JPH1074977A - 半導体素子 - Google Patents

半導体素子

Info

Publication number
JPH1074977A
JPH1074977A JP24697796A JP24697796A JPH1074977A JP H1074977 A JPH1074977 A JP H1074977A JP 24697796 A JP24697796 A JP 24697796A JP 24697796 A JP24697796 A JP 24697796A JP H1074977 A JPH1074977 A JP H1074977A
Authority
JP
Japan
Prior art keywords
layer
mixed crystal
gaas
group
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24697796A
Other languages
English (en)
Other versions
JP3467153B2 (ja
Inventor
Shunichi Sato
俊一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP24697796A priority Critical patent/JP3467153B2/ja
Priority to US08/920,054 priority patent/US5939733A/en
Publication of JPH1074977A publication Critical patent/JPH1074977A/ja
Application granted granted Critical
Publication of JP3467153B2 publication Critical patent/JP3467153B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Abstract

(57)【要約】 【課題】温度特性が良好でしきい値電流が低く、発振波
長の温度依存性が小さい半導体素子を得ることは困難で
あった。 【解決手段】V族元素としてAs、Ш族元素としてTl
を同時に含んだ混晶を用いた半導体レ−ザ素子1は、T
lAsはバンドギャップエネルギが負の値を持つ半金属
であることから、TlAsを含む混晶は、従来の混晶で
あるInGaAsよりバンドギャップエネルギが小さく
なり、さらに、その温度依存性を小さくすることができ
る。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】この発明は、通信用半導体レ
−ザ光源やフォトダイオ−ド,高速電子デバイスなどの
半導体素子、特にШ−V族化合物の半導体素子の特性の
改善に関するものである。
【0002】
【従来の技術】近年、光ファイバを用いた光通信システ
ムは主に幹線系で用いられている。現在、石英系光ファ
イバ通信用の1.3μm帯及び1.5μm帯の半導体レ−ザに
はIn1-xGaxAsy1-y活性層とnおよびp−InP
クラット層で構成したInGaAsPダブルヘテロ接合
レ−ザ素子が用いられ、Ga組成比xとAs組成比yを
変えて波長を変えている。このInGaAsP半導体レ
−ザ素子は材料的に伝導帯のバンド不連続(ΔEc)が
小さく電子のオ−バ−フロ−が多いことが主たる原因で
発振を開始するしきい値電流は大きく、温度特性は悪
く、光出力が環境温度によって大きく変化する。また、
バンドギャプエネルギは温度依存性を有しており高温ほ
どバンドギャップエネルギは小さくなり波長が長波長側
にシフトしてしまう。これは波長多重通信を行なう場合
には大きな問題となる。このため温度制御する必要があ
りペルチェ素子を用いていた。
【0003】この光通信システムは、将来は各家庭を含
めた加入者系での利用が考えられている。これを実現す
るためにはシステムの小型化、低消費電力化、低コスト
化が必要である。このためには半導体レ−ザ素子の低し
きい値動作と温度制御系を持たないペルチェフリ−のシ
ステムが必要である。このような要望を上記InGaA
sP/InP系材料を用いて改善することは困難である
ため、伝導帯のバンド不連続(ΔEc)が大きくなるよ
うにGaAs基板上に形成することが試みられている。
GaAs基板上のInGaAsはIn組成が大きくなる
ほどバンドギャップエネルギEgは小さくなるが、格子
定数はGaAsよりも大きくなっていく。この材料は圧
縮歪量の増大により長波長化されるが1.1μm程度が限
界である。
【0004】そこで特開平7−193327号公報に、1.3μ
m帯または1.5μm帯の波長を与えるInGaAs活性
層と、この活性層をはさんで形成され、かつGaAsの
格子定数に近い格子定数を与える組成とすることより活
性層に歪を与える半導体層とを有し、伝導帯のバンド不
連続(ΔEc)を大きくした素子が提案されている。
【0005】また、特開平6−37355号公報に、GaA
s基板上にInGaNAs系の合金半導体膜を形成した
材料が提案されている。これはGaAsより格子定数が
大きいInGaAsにNを添加することで格子定数をG
aAsに格子整合することが可能であり、さらにバンド
ギャップエネルギが小さくなり1.3μm帯または1.5μm
帯の波長が可能となる材料系である。GaAs格子整合
系なのでAlGaAsをクラッド層に用いることで伝導
帯のバンド不連続(ΔEc)を大きくすることができ
る。
【0006】また、波長の温度依存性改善については、
1996年春季応用物理学会(26p−ZC−10)に
おいてInP基板上のTlInGaP系材料が提案され
ている。TlPは格子定数が0.6nm程度でInPより
3%程度大きい。また、TlPはバンドギャップエネル
ギが負の値を持つ半金属でありバンドギャップエネルギ
は高温ほど大きくなる。この特性はInPなどの半導体
とは逆である。したがって例えばInPとTlPの混晶
であるTaInPはTlの組成が大きくなるほどバンド
ギャップエネルギの温度依存性が小さくなり温度に依存
しない組成が存在する。つまり発振波長を安定化させる
ことが可能となる。またGaを添加すると格子定数が小
さくなるのでInP基板に格子整合させることも可能な
材料系である。
【0007】
【発明が解決しようとする課題】しかしながら特開平7
−193327号公報に示された素子は、1.3μmまたは1.5μ
m帯の波長を与えるためGaAsより格子定数の大きい
InGaAs活性層を用いているため緩和バッファ層を
用いたり、基板にInGaAsを用いているが、緩和バ
ッファ層を用いても基本的には格子不整合系なので素子
の寿命の点で問題がある。さらに、InGaAsのよう
な多元材料基板は現実には作成が困難である。
【0008】また、特開平6−37355公報に示されたI
nGaNAs系材料はミシビリティギャップが広く、通
常の成長方法ではN組成を大きくするほど、すなわち波
長が長くなるほど結晶性が低下し形成が困難であるとい
う問題がある。また、1996年春期応用物理学会(2
6p−ZC−10)で提案されたInP基板上のTlI
nGaP系材料系はInP基板上に形成される材料であ
るので、従来の材料系であるInGaAsp/InP系
材料と同様にクラッド層には主にInPが用いられるた
め伝導帯のバンド不連続(ΔEc)は小さく、しきい値
電流の温度依存性を小さくすることはできないという問
題があった。
【0009】この発明はかかる短所を改善するためにな
されたものであり、温度特性が良好でしきい値電流が低
く、発振波長の温度依存性が小さい半導体素子を得るこ
とを目的とするものである。
【0010】
【課題を解決するための手段】この発明に係る半導体素
子は、Ш−V族混晶半導体であってV族元素としてA
s、Ш族元素としてTl(タリウム)を同時に含んだШ
−V族混晶半導体層を、少なくとも一層含んだことを特
徴とする。
【0011】上記AsとTlを同時に含んだШ−V族混
晶半導体層はGaAs基板上に形成されていることを特
徴とする。
【0012】また、上記AsとTlを同時に含んだШ−
V族混晶半導体層はTlxGa1-xAS(0<x<1)で
あることを特徴とする。
【0013】さらに、上記AsとTlを同時に含んだШ
−V族混晶半導体層にV族元素としてNを添加すること
を特徴とする。
【0014】上記半導体素子はAsとTlを同時に含ん
だШ−V族混晶半導体層を活性層とし、GaAs基板に
格子整合するAlGaAsあるいはInGaAsPまた
はInGaPをクラッド層とした直接遷移形の半導体レ
−ザ素子であることを特徴とする。
【0015】上記半導体レ−ザ素子が面発光型であるこ
とを特徴とする。
【0016】また、上記半導体素子はAsとTlを同時
に含んだШ−V族混晶半導体層を光吸収層としたフォト
ダイオ−ドであることを特徴とする。
【0017】さらに、上記半導体素子はAsとTlを同
時に含んだШ−V族混晶半導体層をチャネル層とした高
速電子素子であることを特徴とする。
【0018】
【発明の実施の形態】この発明の半導体素子は、V族元
素としてAs、Ш族元素としてTlを同時に含んだ混晶
を用い、TlAsはバンドギャップエネルギが負の値を
持つ半金属であることから、TlAsを含む混晶は、例
えば従来の混晶であるInGaAsよりバンドギャップ
エネルギが小さくなり、さらに、その温度依存性を小さ
くすることができる。
【0019】また、TlAsを含む混晶をGaAs基板
上に形成することにより、従来なかったTlAsを含む
混晶の層とバンドギャップエネルギがGaAsより大き
い従来のGaAs基板格子整合系材料の層とを組み合わ
せることができ、従来の材料系では困難であった素子性
能を得ることができる。
【0020】また、上記AsとTlを同時に含んだШ−
V族混晶半導体層をTlxGa1-xAS(0<x<1)と
することにより、同じ格子定数のInGaAs系材料よ
りバンドギャップエネルギ−が小さく、InGaAsよ
りバンドギャップエネルギが小さい膜をGaAs基板上
に圧縮歪を有して形成することができる。
【0021】さらに、TlAsを含む混晶にV族元素と
してNを添加することにより、格子定数を小さくするこ
とができ、GaAs基板に完全に格子整合させることが
できる。N組成の増加は結晶の高品質化を困難にする
が、TlAsを含む混晶にV族元素としてNを添加する
ことにより、従来のInGaNAs系材料よりも小さい
N組成で同じバンドギャップエネルギの混晶を形成で
き、高品質のN系V族混晶半導体を従来よりも容易に得
ることができる。
【0022】また、AsとTlを同時に含んだШ−V族
混晶半導体層を活性層とし、GaAs基板に格子整合す
るAlGaAs,InGaAsP又はInGaPをクラ
ッド層とすることにより、伝導帯のバンド不連続(ΔE
c)が大きく、レ−ザ発振を開始するしきい値電流の温
度依存性が小さい1.3μm等の長波長半導体レ−ザ素子
を得ることができる。さらに、活性層を半金属であるT
lAsを含んだ混晶で構成するから、バンドギャップエ
ネルギの温度依存性を小さくして発振波長の温度依存性
を小さくすることができる。
【0023】さらに、上記半導体レ−ザ素子を面発光型
レ−ザ素子とすることにより、従来のInGaAsP/
InP系材料では困難であった高温でのレ−ザ動作を容
易にする。さらにGaAs基板上に形成できるので屈折
率差の大きいAlGaAs系多層膜ミラ−を用いること
ができるので、少ないペア−数で高反射率が得られるミ
ラ−を容易に作成することができる。
【0024】また、フォトダイオ−ドでは、AsとTl
を同時に含んだШ−V族混晶半導体層を光吸収層に用い
ることにより、1.5μm帯等の長波長の光に感度を有す
る構造を安価なGaAs基板上に形成できる。
【0025】さらに、高速電子素子では、AsとTlを
同時に含んだШ−V族混晶半導体層をチャネル層に用い
ることにより、格子定数が同じ材料ではTlGaAsの
方がInGaAsに比べてバンドギャップエネルギ−が
小さく、臨界膜厚以下の膜厚でGaAs基板上にInG
aAsよりも小さいバンドギャップエネルギ−の材料を
形成できる。そしてTlGaAsとGaAs間に充分大
きな伝導帯バンドオフセットがあるため電子供給層にG
aAs層を用いることが可能となる。また、GaAsは
従来のAlGaAsより高品質の結晶を得やすく、かつ
TlGaAsの移動度は大きいので、良好な素子特性を
得ることができる。
【0026】
【実施例】
〔実施例1〕図1はこの発明の一実施例の半導体素子の
構造を示す断面図である。図に示すように、半導体レ−
ザ素子1は活性層構造としてはSCH−SQW(Separa
te Confinement Heterostructure-Single Quantum Wel
l)構造(分離閉じ込め型−単一量子井戸構造)、デバイ
ス構造としてはリッジストライプ型である。そして、M
BE(分子線エピタキシ)法によりn−GaAs基板1
1上にn−GaAsバッファ層12、n−AlGaAs
クラッド層13、GaAs光ガイド層14、AsとTl
を同時に含んだШ−V族混晶であるTlxGa1-xAs
(0<x<1)の圧縮歪TlGaAs活性層15、Ga
As光ガイド層16、p−AlGaAsクラッド層1
7、p−GaAsコンタクト層18が形成されている。
さらに、ウエットエッチング等により電流注入部となる
リッジ部を形成し、絶縁性誘電体膜であるSi02層1
9を用いて電流狭窄を行なっている。そして、AuZn
/Auでp側電極20を形成し、AuGe/Ni/Au
で裏面にn側電極21を形成している。半導体層の成長
ではШ族の原料には金属を、Asの原料にはAsH3
用いた。
【0027】この半導体レ−ザ素子1を構成するGaA
sは半導体であり、TlAsはバンドギャップエネルギ
が負の値を持つ半金属である。その混晶であるTlx
1-xAs(0<x<1)は、同じ格子定数の材料で比
較すると、GaAsとInAsの混晶であるInGaA
sよりもバンドギャップエネルギが小さくなる。このた
めGaAs基板上の圧縮歪InGaAs活性層では歪量
を大きくしても波長は1.1μm程度が限界であったが、
圧縮歪TlGaAs活性層15ではGaAs基板上に更
に長波長となる材料を形成することができる。その結
果、圧縮歪TlGaAs活性層15を設けた半導体レ−
ザ素子1の発振波長は1.3μmであった。
【0028】また、GaAs基板上に形成できるのでバ
ンドギャップエネルギが大きいAlGaAsをクラッド
層13に用いることができる。このため伝導帯のバンド
不連続(ΔEc)が大きくなり、注入キャリアのオ−バ
−フロ−を減らすことができ、しきい値電流の温度依存
性を減少することができた。したがって温度制御する必
要がなく、ペルチェ素子などの冷却素子を省略すること
ができた。このクラッド層13としてはAlGaAsだ
けではなく、GaAs基板に格子整合するInGaP等
のInGaAsPやInGaP等の材料を用いることも
できる。
【0029】なお、この実施例ではTlとAsを含んだ
層としてTlGaAsについて説明したが、Gaの他に
Ш族にIn,Al,V族にPを含んだ混晶でも良い。ま
た、層構造はクラッド層と活性層とクラッド層が直接接
したダブルヘテロ構造や、シングロヘテロ接合、ホモ接
合でもかまわない。
【0030】また、この実施例では半導体レ−ザ素子1
について説明したが、発光ダイオ−ドであっても温度特
性の良好な素子を形成することができる。
【0031】〔実施例2〕図2はこの発明の第2の半導
体レ−ザ素子の構造を示す断面図である。図2に示した
半導体レ−ザ素子1aはTlGaAsにV族元素Nを数
%添加したTlGaNAsを活性層22とした点が図1
に示した半導体レ−ザ素子1と異なる。結晶成長はMB
E法により行った。Ш族の原料には金属を、Asの原料
にはAsH3を、Nの原料には高周波プラズマにより活
性化したNを用いた。このようにTlGaAsにNを数
%添加すると格子定数が小さくなり、バンドギャップエ
ネルギが小さくなる。その結果、GaAs基板に格子整
合する1.5μm等の長波長に対応する結晶が形成でき
た。また、TlGaNAsの活性層22はGaAs基板
に格子整合している。このため量子井戸活性層以外にも
活性層の厚い通常のダブルヘテロ構造も形成できる。ま
た、従来のInGaNAs系と違うところは同じバンド
ギャップエネルギの混晶をTlGaNAsの方が少ない
N組成で形成できる点である。すなわちV族にNを含ん
だN系V族混晶半導体はN組成が大きいほど高品質の結
晶が得られにくくなりN組成が小さい方が好ましい。こ
の観点からTlGaNAsの方が容易に高品質の結晶が
得られるという長所がある。
【0032】〔実施例3〕図3は半導体レ−ザ素子とし
て面発光型レ−ザ素子の構造を示す断面図である。面発
光型レ−ザ素子2は、n−GaAs基板31上にn−A
lAs/GaAsの第一の多層膜ミラ−32、n−Al
GaAsクラッド層33、GaAs光ガイド層34、圧
縮歪TlGaAs活性層35、GaAs光ガイド層3
6、p−AlGaAsクラッド層37、p−GaAsコ
ンタクト層38、p−AlAs/GaAsの第二の多層
膜ミラ−39が形成されている。さらにドライエッチン
グ等により第一の多層膜ミラ−32の上面までと、p−
GaAsコンタクト層38上面まで除去して、n側電極
61であるAuGe/Ni/Auとp側電極62である
Cr/Auを形成している。
【0033】第一の多層膜ミラ−32と第二の多層膜ミ
ラ−39には屈折率差の大きいAlAs/GaAsを用
いている。従来のInGaAsP/InP系材料の素子
では半導体多層膜ミラ−の材料は屈折率差が小さく、例
えばInP/InGaAsP(1.3μmに対応する組
成)の屈折率差は0.25程度であり、AlAs/GaAs
系の半分以下である。このため高反射率を得るためにペ
ア−数を多くする必要があったが、TlGaAs材料系
ではGaAs基板上に形成できるため、多層膜ミラ−に
は屈折率差の大きいAlAs/GaAs等のAlGaA
s系材料を用いることができるのでペア−数を少なくで
きる。このため成長時間は短くなり、厚みも薄くなるの
で段差が小さくなり製造プロセスも容易になる。
【0034】また、長波長帯面発光型レ−ザは、従来、
高温では良好なレ−ザ特性が得られなかったがTlGa
As材料系の素子によれば伝導帯のバンド不連続(ΔE
c)が大きいので、注入キャリアのオ−バ−フロ−を減
らすことができ、しきい値電流の温度依存性が減少し、
高温でも良好なレ−ザ特性を得ることができる。
【0035】〔実施例4〕図4はこの発明の実施例の受
光素子の構成を示す断面図である。図4に示す受光素子
3はpinフォトダイオ−ドの例を示し、TlGaNA
sを光吸収層43としている。n型GaAs基板41上
にn型GaAsバッファ−層42、アンド−プTlGa
NAs光吸収層43、p型TlGaNAs層44、p型
GaAsキャップ層45が形成され、p型GaAsキャ
ップ層45の上面にp側電極46が形成され、n型Ga
As基板41の下端部にn側電極47が形成されてい
る。
【0036】この受光素子3に入射した光は、約0.9μ
m以上の光に対して透明なGaAs基板41を通してT
lGaNAs光吸収層43に導入される。このTlGa
NAs光吸収層43のTlおよびNはともにバンドギャ
ップエネルギを小さくする効果があるので受光できる波
長を1.5μm帯等の長波長に設定できる。したがって、
InP基板よりも安価なGaAs基板上に長波長の受光
素子を形成できる。
【0037】〔実施例5〕図5はこの発明の実施例の高
速電子素子の構造を示す断面図である。図5の高速電子
素子4はHEMT素子の例を示す。図に示すように、高
速電子素子4は半絶縁性GaAs基板51上にn型Ga
Asバッファ−層52、アンド−プTlGaAsチャネ
ル層53、アンド−プGaAsスペ−サ−層54、n型
GaAs電子供給層55、p型GaAsキャップ層56
が形成されている。さらにソ−ス電極57、ドレイン電
極59、ゲ−ト電極58がそれぞれ形成されている。従
来と違うところはチャネル層53にはTlGaAs、電
子供給層55にはGaAs層を用いているところであ
る。格子定数が同じ材料ではTlGaAsの方が従来チ
ャネル層53に用いられていたInGaAsに比べてバ
ンドギャップエネルギが小さく、臨界膜厚以下の膜厚で
GaAs基板上にInGaAsよりも小さいバンドギャ
ップエネルギの材料を形成できる。このためTlGaA
sとGaAs間に充分大きな伝導帯バンドオフセットを
とることができ、電子供給層55にGaAs層を用いる
ことができる。すなわち、従来、GaAs基板上でGa
AsやInGaAsをチャネル層53に用いる場合、電
子供給層55にはAlGaAsが用いられていたが、G
aAsの方が高品質の結晶を得やすく、さらに、TlG
aAsの移動度は大きいので、良好な素子特性を得るこ
とができる。
【0038】
【発明の効果】この発明は以上説明したように、V族元
素としてAs、Ш族元素としてTlを同時に含んだ混晶
を用い、バンドギャップエネルギを小さくするとともに
温度依存性を小さくするようにしたから、低価格で低消
費電力で小型の素子を提供することができる。
【0039】また、TlAsを含む混晶をGaAs基板
上に形成することにより、従来なかったTlAsを含む
混晶の層とバンドギャップエネルギがGaAsより大き
い従来のGaAs基板格子整合系材料の層とを組み合わ
せることができ、従来の材料系では困難であった素子性
能を得ることができる。
【0040】また、上記AsとTlを同時に含んだШ−
V族混晶半導体層をTlxGa1-xAS(0<x<1)と
することにより、同じ格子定数のInGaAs系材料よ
りバンドギャップエネルギ−が小さく、InGaAsよ
りバンドギャップエネルギが小さい膜をGaAs基板上
に圧縮歪を有して形成することができる。
【0041】さらに、TlAsを含む混晶にV族元素と
してNを添加することにより、格子定数を小さくするこ
とができ、GaAs基板に完全に格子整合させることが
できる。また、TlAsを含む混晶にV族元素としてN
を添加することにより、従来のInGaNAs系材料よ
りも小さいN組成で同じバンドギャップエネルギの混晶
を形成でき、高品質のN系V族混晶半導体を従来よりも
容易に得ることができる。
【0042】また、AsとTlを同時に含んだШ−V族
混晶半導体層を活性層とし、GaAs基板に格子整合す
るAlGaAs,InGaAsP又はInGaPをクラ
ッド層とすることにより、伝導帯のバンド不連続(ΔE
c)が大きく、しきい値電流の温度依存性が小さい1.3
μmまたは1.5μm帯の半導体レ−ザ素子を形成できる
ので、ペルチェフリ−が実現でき、低価格、低消費電
力、小型の光通信システムを提供することができる。
【0043】さらに、上記半導体レ−ザ素子を面発光型
レ−ザ素子とすることにより、従来のInGaAsP/
InP系材料では困難であった高温でのレ−ザ動作を容
易にすることができる。さらにGaAs基板上に形成で
きるので屈折率差の大きいAlGaAs系多層膜ミラ−
を用いることができ、少ないペア−数で高反射率が得ら
れるミラ−を容易に作成することができる。
【0044】また、フォトダイオ−ドでは、AsとTl
を同時に含んだШ−V族混晶半導体層を光吸収層に用い
ることにより、1.5μm帯等の長波長の光に感度を有す
る構造を安価なGaAs基板上に形成できる。
【0045】さらに、高速電子素子では、AsとTlを
同時に含んだШ−V族混晶半導体層をチャネル層に用い
ることにより、臨界膜厚以下の膜厚でGaAs基板上に
InGaAsよりも小さいバンドギャップエネルギの材
料を形成でき、TlGaAsとGaAs間に充分大きな
伝導帯バンドオフセットをとることができ、電子供給層
にGaAs層を用いることができるから、良好な素子特
性を得ることができる。
【図面の簡単な説明】
【図1】この発明の実施例の半導体レ−ザ素子の構成を
示す断面図である。
【図2】第2の実施例の半導体レ−ザ素子の構成を示す
断面図である。
【図3】第3の実施例の面発光型レ−ザ素子の構成を示
す断面図である。
【図4】第4の実施例の受光素子の構成を示す断面図で
ある。
【図5】第5の実施例の高速電子素子の構成を示す断面
図である。
【符号の説明】
1 半導体レ−ザ素子 11 n−GaAs基板 12 n−GaAsバッファ層 13 n−AlGaAsクラッド層 14 GaAs光ガイド層 15 圧縮歪TlGaAs活性層 16 GaAs光ガイド層 17 p−AlGaAsクラッド層 18 p−GaAsコンタクト層 19 Si02層 20 p側電極 21 n側電極

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】 Ш−V族混晶半導体であってV族元素と
    してAs、Ш族元素としてTl(タリウム)を同時に含
    んだШ−V族混晶半導体層を、少なくとも一層含んだこ
    とを特徴とする半導体素子。
  2. 【請求項2】 上記AsとTlを同時に含んだШ−V族
    混晶半導体層はGaAs基板上に形成されている請求項
    1記載の半導体素子。
  3. 【請求項3】 上記AsとTlを同時に含んだШ−V族
    混晶半導体層はTlxGa1-xAS(0<x<1)である
    請求項2記載の半導体素子。
  4. 【請求項4】 上記AsとTlを同時に含んだШ−V族
    混晶半導体層にV族元素としてNが添加されている請求
    項1記載の半導体素子。
  5. 【請求項5】 上記AsとTlを同時に含んだШ−V族
    混晶半導体層を活性層とし、GaAs基板に格子整合す
    るAlGaAsあるいはInGaAsPまたはInGa
    Pをクラッド層とした直接遷移形の半導体レ−ザ素子で
    ある請求項1,2,3,又は4記載の半導体素子。
  6. 【請求項6】 上記半導体レ−ザ素子は面発光型である
    請求項5記載の半導体素子。
  7. 【請求項7】 上記AsとTlを同時に含んだШ−V族
    混晶半導体層を光吸収層としたフォトダイオ−ドである
    請求項1,2,3,又は4記載の半導体素子。
  8. 【請求項8】 上記AsとTlを同時に含んだШ−V族
    混晶半導体層をチャネル層とした高速電子素子である請
    求項1,2,3,又は4記載の半導体素子。
JP24697796A 1996-08-30 1996-08-30 半導体素子 Expired - Fee Related JP3467153B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24697796A JP3467153B2 (ja) 1996-08-30 1996-08-30 半導体素子
US08/920,054 US5939733A (en) 1996-08-30 1997-08-29 Compound semiconductor device having a group III-V compound semiconductor layer containing therein T1 and As

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24697796A JP3467153B2 (ja) 1996-08-30 1996-08-30 半導体素子

Publications (2)

Publication Number Publication Date
JPH1074977A true JPH1074977A (ja) 1998-03-17
JP3467153B2 JP3467153B2 (ja) 2003-11-17

Family

ID=17156541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24697796A Expired - Fee Related JP3467153B2 (ja) 1996-08-30 1996-08-30 半導体素子

Country Status (2)

Country Link
US (1) US5939733A (ja)
JP (1) JP3467153B2 (ja)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501776B1 (en) * 1999-01-29 2002-12-31 Canon Kabushiki Kaisha Temperature-insensitive semiconductor laser
JP2001094212A (ja) * 1999-09-24 2001-04-06 Sanyo Electric Co Ltd 半導体素子およびその製造方法
US6797533B2 (en) * 2000-05-19 2004-09-28 Mcmaster University Quantum well intermixing in InGaAsP structures induced by low temperature grown InP
AU2001252071A1 (en) * 2000-05-19 2001-11-26 Mcmaster University A method for locally modifying the effective bandgap energy in indium gallium arsenide phosphide (ingaasp) quantum well structures
US6727531B1 (en) 2000-08-07 2004-04-27 Advanced Technology Materials, Inc. Indium gallium nitride channel high electron mobility transistors, and method of making the same
US6803604B2 (en) * 2001-03-13 2004-10-12 Ricoh Company, Ltd. Semiconductor optical modulator, an optical amplifier and an integrated semiconductor light-emitting device
JP3849758B2 (ja) * 2001-04-12 2006-11-22 ソニー株式会社 半導体レーザ素子
JP4537658B2 (ja) * 2002-02-22 2010-09-01 株式会社リコー 面発光レーザ素子、該面発光レーザ素子を用いた面発光レーザアレイ、電子写真システム、面発光レーザモジュール、光通信システム、光インターコネクションシステム、および面発光レーザ素子の製造方法
US6927412B2 (en) * 2002-11-21 2005-08-09 Ricoh Company, Ltd. Semiconductor light emitter
US20060011129A1 (en) * 2004-07-14 2006-01-19 Atomic Energy Council - Institute Of Nuclear Energy Research Method for fabricating a compound semiconductor epitaxial wafer
JP4699764B2 (ja) * 2005-01-05 2011-06-15 スタンレー電気株式会社 半導体発光素子
US7693204B2 (en) 2006-02-03 2010-04-06 Ricoh Company, Ltd. Surface-emitting laser device and surface-emitting laser array including same
EP1986296A1 (en) * 2006-02-16 2008-10-29 Fujitsu Ltd. Semiconductor light amplifier
CN101346858B (zh) 2006-04-28 2014-08-27 株式会社理光 面发光激光阵列、光学扫描装置和成像装置
US20080232761A1 (en) * 2006-09-20 2008-09-25 Raveen Kumaran Methods of making optical waveguide structures by way of molecular beam epitaxy
WO2008047240A2 (en) * 2006-09-20 2008-04-24 Zecotek Medical Systems Inc. Methods of making optical waveguide structures by way of molecular beam epitaxy
US20080083431A1 (en) * 2006-10-06 2008-04-10 Mark Schwarze Device and method for clearing debris from the front of a hood in a mechanized sweepers
TW200929759A (en) * 2007-11-14 2009-07-01 Ricoh Co Ltd Surface emitting laser, surface emitting laser array, optical scanning device, image forming apparatus, optical transmission module and optical transmission system
CN102077428B (zh) * 2008-05-02 2013-01-16 株式会社理光 垂直腔表面发射激光器件 、垂直腔表面发射激光器阵列、光学扫描设备、成像设备、光学发射模块和光学发射系统
JP5408477B2 (ja) * 2008-05-13 2014-02-05 株式会社リコー 面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP2009295792A (ja) * 2008-06-05 2009-12-17 Ricoh Co Ltd 面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP5748949B2 (ja) 2008-11-20 2015-07-15 株式会社リコー 面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP5261754B2 (ja) 2008-11-27 2013-08-14 株式会社リコー 面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP5515767B2 (ja) 2009-05-28 2014-06-11 株式会社リコー 面発光レーザ素子の製造方法、面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP5510899B2 (ja) 2009-09-18 2014-06-04 株式会社リコー 面発光レーザ素子、面発光レーザアレイ、光走査装置、及び画像形成装置
EP2494399A4 (en) * 2009-10-29 2018-01-17 California Institute of Technology Multiple-photon excitation light sheet illumination microscope
JP5532321B2 (ja) * 2009-11-17 2014-06-25 株式会社リコー 面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP5527714B2 (ja) * 2009-11-18 2014-06-25 株式会社リコー 面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP5522595B2 (ja) * 2009-11-27 2014-06-18 株式会社リコー 面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP2011151357A (ja) 2009-12-21 2011-08-04 Ricoh Co Ltd 光デバイス、光走査装置及び画像形成装置
JP2011166108A (ja) * 2010-01-15 2011-08-25 Ricoh Co Ltd 面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP5834414B2 (ja) 2010-03-18 2015-12-24 株式会社リコー 面発光レーザモジュール、光走査装置及び画像形成装置
JP5585940B2 (ja) 2010-04-22 2014-09-10 株式会社リコー 面発光レーザ素子、面発光レーザアレイ、光走査装置、画像形成装置及び面発光レーザ素子の製造方法
JP5754624B2 (ja) 2010-05-25 2015-07-29 株式会社リコー 面発光レーザ素子、面発光レーザアレイ、光走査装置、画像形成装置及び面発光レーザ素子の製造方法
JP5721055B2 (ja) 2010-06-11 2015-05-20 株式会社リコー 面発光レーザ素子、面発光レーザアレイ、光走査装置、画像形成装置及び面発光レーザ素子の製造方法
JP2012209534A (ja) 2011-03-17 2012-10-25 Ricoh Co Ltd 面発光レーザ素子、原子発振器及び面発光レーザ素子の検査方法
JP6312257B2 (ja) * 2011-07-06 2018-04-18 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン エピタキシャルリフトオフを使用した組み込まれた太陽光集光と冷間圧接接合された半導体太陽電池
JP2014123712A (ja) 2012-11-26 2014-07-03 Ricoh Co Ltd 太陽電池の製造方法
US10141465B2 (en) 2014-04-04 2018-11-27 The Regents Of The University Of Michigan Epitaxial lift-off processed GaAs thin-film solar cells integrated with non-tracking mini-compound parabolic concentrators
CN107624197A (zh) 2015-03-18 2018-01-23 密歇根大学董事会 通过预图案化台面进行的减轻应变的外延剥离
GB201703196D0 (en) * 2017-02-28 2017-04-12 Univ Of Sussex X-ray and gammay-ray photodiode

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US29009A (en) * 1860-07-03 Device for straining scroll-saws
US3849874A (en) * 1972-07-28 1974-11-26 Bell & Howell Co Method for making a semiconductor strain transducer
US4512638A (en) * 1982-08-31 1985-04-23 Westinghouse Electric Corp. Wire grid polarizer
JPH0637355A (ja) * 1992-07-20 1994-02-10 Nippon Telegr & Teleph Corp <Ntt> Iii−v族合金半導体およびその製造方法
JPH07193327A (ja) * 1993-12-27 1995-07-28 Fujitsu Ltd 半導体レーザ装置
US5483088A (en) * 1994-08-12 1996-01-09 S.R.I. International Compounds and infrared devices including In1-x Tlx Q, where Q is As1-y Py and 0≦y≦1

Also Published As

Publication number Publication date
US5939733A (en) 1999-08-17
JP3467153B2 (ja) 2003-11-17

Similar Documents

Publication Publication Date Title
JP3467153B2 (ja) 半導体素子
Zah et al. High-performance uncooled 1.3-/spl mu/m Al/sub x/Ga/sub y/In/sub 1-xy/As/InP strained-layer quantum-well lasers for subscriber loop applications
US4755015A (en) Monolithic integrated semiconductor device of semiconductor laser and optical waveguide
US5828684A (en) Dual polarization quantum well laser in the 200 to 600 nanometers range
Miyamoto et al. A novel GaInNAs-GaAs quantum-well structure for long-wavelength semiconductor lasers
US5260959A (en) Narrow beam divergence laser diode
JPH09213918A (ja) 光電子集積回路素子
US5212704A (en) Article comprising a strained layer quantum well laser
JPH1174607A (ja) 半導体レーザ装置
JPH07154023A (ja) 半導体レーザ装置
US5107514A (en) Semiconductor optical element
Takemasa et al. 1.3-μm AlGaInAs-AlGaInAs strained multiple-quantum-well lasers with a p-AlInAs electron stopper layer
JPH0732285B2 (ja) 半導体レ−ザ装置
JP4641230B2 (ja) 光半導体装置
JPH10270787A (ja) 多重量子井戸構造光半導体装置およびその製造方法
JP2929990B2 (ja) 半導体レーザ
JP3242958B2 (ja) 光半導体素子
Wada et al. Effects of well number on temperature characteristics in 1.3-/spl mu/m AlGaInAs-InP quantum-well lasers
JPH07193327A (ja) 半導体レーザ装置
JP2812273B2 (ja) 半導体レーザ
JP3828962B2 (ja) 半導体発光素子
JPH0513884A (ja) 半導体レーザ
Seiferth et al. Polarization insensitive 1.55-μm optical amplifier with GaAs delta-strained Ga/sub 0.47/In/sub 0.53/As quantum wells
JP3033333B2 (ja) 半導体レーザ素子
Hayakawa High reliability in 0.8-um high-power InGaAsP/InGaP/AlGaAs laser diodes with a broad waveguide

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees