JPH09307147A - 熱電変換素子の製造方法 - Google Patents

熱電変換素子の製造方法

Info

Publication number
JPH09307147A
JPH09307147A JP8121222A JP12122296A JPH09307147A JP H09307147 A JPH09307147 A JP H09307147A JP 8121222 A JP8121222 A JP 8121222A JP 12122296 A JP12122296 A JP 12122296A JP H09307147 A JPH09307147 A JP H09307147A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion element
powder
elements
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8121222A
Other languages
English (en)
Inventor
Takusane Ueda
卓実 上田
Hiroyoshi Yoda
浩好 余田
Keiichi Yamazaki
圭一 山崎
Noboru Hashimoto
登 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP8121222A priority Critical patent/JPH09307147A/ja
Publication of JPH09307147A publication Critical patent/JPH09307147A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

(57)【要約】 【課題】 緻密化が向上し、圧縮強度及び熱電変換性能
に優れた熱電変換素子が得られる熱電変換素子の製造方
法を提供する。 【解決手段】 Bi、Te、Se及びSb元素からなる
群より選択される少なくとも2種類の元素を含有した熱
電変換原料を所定の形状に成形した成形体を焼成して熱
電変換素子にする熱電変換素子の製造方法において、前
記成形体を、Bi、Te、Se及びSb元素からなる群
より選択される少なくとも1種類の元素と炭素とからな
る粉末である埋め粉の中に埋設し、非酸化性雰囲気中で
焼成する。前記炭素の含有量が、埋め粉全量に対して、
1〜50容量%である。Bi、Te、Se及びSb元素
からなる群より選択される少なくとも1種類の元素粉末
と、有機バインダーとを有機溶媒中で湿式混合してスラ
リーを作製し、このスラリーを乾燥して、前記埋め粉を
作製する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、ペルチエ効果を利
用した熱電変換素子の製造方法に関する。
【0002】
【従来の技術】熱電変換素子は、一般に、P型半導体素
子とN型半導体素子とを交互に2枚の基板等の絶縁体の
間に並べて、P型半導体素子とN型半導体素子のそれぞ
れの上端、下端を導通させて、これらを多数、電気的に
直列に接続したペルチェ素子群に直流電圧を印加するこ
とによって、基板に発熱又は吸熱を生じさせるものであ
り、熱電変換モジュールとして使用され、熱電発電及び
熱電冷却における種々の分野において幅広く利用されて
いる。
【0003】また、熱電変換素子の性能評価としては、
熱電性能指数Zが用いられる。これは、次式の3種の基
本的特性により、決定されるものである。
【0004】Z=α2 /(ρ・κ) Z;熱電性能指数(1/K) α;熱電能(μV/K) ρ;比抵抗(mΩ・cm) κ;熱伝導率(W/cm
・K) 一般に、熱電性能指数が大きいほど、熱電変換効率が良
いとされており、熱電変換素子は、大きな熱電性能指数
を有する方が良いとされている。
【0005】この熱電変換素子を製造する方法としては
一般に、特開平1−202343号公報に開示されてい
るように、原料粉末を溶解させ単結晶に近い棒状インゴ
ットを成長させる単結晶法及び特開平1−106478
号公報に開示されているように原料粉末をホットプレス
によりインゴットを作製するホットプレス法を用いて、
バルク状の熱電変換材料インゴットを作製し、これを用
途に応じて切断し、熱電変換素子を作製するという製造
方法であった。
【0006】熱電変換素子の製造方法において、熱電変
換素子の特性に影響を与える要因として、酸素の影響が
ある。つまり、酸素が熱電変換原料粉末に酸化の影響を
与え、熱電変換材料の劣化を招き、更に、熱電特性を低
下させる要因となっている。Bi、Te、Se及びSb
元素からなる群より選択された少なくとも2種類以上の
元素を含有する熱電変換原料粉末を所望の形状に成形
し、この成形体を非酸化雰囲気で焼成することにより熱
電変換素子とする製造方法において、全て非酸化雰囲気
中で熱電変換素子を作製するが、完全な非酸素中で熱電
変換素子を作製することは、不可能であり、微量の酸素
成分が存在している。したがって、この微量の酸素成分
が、熱電変換材料の金属元素を酸化させ、熱電性能を低
下させる原因となっており、熱電変換素子の性能に悪影
響を与えていた。
【0007】また、前記成形体の焼成時、360〜50
0℃程度の熱処理により焼結させるが、Bi、Te、S
e、Sb元素からなる熱電変換原料粉末は、それぞれ、
蒸気圧が高く蒸発し易い元素であり、特に、Teについ
ては、最も蒸発し易い。そのため、大気圧による熱電変
換材料の成形体の焼成工程では、一部の組成が蒸発し易
いため、組成のズレによって熱電変換素子の熱電変換性
能が低下するとともに、緻密化に悪影響を及ぼし、圧縮
強度が弱くなるという問題があった。
【0008】
【発明が解決しようとする課題】本発明は前記の事実に
鑑みてなされたもので、その目的とするところは、緻密
化が向上し、圧縮強度及び熱電変換性能に優れた熱電変
換素子が得られる熱電変換素子の製造方法を提供するこ
とにある。
【0009】
【課題を解決するための手段】本発明の請求項1に係る
熱電変換素子の製造方法は、Bi、Te、Se及びSb
元素からなる群より選択される少なくとも2種類の元素
を含有した熱電変換原料を所定の形状に成形した成形体
を焼成して熱電変換素子にする熱電変換素子の製造方法
において、前記成形体を、Bi、Te、Se及びSb元
素からなる群より選択される少なくとも1種類の元素と
炭素とからなる粉末である埋め粉の中に埋設し、非酸化
性雰囲気中で焼成することを特徴とする。
【0010】本発明の請求項2に係る熱電変換素子の製
造方法は、前記炭素の含有量が、埋め粉全量に対して、
1〜50容量%であることを特徴とする。
【0011】本発明の請求項3に係る熱電変換素子の製
造方法は、Bi、Te、Se及びSb元素からなる群よ
り選択される少なくとも1種類の元素粉末と、有機バイ
ンダーとを有機溶媒中で湿式混合してスラリーを作製
し、このスラリーを乾燥して、前記埋め粉を作製するこ
とを特徴とする。
【0012】本発明の請求項4に係る熱電変換素子の製
造方法は、前記成形体を水素を含む還元ガス雰囲気中で
焼成することを特徴とする。
【0013】本発明の請求項5に係る熱電変換素子の製
造方法は、前記成形体を加圧雰囲気下で焼成することを
特徴とする。
【0014】
【発明の実施の形態】以下、本発明を詳述する。
【0015】本発明に係る熱電変換素子の製造方法は、
P型半導体素子とN型半導体素子とを交互に2枚の絶縁
層の間に並べて銅電極等の電極により電気的に直列に接
続したペルチエ素子群に直流電圧を印加することによっ
て、いわゆるペルチエ効果で一方の絶縁層が発熱される
とともに、他方の絶縁層が吸熱される熱電変換モジュー
ルに用いられるP型半導体素子又はN型半導体素子であ
る熱電変換素子の製造方法である。
【0016】本発明に係る熱電変換素子の構成元素とし
ては、少なくとも、ビスマス(Bi)、テルル(T
e)、セレン(Se)又はアンチモン(Sb)元素のう
ち、2種類以上の元素が必要である。これらの構成元素
を含んだ原料に、N型半導体又はP型半導体の熱電変換
素子になるように微量のドーパントを加え、十分に混合
及び/又は必要に応じて溶融した後、粉砕して熱電変換
原料粉末を得る。熱電変換原料粉末としては、例えば、
Bi−Te合金、Bi−Se合金又はSb−Te合金等
を用いることができるが、上記組み合わせに限定される
物ではない。
【0017】前記熱電変換原料粉末を例えば、一軸プレ
ス等により、所定の形状に成形して成形体を得る。この
成形体をBi、Te、Se及びSb元素からなる群より
選択される少なくとも1種類の元素と炭素とからなる粉
末である埋め粉の中に埋設し、非酸化性雰囲気中で焼成
する。この埋め粉で前記成形体を覆って熱処理すること
によって、Bi、Te、Se、Sb元素からなる熱電変
換材料の成形体の蒸気の発生を抑制する効果が得られ
る。すなわち、埋め粉が熱電変換材料の成形体を覆うた
め、成形体は蒸発せず、それを覆う埋め粉が蒸発する。
そのため、熱電変換材料に組成のズレが発生し難く、熱
電変換性能の低下を防止し、緻密化が向上する。さら
に、埋め粉には、炭素粉末が含まれており、還元性が強
いため、熱電変換素子の特性に悪影響を与える要因であ
る微量の酸素を取り除く効果があるので、前記成形体を
還元雰囲気下で焼成することになるため、熱電変換素子
の酸化を抑え、熱電変換素子の熱電特性が向上する。し
かも、前記埋め粉と成形体とは、同種の元素からなるた
め、焼成時に反応し、くっつき易い性質がある。ところ
が、埋め粉に炭素が含有されていることにより、埋め粉
の焼結性が低くなり、埋め粉を粉末のままで存在させる
ことができる。したがって、埋め粉と成形体とは反応せ
ずに、埋め粉と成形体とがくっつき難く、成形体を埋め
粉から取り出し易くなる。
【0018】本発明に係る熱電変換素子の製造方法は、
前記埋め粉の炭素の含有量が、埋め粉全量に対して、1
〜50容量%であることが好ましい。すなわち、炭素の
含有量が、埋め粉全量に対して、1容量%未満の場合に
は、炭素による還元性の効果が得られ難く、50容量%
を越える場合には、Bi、Te、Se及びSb元素から
なる群より選択される少なくとも1種類の元素の量が少
なくなり過ぎるため、成形体の蒸発を抑制する効果が低
くなる傾向にある。
【0019】本発明に係る熱電変換素子の製造方法に用
いる埋め粉は、Bi、Te、Se及びSb元素からなる
群より選択される少なくとも1種類の元素粉末と、ポリ
ビニルブチラール(PVB)やエチルセルロース等の有
機バインダーとをエタノール等の有機溶媒中で、例え
ば、ボールミル等を用いて湿式混合して、スラリーを作
製し、このスラリーを例えば、減圧乾燥してエタノール
等の有機溶媒を除去することにより、埋め粉を作製す
る。埋め粉は、Bi、Te、Se、Sbから選ばれた少
なくとも1種以上の元素と炭素からなるものであるが、
Bi、Te、Se、Sbから選ばれた少なくとも1種以
上の金属粉末と炭素の比重に大きな差があるため、均一
に混合することが難しい。そこで、炭素成分を含んだ有
機バインダーと前記金属粉末とを有機溶媒中で、湿式混
合してスラリーを作製する。次いで、スラリーを乾燥し
て有機溶媒を除去し、熱処理を行うことにより、埋め粉
を作製する。ただし、有機バインダーとしては、熱分解
性が悪くカーボン(炭素)量が多く残るポリビニルブチ
ラール(PVB)やエチルセルロース等を使用し、カー
ボン量が十分に残る温度、例えば、300℃程度で熱処
理する。以上により、カーボンと金属とを均一に混合す
ることが可能となり、熱電変換素子の成形体を焼成する
場合に、前記埋め粉の効果を向上することができる。
【0020】さらに、この埋め粉で前記成形体を覆っ
て、非酸化性雰囲気中で、例えば、360〜520℃程
度の所定の温度で焼成する。非酸化雰囲気中で、焼成を
行わないと焼成中に成形体が酸化してしまい、熱電変換
素子の熱電特性が悪くなってしまうので好ましくない。
非酸化性雰囲気としては、N2 及び/又はAr等の不活
性ガス、さらには、これらの不活性ガスとH2 ガスとの
混合ガス等の水素を含む還元ガス雰囲気中で焼成すれ
ば、熱電変換素子の酸化を抑え、還元作用も得られるた
めに、さらに好ましい。前記成形体を加圧雰囲気下で焼
成することが好ましい。すなわち、成形体を加圧雰囲気
下で焼成することにより、成形体の蒸発を、さらに防止
することができる。
【0021】以上のように、本発明に係る熱電変換素子
の製造方法によると、緻密化が向上し、圧縮強度及び熱
電変換性能に優れた熱電変換素子が得られる。
【0022】
【実施例】以下、本発明を実施例及び比較例によって具
体的に説明する。
【0023】(実施例1〜実施例8)微量のSbI3
のドーパントを添加した、N型−Bi2 Te2.85Se
0.15の組成を持つ熱電変換材料のインゴットを作製し
た。このN型熱電変換材料の熱電性能指数(Z)は、
(2.6±0.1)×10-3/Kであった。このインゴ
ットを、ボールミルを用いて粉砕し、熱電変換原料粉末
とした。この熱電変換原料粉末を一軸プレスを用いて、
直径20mmの熱電変換材料の成形体を作製した。次
に、表1に示した配合で金属粉末と炭素粉末とを配合
し、ボールミルを用いてエタノール中で8時間湿式混合
してスラリーを得た。次に、このスラリーを非酸化雰囲
気中のグローブボックス中で減圧乾燥してエタノールを
除去し、埋め粉を作製した。得られた埋め粉をアルミナ
るつぼ中に充填し、前記埋め粉の中に、直径20mmの
熱電変換材料の成形体を埋没させた。この状態で、成形
体をAr(アルゴン)雰囲気中、常圧(大気圧)で約4
50℃で焼成し、熱電変換素子を得た。
【0024】得られた熱電変換素子に対する評価結果と
して、熱電性能指数Z、熱電変換素子の蒸気の蒸発によ
る重量減、すなわち、Vapor量[重量%]及び熱電
変換素子の圧縮強度[kgf/mm2 ]を測定して表1
に示した。熱電性能指数Zは、この熱電変換素子のゼー
ベック係数α、熱伝導度κ、電気抵抗ρをそれぞれ測定
し、熱電性能指数Z=α2 /(κ・ρ)を計算により算
出した。なお、ゼーベック係数αは室温20℃で試料の
一端を20℃に、他端を30℃にして両端温度差を10
℃にしたときに両端に発生した起電力を測定することに
より求めた。比抵抗ρは四端子法、熱伝導率κはレーザ
ーフラッシュ法にて測定した。また、熱電変換素子の圧
縮強度は、JIS Z2111に準じて測定をした。
【0025】(実施例9〜実施例12)実施例1におい
て、炭素粉末に代えて、表1に示す有機バインダーを配
合し、非酸化雰囲気中のグローブボックス中で減圧乾燥
してエタノールを除去した後に、約300℃で焼成して
埋め粉を作製した以外は、実施例1と同様にして、熱電
変換素子を得て、熱電性能指数Z、熱電変換素子の蒸気
の蒸発による重量減及び熱電変換素子の圧縮強度を測定
して表1に示した。
【0026】(実施例13〜実施例15)実施例1乃至
実施例3において、表1に示すように、Ar(アルゴ
ン)に代えて、成形体をArとH2 ガスとの混合ガス雰
囲気中で焼成した以外は、実施例1乃至実施例3と同様
にして、熱電変換素子を得て、熱電性能指数Z、熱電変
換素子の蒸気の蒸発による重量減及び熱電変換素子の圧
縮強度を測定して表1に示した。
【0027】(実施例16〜実施例18)実施例13乃
至実施例15において、常圧(大気圧)に代えて、表1
に示すように、成形体を加圧雰囲気下で焼成した以外
は、実施例13乃至実施例15と同様にして、熱電変換
素子を得て、熱電性能指数Z、熱電変換素子の蒸気の蒸
発による重量減及び熱電変換素子の圧縮強度を測定して
表1に示した。
【0028】(比較例1)実施例1において、埋め粉を
用いなかった以外は、実施例1と同様にして、熱電変換
素子を得て、熱電性能指数Z、熱電変換素子の蒸気の蒸
発による重量減及び熱電変換素子の圧縮強度を測定して
表1に示した。
【0029】
【表1】
【0030】表1から、実施例は比較例に比べて、熱電
変換素子の蒸気の蒸発による重量減が少なく、圧縮強度
及び熱電変換性能に優れた熱電変換素子が得られること
が確認できた。
【0031】
【発明の効果】本発明の請求項1乃至請求項5に係る熱
電変換素子の製造方法は、Bi、Te、Se及びSb元
素からなる群より選択される少なくとも2種類の元素を
含有した熱電変換原料を所定の形状に成形した成形体を
焼成して熱電変換素子にする熱電変換素子の製造方法に
おいて、前記成形体を、Bi、Te、Se及びSb元素
からなる群より選択される少なくとも1種類の元素と炭
素とからなる粉末である埋め粉の中に埋設し、非酸化性
雰囲気中で焼成するので、本発明の請求項1乃至請求項
5に係る熱電変換素子の製造方法によると、炭素による
還元雰囲気で焼成できるので、熱電変換材料の成形体に
存在している微量の酸素の除去が可能となり、熱電変換
性能の低下を防ぐことができ、更に、蒸気圧の高い金属
元素の蒸気の発生を防ぐ効果があり、焼結性を改善し、
大きな熱電性能指数及び圧縮強度を有する高強度で高性
能な熱電変換素子が得られる。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 登 大阪府門真市大字門真1048番地松下電工株 式会社内

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 Bi、Te、Se及びSb元素からなる
    群より選択される少なくとも2種類の元素を含有した熱
    電変換原料を所定の形状に成形した成形体を焼成して熱
    電変換素子にする熱電変換素子の製造方法において、前
    記成形体を、Bi、Te、Se及びSb元素からなる群
    より選択される少なくとも1種類の元素と炭素とからな
    る粉末である埋め粉の中に埋設し、非酸化性雰囲気中で
    焼成することを特徴とする熱電変換素子の製造方法。
  2. 【請求項2】 前記炭素の含有量が、埋め粉全量に対し
    て、1〜50容量%であることを特徴とする請求項1記
    載の熱電変換素子の製造方法。
  3. 【請求項3】 Bi、Te、Se及びSb元素からなる
    群より選択される少なくとも1種類の元素粉末と、有機
    バインダーとを有機溶媒中で湿式混合してスラリーを作
    製し、このスラリーを乾燥して、前記埋め粉を作製する
    ことを特徴とする請求項1又は請求項2記載の熱電変換
    素子の製造方法。
  4. 【請求項4】 前記成形体を水素を含む還元ガス雰囲気
    中で焼成することを特徴とする請求項1乃至請求項3い
    ずれかに記載の熱電変換素子の製造方法。
  5. 【請求項5】 前記成形体を加圧雰囲気下で焼成するこ
    とを特徴とする請求項1乃至4いずれかに記載の熱電変
    換素子の製造方法。
JP8121222A 1996-05-16 1996-05-16 熱電変換素子の製造方法 Pending JPH09307147A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8121222A JPH09307147A (ja) 1996-05-16 1996-05-16 熱電変換素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8121222A JPH09307147A (ja) 1996-05-16 1996-05-16 熱電変換素子の製造方法

Publications (1)

Publication Number Publication Date
JPH09307147A true JPH09307147A (ja) 1997-11-28

Family

ID=14805926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8121222A Pending JPH09307147A (ja) 1996-05-16 1996-05-16 熱電変換素子の製造方法

Country Status (1)

Country Link
JP (1) JPH09307147A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002344034A (ja) * 2001-05-18 2002-11-29 Kyocera Corp 熱電素子の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002344034A (ja) * 2001-05-18 2002-11-29 Kyocera Corp 熱電素子の製造方法
JP4601206B2 (ja) * 2001-05-18 2010-12-22 京セラ株式会社 熱電素子の製造方法

Similar Documents

Publication Publication Date Title
Matsubara et al. Fabrication of an all-oxide thermoelectric power generator
JP2009529799A (ja) 熱電用途用のドープ処理テルル化鉛
WO2021153550A1 (ja) 熱電変換モジュール
JPWO2007145030A1 (ja) 熱電材料
KR840000049A (ko) 유전율(誘電率)이 낮은 탄화규소전기절연재 및 그 제법
JP2003197985A (ja) 熱電変換材料およびそれを用いた熱電変換素子
JP2004134673A (ja) n型熱電変換材料およびその製造方法
JP3580778B2 (ja) 熱電変換素子及びその製造方法
JP7123078B2 (ja) 酸素透過素子及びスパッタリングターゲット材
JP5608949B2 (ja) n型熱電変換性能を有する金属材料
JP3541549B2 (ja) 高温用熱電材料およびその製造方法
US10937939B2 (en) Thermoelectric conversion material and thermoelectric conversion element
JP5949347B2 (ja) n型熱電変換性能を有する金属材料
JPWO2019167709A1 (ja) 熱電変換モジュール用部材、熱電変換モジュール及び熱電変換モジュール用部材の製造方法
JPH09307147A (ja) 熱電変換素子の製造方法
WO2019004373A1 (ja) 熱電変換材料、熱電変換素子、熱電変換モジュール、及び、熱電変換材料の製造方法
WO2019039320A1 (ja) 熱電材料及び熱電モジュール
JP2000012915A (ja) 熱電変換材料
JPH09307146A (ja) 熱電変換素子の製造方法
JP3562296B2 (ja) P型熱電変換材料およびその製造方法
JPH09289339A (ja) 熱電変換材料及びその製法
JP4373296B2 (ja) 熱電変換材料用原料、熱電変換材料の製造方法、および熱電変換材料
JP3544922B2 (ja) n型熱電変換材料およびそれを用いた熱電変換デバイス
JPH0918060A (ja) 熱電変換素子の製造方法
JP3477019B2 (ja) 熱電変換材料およびその製造方法