JPH06216330A - ゲインメモリセルのアレイの製造方法 - Google Patents
ゲインメモリセルのアレイの製造方法Info
- Publication number
- JPH06216330A JPH06216330A JP5341328A JP34132893A JPH06216330A JP H06216330 A JPH06216330 A JP H06216330A JP 5341328 A JP5341328 A JP 5341328A JP 34132893 A JP34132893 A JP 34132893A JP H06216330 A JPH06216330 A JP H06216330A
- Authority
- JP
- Japan
- Prior art keywords
- gate
- transistor
- layer
- oxide
- polysilicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims abstract description 62
- 238000003860 storage Methods 0.000 claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 238000005468 ion implantation Methods 0.000 claims abstract description 9
- 239000004020 conductor Substances 0.000 claims abstract description 8
- 239000004065 semiconductor Substances 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims abstract description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 25
- 229920005591 polysilicon Polymers 0.000 claims description 25
- 238000000151 deposition Methods 0.000 claims description 12
- 150000004767 nitrides Chemical class 0.000 claims description 12
- 238000005530 etching Methods 0.000 claims description 9
- 239000002019 doping agent Substances 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 230000004888 barrier function Effects 0.000 claims description 7
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 5
- 238000001020 plasma etching Methods 0.000 claims description 3
- 238000003491 array Methods 0.000 claims description 2
- 238000002161 passivation Methods 0.000 claims description 2
- 229910052581 Si3N4 Inorganic materials 0.000 claims 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims 4
- 238000012545 processing Methods 0.000 abstract description 5
- 238000002955 isolation Methods 0.000 description 11
- 229910021332 silicide Inorganic materials 0.000 description 11
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 230000008021 deposition Effects 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- -1 Spacer nitride Chemical class 0.000 description 2
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/05—Making the transistor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
(57)【要約】
【目的】 チップ面積要求の最小化と製造コストの最小
化のための既に広く利用されている通常のプロセシング
過程および装置の利用とを考慮に入れた、ゲインメモリ
セルの製造のための実際的で経済的なプロセスを提供す
る。 【構成】 半導体基板10のなかに能動的デバイス領域
を郭定する過程と、トランジスタゲートスタックを形成
する過程と、ゲートスタックのなかへダイオードを集積
する過程と、ゲート導体を構造化する過程と、トランジ
スタのためのソース領域34およびドレイン領域36を
イオン注入により形成する過程と、電源にトランジスタ
を接続するVDDラインを形成する過程と、記憶トランジ
スタのソース領域に集積されたダイオードを接続する埋
込みストラップを形成する過程と、ゲートを再構造化
し、ゲインメモリデバイスをパッシベーション化し、ア
レイを平坦化する過程とを含んでいる。
化のための既に広く利用されている通常のプロセシング
過程および装置の利用とを考慮に入れた、ゲインメモリ
セルの製造のための実際的で経済的なプロセスを提供す
る。 【構成】 半導体基板10のなかに能動的デバイス領域
を郭定する過程と、トランジスタゲートスタックを形成
する過程と、ゲートスタックのなかへダイオードを集積
する過程と、ゲート導体を構造化する過程と、トランジ
スタのためのソース領域34およびドレイン領域36を
イオン注入により形成する過程と、電源にトランジスタ
を接続するVDDラインを形成する過程と、記憶トランジ
スタのソース領域に集積されたダイオードを接続する埋
込みストラップを形成する過程と、ゲートを再構造化
し、ゲインメモリデバイスをパッシベーション化し、ア
レイを平坦化する過程とを含んでいる。
Description
【0001】
【産業上の利用分野】本発明はゲインメモリセルの製造
方法、一層詳細には、ゲインメモリセルの高密度セルア
レイの製造方法に関する。
方法、一層詳細には、ゲインメモリセルの高密度セルア
レイの製造方法に関する。
【0002】
【従来の技術】ゲインメモリセルは非常に短いアクセス
時間および簡単な信号検出方式を可能にする高い信号チ
ャージを供給するので有利である。それらは2つのトラ
ンジスタ(アクセスおよび記憶トランジスタ)と、記憶
トランジスタのソースおよびゲートを接続するダイオー
ドとの組み合わせを含んでいる。
時間および簡単な信号検出方式を可能にする高い信号チ
ャージを供給するので有利である。それらは2つのトラ
ンジスタ(アクセスおよび記憶トランジスタ)と、記憶
トランジスタのソースおよびゲートを接続するダイオー
ドとの組み合わせを含んでいる。
【0003】ゲインメモリセルは、集積回路に対する他
のデバイスと同様に、VLSIおよびULSI回路用と
してたとえば0.5ミクロン‐デザインルールおよびそ
れよりも小さい範囲への一層の小形化を必要とする。高
密度、高速度の回路を製造するためには、これらの回路
を製造するのに必要とされるプロセシングはデバイスの
“リアル‐エステート”またはチップ面積要求の最小化
と、製造コストを最小化するべく半導体工業において既
に広く利用されている通常のプロセシング過程および装
置の利用とを考慮に入れなければならない。
のデバイスと同様に、VLSIおよびULSI回路用と
してたとえば0.5ミクロン‐デザインルールおよびそ
れよりも小さい範囲への一層の小形化を必要とする。高
密度、高速度の回路を製造するためには、これらの回路
を製造するのに必要とされるプロセシングはデバイスの
“リアル‐エステート”またはチップ面積要求の最小化
と、製造コストを最小化するべく半導体工業において既
に広く利用されている通常のプロセシング過程および装
置の利用とを考慮に入れなければならない。
【0004】
【発明が解決しようとする課題】本発明の課題は、ゲイ
ンメモリセルの製造のための実際的で経済的な方法を提
供することである。
ンメモリセルの製造のための実際的で経済的な方法を提
供することである。
【0005】
【課題を解決するための手段】本発明の方法は、プレー
ナプロセスを使用するデバイスの浅溝絶縁と、記憶トラ
ンジスタのゲートのなかへ集積されたダイオードと、電
源へのトランジスタの接触接続を省略する植え込まれた
VDDラインと、記憶トランジスタのソース領域にダイオ
ードを接続する埋込みストラップと、セルフアライン
(自己整合)されたデバイス絶縁技術とを特徴とする高
密度のゲインメモリセルの製造を提案するものである。
本発明は個々のゲインメモリセルおよびセルアレイのセ
ル面積要求を最小化し、またセルフアラインプロセス過
程および完全なプレーナプロセスを使用してゲインメモ
リセル製造のコスト効率を最大化する。
ナプロセスを使用するデバイスの浅溝絶縁と、記憶トラ
ンジスタのゲートのなかへ集積されたダイオードと、電
源へのトランジスタの接触接続を省略する植え込まれた
VDDラインと、記憶トランジスタのソース領域にダイオ
ードを接続する埋込みストラップと、セルフアライン
(自己整合)されたデバイス絶縁技術とを特徴とする高
密度のゲインメモリセルの製造を提案するものである。
本発明は個々のゲインメモリセルおよびセルアレイのセ
ル面積要求を最小化し、またセルフアラインプロセス過
程および完全なプレーナプロセスを使用してゲインメモ
リセル製造のコスト効率を最大化する。
【0006】本プロセスは6つの過程を含んでいる。第
1に、半導体基板、たとえばシリコンウェーハのなかに
能動デバイス領域を郭定し、ゲートおよびゲート導体ス
タックを形成する。第2に、ゲートスタックと集積され
たダイオードを形成する。第3に、ゲートを郭定し、ト
ランジスタのソースおよびドレイン領域をイオン注入に
より形成する。第4に、電源にトランジスタを接続する
VDDラインを形成する。第5に、記憶トランジスタのソ
ース領域にダイオードを接続する埋込みストラップを形
成する。そして最後に、ゲートを再構造化し、デバイス
をパッシベーション化し、平坦(プレーナ)化する。本
発明のプロセスは、経済的なプロセスを実現するべく、
セルフアライニング技術および通常のプロセシング過程
を使用する。
1に、半導体基板、たとえばシリコンウェーハのなかに
能動デバイス領域を郭定し、ゲートおよびゲート導体ス
タックを形成する。第2に、ゲートスタックと集積され
たダイオードを形成する。第3に、ゲートを郭定し、ト
ランジスタのソースおよびドレイン領域をイオン注入に
より形成する。第4に、電源にトランジスタを接続する
VDDラインを形成する。第5に、記憶トランジスタのソ
ース領域にダイオードを接続する埋込みストラップを形
成する。そして最後に、ゲートを再構造化し、デバイス
をパッシベーション化し、平坦(プレーナ)化する。本
発明のプロセスは、経済的なプロセスを実現するべく、
セルフアライニング技術および通常のプロセシング過程
を使用する。
【0007】本発明のプロセスは過程の第1のシーケン
スは、0.5ミクロン範囲およびそれよりも小さい範囲
でのデザインルールを生ずるための浅溝絶縁技術を使用
して能動デバイス領域を郭定するためのプレーナプロセ
スである。この絶縁プロセスは、浅い溝を形成するエッ
チング過程と、デバイス領域を絶縁する窒化物および酸
化物デポジションにより溝のなかを充填する過程と、そ
の結果生じた層を平坦化する過程とを含んでいる。
スは、0.5ミクロン範囲およびそれよりも小さい範囲
でのデザインルールを生ずるための浅溝絶縁技術を使用
して能動デバイス領域を郭定するためのプレーナプロセ
スである。この絶縁プロセスは、浅い溝を形成するエッ
チング過程と、デバイス領域を絶縁する窒化物および酸
化物デポジションにより溝のなかを充填する過程と、そ
の結果生じた層を平坦化する過程とを含んでいる。
【0008】平坦化は任意の種類のバックエッチングに
より、またはDavariほか、IEDMTechn.Dig.(198
9)、第89頁により開示されているような化学的機械
的研磨により、公知の仕方で後で説明される平坦化ステ
ップのいずれかにより達成され得る。浅溝絶縁プロセス
により示されているけれども、能動デバイス領域は公知
のLOCOS技術またはチャネルストッパ技術を使用し
ても郭定され得る。それに続いて、熱的酸化物成長と、
その上へのゲート導体としてのポリシリコンのデポジシ
ョンとが行われる。ケイ化物層はワードラインのシート
抵抗を最小化するべく最適化されて形成される。ゲート
スタックはそれに続く窒化物および酸化物層のデポジシ
ョンにより形成される。
より、またはDavariほか、IEDMTechn.Dig.(198
9)、第89頁により開示されているような化学的機械
的研磨により、公知の仕方で後で説明される平坦化ステ
ップのいずれかにより達成され得る。浅溝絶縁プロセス
により示されているけれども、能動デバイス領域は公知
のLOCOS技術またはチャネルストッパ技術を使用し
ても郭定され得る。それに続いて、熱的酸化物成長と、
その上へのゲート導体としてのポリシリコンのデポジシ
ョンとが行われる。ケイ化物層はワードラインのシート
抵抗を最小化するべく最適化されて形成される。ゲート
スタックはそれに続く窒化物および酸化物層のデポジシ
ョンにより形成される。
【0009】過程の第2のシーケンスでは、ダイオード
がゲートスタックのなかへ集積される。開孔が、ゲート
導体のポリシリコンのドーパント形式と反対のドーパン
ト形式のポリシリコンをデポジットし、ポリシリコンを
ケイ化し、開孔を酸化物で充填し、平坦化過程を行うた
めゲートスタックのなかに作られる。
がゲートスタックのなかへ集積される。開孔が、ゲート
導体のポリシリコンのドーパント形式と反対のドーパン
ト形式のポリシリコンをデポジットし、ポリシリコンを
ケイ化し、開孔を酸化物で充填し、平坦化過程を行うた
めゲートスタックのなかに作られる。
【0010】過程の第3のシーケンスでは、ゲート導体
の最初の構造化がRIEにより行われ、窒化物スペーサ
がデポジットされる。トランジスタのソースおよびドレ
インが植え込みにより形成される。
の最初の構造化がRIEにより行われ、窒化物スペーサ
がデポジットされる。トランジスタのソースおよびドレ
インが植え込みにより形成される。
【0011】過程の第4のシーケンスでは、植え込まれ
たVDDラインが、電源に記憶トランジスタを接続する接
触を省略するべく形成される。窒化物層がデポジットさ
れ、開孔がこの層のなかにホトリトグラフィ、VDDライ
ンのイオン注入およびケイ化により作られる。
たVDDラインが、電源に記憶トランジスタを接続する接
触を省略するべく形成される。窒化物層がデポジットさ
れ、開孔がこの層のなかにホトリトグラフィ、VDDライ
ンのイオン注入およびケイ化により作られる。
【0012】過程の第5のシーケンスでは、バリア窒化
物層をデポジットし、その上に酸化物層をデポジット
し、これらの層を平坦化し、酸化物層の最終デポジショ
ンおよびその平坦化により埋込みストラップ材料として
のポリシリコンのデポジションのために酸化物層のなか
に開孔を形成することにより埋込みストラップが作られ
る。
物層をデポジットし、その上に酸化物層をデポジット
し、これらの層を平坦化し、酸化物層の最終デポジショ
ンおよびその平坦化により埋込みストラップ材料として
のポリシリコンのデポジションのために酸化物層のなか
に開孔を形成することにより埋込みストラップが作られ
る。
【0013】過程の第6かつ最後のシーケンスでは、第
2の絶縁が行われ、記憶ゲートが再構造化され、酸化物
充填がデバイスをパッシベーション化するために使用さ
れ、最後の平坦化が行われる。
2の絶縁が行われ、記憶ゲートが再構造化され、酸化物
充填がデバイスをパッシベーション化するために使用さ
れ、最後の平坦化が行われる。
【0014】以下に図面を参照して本発明を説明する。
【0015】
【実施例】図1に示されている典型的な実施例におい
て、シリコンウェーハ10の表面が、表面から汚れおよ
び粉末を除去するべく公知の仕方で浄化される。浅溝絶
縁技術を使用して能動領域を形成するべく、ホトレジス
ト12が浄化されたシリコンウェーハの上に置かれ、パ
ターン化される。ウェーハは次いでそのなかに開孔13
を形成するべく標準的なホトエッチング技術を使用して
エッチングされる。ホトレジストが次いで除去され、酸
化物14がデポジットされ(たとえばプラズマエンハン
スドCVD酸化物または常圧CVD酸化物)、表面がエ
ッチングまたは化学的機械的研磨により平坦化され、浄
化される。その結果生じた表面が図2に示されている。
後続のプロセス過程のより明らかな理解のために、図3
〜12はシリコンウェーハ10のなかのデバイス絶縁を
詳細には示していない。
て、シリコンウェーハ10の表面が、表面から汚れおよ
び粉末を除去するべく公知の仕方で浄化される。浅溝絶
縁技術を使用して能動領域を形成するべく、ホトレジス
ト12が浄化されたシリコンウェーハの上に置かれ、パ
ターン化される。ウェーハは次いでそのなかに開孔13
を形成するべく標準的なホトエッチング技術を使用して
エッチングされる。ホトレジストが次いで除去され、酸
化物14がデポジットされ(たとえばプラズマエンハン
スドCVD酸化物または常圧CVD酸化物)、表面がエ
ッチングまたは化学的機械的研磨により平坦化され、浄
化される。その結果生じた表面が図2に示されている。
後続のプロセス過程のより明らかな理解のために、図3
〜12はシリコンウェーハ10のなかのデバイス絶縁を
詳細には示していない。
【0016】シリコン酸化物ゲート層16が、処理され
たシリコンウェーハ10の上に熱的に成長させられる。
簡単化のために、この層16は後続の図面には示されて
いない。
たシリコンウェーハ10の上に熱的に成長させられる。
簡単化のために、この層16は後続の図面には示されて
いない。
【0017】次いで順次にn- ドープされたポリシリコ
ン層18をデポジットし、ケイ化物層20をその上に形
成し、窒化物層22およびその上に酸化物層24をデポ
ジットすることにより、ゲートスタックが形成される。
その結果形成されたゲートスタックが図3に示されてい
る。
ン層18をデポジットし、ケイ化物層20をその上に形
成し、窒化物層22およびその上に酸化物層24をデポ
ジットすることにより、ゲートスタックが形成される。
その結果形成されたゲートスタックが図3に示されてい
る。
【0018】一つのドーパント形式のポリシリコン層に
より覆われた反対のドーパント形式のポリシリコン層を
含んでいる集積されたダイオードが、図4に示されてい
るように、ホトリトグラフ技術を使用してケイ化物層2
0を通してエッチングにより開孔25を形成することに
よりゲートスタックのなかに形成される。その後に、図
5に示すようにp+ ドープされたポリシリコン層26が
開孔のなかにデポジットされる。このポリシリコン層2
6はイオン注入もしくは拡散技術によるホウ素ドーピン
グにより続かれるドープされないシリコンとしてデポジ
ットされ得る。ドーパント濃度は、ポリシリコンダイオ
ードのI(V)特性が最大の信号チャージおよび短い信
号ディベロップメント時間に関して最適化されているよ
うに選ばれている。このポリシリコンデポジションに続
いて第2のケイ化物層28を形成するケイ化過程が行わ
れる。
より覆われた反対のドーパント形式のポリシリコン層を
含んでいる集積されたダイオードが、図4に示されてい
るように、ホトリトグラフ技術を使用してケイ化物層2
0を通してエッチングにより開孔25を形成することに
よりゲートスタックのなかに形成される。その後に、図
5に示すようにp+ ドープされたポリシリコン層26が
開孔のなかにデポジットされる。このポリシリコン層2
6はイオン注入もしくは拡散技術によるホウ素ドーピン
グにより続かれるドープされないシリコンとしてデポジ
ットされ得る。ドーパント濃度は、ポリシリコンダイオ
ードのI(V)特性が最大の信号チャージおよび短い信
号ディベロップメント時間に関して最適化されているよ
うに選ばれている。このポリシリコンデポジションに続
いて第2のケイ化物層28を形成するケイ化過程が行わ
れる。
【0019】続いて、図6に示すように、酸化物層30
がデポジットされ(たとえばプラズマエンハンスドCV
D酸化物またはサブ常圧CVD酸化物)、次いでウェー
ハの表面がエッチングまたは化学的機械的研磨により平
坦化され、浄化される。
がデポジットされ(たとえばプラズマエンハンスドCV
D酸化物またはサブ常圧CVD酸化物)、次いでウェー
ハの表面がエッチングまたは化学的機械的研磨により平
坦化され、浄化される。
【0020】図7に示すように、ゲートスタックは、ホ
トリトグラフィにより窒化物層22をパターン化し、ま
た反応性イオンエッチング技術を使用して、窒化物層2
2、ケイ化物層20およびポリシリコン層18を含んで
いるゲートスタック、ゲート酸化物層16、並びにケイ
化物層28およびポリシリコン層26の上の充填された
酸化物を含むダイオード部分を通してエッチングするこ
とにより構造化される。スペーサ窒化物層32が、形成
されたゲートスタックおよび平坦化されたダイオードの
側面に沿って窒化物スペーサを形成するべくデポジット
され、エッチングされる。
トリトグラフィにより窒化物層22をパターン化し、ま
た反応性イオンエッチング技術を使用して、窒化物層2
2、ケイ化物層20およびポリシリコン層18を含んで
いるゲートスタック、ゲート酸化物層16、並びにケイ
化物層28およびポリシリコン層26の上の充填された
酸化物を含むダイオード部分を通してエッチングするこ
とにより構造化される。スペーサ窒化物層32が、形成
されたゲートスタックおよび平坦化されたダイオードの
側面に沿って窒化物スペーサを形成するべくデポジット
され、エッチングされる。
【0021】次いで図8に示すように、トランジスタの
ソース領域34およびドレイン領域36がシリコンウェ
−ハ10のなかにイオン注入により形成される。このイ
オン注入は、セル漏れ電流の最小化に関してソースおよ
びドレイン領域34、36のなかのドーパントレベルを
形成するべく最適化されている。こうしてソースおよび
ドレイン領域と集積されたダイオード領域のエッジとの
アラインメントが行われており、ゲインメモリセルに対
する最小の幾何学的寸法が得られる。さらに、これは、
最小の幾何学的寸法よりもはるかに大きい非臨界的構造
寸法を有するダイオードのプロセシングを可能にする。
ソース領域34およびドレイン領域36がシリコンウェ
−ハ10のなかにイオン注入により形成される。このイ
オン注入は、セル漏れ電流の最小化に関してソースおよ
びドレイン領域34、36のなかのドーパントレベルを
形成するべく最適化されている。こうしてソースおよび
ドレイン領域と集積されたダイオード領域のエッジとの
アラインメントが行われており、ゲインメモリセルに対
する最小の幾何学的寸法が得られる。さらに、これは、
最小の幾何学的寸法よりもはるかに大きい非臨界的構造
寸法を有するダイオードのプロセシングを可能にする。
【0022】VDDラインが次に製造される。窒化物バリ
ア層38が、ドレイン領域36を露出させるべくデポジ
ットされ、パターン化され、次いでケイ化物37の層が
ドレイン領域36の上にデポジットされる。
ア層38が、ドレイン領域36を露出させるべくデポジ
ットされ、パターン化され、次いでケイ化物37の層が
ドレイン領域36の上にデポジットされる。
【0023】さらに、ドレイン領域36のドーパント濃
度は、VDDラインの低いシート抵抗を達成するべく、イ
オン注入により増すことができる。この植え込まれたV
DDラインは記憶トランジスタのドレインの電源への無接
触の接続を可能にする。
度は、VDDラインの低いシート抵抗を達成するべく、イ
オン注入により増すことができる。この植え込まれたV
DDラインは記憶トランジスタのドレインの電源への無接
触の接続を可能にする。
【0024】次いで埋込みストラップが低抵抗材料を使
用して記憶トランジスタのソース領域にダイオードを接
続するべく形成される。図9に示すように、バリア窒化
物層42がデポジットされ、次いでその上に厚い酸化物
層44がホトリトグラフィを使用して埋込みストラップ
の平坦化および郭定のためにデポジットされる。次いで
図10に示すように厚い酸化物層44は平坦化され、開
孔45がそのなかに埋込みストラップを形成するために
作られる。
用して記憶トランジスタのソース領域にダイオードを接
続するべく形成される。図9に示すように、バリア窒化
物層42がデポジットされ、次いでその上に厚い酸化物
層44がホトリトグラフィを使用して埋込みストラップ
の平坦化および郭定のためにデポジットされる。次いで
図10に示すように厚い酸化物層44は平坦化され、開
孔45がそのなかに埋込みストラップを形成するために
作られる。
【0025】次に図11に示すようにポリシリコンの層
46が開孔45のなかにデポジットされ、この開孔45
は酸化物48で充満され平坦化される。
46が開孔45のなかにデポジットされ、この開孔45
は酸化物48で充満され平坦化される。
【0026】集積されたダイオードを記憶トランジスタ
のソース領域に接続する埋込みストラップは本発明によ
るゲインメモリセルの基本的特徴である。ポリシリコン
を使用する特定のプロセスが埋込みストラップを作るた
めに説明されてきたが、他のプロセスが低抵抗材料を使
用してダイオードを記憶トランジスタのソース領域に接
続するのに使用され得ることは当業者に明らかである。
のソース領域に接続する埋込みストラップは本発明によ
るゲインメモリセルの基本的特徴である。ポリシリコン
を使用する特定のプロセスが埋込みストラップを作るた
めに説明されてきたが、他のプロセスが低抵抗材料を使
用してダイオードを記憶トランジスタのソース領域に接
続するのに使用され得ることは当業者に明らかである。
【0027】図12に示すように、第2のデバイス絶縁
が、p‐n接触領域と酸化物層44のなかの開孔凹み5
0および52との上に酸化物を残すことを例外として、
酸化物を選択的に除去することにより行われる。これは
ホトリトグラフィによるパターン化と、pn接合を覆う
酸化物の下までのポリシリコンの選択エッチングとによ
り、セルフアラインされた仕方で行われ得る。図には最
終のセルフアラインされた構造が示されている。
が、p‐n接触領域と酸化物層44のなかの開孔凹み5
0および52との上に酸化物を残すことを例外として、
酸化物を選択的に除去することにより行われる。これは
ホトリトグラフィによるパターン化と、pn接合を覆う
酸化物の下までのポリシリコンの選択エッチングとによ
り、セルフアラインされた仕方で行われ得る。図には最
終のセルフアラインされた構造が示されている。
【0028】セルアレイは第2の絶縁技術、たとえば浅
溝絶縁プロセスを使用しての記憶トランジスタを構造
化、酸化物充満による不活性化および最終平坦化の実行
により完成される。
溝絶縁プロセスを使用しての記憶トランジスタを構造
化、酸化物充満による不活性化および最終平坦化の実行
により完成される。
【0029】以上に本発明を特定の実施例およびプロセ
ス過程のシーケンスについて説明してきたが、過程およ
びそれらのシーケンスにおける種々の変更が本発明の本
質から外れることなく行われ得る。これらの変更は本発
明に含まれており、本発明の範囲は特許請求の範囲によ
ってのみ定められるものである。
ス過程のシーケンスについて説明してきたが、過程およ
びそれらのシーケンスにおける種々の変更が本発明の本
質から外れることなく行われ得る。これらの変更は本発
明に含まれており、本発明の範囲は特許請求の範囲によ
ってのみ定められるものである。
【図1】本発明のプロセス過程における構造を示す断面
図である。
図である。
【図2】本発明のプロセス過程における構造を示す断面
図である。
図である。
【図3】本発明のプロセス過程における構造を示す断面
図である。
図である。
【図4】本発明のプロセス過程における構造を示す断面
図である。
図である。
【図5】本発明のプロセス過程における構造を示す断面
図である。
図である。
【図6】本発明のプロセス過程における構造を示す断面
図である。
図である。
【図7】本発明のプロセス過程における構造を示す断面
図である。
図である。
【図8】本発明のプロセス過程における構造を示す断面
図である。
図である。
【図9】本発明のプロセス過程における構造を示す断面
図である。
図である。
【図10】本発明のプロセス過程における構造を示す断
面図である。
面図である。
【図11】本発明のプロセス過程における構造を示す断
面図である。
面図である。
【図12】本発明のプロセス過程における構造を示す断
面図である。
面図である。
【符号の説明】 10 シリコンウェーハ 12 ホトレジスト 14 酸化物 16 シリコン酸化物ゲート層 18 n- ドープされたポリシリコン層 20 ケイ化物層 22 窒化物層 24 酸化物層 26 p+ ドープされたポリシリコン層 28 ケイ化物層 30 充満された酸化物 32 スペーサ窒化物層 34 ソース領域 36 ドレイン領域 37 ケイ化物層 38 窒化物バリア層 42 バリア窒化物層 44 酸化物層 45 開孔 50、52 開孔凹み
Claims (9)
- 【請求項1】 アクセストランジスタ、記憶トランジス
タおよびダイオードを含むゲインメモリセルのアレイを
製造するための方法において、 a)半導体基板のなかに能動デバイス領域を郭定し、そ
の表面を平坦化する過程と、 b)トランジスタゲートスタックを形成する過程と、 c)ゲートスタックのなかへダイオードを集積する過程
と、 d)ゲート導体を構造化する過程と、 e)トランジスタのためのソースおよびドレイン領域を
イオン注入により形成する過程と、 f)電源にトランジスタを接続するVDDラインを形成す
る過程と、 g)記憶トランジスタのソース領域に集積されたダイオ
ードを接続する埋込みストラップを形成する過程と、 h)ゲートを再構造化し、ゲインメモリデバイスをパッ
シーベーション化し、アレイを平坦化する過程とを含ん
でいることを特徴とするゲインメモリセルのアレイの製
造方法。 - 【請求項2】 能動デバイス領域を郭定する過程が前記
基板のなかに浅溝をエッチングし、デバイス領域を絶縁
するシリコン窒化物およびシリコン酸化物で溝を充満す
る過程を含んでいることを特徴とする請求項1記載の製
造方法。 - 【請求項3】 ゲートを形成するシリコン酸化物を熱的
酸化物により成長させ、その上にゲート導体を形成する
ポリシリコンをデポジットし、ポリシリコンをケイ化
し、その上にシリコン窒化物およびシリコン酸化物をデ
ポジットすることによりゲートスタックが形成されるこ
とを特徴とする請求項1記載の製造方法。 - 【請求項4】 ゲートスタックのなかへ開孔をエッチン
グし、前記開孔のなかにドーパント形式のポリシリコン
をデポジットし、前記開孔のなかに反対のドーパント形
式のポリシリコンをデポジットし、ポリシリコンをケイ
化し、シリコン酸化物で開孔を充填し、層を平坦化する
ことにより集積されるダイオードが形成されることを特
徴とする請求項3記載の製造方法。 - 【請求項5】 個々のゲート導体が反応性イオンエッチ
ングにより形成され、シリコン窒化物スペーサがゲート
の上に形成されることを特徴とする請求項1記載の製造
方法。 - 【請求項6】 VDDラインが半導体基板のなかへのイオ
ン注入およびケイ化により形成されることを特徴とする
請求項1記載の製造方法。 - 【請求項7】 第1のバリア・シリコン窒化物層および
第2のバリア・シリコン窒化物層を記憶トランジスタの
上にデポジットし、酸化物および窒化物層のなかに開孔
を形成し、前記開孔のなかに低抵抗性材料をデポジット
し、アレイの上に酸化物層をデポジットし、アレイを平
坦化することにより埋込みストラップが形成されること
を特徴とする請求項1記載の製造方法。 - 【請求項8】 前記低抵抗性材料がポリシリコンである
ことを特徴とする請求項7記載の製造方法。 - 【請求項9】 ゲートスタックをエッチングし、シリコ
ン酸化物パッシベーション層をデポジットし、この層を
平坦化することによりゲートが再構造化されることを特
徴とする請求項1記載の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/991,776 US5308783A (en) | 1992-12-16 | 1992-12-16 | Process for the manufacture of a high density cell array of gain memory cells |
US07/991776 | 1992-12-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06216330A true JPH06216330A (ja) | 1994-08-05 |
JP3495071B2 JP3495071B2 (ja) | 2004-02-09 |
Family
ID=25537551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34132893A Expired - Fee Related JP3495071B2 (ja) | 1992-12-16 | 1993-12-10 | ゲインメモリセルのアレイの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US5308783A (ja) |
EP (1) | EP0602525B1 (ja) |
JP (1) | JP3495071B2 (ja) |
KR (1) | KR100308076B1 (ja) |
AT (1) | ATE184424T1 (ja) |
DE (1) | DE69326312T2 (ja) |
HK (1) | HK1003755A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014156923A1 (ja) * | 2013-03-27 | 2014-10-02 | ピーエスフォー ルクスコ エスエイアールエル | 半導体装置の製造方法 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960004079B1 (en) * | 1992-12-19 | 1996-03-26 | Lg Semicon Co Ltd | Contact hole forming method |
US5496771A (en) * | 1994-05-19 | 1996-03-05 | International Business Machines Corporation | Method of making overpass mask/insulator for local interconnects |
US5543348A (en) * | 1995-03-29 | 1996-08-06 | Kabushiki Kaisha Toshiba | Controlled recrystallization of buried strap in a semiconductor memory device |
DE59608588D1 (de) * | 1995-09-26 | 2002-02-21 | Infineon Technologies Ag | Selbstverstärkende DRAM-Speicherzellenanordnung |
US5905279A (en) * | 1996-04-09 | 1999-05-18 | Kabushiki Kaisha Toshiba | Low resistant trench fill for a semiconductor device |
US6025220A (en) | 1996-06-18 | 2000-02-15 | Micron Technology, Inc. | Method of forming a polysilicon diode and devices incorporating such diode |
US5732014A (en) * | 1997-02-20 | 1998-03-24 | Micron Technology, Inc. | Merged transistor structure for gain memory cell |
US6436760B1 (en) * | 2001-04-19 | 2002-08-20 | International Business Machines Corporation | Method for reducing surface oxide in polysilicon processing |
US6979651B1 (en) * | 2002-07-29 | 2005-12-27 | Advanced Micro Devices, Inc. | Method for forming alignment features and back-side contacts with fewer lithography and etch steps |
US7224024B2 (en) * | 2002-08-29 | 2007-05-29 | Micron Technology, Inc. | Single transistor vertical memory gain cell |
US6838723B2 (en) * | 2002-08-29 | 2005-01-04 | Micron Technology, Inc. | Merged MOS-bipolar capacitor memory cell |
US20040061190A1 (en) * | 2002-09-30 | 2004-04-01 | International Business Machines Corporation | Method and structure for tungsten gate metal surface treatment while preventing oxidation |
US6804142B2 (en) * | 2002-11-12 | 2004-10-12 | Micron Technology, Inc. | 6F2 3-transistor DRAM gain cell |
US7030436B2 (en) * | 2002-12-04 | 2006-04-18 | Micron Technology, Inc. | Embedded DRAM gain memory cell having MOS transistor body provided with a bi-polar transistor charge injecting means |
US6956256B2 (en) * | 2003-03-04 | 2005-10-18 | Micron Technology Inc. | Vertical gain cell |
US8583213B2 (en) * | 2006-09-12 | 2013-11-12 | General Electric Company | Combined MR imaging and tracking |
US9359865B2 (en) | 2012-10-15 | 2016-06-07 | Baker Hughes Incorporated | Pressure actuated ported sub for subterranean cement completions |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2070329B (en) * | 1980-01-25 | 1983-10-26 | Tokyo Shibaura Electric Co | Semiconductor memory device |
US4543595A (en) * | 1982-05-20 | 1985-09-24 | Fairchild Camera And Instrument Corporation | Bipolar memory cell |
US4416404A (en) * | 1983-01-26 | 1983-11-22 | Daniels Fitz A S C | Belt type garment for carrying tennis balls and the like |
JPS604253A (ja) * | 1983-06-23 | 1985-01-10 | Nec Corp | 半導体集積回路メモリ |
US4654825A (en) * | 1984-01-06 | 1987-03-31 | Advanced Micro Devices, Inc. | E2 prom memory cell |
CA1322250C (en) * | 1987-08-31 | 1993-09-14 | Loren Thomas Lancaster | Active dynamic memory cell |
JPH01145850A (ja) * | 1987-12-02 | 1989-06-07 | Oki Electric Ind Co Ltd | 半導体記憶装置 |
US4914740A (en) * | 1988-03-07 | 1990-04-03 | International Business Corporation | Charge amplifying trench memory cell |
JPH01255269A (ja) * | 1988-04-05 | 1989-10-12 | Oki Electric Ind Co Ltd | 半導体記憶装置 |
US5021849A (en) * | 1989-10-30 | 1991-06-04 | Motorola, Inc. | Compact SRAM cell with polycrystalline silicon diode load |
GB2238427A (en) * | 1989-11-24 | 1991-05-29 | Philips Electronic Associated | Thin film diode devices and active matrix addressed display devices incorporating such |
-
1992
- 1992-12-16 US US07/991,776 patent/US5308783A/en not_active Expired - Lifetime
-
1993
- 1993-11-25 KR KR1019930025241A patent/KR100308076B1/ko not_active IP Right Cessation
- 1993-12-08 DE DE69326312T patent/DE69326312T2/de not_active Expired - Fee Related
- 1993-12-08 EP EP93119790A patent/EP0602525B1/en not_active Expired - Lifetime
- 1993-12-08 AT AT93119790T patent/ATE184424T1/de not_active IP Right Cessation
- 1993-12-10 JP JP34132893A patent/JP3495071B2/ja not_active Expired - Fee Related
-
1998
- 1998-04-08 HK HK98102937A patent/HK1003755A1/xx not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014156923A1 (ja) * | 2013-03-27 | 2014-10-02 | ピーエスフォー ルクスコ エスエイアールエル | 半導体装置の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR940016777A (ko) | 1994-07-25 |
JP3495071B2 (ja) | 2004-02-09 |
KR100308076B1 (ko) | 2001-12-15 |
ATE184424T1 (de) | 1999-09-15 |
EP0602525B1 (en) | 1999-09-08 |
DE69326312T2 (de) | 2000-02-17 |
EP0602525A1 (en) | 1994-06-22 |
US5308783A (en) | 1994-05-03 |
HK1003755A1 (en) | 1998-11-06 |
DE69326312D1 (de) | 1999-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5482883A (en) | Method for fabricating low leakage substrate plate trench DRAM cells and devices formed thereby | |
US5627393A (en) | Vertical channel device having buried source | |
US4656731A (en) | Method for fabricating stacked CMOS transistors with a self-aligned silicide process | |
US8647944B2 (en) | Semiconductor device and semiconductor device manufacturing method | |
US5716881A (en) | Process to fabricate stacked capacitor DRAM and low power thin film transistor SRAM devices on a single semiconductor chip | |
JP3495071B2 (ja) | ゲインメモリセルのアレイの製造方法 | |
US5510287A (en) | Method of making vertical channel mask ROM | |
JPH07114263B2 (ja) | 折り返しビット線dramセル及び製造方法 | |
JP3132435B2 (ja) | 半導体装置の製造方法 | |
US5027172A (en) | Dynamic random access memory cell and method of making thereof | |
US20060134898A1 (en) | Semiconductor damascene trench and methods thereof | |
JPH10223858A (ja) | 半導体記憶装置及びその製造方法 | |
JP3075192B2 (ja) | 半導体装置の製造方法 | |
JPH0691210B2 (ja) | Dramセル用高性能トレンチコンデンサ | |
KR20010014812A (ko) | 반도체 장치 및 그 제조 방법 | |
KR100431709B1 (ko) | 수직방향의채널을갖는모스트랜지스터와그를포함하는반도체메모리셀및그제조방법 | |
EP0513532B1 (en) | Trench DRAM cell with substrate plate | |
US6001674A (en) | Method of eliminating buried contact trench in SRAM devices | |
JP3371196B2 (ja) | パターン形成方法 | |
JP3064984B2 (ja) | 半導体装置の製造方法 | |
JPH07321189A (ja) | 半導体装置および半導体装置の製造方法 | |
JPS62296465A (ja) | 半導体装置の製造方法 | |
JPH10189769A (ja) | 半導体装置およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20031016 |
|
LAPS | Cancellation because of no payment of annual fees |