JPH0363348B2 - - Google Patents

Info

Publication number
JPH0363348B2
JPH0363348B2 JP60096770A JP9677085A JPH0363348B2 JP H0363348 B2 JPH0363348 B2 JP H0363348B2 JP 60096770 A JP60096770 A JP 60096770A JP 9677085 A JP9677085 A JP 9677085A JP H0363348 B2 JPH0363348 B2 JP H0363348B2
Authority
JP
Japan
Prior art keywords
culture
cells
medium
tank
culture tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60096770A
Other languages
English (en)
Other versions
JPS61257181A (ja
Inventor
Michuki Tokashiki
Kimihiko Hamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP60096770A priority Critical patent/JPS61257181A/ja
Priority to DE8686106201T priority patent/DE3683678D1/de
Priority to EP86106201A priority patent/EP0201086B1/en
Publication of JPS61257181A publication Critical patent/JPS61257181A/ja
Publication of JPH0363348B2 publication Critical patent/JPH0363348B2/ja
Priority to US07/870,421 priority patent/US5447853A/en
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/16Animal cells
    • C12N5/163Animal cells one of the fusion partners being a B or a T lymphocyte
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/18External loop; Means for reintroduction of fermented biomass or liquid percolate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/02Separating microorganisms from the culture medium; Concentration of biomass
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/10Separation or concentration of fermentation products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/20Transition metals
    • C12N2500/24Iron; Fe chelators; Transferrin
    • C12N2500/25Insulin-transferrin; Insulin-transferrin-selenium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/90Serum-free medium, which may still contain naturally-sourced components

Description

【発明の詳細な説明】
(a) 産業上の利用分野 本発明は動物細胞の培養装置に関するものであ
る。更に詳しくは有用物質を産生する動物細胞を
培養し、有用物質を高められた濃度で培養するた
めの装置に関するものである。 (b) 従来技術 細胞培養技術は、例えばウイルス、ワクチン、
インターフエロンの如き抗ウイルス剤あるいはホ
ルモンの如き生物薬品の製造にとつて重要であ
る。更に近年特定タンパク質などを標的とするモ
ノクローナル抗体の生産は抗体産生細胞とミエロ
ーマによるハイブリドーマの培養によるものであ
り、その技術の解決は工業的に重要なテーマであ
る。 従来、細胞培養は一般にシヤーレ試験管、培養
びんなどを用いて実験室的規模で行なわれてい
る。 一方近年前記した如き有用物質の産生を目的と
して工業的な細胞の培養法及びそのための装置と
して、いくつかの提案がなされている。これらの
提案は、大きく分けて付着培養(anchorage
dependent culture)と浮遊培養、つまりサスペ
ンジヨン培養(suspension culture)との2つの
方式に分類されるが、これらの方式は培養される
細胞の特性によつていずれかに決められる。 本発明はサスペンジヨン型の細胞培養における
装置に関する。そのサスペンジヨン培養によつて
細胞を培養する方法に関し、最近いくつかの提案
があり、例えばマグネテイツクスターラーもしく
は機械的に駆動されるシヤフト上の羽根車によつ
て、スピナーフラスコの中に調整された撹拌機能
を設けた培養方法などが提案されている(例えば
特開昭57−65180号公報参照)。 しかし上記の方法においては、一定量の栄養分
の中で培養されるため細胞の生長増殖は比較的低
い密度で停止する。 このような細胞のサスペンジヨン培養におい
て、大量に且つ高密度で培養するために、一般に
新しい培養液を培養槽中へ供給しつつ生育阻害物
質を含んだ古い培養液を培養槽外へ排出しながら
培養する方式が提案され、この方式は通称パーヒ
ユージヨン方式と言われている。この方式を用い
て培養するに当つて重要なことの1つはサスペン
ジヨン液中の生細胞と前記古い培養液とを効率よ
く分離し、古い培養液を培養槽外へ取り出し、培
養槽内の細胞の生育環境を最適条件下に維持する
ことである。 さらに、細胞培養により有用物質を得るために
工業的に重要なことは、目的とする有用物質を高
い濃度で得ることである。一般に細胞培養におい
て培養液中の細胞が産生する有用物質の濃度は極
めて低く、培養液から有用物質を分離、精製する
ために煩雑な手段を要し、それが回収率の低下、
コストアツプの原因の1つになつている。 一方培養を高い細胞密度で行なうことにより、
ある程度有用物質の濃度を高くすることは可能で
あるが、細胞を高密度で培養するためには前述し
た如く新しい培養液を供給しながら、古い培養液
を培養系外へ排出しなければならず、高密度によ
る細胞培養技術においては、有用物質の濃度を高
くするためには自ら限界があつた。 (c) 発明の目的 そこで本発明の目的は、動物細胞の培養によつ
てそれが産生する有用物質をより高められた濃度
で得ることができる培養装置を提供することであ
る。 本発明の他の目的は、有用物質を高い濃度で含
む培養液を得ると共にそれを実施するための工業
的に有利な培養装置を提供することにある。 本発明のさらに他の目的は、特に抗体を高濃度
で得るための簡単で工業的価値のある細胞培養装
置を提供することにある。 本発明のさらに他の目的は以下の説明から明ら
かとなるであろう。 (d) 発明の構成 本発明の研究によれば、前記した如き本発明の
目的は有用物質を産生する動物細胞をサスペンジ
ヨン状態で培養する装置において、 (a) 動物細胞をサスペンジヨン状態で培養する潅
流培養装置、 (b) 上記潅流培養装置において、培養槽中のサス
ペンジヨン培養液から動物細胞と分離された培
養液を限外過装置へ送る導管、 (c) 前記分離された培養液を、産生された有用物
質を含む高分子量成分とそれ以外の低分子量成
分とに分画するための限外過装置、および (d) 前記限外過装置により分画された高分子量
成分の少なくとも一部を培養槽へ循環する導管
を少なくとも有することを特徴とする動物細胞
の培養装置。 により達成されることがわかつた。 かかる本発明によれば、目的とする有用物質を
高濃度で得ることが可能となり、また培養操作も
簡単であるので工業的に有利である。 本発明の細胞培養装置はサスペンジヨン状態で
培養する潅流培養に適用されるが、サスペンジヨ
ン状態とは、水性媒体中で細胞それ自体が浮遊し
ながら、あるいは細胞を微小担体(マイクロキヤ
リアー)に担持して浮遊しながら、またマイクロ
カプセル中で細胞が生育されるような種々の浮遊
培養をいう。殊に本発明は、細胞自体を浮遊させ
ながら培養する方式に有利に用いられる。 本発明の培養装置において、培養する動物細胞
としては、サスペンジヨン状態にて増殖可能なも
のであればよく、天然の動物細胞のみならず、人
為的あるいは遺伝子操作により変性された細胞例
えばハイブリドーマであつてもよい。 また細胞として、IL−2の如きリンホカイン
を産生するリンパ球由来の細胞であつてもよくイ
ンターフエロン(IFN)の如き有用な生理活性物
質を産生する2倍体細胞であつてもよい。さらに
種々のモノクローナル抗体を産生する細胞であつ
てもよく、本発明はかかるモノクローナル抗体を
産生する細胞の培養に対してモノクローナル抗体
を高い濃度で得る目的のために特に適している。 本発明におけるサスペンジヨン状態の細胞培養
において培養槽中においては、培養しようとする
細胞が培養液中に浮遊した状態で潅流培養され
る。培養液は実質的に水よりなる水性媒体に、
種々の無機塩、ビタミン類、補酵素、ブドウ糖、
アミノ酸、抗生物質などの通常細胞培養に使用さ
れる添加成分が加えられている。また培養液には
血清を加えることもできるし、血清を用いない所
謂無血清培地を培養液として使用することもでき
る。 本発明の培養装置を用いた潅流培養方法におい
ては先ずサスペンジヨン培養液から動物細胞と培
養液とを分離し、動物細胞は培養槽へもどされる
[工程(A)]。この動物細胞と培養液との分離は、後
述する第1図乃至第4図に示されたように培養槽
内(例えばサスペンジヨン培養液中)で行なつて
もよく、また培養槽からサスペンジヨン培養液を
一旦取り出し培養槽外で動物細胞と培養液とを分
離し動物細胞は培養槽へもどす方式であつてもよ
い。これらはいずれの場合であつても動物細胞と
培養液との分離は細胞が生育した状態で、分離さ
れた培養液中に細胞が実質的に混入しない方法で
分離できればよく、種々の分離手段が採用でき
る。その手段としては例えば遠心分離、回転フイ
ルター、固定フイルター、ホローフアイバモジユ
ールなどを用いることができる。さらに第1図乃
至第4図に示すように培養槽内にセトリングゾー
ンを設けそのゾーン内で動物細胞と培養液とを分
離し、その培養液を培養槽外へ取り出すこともで
きる。上記の如き動物細胞と培養液との分離は無
菌状態で実施される。例えば動物細胞がハイブリ
ドーマである場合一般にその大きさは10μ以上で
あるから、フイルターによつて分離するためには
フイルターの細孔径が5μ以下のものであればよ
い。ここで、動物細胞を培養する培養機能および
動物細胞と培養液とを分離する機能を有する装置
を潅流培養装置という。 本発明装置を用いた培養方法において、前述の
如く工程(A)においてサスペンジヨン培養液から動
物細胞とそれを含まない培養液とを分離し、動物
細胞は培養槽にもどされ、一方培養液は培養槽外
へ取り出される。次にかくして分離された培養液
を限外過によつて、産生された有用物質を含む
高分子量成分とそれ以外の低分子量成分とに分画
される[工程(B)]。この工程(B)における限外過
は通常限外過膜として使用されている分離手段
が採用される。 この工程(B)の限外過の分画能は、産生された
有用物質の分子量、所望する分画速度などにより
左右されるが、有用物質を実質的に透過しない膜
が好ましく、就中分子量約15万のものを実質的に
透過しない膜、殊に分子量約10万のものを透過し
ない膜を用いるのが望ましい。例えばモノクロー
ナル抗体を産生させ、高濃度で得るためには、分
子量分画50K以下の限外過膜を用いる場合モノ
クローナル抗体の洩れは実質的に無視でき、また
分子量分画10K以上の限外過膜を用いると還流
比も大きく取ることができ能率的に過すること
ができる。 一方、分子量分画100Kおよびそれ以上の限外
過膜を用いると膜を透過するモノクローナル抗
体の量が無視できなくなる。 本発明においては特に有用物質がIgG抗体であ
つて限外過は分子量約15万のものを実質的に透
過しない膜を使用するのが有利である。さらに有
用物質がIgMであつて限外過は分子量約100万
のものを透過しない膜を用いるのが有利である。 工程(B)における限外過は、過面を容易に洗
滌、再生できる方式、つまりホールド・アツプが
少ない方式が好ましく、その形式はホロー・フア
イバー、スパイラル、チユブラー、プレートアン
ドフレームなどが挙げられるが就中ホロー・フア
イバー、プレートアンドフレートの形式が望まし
い。 かくして前記工程(B)で分画された有用物質を含
む高分子量成分の少なくとも一部は培養槽へ循環
される[工程(C)]。モノクローナル抗体を産生さ
せ、工程(B)でこれを含む成分を分画し培養槽に循
環させてサスペンジヨン培養液中のモノクローナ
ル抗体濃度が高くなつても(例えば1mg/ml以
上)、そのこと自体細胞の生育、増殖には特に悪
い影響は与えない。 上記工程(C)において、前工程(B)から分画された
有用物質を含む高分子量成分は培養槽中のその濃
度や細胞の生育状態を監視しながら、培養槽中へ
循環する割合を決定すればよい。すなわち一般に
サスペンジヨン培養液中の細胞密度が低く且つ有
用物質の濃度も低い場合には全量乃至ほとんどを
培養槽中へ循環することが望ましく、一方サスペ
ンジヨン培養液中の有用物質の濃度が比較的高く
なるに従つて、その循環割合を少なくし、他は系
外へ取り出すことが望ましい。 本発明者の研究によれば、工程(B)で分画された
もう一方の低分子量成分は、これをそのまま系外
へ取り出すこともできるが、その中に含まれる生
育阻害物質を除去してその少なくとも一部を培養
槽へ循環すれば工業的に極めて有利に本発明を実
施することがわかつた。すなわち、前記低分子量
成分中には、アンモニアなどの細胞が産生した生
育阻害物質の他に、生育に必要な栄養成分、成長
因子などの有効成分を多く含まれており、前記低
分子量成分中の生育阻害物質を主として除去し、
残余を培養液へ循環することにより、新しい培養
液の使用を低減でき、また成長因子などの使用量
を少なくすることができる。殊に血清添加培養を
用いる場合、血清の使用割合を大巾に低下させる
ことができる。 本発明の他の効果は、従来の潅流培養装置を用
いた方法に比較して培養特性の向上が期待される
ことである。すなわち従来の潅流培養装置を用い
た方法と本発明の装置を用いた培養方法とを、培
養液置換率を一定として培養した結果を比較して
みると、本発明の装置を用いた場合の方が細胞密
度が高くなり、また細胞密度が一定になるように
培養した結果を比較してみると本発明の装置を用
いた場合の方が培養液置換率が低い値で目標とす
る細胞密度を達成しうることが可能である。この
効果の大きさは使用する細胞、培地の種類、培養
条件により異なる。この現象は本発明の装置を用
いて培養する方法を実際に実施してはじめて明ら
かになつたことである。 さらに、本発明培養装置に、前記工程(B)で分画
された低分子量成分から生育阻害物質を除去する
装置を付加し、残余の成分の少なくとも一部を培
養槽へ循環する[工程(D)]ことは、工業的に一層
有利である。この工程(D)において、低分子量成分
から生育阻害物質を除去する装置としては、特に
制限を受けないが一般に生育阻害物質はアンモニ
アの如く前記低分子量成分中ではより低分子量の
物が多く一方成長因子などの高価なものは比較的
分子量が大きいのでそのことを利用して膜による
分離装置あるいは吸着による分離装置を採用する
のが好ましい。 例えば血清添加培地を培養する場合、この工程
(D)において、10Kの分画膜を用いて生育阻害物質
含有成分を除去し、他を培養槽へ循環すれば血清
の使用割合を大巾におさえることが可能となる。 一方無血清培地(例えばITES)を用いて培養
する場合、10Kの分離膜を用いると生長因子とし
てのトランスフエリンは高回収率で再使用可能で
あり、インシユリンは部分的に回収され、1Kの
分離膜を用いるとトランスフエリン、インシユリ
ンは一層高い回収率で再使用できる。しかしエタ
ノールアミン、セレナイトなどの低分子量物はか
かる分離膜では生育阻害物質と共に素通りし回収
は困難である。 また、他の装置としては、工程(A)において分離
された培養液からその中に含まれるアンモニアを
除去し、その少なくとも一部は培養槽へ循環され
るための装置[工程(E)]等がある。この工程(E)に
おけるアンモニア除去装置は、前述の工程(D)にお
ける生育阻害物質を除去する装置と同様に膜によ
る分離装置あるいは吸着による分離装置を採用す
ることが好ましい。 そして、更に前工程(E)における他の一部は限外
過によつて、産生された有用物質を含む高分子
量成分と、それ以外の低分子量成分とに分画され
[工程(B)]、分画された有用物質を含む高分子量成
分の少なくとも一部は培養槽へ循環される[工程
(C)]。 また、更に他の工程としては、工程(A)において
分離された培養液からその少なくとも一部はその
中に含まれるアンモニアを除去し培養槽へ循環さ
れ[工程(E)]、前工程(A)における他の一部は限外
過によつて、産生された有用物質を含む高分子
量成分と、それ以外の低分子量成分とに分画され
[工程(B)]、分画された有用物質を含む高分子量成
分の少なくとも一部は培養槽へ循環される[工程
(C)]。 また本発明の装置を用いた培養方法を実施する
に当つて、新しい培養液の供給と、古い培養液の
排出とは、培養槽中の液面の水準がほぼ一定とな
るように維持することが望ましいが、必ずしもそ
の必要はない。新しい培養液の供給と古い培養液
の排出とは、それぞれ独立して、連続的に行なう
こともできまた間歇的に行なうこともできる。 本発明の培養装置を用いた培養方法において、
サスペンジヨン液中の酸素濃度を一定に維持する
ために、酸素を供給する方法としては、前述の如
く、サスペンジヨン液中へ酸素または酸素含有ガ
スを直接供給してもよく、また他の供給手段によ
つてもよい。他の供給手段としては、例えば酸素
キヤリアーを用いる方法である。酸素キヤリアー
としては、水と実質的に混合しない酸素を溶解し
得る液状の化合物が使用され、その例としては、
人工血液の素材として使用されるような種々のフ
ルオロカーボンが挙げられる。かようなフルオロ
カーボンを酸素供給手段として使用する場合に
は、酸素を溶解させたフルオロカーボンをサスペ
ンジヨン液中の上部から液滴状または薄膜状で添
加すればよい。 培養を効率的に行なうために、新しい培養液お
よび酸素などをサスペンジヨン液中へ均一に供給
し、一方古い培養液を槽外へ排出する必要があ
り、そのためサスペンジヨン液はよく撹拌されて
いることが望ましい。撹拌装置としては、撹拌翼
の回転による如き機械的に行なわれる撹拌装置、
また案内筒を用いたドラフト効果による撹拌装
置、この他前記した如き酸素供給と撹拌を同時に
行うことのできる酸素キヤリアーなどが挙げられ
る。もちろんこれら撹拌手段を2つ以上併用する
こともできる。 また培養は、培養槽の有効培養容積(V)に対
して新しい培養液を供給する割合(新しい培養液
の供給量/V)は一日当り0.2〜10、好ましくは
0.5〜5の範囲とするのが適当である。 (e) 発明の効果 かくして本発明によれば、培養特性を向上させ
ることが可能であり、細胞密度の向上および有用
物質殊にモノクローナル抗体を高い濃度で含有す
る培養液を比較的簡単な手段で得ることができ
る。またある場合には血清、成長因子などの高価
な物質を大巾に節約することが可能となる。 以下実施例を掲げて本発明を詳述する。 実施例 1 (1) 培養装置 添付第1図に示す培養システムを使用した。
培養槽AP−1は図のように外壁の内側に隔壁
によつて仕切られたセトリングゾーンが設けら
れ、その上部には培養液の排出口を有してお
り、正味培養容積は約200mlである。図のAP−
2はプレートアンドフレーム型限外過装置で
ある。限外過膜はミリポア社製ペリマンラボ
カセツト用限外過膜を使用した。使用した膜
の公称分画分子量は実験データの項に記する。 (2) 培養液 基礎培地として、RPMI1640培地、ハム−12
培地およびダルベツコ変法イーグル培地を2:
1:1で混合したもの(以下RDFと称する)
を用い増殖因子としてインスリン、トランスフ
エリン、エタノールアミン、亜セレン酸を加え
た。エタノールアミンの添加量は、10μg/
ml、亜セレン酸は2×10-8mole/であり、
インスリンおよびトランスフエリンについては
培地αにおいてはインスリン2μg/ml、トラ
ンスフエリン10μg/mlであり培地βにおいて
はインスリン0.2μg/ml、トランスフエリン1μ
g/mlである。 (3) 培養方法および結果 あらかじめオートクレーブ滅菌した前記培養
槽に正味培養容積が約200mlになるように培養
液αを送入し、これをマウスミエローマ細胞
P3U1株を親株とするマウス×マウスハイブリ
ドーマ4C10B6株を4×105個/mlとなるように
播種した。この細胞はIgG産生株である。培養
槽では炭酸ガス5%を含む酸素ガスが(溶存酸
素が3ppmとなるように)吹込みノズルを通
して自動的にコントロールされて送入されてい
る。培養槽中は37℃に保持されている。培養槽
中にはマリン型撹拌翼が取付けられており撹拌
速度は60rpmであつた。 播種後4日間は回分培養を行なつた。第1表
に示すように培養開始後4日目に細胞密度は
1.1×106個/mlに達し、回分培養では最高密度
に到達したと判断しパーヒユージヨンを開始し
た。パーヒユージヨンの尺度として正味培養容
積の1日当りの置換率として表わし実験結果を
併記する。すなわちポンプP−、P−、P
−を駆動しバルブXを開、バルブYを閉とし
て、培養槽内で細胞と分離された培養液をライ
ンから抜きとり、その量と同じ量の新培地α
をラインから連続的に送入した。限外過装
置AP−2には分子量分画1000の限外過装置
がセツトされており、ラインを通過した液
を、またラインからは膜を通過しなかつた液
を系外に取出した。時間の経過とともに細胞密
度が上昇し、10日には12×106個/mlに達した。
この時点で図においてバルブXを閉じバルブY
を開き限外過膜を通過しなかつた液は培養槽
に循環した。同時にラインから送入する培地
をαからβに変更した。10日目から培養槽から
細胞を含む培養混合物を正味培養容積の約10%
に当る20ml、毎日系外に抜取つた。 以上の培養操作を26日間継続した。その結果
を第1表に示す。
【表】 比較例 1 培養装置及び培養液は実施例1と同じものを用
いた。実験方法は、第1図において常にバルブY
を閉としバルブXを開にし、かつラインより送
入する培地種類を常にαとした以外は全て実施例
1と同じにした。実験結果を第2表に示す。 比較例 2 培養装置及び培養液は実施例1と同じものを用
いた。実験方法は第1図において常にバルブYを
閉としバルブXを開とした以外は全て実施例1と
同じにした。実験結果を第3表に示す。
【表】
【表】
【表】 実施例 2 次に記する事項以外は実施例1と同様にして培
養実験を行なつた。 細胞:マウルミエローマP3U1とヒトBセルを融
合して得られたヒトIgA産生マウス、ヒトハイ
ブリドーマ4H11株 培地:牛胎児血清(FCS)添加培地 限外過膜分画分子量:10000 実験結果を第4表に示す。 実施例 3 次に記す事項以外は実施例1と同様にして培養
実験を行なつた。 細胞:マウルミエローマP3U1とヒトBセルを融
合して得られたヒトIgG産生マウス・ヒトハイ
ブリドーマD34・3・1株 培地:基本培地RDFにインスリン、トランスフ
エリン、エタノールアミン、亜セレン酸及び
BSA(牛血清アルブミン)を添加した無血清培
地。 限外過膜分画分子量:10000 実験結果を第5表に示す。
【表】
【表】 実施例 4 (1) 培養装置 実施例1に同じ (2) 培養液 牛胎児血清+RDFを使用した。 (3) 実験方法及び結果 細胞はIgM産生マウス・ヒトハイブリドーマ
P8DH株を用い限外過膜は分子量分画100000
のものを用いた以外は実施例1と同じ要領で実
験を行なつた。実験結果を第6表に示す。
【表】
【表】 実施例 5 次に記する事項以外は実施例1と同様にして培
養実験を行つた。 細胞:マウスミエローマP3U1とヒトBセルを融
合して得られたヒトIgG産生マウス・ヒトハイ
ブリドーマC23NF′26株 培地:基本培地eRDFにインスリン、トランスフ
エリン、エタノールアミン、亜セレン酸ナトリ
ウムを添加した無血清培地。 トランスフエリンの添加量は、培養系内のト
ランスフエリン濃度が10μg/ml前後になるよ
うに調節した。トランスフエリン濃度の測定は
ELISAによつた。 実験結果を第7表に示す。培養液の循環開始後
抗体濃度が徐々に増加し、52日間で1.9mg/mlに
達した。また、循環開始後培地置換後は一定であ
るにもかかわらず細胞密度も増加し、循環前の約
2〜3培の密度で安定して培養された。
【表】
【表】 実施例 6 (1) 培養装置 添付第2図に示したような培養システムを使
用した。培養槽AP−1及び限外過装置AP−
2は実施例1と同じものを用いた。NH3除去
装置AP−3はガラス製の円筒状密閉容具であ
り、内部に触媒化成社製ゼオライトZCP−50
50gを充填した。 (2) 培養液 実施例1に同じ。 (3) 実験方法及び結果 あらかじめオートクレーブ滅菌した前記培養
槽に正味培養容積が約200mlになるように培養
液αを送入し、これにマウス・マウスハイブリ
ドーマ4C10B6株を4×105個/mlとなるように
播種した。培養槽では溶存酸素が3ppmとなる
ように炭酸ガス5%を含む酸素ガスが吹込みノ
ズルを通して自動的にコントロールされて送
入されている。培養槽中の培養液は37℃に保持
されている。培養槽中にはマリン型撹拌翼が取
付けられており、撹拌速度は60rpmであつた。 播種後4日目後では回分培養を行なつた。4
日目以降実施例1と同じ要領でパーヒユージヨ
ンを開始した。10日目以降はラインより取出
した液の一部をラインを通してNH3除去
装置に送入し、NH3を吸着除去したのち培養
槽へ送入した。ラインから取出した液のう
ちNH3除去装置に送入しなかつたものはライ
ンを通して系外に取出した。ラインを通し
て系内循環を行なつた量は、第8表の「培地循
環」の項に示している。なお本実験において第
8表の「置換率」は、「培地循環」による置換
をも含めている。以上の培養操作を26日間継続
した。その結果を第8表に示す。
【表】 実施例 7 (1) 培養装置 添付第4図に示す培養システムを使用した。
培養槽AP−1及び限外過装置AP−2は実施
例1と同じものを用いた。NH3は除去装置AP
−3及び吸着剤は実施例6と同じものを用い
た。 (2) 培養液 第9表参照 (3) 実験方法及び結果 あらかじめオートクレーブ滅菌した前記培養
槽に正味容積が200mlとなるような培養液αを
送入し、これにマウス・ヒトハイブリドーマH
−2株を4×105個/mlとなるように播種した。
H−2株はマウスミエローマP3U1とヒトBセ
ルを融合して得られたヒト型IgG産生株であ
る。 培養槽では溶存酸素が3ppmとなるように炭
酸ガス5%を含む酸素が吹込みノズルBを通し
て自動的にコントロールされて送入されてい
る。培養中の培養槽液は、37℃に保たれてい
る。培養槽中にはマリン型撹拌翼が取付けてあ
り、撹拌速度は60rpmであつた。 播種後2日間は回分培養を行なつた。3日目
以降実施例1と同じ要領でパーヒユージヨンを
開始した。この際第3図においてペリスタポン
プP′−、P−はあらかじめチユーブからは
ずしておき、ラインJはピンチコツクで閉の状
態にしておき、バルブYは閉、バルブXは開の
状態にした。培地はαからβに切替え培養液は
ラインD、AP−3,AP−2、バルブX経由系
外に取出した。8日目にポンプP′−、P−
を配管にとりつけ、ラインJからピンチコツク
を取外した。しかるのち、ポンプP−の流量
を変更し、ポンプP′−、P−、P−を駆
動し、バルブYを開にし、Xを閉じた。以上の
操作によりNH3除去装置AP−3でNH3を吸着
除去された培養液の一部はラインJ経由培養槽
AP−1に還流し、残りはポンプP′−I経由、
限外過装置AP−2に送液した。限外過膜
を通過した液はラインF経由系外に取出し、通
しなかつた液は、ポンプP−、バルブY、
ラインG経由培養槽AP−1へ送入した。ライ
ンJを通して系内循環を行なつた量は第9表の
「ラインJ培地循環」の項に示している。なお
本実験において第9表の「置換率」は「ライン
J培地循環」による置換をも含めている。 以上の培養操作を22日間行なつた。本実施例
の条件及び結果を第9表に示す。
【表】 実施例 8 (1) 培養装置 添付第4図に示す培養システムを使用した。
培養槽AP−1及び限外過装置AP−2は実施
例1と同じものを用いた。NH3除去装置AP−
3及び吸着剤は実施例6と同じものを用いた。 (2) 培養液 第10表参照 (3) 実験方法及び結果 あらかじめオートクレーブ滅菌した前記培養
槽に正味容積が200mlになるように培養液αを
送入し、これにマウス・ヒトハイブリドーマH
−2株を4×105個/mlとなるように播種した。
H−2株はマウス・ミエローマP3U1とヒトB
セルを融合して得られたヒト型IgG産生株であ
る。 培養槽では溶存酸素が3ppmとなるように炭
酸ガス5%を含む酸素が吹込みノズルBを通し
て自動的にコントロールされて、送入されてい
る。培養中の培養液は37℃に保たれている。培
養槽中にはマリン型撹拌翼が取付けてあり、撹
拌速度は60rpmであつた。 播種後2日間は回分培養を行なつた。3日目
以降実施例1と同じ要領でパーヒユージヨンを
開始した。この際第4図においてペリスタポン
プP′−を駆動し、P−は停止し、P−は
あらかじめチユーブからはずしておき、バルブ
Yは閉、バルブXは開の状態にしておき、培養
液はラインD、AP−2、バルブX経由系外に
取出した。 8日目にP−を配管にとりつけた。しかる
のち、ポンプP′−の流量を変更し、ポンプP
−、P−、P−を駆動し、バルブYを開
にし、Xを閉じた。以上の操作によりNH3
去装置AP−3でNH3を吸着除去された培養液
はラインJ経由培養槽AP−1に還流せしめた。
一方、ポンプP′−経由限外過装置AP−2
に送液された液は限外過膜を通過したもの
は、ラインF経由系外に取出し、通しなかつ
たものは、ポンプP−、バルブY、ラインG
経由培養槽AP−1へ送入した。ラインJを通
して系内循環を行なつた量は第10表の「ライン
J培地循環」の項に示している。なお本実験に
おいて第10表の「置換率」は「ラインJ培地循
環」による置換をも含めている。以上の培養操
作を22日間行なつた。本実施例の条件及び結果
を第10表に示す。
【表】 比較例 3 培養装置及び培地は実施例5と同じものを用い
た。 実験方法は第1図において常にバルブYを閉と
し、バルブXを開にし、かつラインより送入す
る培地種類を常にαとした以外は全て実施例5と
同じにした。実験結果を第11表に示す。培養液の
循環を行なわないと細胞密度は107cells/ml前後
で安定し、長期間培養後も増加する傾向はみられ
なかつた。
【表】 比較例 4 培養装置及び培地は実施例5と同じものを用い
た。実験方法は培養系内のトランスフエリン濃度
が0.5μg/ml前後になるように添加培地の種類を
常にγとした以外は実施例5と同様にした。実験
結果を第12表に示す。培養系内のトランスフエリ
ン濃度を0.5μg/ml前後に保つと細胞密度は実施
例5に比較して低く、培養液の循環を行なわない
場合と同程度であつた。よつて培養液循環培養に
おいては培養系内のトランスフエリン濃度は高め
(2〜10μg/ml)に調節する必要がある。
【表】 実施例 9 (1) 培養装置 添付第4図に示す培養システムを使用した。
培養槽AP−1及び限外過装置AP−2は実施
例1と同じものを用いた。NH3除去装置AP−
3及び吸着剤は実施例6と同じものを用いた。 (2) 培養液 第13表参照 (3) 実験方法及び結果 あらかじめオートクレーブ滅菌した前記培養
槽に正味容積が200mlとなるように培養液αを
送入し、これにマウス・ヒトハイブリドーマH
−2株を4×105個/mlとなるように播種した。
H−2株はマウスミエローマP3U1とヒトBセ
ルを融合して得られたヒト型IgG産生株であ
る。 培養槽では溶存酸素が3ppmとなるように炭
酸ガス5%を含む酸素が吹込みノズルBを通し
て自動的にコントロールされて送入されてい
る。培養中の培養液は、37℃に保たれている。
培養槽中にはマリン型撹拌翼が取付けてあり、
撹拌速度は60rpmであつた。 播種後2日間は回分培養を行なつた。3日目
以降実施例1と同じ要領でパーヒユージヨンを
開始した。この際第4図においてペリスタポン
プP′−、P−はあらかじめチユーブからは
ずしておき、ラインJはピンチコツクで閉の状
態にしておき、バルブXは閉、バルブXは開の
状態にした。培地はαからβに切替え培養液は
ラインD、AP−3,AP−2、バルブX経由系
外に取出した。8日目にポンプP′−、P−
を配管にとりつけ、ラインJからピンチフツク
を取外した。しかるのち、ポンプP−の流量
を変更し、ポンプP′−、P−、P−を駆
動し、バルブYを開にし、Xを閉じた。以上の
操作によりNH3除去装置AP−3でNH3を吸着
除去された培養液の一部はラインJ経由培養槽
AP−1に還流し、残りはポンプP′−経由、
限外過装置AP−2に送液した。限外過膜
を通過した液はラインF経由系外に取出し、通
しなかつた液は、ポンプp−、バルブY、
ラインG経由培養槽AP−1へ送入した。ライ
ンJを通して系内循環を行なつた量は第9表の
「ラインJ培地循環」の項に示している。なお
本実験において第9表の「置換率」は「ライン
J培地循環」による置換をも含めている。 以上の培養操作を22日間行なつた。本実施例
の条件及び結果を第13表に示す。
【表】 実施例 10 (1) 培養装置 添付第5図に示す培養システムを使用した。
培養槽AP−1及び限外過装置AP−2は実施
例1と同じものを用いた。NH3除去装置AP−
3及び吸着剤は実施例6と同じものを用いた。 (2) 培養液 第14表参照 (3) 実験方法及び結果 あらかじめオートクレーブ滅菌した前記培養
槽に正味容積が200mlとなるような培養液αを
送入し、これにマウス・ヒトハイブリドーマH
−2株を4×105個/mlとなるように播種した。
H−2株はマウスミエローマP3U1とヒトBセ
ルを融合して得られたヒト型IgG産生株であ
る。 培養槽では溶存酸素が3ppmとなるように炭
酸ガス5%を含む酸素が吹込みノズルBを通し
て自動的にコントロールされて、送入されてい
る。培養槽中の培養液は、37℃に保たれてい
る。培養槽中にはマリン型撹拌翼が取付けてあ
り、撹拌速度は60rpmであつた。 播種後2日間は回分培養を行なつた。3日目
以降実施例1と同じ要領でパーヒユージヨンを
開始した。この際第5図においてペリスタポン
プP′−を駆動し、P−は停止し、P−は
あらかじめチユーブからはずしておき、バルブ
Yは閉、バルブXは開の状態にしておき、培養
液はラインD、AP−2、バルブX経由系外に
取出した。 8日目にP−を配管にとりつけた。しかる
のち、ポンプP′−の流量を変更し、ポンプP
−、P−、P−を駆動し、バルブYを開
にし、Xを閉じた。以上の操作によりNH3
去装置AP−3でNH3を吸着除去された培養液
はラインJ経由培養槽AP−1に還流せしめた。
一方AP−2に送液された液は限外過膜を通
過したものはラインF経由系外に取出し、通
しなかつたものはポンプP−、バルブY、ラ
インG経由培養槽AP−1へ送入した。ライン
Jを通して系内循環を行なつた量は第14表の
「ラインJ培地循環」の項に示している。なお
本実験において第14表の「置換率」は「ライン
J培地循環」による置換をも含めている。以上
の培養操作を22日間行なつた。本実施例の条件
及び結果を第14表に示す。
【表】 【図面の簡単な説明】
添付第1図、第2図、第3図及び第4図はそれ
ぞれ本発明の培養装置の概略図を示したものであ
る。

Claims (1)

  1. 【特許請求の範囲】 1 有用物質を産生する動物細胞をサスペンジヨ
    ン状態で培養する装置において、 (a) 動物細胞をサスペンジヨン状態で培養する潅
    流培養装置、 (b) 上記潅流培養装置において、培養槽中のサス
    ペンジヨン培養液から動物細胞と分離された培
    養液を限外過装置へ送る導管、 (c) 前記分離された培養液を、産生された有用物
    質を含む高分子量成分とそれ以外の低分子量成
    分とに分画するための限外過装置、および (d) 前記限外過装置により分画された高分子量
    成分の少なくとも一部を培養槽へ循環する導
    管、 を少なくとも有することを特徴とする動物細胞の
    培養装置。
JP60096770A 1985-05-09 1985-05-09 動物細胞の培養装置 Granted JPS61257181A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60096770A JPS61257181A (ja) 1985-05-09 1985-05-09 動物細胞の培養装置
DE8686106201T DE3683678D1 (de) 1985-05-09 1986-05-06 Verfahren zur herstellung von nuetzlichen hochmolekulargewichtssubstanzen durch kultur von vermehrungsfaehigen tierzellen und dazu geeignetes kultursystem.
EP86106201A EP0201086B1 (en) 1985-05-09 1986-05-06 Method of producing useful high-molecular-weight substances by culturing proliferous animal cells and culture system therefor
US07/870,421 US5447853A (en) 1985-05-09 1992-04-17 Method of producing useful high-molecular-weight substances by culturing proliferous animal cells, and culture system therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60096770A JPS61257181A (ja) 1985-05-09 1985-05-09 動物細胞の培養装置

Publications (2)

Publication Number Publication Date
JPS61257181A JPS61257181A (ja) 1986-11-14
JPH0363348B2 true JPH0363348B2 (ja) 1991-09-30

Family

ID=14173867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60096770A Granted JPS61257181A (ja) 1985-05-09 1985-05-09 動物細胞の培養装置

Country Status (4)

Country Link
US (1) US5447853A (ja)
EP (1) EP0201086B1 (ja)
JP (1) JPS61257181A (ja)
DE (1) DE3683678D1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3641826A1 (de) * 1986-12-06 1988-06-16 Bayer Ag Verfahren zur kultivierung von saeugerzellen in einer suspensionskultur, vorrichtung zur durchfuehrung des verfahrens und verwendung bei der herstellung von proteinen
US4921792A (en) * 1987-11-27 1990-05-01 Miles Inc. Continuous cell dispersion, cultivation and substance recovery process
JP2777385B2 (ja) * 1988-11-30 1998-07-16 株式会社日立製作所 生物細胞の培養方法,培養システム及び培養装置
KR0132666B1 (en) * 1989-03-14 1998-04-14 Hitachi Kk Method for controlling cultivation conditions for animal cells
WO1991002049A1 (en) * 1989-08-04 1991-02-21 Peter Grandics An integrated cell culture-protein purification system for the automated production and purification of cell culture products
JPH0416183A (ja) * 1990-05-07 1992-01-21 Ngk Insulators Ltd 動物細胞の培養方法及び装置
WO2006026835A1 (en) * 2004-09-10 2006-03-16 Unisearch Limited Device and method to prevent culture media degradation
EP3327132A3 (en) 2007-08-09 2018-07-18 Wyeth LLC Use of perfusion to enhance production of fed-batch cell culture in bioreactors
JP2009072129A (ja) * 2007-09-21 2009-04-09 Hitachi Plant Technologies Ltd 生体細胞の分離装置、培養装置及び生体細胞の分離方法
US9725689B2 (en) 2010-10-08 2017-08-08 Terumo Bct, Inc. Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
JP2014024824A (ja) * 2012-07-30 2014-02-06 Asahi Kasei Medical Co Ltd 潅流培養における有用タンパク質を含む培養液の濾過方法
CN106715676A (zh) 2014-09-26 2017-05-24 泰尔茂比司特公司 按计划供养
US11702634B2 (en) 2017-03-31 2023-07-18 Terumo Bct, Inc. Expanding cells in a bioreactor
US11624046B2 (en) 2017-03-31 2023-04-11 Terumo Bct, Inc. Cell expansion
FR3068361B1 (fr) * 2017-06-30 2021-10-15 Univ Paris Diderot Paris 7 Systeme fluidique de production de vesicules extracellulaires et procede associe
CN110241012B (zh) * 2018-03-09 2022-11-01 嘉和生物药业有限公司 一种生物大分子上游分阶段截留的生产方法、生产模块及在生产中的应用
CN110117527A (zh) * 2019-05-15 2019-08-13 刘宝全 一种干细胞代谢废物的强化排出方法
JP7376887B2 (ja) * 2019-08-20 2023-11-09 Jfeエンジニアリング株式会社 動物細胞の増殖促進方法、連続培養方法及び連続培養装置
JP7330834B2 (ja) * 2019-09-20 2023-08-22 株式会社日立製作所 培養方法および培養装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121589A (en) * 1975-04-14 1976-10-23 Sanraku Inc Process for separating and producing microbial cells
JPS59175877A (ja) * 1982-12-15 1984-10-04 バイオ−レスポンス・インコ−ポレ−テツド 培養方法および培養システム
JPS59175878A (ja) * 1982-12-14 1984-10-04 バイオ−レスポンス・インコ−ポレ−テツド 細胞の培養方法及び装置
JPS60102187A (ja) * 1983-11-07 1985-06-06 Nippon Zenyaku Kogyo Kk 細胞生産物の連続大量培養法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4420398A (en) * 1981-08-13 1983-12-13 American National Red Cross Filteration method for cell produced antiviral substances
CA1258053A (en) * 1982-12-13 1989-08-01 Halbert Fischel Blood fractionation system and method
ZA847349B (en) * 1983-10-05 1985-04-24 Solco Basel Ag Process for the preparation of a biologically active extract

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121589A (en) * 1975-04-14 1976-10-23 Sanraku Inc Process for separating and producing microbial cells
JPS59175878A (ja) * 1982-12-14 1984-10-04 バイオ−レスポンス・インコ−ポレ−テツド 細胞の培養方法及び装置
JPS59175877A (ja) * 1982-12-15 1984-10-04 バイオ−レスポンス・インコ−ポレ−テツド 培養方法および培養システム
JPS60102187A (ja) * 1983-11-07 1985-06-06 Nippon Zenyaku Kogyo Kk 細胞生産物の連続大量培養法

Also Published As

Publication number Publication date
EP0201086A2 (en) 1986-11-12
EP0201086B1 (en) 1992-01-29
EP0201086A3 (en) 1988-07-20
JPS61257181A (ja) 1986-11-14
DE3683678D1 (de) 1992-03-12
US5447853A (en) 1995-09-05

Similar Documents

Publication Publication Date Title
JPH0363348B2 (ja)
JP7102391B2 (ja) 交互タンジェンシャルフローによる高速収穫
JPH09500818A (ja) 細胞培養に使用される粒子沈降タンク
US5166067A (en) Culturing method, system and apparatus for cell culture
JP2003510068A (ja) 細胞を培養するための方法および装置
US4814278A (en) Culture apparatus and method
EP0112154A2 (en) Method for culturing living cells
JPS63226279A (ja) 固定化されたまたは付着性の哺乳動物の細胞を培養する方法および装置
JPS62265A (ja) 細胞培養装置および方法
US5223428A (en) Method for in vitro culture of mammalian cells
JPH0425796B2 (ja)
JPH0375154B2 (ja)
Nayve Jr et al. HBs-MAb production in perfusion culture with selective ammonia removal system
JPH0364104B2 (ja)
JPS6265681A (ja) 付着性細胞の連続大量培養法
JPH0352954B2 (ja)
JPS62181780A (ja) 動物細胞の培養方法
JP3139794B2 (ja) 中空糸膜型細胞培養装置
JPH074226B2 (ja) 細胞培養装置及び細胞培養方法
US5250432A (en) Method of culturing animal cells
JPS62289170A (ja) 細胞の培養装置および方法
JPH0398578A (ja) 細胞培養による生物学的物質の調製方法
JPH0398572A (ja) 細胞培養装置および方法
JPH03266979A (ja) 細胞の培養方法
JPS611383A (ja) 細胞培養方法