JPH0815213B2 - 電界効果トランジスタ - Google Patents

電界効果トランジスタ

Info

Publication number
JPH0815213B2
JPH0815213B2 JP5004473A JP447393A JPH0815213B2 JP H0815213 B2 JPH0815213 B2 JP H0815213B2 JP 5004473 A JP5004473 A JP 5004473A JP 447393 A JP447393 A JP 447393A JP H0815213 B2 JPH0815213 B2 JP H0815213B2
Authority
JP
Japan
Prior art keywords
layer
channel layer
energy gap
composition
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5004473A
Other languages
English (en)
Other versions
JPH06236898A (ja
Inventor
和彦 恩田
正明 葛原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5004473A priority Critical patent/JPH0815213B2/ja
Publication of JPH06236898A publication Critical patent/JPH06236898A/ja
Priority to US08/544,724 priority patent/US5596211A/en
Publication of JPH0815213B2 publication Critical patent/JPH0815213B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明はSi(シリコン)を材料
とするFET(電界効果トランジスタ)では動作不可能
なミリ波帯で良好な動作が可能な化合物半導体を材料と
する電界効果トランジスタに関し、特にヘテロ接合に生
じる2DEG(2次元電子ガス)をチャネルとする2D
EG・FETに関するものである。
【0002】
【従来の技術】近年、InGaAsやInGaAsPな
どの3元および4元混晶半導体が注目されている。その
中でInP基板に格子整合するInGaAsは光デバイ
スだけでなく、各種FET(電界効果トランジスタ)材
料として有望である。特に、InPやInAlAsとの
ヘテロ界面に生じる2次元電子ガスを用いたFETの研
究が盛んになっている。
【0003】InGaAsがGaAsと比べて電子輸送
デバイス用材料として有望視される理由は、電子のド
リフト速度におけるピーク値が大きい、低電界におけ
る電子の移動度が大きい、オーミック電極がとりやす
くコンタクト抵抗が小さい(InGaAsと金属との間
の障壁が低い)、高電界中での電子速度のより大きな
オーバーシュートが期待できる、Γ谷とL谷との間の
電子の遷移による拡散雑音が小さい、などを挙げること
ができる。
【0004】現在、このInGaAs/InAlAs界
面の2次元電子ガスを用いたFETは高性能ミリ波素子
として有望視され各方面で研究開発が行われている。特
に低雑音素子としての有効性は実験レベルで確認されて
いる。
【0005】例えばK.H.DuhらがIEEE MI
CROWAVE AND GUIDED WAVE L
ETTERS、VOL.1、NO.5、PP.114−
116、May、1991において報告しているよう
に、室温下で、94GHzにおける雑音指数1.2d
B、付随利得(associated gain)7.
2dBが確認されている。これはInP基板上に格子整
合する系、すなわちIn組成をIn0.53Ga0.47As/
In0.52Al0.48AsとしてFETを試作している。こ
のヘテロ接合ではIn0.53Ga0.47As層に2次元電子
ガスが生じる。
【0006】さらに特性の向上を図るため、例えばG.
I.NgらがIEEE ELECTRON DEVIC
E LETTERS、VOL.10、NO.3、PP.
114−116、June、1989において報告して
いるようにチャネル層であるInGaAs層のIn組成
を0.53より大きくしてFET特性を向上させる方法
がある。ただしGa組成が0.53以上のInGaAs
をInP基板に接合させると格子不整となるので、In
組成によって単結晶成長が可能な膜厚が制約されて、I
nGaAsチャネル層の厚さが制限される。
【0007】また、InGaAsチャネル中にInAs
の薄層を挿入することにより、閉じこめ効果の強い2次
元電子ガスが生じるFETについて、T.Akazak
i(赤埼)らがIEEE ELECTRON DEVI
CE LETTERS、VOL.13、NO.6、P
P.325−327、June、1992で報告してい
る。
【0008】これらのIn系材料は高抵抗化が難しいの
とショットキー接合におけるショットキーバリア高さφ
B が低いことから印加電圧に対する耐圧がGaAs系に
比べて低く、FETの動作電圧を上げられないという問
題がある。
【0009】そこで耐圧を向上させるためチャネル層に
エネルギーギャップ(バンドギャップエネルギー)の大
きな材料を用いる方法がある。InPに格子整合するI
0.53Ga0.47AsのエネルギーギャップEg は0.7
4eVである。一方、InPに格子整合するInGaA
sPはその組成を変えることによりエネルギーギャップ
g を0.74eVから1.35eVまで変化させるこ
とができる。
【0010】W.P.HongらはInGaAsPをチ
ャネル層とし、InAlAsを電子供給層としたHEM
Tを試作した結果について、IEEE ELECTRO
NDEVICE LETTERS、VOL.12、N
O.10、PP.559−561、Oct.1991に
報告している。ここで用いられたIn0.73Ga0.27As
0.60.4 チャネル層のエネルギーギャップは0.95
eVであり、InPに格子整合するIn0.53Ga0.47
sに比べて約0.2eV大きい。したがって高電界領域
での衝突イオン化による耐圧の劣化が抑制されて5V以
上のドレイン−ソース耐圧と、15V以上のゲート−ド
レイン耐圧が得られたと報告している。
【0011】W.P.HongらはInGaAsPを電
子の走行するチャネル層に用いているが、これに対して
InGaAsPを電子供給層に用いたFETについて、
佐々木らは特公平2−60223号公報で述べている。
従来から用いられているInAlAsの代わりにInG
aAsPを電子供給層として、InGaAsチャネル層
との間における伝導帯不連続量ΔEc を小さくすること
ができる。これを用いてエンハンスメント型のFETを
試作している。
【0012】
【発明が解決しようとする課題】InAlAs/InG
aAs系のヘテロ接合FETは耐圧が低く、動作バイア
スを高くできないという問題がある。InGaAsPチ
ャネル層は、従来のInGaAsPチャネル層よりもエ
ネルギーギャップが大きいので、衝突イオン化によるF
ETの耐圧劣化が抑制される。しかしInGaAsに比
べInAlAs電子供給層との伝導帯不連続値ΔEc
小さいので量子井戸の形成される2次元電子ガスのシー
ト電子密度が小さくなり、十分なキャリア濃度が得られ
ないという問題が新たに生じる。また、伝導帯不連続値
ΔEc が小さいので2次元電子ガスの閉じ込め効果が従
来に比べて弱い。その結果、InAlAs電子供給層側
へキャリアが漏れてFETの相互コンダクタンスを劣化
させる。
【0013】本発明の目的はInGaAsPチャネル層
において2次元電子ガスキャリア密度の低下、2次元電
子ガスキャリア閉じ込め効果の劣化を解消するとともに
耐圧の向上を図ることにある。
【0014】
【課題を解決するための手段】本発明の電界効果トラン
ジスタは半絶縁性InP基板の上に順次積層された、バ
ッファ層、チャネル層およびN型電子供給層に形成され
た電界効果トランジスタにおいて、前記チャネル層が、
In1-x Gax Asy1-y 層からなり、その組成x,
yが深さ方向に階段状に変化しているものである。
【0015】
【作用】ノンドープIn1-x Gax Asy1-y チャネ
ル層のエネルギーギャップEgを深さ方向に単調増加さ
せる。表面側のGa組成xおよびAs組成yが大きいの
で、InAlAs電子供給層とInGaAsPチャネル
層とのヘテロ接合界面の伝導帯不連続値ΔEc が大き
い。したがって低電界動作時は2次元電子ガス中のキャ
リアがΔEc の大きい表面に集中するので十分なシート
電子密度が得られる。
【0016】FETの動作領域が低電界動作から高電界
動作に移行するにつれて2次元電子ガス中で加速されて
ホットになった電子は組成x,yが徐々に減少する基板
側に移行する。また高電界中で問題となるキャリアの衝
突イオン化はエネルギーギャップEg が大きいほどその
生じる確率は小さくなる。その結果、エネルギーギャッ
プEg が大きい基板側では、衝突イオン化に起因する耐
圧劣化が抑制される。
【0017】In1-x Gax Asy1-y のGa組成x
およびAs組成yを次式をみたす値に設定することによ
り、InP基板と格子整合させることができる。
【0018】 x=0.453y×(1+0.031y) エネルギーギャップEgの近似式で与えられる。
【0019】 Eg =1.35−0.72y+0.12y2 (eV) InPに格子整合するIn1-x Gax Asy1-y は組
成を変化させることにより、エネルギーギャップEg
0.75から1.35eVまで変化させることができ
る。InP基板に整合するIn0.53Ga0.47Asの0.
75eVに比べて大幅にエネルギーギャップEg を大き
くすることにより耐圧劣化を抑制することができる。
【0020】また、チャネル層中の2次元電子ガスの分
布は均一ではない。チャネル層の電子供給層側および基
板側の両界面近傍では必然的に電子の存在確率は低くな
る。したがってこの付近のIn組成はあえて大きくしな
くても2次元電子ガス濃度や電子の実効ドリフト速度に
大きな影響を与えることはない。そこでInGaAsP
チャネル層の表面側および基板側のIn組成に比べて、
チャネル層の中間のIn組成を大きくする。すなわちエ
ネルギーギャップEg の小さい組成にして、チャネル層
の電子濃度の向上およびチャネルを走行する全電子の平
均ドリフト速度を向上させることができる。こうしてI
nGaAsPチャネル層の実効的なIn組成を大きくす
るのと等価な効果が得られる。
【0021】
【実施例】本発明の第1の実施例について、図1(a)
および(b)を参照して説明する。
【0022】半絶縁性InP基板1上にMOCVD(有
機金属化学気相成長)法などにより厚さ500nmのノ
ンドープ(I型)In0.52Al0.48Asバッファ層2、
厚さ50nmのノンドープIn1-x Gax Asy1-y
チャネル層3(3a、3b)、厚さ3nmのIn0.52
0.48Asスペーサ層4、Siを2×1018cm-3ドー
プした厚さ30nmのN型In0.52Al0.48As電子供
給層5、厚さ20nmのノンドープIn0.52Al0.48
sショットキー層6、Siを5×1018cm-3ドープし
た厚さ30nmのN型In0.53Al0.47Asキャップ層
7が順次結晶成長されている。
【0023】硫酸および過酸化水素水の混合液を用いた
ウェットエッチングにより、素子間分離(図示せず)が
行なわれている。Au−Ge/Ni(金−ゲルマニウム
/ニッケル)蒸着およびアロイ熱処理により、N型In
GaAsキャップ層7にオーミック接続するソース電極
8およびドレイン電極9が形成されている。ソース電極
8とドレイン電極9との間のN型InGaAsキャップ
層7をウェットエッチングして形成されたリセス領域の
ノンドープInAlAsショットキー層6にショットキ
ー接続するTi−Pt−Au(チタン−白金−金)から
なるゲート電極10が形成されている。
【0024】本実施例のチャネル層は組成とともにエネ
ルギーギャップEg が2段階(階段状)に変化してお
り、基板側にはエネルギーギャップEg が1.1eVと
なる厚さ25nmのノンドープIn1-x1Gax1Asy1
1-y1層3aが形成され、表面側にはエネルギーギャップ
g が0.9eVとなる厚さ25nmのノンドープIn
1-x2Gax2Asy21-y2層3bが形成されている。
【0025】ここではエネルギーギャップEg =1.1
eVを得るため、基板側の組成をIn0.83Ga0.17As
0.380.62とし、エネルギーギャップEg =0.9eV
を得るため、表面の組成をIn0.67Ga0.33As0.71
0.29 とした。
【0026】表面側よりも基板側の方がエネルギーギャ
ップEg が大きくなっている。
【0027】図1(b)に示すように本実施例では表面
側から基板側に向かってエネルギーギャップEg が2段
階に増加しているが、その代りに3段階以上に増加して
いる3層以上からなるチャネル層を形成しても同様の効
果を得ることができる。
【0028】に本発明の第の実施例について、図
(a)および(b)を参照して説明する。
【0029】本実施例ではInGaAsPチャネル層が
3層からなり、その組成が2段階(階段状)に変化して
いる。InGaAsPチャネル層は基板側3aおよび表
面側3cでエネルギーギャップEg が1.1eVにな
り、その中間3bでエネルギーギャップEg が0.9e
Vになるようにその組成が設定されている。それぞれの
チャネル層3a,3b,3cの厚さは15nm、12n
m、3nmとした。そのほかは第1の実施例と同様であ
る。
【0030】本実施例ではInGaAsPチャネル層を
3層としたが、InGaAsPチャネル層を4層以上に
組成を変調しても同様の効果を得ることができる。
【0031】さらにノンドープInGaAsPチャネル
層の組成x,yはInP基板に格子整合する値でなくて
も良い。チャネル層が歪層としてミスフィット転位が発
生しない臨界膜厚以下の範囲で、組成x,yの値を設定
することができる。
【0032】またバッファ層、チャネル層、電子供給
層、ショットキー層やキャップ層の組成元素、ドーパン
ト濃度や厚さは必要に応じて変更することができる。さ
らにノンドープInGaAsPチャネル層の上にノンド
ープInAlAsスペーサ層を形成したり、N型InA
lAs電子供給層にSiをプレーナドープしたり、ノン
ドープInAlAsバッファ層の上にもう1つの電子供
給層を形成することもできる。通常ノンドープとするI
nGaAsPチャネル層も、ドーピングして高出力化を
図ることができる。ソース・ドレイン電極やゲート電極
にAu−Ge/NiやTi/Pt/Au以外の金属材料
を用いることもできる。
【0033】
【発明の効果】深さ方向に階段状にエネルギーギャップ
g の変化するInGaAsPチャネル層を用いた。I
nGaAsPチャネル層中の電子は低電界ではエネルギ
ーギャップEg の小さい領域を走り、高電界ではホット
になった電子がエネルギーギャップEg の大きい領域を
走る。
【0034】In1-x Gax Asy1-y チャネル層の
組成x,yを設定することにより、エネルギーギャップ
g を0.75eVから1.35eVまで変化させるこ
とができる。
【0035】一様なInGaAsチャネル層と比べて耐
圧を改善することができる。またチャネル層に4元混晶
を用いるので、組成変調しても格子整合したまま膜厚の
制限なく結晶成長させることができる。
【0036】その結果、ヘテロ接合2DEG−FETに
おいてチャネル層の電子濃度が向上した。また、InG
aAsチャネル層を用いた従来のFETにおいて問題と
なっていた、高電界駆動時における衝突イオン化による
耐圧の劣化が、本発明のFETでは大幅に改善されて耐
圧が向上した。さらにチャネル層を走行する電子の実効
ドリフト速度が向上した。高周波特性が向上して、遮断
周波数、雑音指数、電力利得などを向上させることがで
きた。
【図面の簡単な説明】
【図1】(a)は本発明の第1の実施例を示す断面図で
ある。(b)は(a)のInGaAsチャネル層の深さ
方向のエネルギーギャップEg を示すグラフである。
【図2】(a)は本発明の第2の実施例を示す断面図で
ある。(b)は(a)のInGaAsチャネル層の深さ
方向のエネルギーギャップEg を示すグラフである。
【符号の説明】
1 半絶縁性InP基板 2 ノンドープIn0.52Al0.48Asバッファ層 3a ノンドープIn1-x1Gax1Asy11-y1チャネル
層 3b ノンドープIn1-x2Gax2Asy21-y2チャネル
層 3c ノンドープIn1-x3Gax3Asy31-y3チャネル
層 4 ノンドープIn0.52Al0.48Asスペーサ層 5 SiドープN型In0.52Al0.48As電子供給層 6 ノンドープIn0.53Al0.47Asショットキー層 7 SiドープN型In0.53Ga0.47Asキャップ層 8 ソース電極 9 ドレイン電極 10 ゲート電極

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 半絶縁性InP基板の上に順次積層され
    た、バッファ層、チャネル層およびN型電子供給層に形
    成された電界効果トランジスタにおいて、前記チャネル
    層が、In1-x Gax Asy1-y 層からなり、前記チ
    ャネル層のエネルギーギャップE g が、深さ方向に対し
    て単調に階段状に増加していることを特徴とする電界効
    果トランジスタ。
  2. 【請求項2】 チャネル層であるIn 1-x Ga x As y
    1-y 層のエネルギーギャップE g が、前記チャネル層
    の所定の深さのところに最小値をもち上下方向に単調に
    階段状に増加していることを特徴とする請求項1記載の
    電界効果トランジスタ。
JP5004473A 1993-01-14 1993-01-14 電界効果トランジスタ Expired - Fee Related JPH0815213B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5004473A JPH0815213B2 (ja) 1993-01-14 1993-01-14 電界効果トランジスタ
US08/544,724 US5596211A (en) 1993-01-14 1995-10-18 Field effect transistor having a graded bandgap InGaAsP channel formed of a two-dimensional electron gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5004473A JPH0815213B2 (ja) 1993-01-14 1993-01-14 電界効果トランジスタ

Publications (2)

Publication Number Publication Date
JPH06236898A JPH06236898A (ja) 1994-08-23
JPH0815213B2 true JPH0815213B2 (ja) 1996-02-14

Family

ID=11585094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5004473A Expired - Fee Related JPH0815213B2 (ja) 1993-01-14 1993-01-14 電界効果トランジスタ

Country Status (2)

Country Link
US (1) US5596211A (ja)
JP (1) JPH0815213B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223651A (ja) * 1997-02-05 1998-08-21 Nec Corp 電界効果トランジスタ
US6057566A (en) * 1998-04-29 2000-05-02 Motorola, Inc. Semiconductor device
JP3159198B2 (ja) * 1999-02-19 2001-04-23 住友電気工業株式会社 電界効果トランジスタ
US6271547B1 (en) 1999-08-06 2001-08-07 Raytheon Company Double recessed transistor with resistive layer
US6797994B1 (en) * 2000-02-14 2004-09-28 Raytheon Company Double recessed transistor
JP4545907B2 (ja) 2000-09-08 2010-09-15 富士通株式会社 化合物半導体装置
JP4899077B2 (ja) 2001-02-22 2012-03-21 富士通株式会社 Iii−v族化合物半導体を利用した電界効果トランジスタ
EP1421626A2 (en) * 2001-08-07 2004-05-26 Jan Kuzmik High electron mobility devices
TWI230978B (en) * 2003-01-17 2005-04-11 Sanken Electric Co Ltd Semiconductor device and the manufacturing method thereof
US6787826B1 (en) * 2003-03-14 2004-09-07 Triquint Semiconductor, Inc. Heterostructure field effect transistor
US7449728B2 (en) * 2003-11-24 2008-11-11 Tri Quint Semiconductor, Inc. Monolithic integrated enhancement mode and depletion mode field effect transistors and method of making the same
US20070200142A1 (en) * 2006-02-24 2007-08-30 Ching-Sung Lee High linear enhancement-mode heterostructure field-effect transistor
US7745853B2 (en) * 2008-06-18 2010-06-29 Chang Gung University Multi-layer structure with a transparent gate
US9096419B2 (en) * 2012-10-01 2015-08-04 Qualcomm Mems Technologies, Inc. Electromechanical systems device with protrusions to provide additional stable states
JP6572556B2 (ja) * 2015-02-23 2019-09-11 富士通株式会社 化合物半導体装置及びその製造方法
US10032950B2 (en) 2016-02-22 2018-07-24 University Of Virginia Patent Foundation AllnAsSb avalanche photodiode and related method thereof
JP6926798B2 (ja) * 2017-08-04 2021-08-25 富士通株式会社 化合物半導体装置、化合物半導体装置の製造方法、電源装置、及び高周波増幅器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4163237A (en) * 1978-04-24 1979-07-31 Bell Telephone Laboratories, Incorporated High mobility multilayered heterojunction devices employing modulated doping
JPS57160171A (en) * 1981-03-30 1982-10-02 Hitachi Ltd Manufacture of semiconductor device
US4631566A (en) * 1983-08-22 1986-12-23 At&T Bell Laboratories Long wavelength avalanche photodetector
JPS6414972A (en) * 1987-07-08 1989-01-19 Nec Corp Field-effect transistor
JPS6474764A (en) * 1987-09-17 1989-03-20 Matsushita Electric Ind Co Ltd Semiconductor device
JPH0260223A (ja) * 1988-08-26 1990-02-28 Nec Corp リトリガブル単安定マルチバイブレータ回路
JPH02202029A (ja) * 1989-01-31 1990-08-10 Sony Corp 化合物半導体装置
JP2773338B2 (ja) * 1990-01-05 1998-07-09 日立電線株式会社 電界効果トランジスタ
JP2786327B2 (ja) * 1990-10-25 1998-08-13 三菱電機株式会社 ヘテロ接合電界効果トランジスタ
JP2679396B2 (ja) * 1990-10-25 1997-11-19 日本電気株式会社 電界効果トランジスタ
US5206527A (en) * 1990-11-09 1993-04-27 Sumitomo Electric Industries, Ltd. Field effect transistor
JPH05121453A (ja) * 1991-10-29 1993-05-18 Rohm Co Ltd 化合物半導体装置
JP3173080B2 (ja) * 1991-12-05 2001-06-04 日本電気株式会社 電界効果トランジスタ

Also Published As

Publication number Publication date
US5596211A (en) 1997-01-21
JPH06236898A (ja) 1994-08-23

Similar Documents

Publication Publication Date Title
JP2581452B2 (ja) 電界効果トランジスタ
EP0514079B1 (en) High electron mobility transistor and method of manufacture
US5300795A (en) GaAs FET with resistive AlGaAs
JPH0815213B2 (ja) 電界効果トランジスタ
US4558337A (en) Multiple high electron mobility transistor structures without inverted heterojunctions
JP3259106B2 (ja) 高電子移動度電界効果半導体装置
KR960000385B1 (ko) 전계효과트랜지스터
CN112201689B (zh) 基于ⅲ族氮化物异质结的场效应晶体管及其制备方法
JP2758803B2 (ja) 電界効果トランジスタ
JP3107051B2 (ja) 電界効果トランジスタ、及びその製造方法
JP3667331B2 (ja) ヘテロ電界効果トランジスタ、およびその製造方法、ならびにそれを備えた送受信装置
JP3094500B2 (ja) 電界効果トランジスタ
JP2674420B2 (ja) 電界効果トランジスタ
JP2616634B2 (ja) 電界効果トランジスタ
JP3021894B2 (ja) ヘテロ接合電界効果トランジスタ
JP2567730B2 (ja) ヘテロ接合電界効果トランジスタ
JP4766743B2 (ja) ヘテロ接合電界効果トランジスタ
JP2581423B2 (ja) ヘテロ接合fet
JP3122474B2 (ja) 電界効果トランジスタ
JP2658513B2 (ja) 電界効果トランジスタ
JPH06163600A (ja) 電界効果トランジスタ
JPH06302625A (ja) 電界効果トランジスタおよびその製造方法
JP3122472B2 (ja) 電界効果トランジスタ
JP4243593B2 (ja) ヘテロ電界効果トランジスタ、およびその製造方法、ならびにそれを備えた送受信装置
JP2701567B2 (ja) 電界効果トランジスタ

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960730

LAPS Cancellation because of no payment of annual fees