO2002056405A1 (ja) | 発電装置 | |
US20030118907A1 (en) | Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel using carbonaceous material having hydrogen absorbed therein | |
US20060083959A1 (en) | Polymer electrolyte fuel cell cartridge and polymer electrolyte fuel cell | |
JP2002102694A (ja) | 炭素質材料への触媒担持方法 | |
JP2002056852A (ja) | 電気エネルギー発生システム | |
JP2002252002A (ja) | 燃料電池 | |
JP4392823B2 (ja) | 固体電解質型燃料電池 | |
JP4028710B2 (ja) | 液体型燃料電池 | |
WO2004004049A9 (ja) | 燃料電池及びその使用方法 | |
KR20070092876A (ko) | 연료 전지용 캐소드 촉매 및 이를 포함하는 연료 전지용막-전극 어셈블리 | |
JP2002050375A (ja) | 液体型燃料電池 | |
US20030108474A1 (en) | Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein | |
US20030170164A1 (en) | Carbonaceous material for hydrogen storage, and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein | |
Liu et al. | Development of micro fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080812 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081216 |