JPH0368923B2 - - Google Patents

Info

Publication number
JPH0368923B2
JPH0368923B2 JP58241003A JP24100383A JPH0368923B2 JP H0368923 B2 JPH0368923 B2 JP H0368923B2 JP 58241003 A JP58241003 A JP 58241003A JP 24100383 A JP24100383 A JP 24100383A JP H0368923 B2 JPH0368923 B2 JP H0368923B2
Authority
JP
Japan
Prior art keywords
nickel
particles
suspension
feooh
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58241003A
Other languages
English (en)
Other versions
JPS60135506A (ja
Inventor
Takeshi Goto
Masao Imamura
Yoshiichi Inoe
Shinya Ando
Tsukasa Shibata
Tomyoshi Kubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP58241003A priority Critical patent/JPS60135506A/ja
Publication of JPS60135506A publication Critical patent/JPS60135506A/ja
Publication of JPH0368923B2 publication Critical patent/JPH0368923B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】
本発明は磁気記録媒体の主原料である磁性粉の
うち、最近特に記録密度及び感度、出力の向上が
期待される、強磁性気金属粉末の製造に関するも
のである。 磁性対(粉末)としては飽和磁化(σs)、抗磁
力(Hc)などの磁気特性が高いばかりでなく、
塗料中に於る分散性、更に、塗膜においても表面
状態が平滑でしかも緻密・均一に磁性粉が多量に
充填される事が必要である。つまり、金属粉の軸
比が大きく、かつ微細で、その粒度分布も狭いこ
とが条件となる。一般には、更に化学的安定性が
あり耐食性にすぐれていることがくり返し使用し
ても出力、感度のドロツプがなく、実用上重要で
ある。 本発明はこの様な課題を解決するものである。
すなわち、第1鉄塩水溶液とアルカリ水溶液とを
反応させて得られる水酸化物を酸化して針状晶の
ゲータイトを生成させ、脱水・還元工程での封孔
及び還元反応での針状の崩水防止及び粒子間の焼
結を防止するための耐熱成分としてのSiO2をゲ
ータイトの表面に披着させ、更に脱水・還元処理
で0.1〜0.5μmの鉄粉を製造する全工程に於いて、
種々の検討試験の結果、本発明に到達した。 すなわち、本発明は第1鉄塩水溶液をアルカリ
水溶液で中和して得られた水酸化物の懸濁液を酸
化性ガスと接触させ酸化することにより針状ゲー
タイト粒子を生成させ、脱水・還元処理を行い強
磁性金属粉末を製造する方法において、 (1) 鉄に対して1〜10重量%のニツケルを含む量
のニツケル塩を第1鉄塩水溶液に溶解させ、該
第1鉄塩水溶液をアルカリ水溶液で中和し、鉄
及びニツケルの水酸化物を生成させ、これを酸
化性ガスと接触させニツケル含有ゲータイトを
生成させる第1工程 (2) ニツケル含有ゲータイトの懸濁液からニツケ
ル含有ゲータイトを分離し酸洗してPHを7以下
に調整し中性又は酸性の懸濁液とする第2工程 (3) 得られた中性又は酸性の懸濁液に、鉄に対し
て1〜40重量%のニツケルを含むニツケル塩の
水溶液をアルカリ水溶液と共に添加し、ニツケ
ル含有ゲータイト粒子表面に水酸化ニツケルを
被覆し、過、水洗し、水懸濁液とする第3工
程 (4) 次いで、得られた水懸濁液に、鉄に対して2
〜10重量%のケイ素を含む量のケイ素化合物を
添加し、更にニツケル含有ゲータイトの粒子表
面にケイ素化合物を被覆する第4工程 を経て得たニツケル化合物及びケイ素化合物を被
覆したニツケル含有ゲータイトを600〜900℃で脱
水処理し、300〜550℃で水素還元することを特徴
とする強磁性金属粉末の製造法を提供するもので
ある。 次に本発明の各工程について具体的に説明す
る。 まず、第1鉄塩の水溶液にNi/Fe=1〜10%
(重量比)好ましくは2〜7%(重量比)になる
様にニツケルの水溶性塩を加え十分撹拌後、所定
量のアルキル水溶液を加えNi(OH)2とFe(OH)2
を混在する懸濁液を製造する。更に強力撹拌を継
続し、同時に窒素ガスを約1時間導入し、前述の
水酸化物のフロツクを破壊し、細く分散させると
ともに系内の溶存酸素を追い出して、次の均一酸
化反応に備える。酸化反応は液粘度制御で150〜
300CPになる様に連続的に、空気を吹き込み反応
速度をコントロールする、この様にしてニツケル
含有のα−FeOOH粒子を製造する。第1工程の
ニツケル添加量は、Ni/Fe(重量比)で1〜10
%、好ましくは2〜7%がよい。この範囲のニツ
ケル量を用いることにより、微細・針状粒子で軸
比も大きく、更に晶析時のα−FeOOH粒子間の
からみ(凝集)がなく、均一に分散しているα−
FeOOH粒子を得ることができる。 ニツケル添加量が1%未満、または10%を越え
ると、酸化反応でα−FeOOH粒子を晶析させる
際の液粘度が高くなつて、槽内の反応の均一化に
不利となる、上記目的が達せられないことがあ
る。なお、参考までにニツケル添加量を1%から
増加させてゆくと、前述の液粘度は次第に低下し
始め、Ni/Feが約6%で最小となり、再び上昇
し始める傾向にある。しかしNi/Feが2.5%以上
は、α−FeOOH粒子の表面に付着しているのみ
でこのまま脱水・還元すると成分の偏析した鉄粉
になりがちである。つまりこのニツケル含有のα
−FeOOHをPH7以下、好ましくはPH7〜3まで
過水洗をくりかえし、酸洗して副生するNaCl
などを十分除去(Na/Fe<0.1%)した後、再度
リパルプし、更に鉄に対して1〜40%(重量比)
のニツケル塩水溶液をアルカリ水溶液と供に添加
に被覆工程を行う。第一工程のニツケル共沈α−
FeOOHにおいて、前述のように一のニツケルは
α−FeOOH粒子の表面に付着あるいはα−
FeOOH粒子間の重なり部分に捕捉されているの
である。これらのニツケルは、ランダムな状態で
表面上に存在しているので、この状態のままで第
3工程、第4工程を行い、脱水し水素還元する
と、磁性鉄粉(α−Fe)の針状性を損なうばか
りか、鉄粉粒子間の焼結を引き起こす原因とな
る。又、この結果として、このような磁性鉄粉
は、磁性塗料の段階で分散性が著しく悪いものと
なり、実用性がない。 この際、カルボン酸などを同時に添加すると、
α−FeOOHの分散性は格段と向上し、アルカリ
水溶液添加により生成したNi(OH2)は、α−
FeOOH粒子の個々の表面に均一に付着し、浮遊
のNi(OH)2粒子が電子顕微鏡写真では認められ
なくなり、好ましい方法の1つである。第1工程
(α−FeOOH粒子の晶析工程)でのニツケル添
加の最大の目的は、微細で針状性がよく、しかも
粒子間のからみが少なく、粒度分布のシヤープな
α−FeOOH粒子を析出させることである。仮
に、Ni/Fe(重量比)=6%で第1工程処理を行
い、第2工程でα−FeOOH粒子の表面に付着し
たNi(OH)2を除去し、第3工程を省略して第4
工程のシリカ被着工程を経て製造したα−Feの
粒子は、微細・針状で塗料中での分散性はよい
が、保磁力が、1900Oe以上と著しく高くなり、
現在の一般家庭用ビデオ・デツキの記録媒体(磁
気テープ)の磁性粉としては、適正でなくなる。 従つて、第3工程でのニツケル添加の目的は、
民生用磁気テープ用として最適な磁気特性にする
ため、ニツケル添加、脱水及び還元を経て鉄−ニ
ツケル合金を発生させ、粒子の針状性を大きく損
うことなく、磁性鉄粉の保磁力を低減コントロー
ルすることである。更に、本処理により鉄粉の耐
蝕性も著しけ改良される。 第1工程のみで必要なニツケル量を全量添加し
ないで、第1工程と第3工程に分けて添加する理
由をまとめると、次のようになる。 ●第1工程でのニツケル添加…微細で針状性が高
く、かつからみ(凝集体)の少ないα−
FeOOH粒子を晶析させるため ●第3工程でのニツケル添加…第1工程で得られ
たα−FeOOH表面粒子に所定量のNi(OH)2
被覆し、脱水及び水素還元で得られる鉄粉の分
散性、針状性を損うことなく保磁力を低減させ
るため 第3工程でのニツケル添加量が、Ni/Fe(重量
比)=1〜40%と広範囲であるのは、目的に応じ
て使い分けるためである。但し、添加量が40%を
越えると合金化が難しく、かつ、磁気特性及び塗
料中での分散性が著しく悪化するため、実用的で
ないと判断される。 このニツケル被着処理を施してα−FeOOHを
再度過した後リパリプしてシリカ被着工程に移
る、シリカ被着におけるα−FeOOH、スラリー
の濃度は40g/以下、好ましくは20g/以下
にすると、α−FeOOH粒子の凝集体もなくな
り、均一に分散しシリカの被着効率は向上し、ニ
ツケル含有のα−FeOOH粒子の表面に均一に被
着されて、その後の脱水・還元に於けるα−
FeOOH粒子の形崩れとか、粒子間の焼結が防止
され、磁気特性がすぐれた鉄粉が得られるばかり
でなく比表面積も大きく、分散・配向性にもすぐ
れたものとなる。被着量としてはSi/Fe(重量
比)で2%以上、好ましくは4%以上とすること
が前述のシリカ被着の目的を達成することが解つ
た。シリカ被着の目的は、所期の目的で第1〜第
3工程で処理したα−FeOOHが、脱水及び還元
工程において形崩れ及び焼結を起こすことを防止
し、目標どおりの特性を有するα−Feを得るた
めに脱水焼成処理に先立つて粒子の表面に耐火性
セラミツク層を被覆し、保護するためである。 但しSi/Fe(重量比)が10%を越えると、保磁
力が若干低下するだけでなく、飽和磁化(σs)が
著しく低下し、記録媒体としての鉄粉の特徴の一
つを損なう結果となる。実用的には、Si/Fe=
4〜7%(重量比)が好ましい。シリカの原料と
してはシリカ・ゾルが、Naの含有量、反応系の
PHの上昇を考えると操作も簡単でシリカの被着効
率も高くほぼ全量が残留被着する。特にコロイ
ド・シリカの粒子の細いものが有効であるが、凡
用のコロイダルシリカでも充分通用するものであ
る。その他、水ガラスなどの珪酸塩も、スラリー
液の粘度も低下し分散性向上の点でシリカゲル以
上にシリカ被着状況は良好は効果が発揮される
が、製品のNa、PHと問題とか、シリカ被着収率
を向上するなどい於いて操作上の難しさがある。
この点に於いてコロイダルシリカ使用が有利であ
るが、スラリー濃度を小さくするなどの対策で、
水ガラス使用時の低粘度〜シリカの均一被着の効
果に匹敵する条件を付加することを留意する必要
がある。 以上のα−FeOOHの合成及び必要な成分を、
その表面に均一に被着させたニツケル含有のα−
FeOOHを脱水・還元工程で合金化させて適正は
保磁力(Hc)にする。α−FeOOH粒子の脱水焼
成工程及び水素還元工程における形崩れ及び粒子
間の焼結防止のために、シリカ被着を本発明の第
4工程において実施するのであるが、最終生成分
のα−Feの磁気特性の関係上、Siの添加量は前
述のように制約があり、形崩れ及び焼結防止だけ
のために多量のSiを添加するのは、好ましくな
い。 従つて、所期の目的の磁性鉄粉を得るために
は、脱水工程及び水素還元工程でも適正な条件設
定が必要となる。脱水工程では、脱水反応で生じ
た脱水孔を、粒子の形崩れを防止しつつ封孔及び
十分焼きしめることが必要で、これにより次の還
元工程での粒子破壊が防止できる。更に還元工程
では、粒子の体積収縮率が大きいため、粒子が形
骸を保ちつつ収縮させる条件設定も必要となる。
種々検討の結果、脱水条件特に保持時間1時間以
上好ましくは5時間以上保持することにより比表
面積(BET)及び飽和磁化(σs)の変化もなく
保持力のみが誓減する事を見い出した。 この時の水素還元条件は、反応終了時の水素ガ
スの露点を−45〜−55℃に設定し、400℃で約5
〜6時間(α−Fe2O3:約1.0Kg、H2:200N/
m)保持したものである。 尚、水素還元による鉄粉の特性値への影響は、
保磁力(Hc)−飽和磁化(σs)−比表面積
(BET)の総合バランスで、決定されるべき値で
あるし、各値は別個にそれ以前の処理工程の条件
によつても変化を浮ける要因がある。特に脱水処
理温度を700〜750℃の範囲に固定すれば、前述の
値は次の様に変動する。 Hc;保持時間の延長とともに低下。 σs;ほとんど変化なし。 BET; 〃 また水素還元温度に影響としては、温度の上昇
に伴つてσsは増大し、BETは逆に低下する。Hc
は(脱水温度によつて若干変動するが)、ある還
元温度範囲でピークがありその後低下してくる。
つまり725℃脱水では430℃でかすかにピークが見
られるが約400〜460℃でほぼフラツトの値であ
る。460℃以上の還元では、粒子の形崩れ及び粒
子間の焼結が起るものであるが、前述の温度範囲
でHc−σs−BETのバランスを考えコントロール
することは可能である。以上まとめると、脱水温
度を600〜900℃と限定したのは、600℃未満では
脱水焼成の効果、つまり脱水孔の封孔効果が不十
分で、次の水素還元工程で粒子の破壊が起こり、
得られた鉄粉は、分散性が悪く保持力も極めて低
く実用的でない。又、600℃以上では、次第に粒
子内の元素の拡散速度も大きくなり、封孔されや
すくなり、工業生産に向くようになるが、900℃
を越えると元素の拡散速度が極めて大きくなるた
め、粒子の形崩れ及び粒子間の焼結への展開し易
く、一方、これを避けるため、短時間で処理する
ことは、工業的規模では、特性のバラツキの原因
となるため、実用的でない。この点で、脱水温度
としては650℃〜800℃の範囲が実用上好ましい。 次に、水素還元温度は、出来るかぎり低温度で
還元し、更に封孔を促進させて分散性の改善を図
ると共にα−Feにして飽和磁化ができる限り大
きくすることが必要である。ただし、300℃未満
では、長時間を要するため、工業的規模では採用
できず、550℃を越えると飽和磁化(σs)は、短
時間に達成できるが、粒子の形崩れ(焼結)が防
止できず、保磁力の低下が著しけ、好ましくな
い。 したがつて、水素還元温度は、好ましくは350
℃〜500℃の範囲である。 以上の処理により製造した針状晶の磁性鉄粉
は、超微細であることも原因で、非常に活性で、
そのままでは自然性を有するに、磁気特性の経時
変化も激しく、一般に使用に耐えないため、有機
溶媒に還元後の鉄粉を浸漬し、空気中で徐徐に当
該有機溶媒を蒸発除去過程で鉄粉の表面で僅かづ
つ酸化反応を起こさせ、緻密な酸化被膜を形成す
る方法が良く知られているが、大量かつ、短時間
処理では充分量の有機溶媒中に鉄粉を浸漬させ、
酸化性ガスを吹きこみ酸化処理するのが一般的で
ある。その他、還元反応終了後反応炉内でN2
Arなどの不活性なガス中の酸素分圧を低濃度よ
り暫次増加させて、酸化被膜を形成させる気相酸
化法もある。本発明ではこの酸化被膜により安定
化処理法について特別制限するものでなく、いず
れの方法でも良い。 以下実施例により、本発明を更に具体的に説明
する。 実施例 1 電解鉄4.80Kgを塩酸水溶液(35%HCl20.1Kgを
水240Kgに混合)に溶解させ、Fe2+濃度20g/
のFeCl2水溶液240を作り、それにNi2+濃度20
g/のNiCl2水溶液14.4を加え、更にNaOH
水溶液(濃度172.5g/)240を加えアルカリ
当量で理論値の約6倍量(mol)とした。この
間、窒素ガス(N2)を10N/mの流量で強力
撹拌しながら導入した。 30分後に微細なFe(OH)2(及びNi(OH)2)粒子
が均一に分散・混合した懸濁液を得た。 次に窒素ガスを導入入しながら懸濁後を30分間
で常温より40℃まで昇温し、次に窒素ガスを空気
に交換し、10N/mの流量で馬てい型の吹管
(ノズル:2φm/m×50ケ)より、均一に導入し
酸化反応及び加水分解反応によりゲータイト(α
−FeOOH)を合成した。反応には2時間30分を
要した。 この反応はニツケルの添加量はNi/Feで6%
wtであり、反応終了時と粘度も低く(約
230CP)、合成したα−FeOOHは粒子径も小さく
(長軸:約0.35μm、軸比:約20)、粒子径を比較
的揃つた針状晶である。 この懸濁液を過・水洗し、残留するNaOH
及びNaClを除去した後、このケーキより2.55Kg
(水70%)を採取し水46でリパリプし、強力撹
拌のもとに硫酸水溶液を滴下し、PH3とし、α−
FeOOHに含有されない遊離のNi(OH)2粒を溶解
し、過・水洗を繰返した余分のNi分を除去し
たα−FeOOHのケーキ(ケーキ中のニツケル濃
度は、Ni/Fe(重量比)で3.5%)を得て、更に
水21でリパリプした。 次にこれに塩化ニツケルの水溶液(Ni2+で20
g/)を0.55添加し、強力撹拌のもとに、
NaOH溶液(濃度:173g/)0.15を滴下中
和し微細なNi(OH)2としてα−FeOOHの表面に
析出させた。過水洗によりPH9以下として全体
で鉄との重量比で約6%のニツケルを含有するα
−FeOOHを合成した。更にこのケーキに水46
を加え、強力撹拌のもとにリパリプし、α−
FeOOHを均一に分散させコロイダルシリカ(日
産化学スノーテツクス−30SiO2≒30〜31%wt)
を約460ml添加した。(シリカ添加量でSi/Fe=
4%wt)特殊機械工業社製のホモミキサーS.T型
で約3000RPMでシリカを均一に懸濁させた後
過してSiO2被着のα−FeOOHのケーキを得た。
過後、約100℃で乾燥し、粉砕機(東京アトマ
イザー製造社製のアトマイザー・ミル)で解砕
後、大気中で725℃に設置したマツフル炉内で5
時間保持しα−Fe2O3とした。 次に400℃にて水素ガスにより還元し、約0.48
Kgの磁性鉄粉を生成した。水素還元炉は、水素ガ
スを流動性に使用した流動層型炉である。 生成した鉄粉は長軸が0.15μm、軸比13の針状
で、非常に活性であるため、トルエンに浸漬し、
徐々に空気中で乾燥し、安定化した。粉末の磁気
特性及び比表面積を第1表に示す様に極めて秀れ
た特性値を有するものである。また第1図に得ら
れた鉄粉の電子顕微鏡写真(倍率:27000倍)を
示す。 実施例 2 実施例1の酸化、加水分解で得たα−FeOOH
の一部を過・水洗を繰り返し、PH<10のα−
FeOOHスラリーとし、実施例1と同様に酸洗浄
〜力・水洗により約2.6Kg(水分73%)のα−
FeOOHケーキ(ケーキ中のニツケル濃度は、
Ni/Fe(重量比)で3.35%)を得た。次にこれに
水21を加え強力撹拌のもとにリパリプした後、
塩化ニツケルの水溶液(Ni2+で20g/)を1.64
添加し、十分撹拌した後、苛性ソーダ液(173
g/)0.44で中和し、微細なNi(OH)2として
α−FeOOHの表面に析出さてた。過・水洗に
よりPH9以下として、全体で鉄との重量比で10%
のニツケルを含有するα−FeOOHを合成した。 更に、このα−FeOOHをリパルプし、約16
g/のスラリー濃度になる様に水を加えた後、
珪酸ソーダ(JIS3号)を加え、希硝酸水溶液を滴
下し最終的にPHを7として鉄との重量比(Si/
Fe)で約6%になる様に前述のNi含有のα−
FeOOHの表面にSiO2を被着させた。 過後乾燥し、実施例1と同じ装置で脱水
(725℃×10Hr)還元して鉄粉を得た。第1表に
磁気特性値を記す。 実施例 3 ゲータイト合成に於ける空気の吹き込み量を10
/mより5/mに変更し、また合成後のNi
の含有量をNi/Feで約15%となる様に塩化ニツ
ケルを添加し、中和した以外は全て実施例2と同
様の方法で鉄粉を生成した。第1表に磁気特性を
示す。 比較例 1 実施例3とNi塩の添加を除く処理条件を全く
同一にし、Ni共沈及びその後のNi被着を省略し
たα−FeOOHを合成し、脱水・還元により鉄粉
を製造した。鉄粉は、粒形の不揃い及び枝分れが
目立ち、充填性が悪く、分散性に劣るものであ
る。第1表に得られた鉄粉の磁気特性を示し、第
2図に電子顕微鏡写真(倍率:27000倍)を示す。
【表】 比較例 2 実施例1と同一条件で第3工程まで施したニツ
ケル被着α−FeOOHケーキ(Ni/Fe(重量比)=
6.0%)に水46を加え、リパルプし、コロイダ
ルシリカ(日産化学スノーテツクス−30SiO2
を約100ml添加した(Si/Fe(重量比)=1%)。 それ以外の工程の処理条件を全く同一にして、
脱水還元により鉄粉を生成した。第2表に、磁気
特性を示すが、脱水及び還元時の粒子形崩れ及び
焼結のため、磁気特性が著しく劣る。これは、シ
リカの被着量が低すぎるためである。 比較例 3 実施例1において、ケイ素化合物被着量をSi/
Fe(重量比)=11%とした以外は、他の工程の処
理条件を全く同一にして磁性鉄粉を生成した。 鉄粉は、遊離のSiO2が多く点在し、分散性も
悪く、更に第2表に示すように飽和磁化の著しく
低いものであつた。 比較例 4 実施例1の第3工程のニツケル被着工程を省略
した以外は、他の処理を全く同一にして鉄粉を製
造した。第3表に、得られた鉄粉の磁気特性を示
すが、針状性及び分散性は優れていたものの、保
磁力が著しく実用的でなかつた。 比較例 5 実施例1の第1工程のニツケル共沈工程を省略
し、更に第3工程のニツケル被着工程でのニツケ
ル添加量をNi/Fe(重量比)=50%にした以外は、
全く同一の条件で処理した後、脱水還元により鉄
粉を製造した。 得られた鉄粉は、針状性が悪く、更に粒子間の
焼結も認められた。第3表に磁気特性を示すが、
保磁力及び飽和磁化も著しく低い。 比較例 6 実施例1の第1工程のニツケル共沈時のニツケ
ル添加量をNi/Fe(重量比)=12%にした以外は、
その他の処理条件を全く同一にし、脱水還元によ
り鉄粉を製造した。 第3表に磁気特性を示すが、得られた鉄粉の組
成は、実施例2に類似する値であつたものの、鉄
粒子の針状性及び分散性が劣つていた。 比較例 7 実施例1で、第2工程の酸洗浄工程を省略した
以外は、その他の処理条件を全く同一にし、α−
FeOOHを合成し、更に脱水還元により鉄粉を製
造した。 第3表に鉄粉を磁気特性を示すが、粒子間の焼
結が著しく、分散性に劣るものであつた。 更に、この比較例7で得られた鉄粉と実施例1
で得られた鉄粉とからそれぞれ磁気シートを作成
し、その特性を測定したものを第4表に示す。
【表】
【表】
【表】
【表】 【図面の簡単な説明】
第1図は本発明の一実施例で得られた磁性鉄粉
の電子顕微鏡写真を示すもので、第2図は比較例
で得られた磁性鉄粉の電子顕微鏡写真を示すもの
である。倍率はいずれも27000倍である。

Claims (1)

  1. 【特許請求の範囲】 1 第1鉄塩水溶液をアルカリ水溶液で中和して
    得られた水酸化物の懸濁液を酸化性ガスと接触さ
    せ酸化することにより針状ゲータイト粒子を生成
    させ、脱水、還元処理を行い強磁性金属粉末を製
    造する方法において、 () 鉄に対して1〜10重量%のニツケルを生成
    させ、これを酸化性ガスと接触させニツケル含
    有ゲータイトを生成させる第1工程 () ニツケル含有ゲータイトの懸濁液からニツ
    ケル含有ゲータイトを分離し酸洗してPHを7以
    下に調整し中性又は酸性の懸濁液とする第2工
    程 () 得られた中性又は酸性の懸濁液に、鉄に対
    して1〜40重量%のニツケルを含むニツケル塩
    の水溶液をアルカリ水溶液と共に添加し、ニツ
    ケル含有ゲータイト粒子表面に水酸化ニツケル
    を被覆し、過、水洗し、水懸濁液とする第3
    工程 () 次いで、得られた水懸濁液に、鉄に対して
    2〜10重量%のケイ素を含む量のケイ素化合物
    を添加し、更にニツケル含有ゲータイトの粒子
    表面にケイ素化合物を被覆する第4工程 を経て得たニツケル化合物及びケイ素化合物を被
    覆したニツケル含有ゲータイトを600〜900℃で脱
    水処理し、300〜550℃で水素還元することを特徴
    とする強磁性金属粉末の製造法。
JP58241003A 1983-12-22 1983-12-22 強磁性金属粉末の製造法 Granted JPS60135506A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58241003A JPS60135506A (ja) 1983-12-22 1983-12-22 強磁性金属粉末の製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58241003A JPS60135506A (ja) 1983-12-22 1983-12-22 強磁性金属粉末の製造法

Publications (2)

Publication Number Publication Date
JPS60135506A JPS60135506A (ja) 1985-07-18
JPH0368923B2 true JPH0368923B2 (ja) 1991-10-30

Family

ID=17067879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58241003A Granted JPS60135506A (ja) 1983-12-22 1983-12-22 強磁性金属粉末の製造法

Country Status (1)

Country Link
JP (1) JPS60135506A (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265307A (ja) * 1985-09-14 1987-03-24 Mitsui Toatsu Chem Inc 磁性鉄粉の製造方法
JP2582764B2 (ja) * 1986-02-05 1997-02-19 バスフ アクチェン ゲゼルシャフト 本質的に鉄から成る針状強磁性金属粉末の製造方法
US4970124A (en) * 1988-05-11 1990-11-13 Eastman Kodak Company New magnetic metallic particles using rare-earth elements
JP2735885B2 (ja) * 1989-07-05 1998-04-02 関東電化工業株式会社 磁気記録用金属磁性粉末の製造方法
JP4534085B2 (ja) * 2004-03-24 2010-09-01 Dowaエレクトロニクス株式会社 高密度化に対応した塗布型磁気記録媒体用磁性粉末およびその製造方法
JP2014231624A (ja) * 2013-05-29 2014-12-11 株式会社デンソー Fe−Ni合金粉末の製造方法およびFe−Ni合金粉末並びに磁石
US11202738B2 (en) 2015-10-05 2021-12-21 M. Technique Co., Ltd. Metal oxide particles and method of producing the same
JPWO2017134910A1 (ja) 2016-02-02 2018-11-22 エム・テクニック株式会社 色特性を制御された酸化亜鉛粒子、及びその製造方法並びにその酸化亜鉛粒子を含む塗布用組成物
US10906097B2 (en) 2016-06-02 2021-02-02 M. Technique Co., Ltd. Ultraviolet and/or near-infrared blocking agent composition for transparent material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134858A (en) * 1976-05-07 1977-11-11 Kanto Denka Kogyo Kk Method of making magnetic recording magnetic powder containing iron as main constituent
JPS54122664A (en) * 1978-03-16 1979-09-22 Kanto Denka Kogyo Kk Production of magnetic powder for magnetic recording based on iron
JPS56156706A (en) * 1980-05-06 1981-12-03 Hitachi Maxell Ltd Manufacture of magnetic metallic powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134858A (en) * 1976-05-07 1977-11-11 Kanto Denka Kogyo Kk Method of making magnetic recording magnetic powder containing iron as main constituent
JPS54122664A (en) * 1978-03-16 1979-09-22 Kanto Denka Kogyo Kk Production of magnetic powder for magnetic recording based on iron
JPS56156706A (en) * 1980-05-06 1981-12-03 Hitachi Maxell Ltd Manufacture of magnetic metallic powder

Also Published As

Publication number Publication date
JPS60135506A (ja) 1985-07-18

Similar Documents

Publication Publication Date Title
JPH02167810A (ja) ε’炭化鉄からなる磁性超微粒子及びその製造法
JPS5853688B2 (ja) Fe−Mgを主成分とする針状晶合金磁性粒子粉末の製造法
JPH0368923B2 (ja)
EP0041257B1 (en) Process for preparing ferromagnetic particles comprising metallic iron
CA1132008A (en) Metallic iron particles for magnetic recording produced by reducing an iron oxide precursor coated with an antimony compound
JPS62241827A (ja) 磁気記録用強磁性微粉末の製造方法
JPH10226520A (ja) 水和酸化鉄及び強磁性酸化鉄の製造方法
JPS6021307A (ja) 強磁性金属粉末の製造方法
JP2000302445A (ja) 紡錘状ゲータイト粒子粉末、紡錘状ヘマタイト粒子粉末、及び鉄を主成分とする紡錘状金属磁性粒子粉末、並びにそれらの製造法
JPS6122604A (ja) 磁性金属粉末およびその製造方法
JP3087778B2 (ja) 針状ゲータイト粒子粉末の製造法
JPH02175806A (ja) 磁気記録用金属磁性粉末の製造方法
JP2885253B2 (ja) 紡錘状を呈したゲータイト粒子粉末の製造法
JPS63140005A (ja) 強磁性金属微粒子粉末の製造法
JPS5919162B2 (ja) 鉄−コバルト合金強磁性粉末の製造方法
JPS5931003A (ja) 金属磁性粉末およびその製造方法
JP2740922B2 (ja) 磁気記録材料用金属磁性粉末の製造方法
JPS6350842B2 (ja)
JP2023138411A (ja) コバルトフェライト粒子の製造方法とそれにより製造されたコバルトフェライト粒子
JPS6149252B2 (ja)
JPS61186410A (ja) 強磁性金属粉末の製造方法
JPS6163921A (ja) 磁性粉末およびその製造方法
JP3087777B2 (ja) 針状ゲータイト粒子粉末の製造法
KR100241694B1 (ko) 강자성 산화철 분말 및 그 제조방법
JPS58213804A (ja) 強磁性金属微粒子の製造法