JP7405249B2 - 複合体粒子、負極活物質およびリチウムイオン二次電池 - Google Patents
複合体粒子、負極活物質およびリチウムイオン二次電池 Download PDFInfo
- Publication number
- JP7405249B2 JP7405249B2 JP2022526683A JP2022526683A JP7405249B2 JP 7405249 B2 JP7405249 B2 JP 7405249B2 JP 2022526683 A JP2022526683 A JP 2022526683A JP 2022526683 A JP2022526683 A JP 2022526683A JP 7405249 B2 JP7405249 B2 JP 7405249B2
- Authority
- JP
- Japan
- Prior art keywords
- composite particles
- carbon
- negative electrode
- mass
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/354—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/312—Preparation
- C01B32/318—Preparation characterised by the starting materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/312—Preparation
- C01B32/336—Preparation characterised by gaseous activating agents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/312—Preparation
- C01B32/342—Preparation characterised by non-gaseous activating agents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/354—After-treatment
- C01B32/372—Coating; Grafting; Microencapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/021—Preparation
- C01B33/027—Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/02—Amorphous compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/74—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/10—Solid density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Silicon Compounds (AREA)
- Carbon And Carbon Compounds (AREA)
Description
(a)ミクロ孔とメソ孔を含んでいる多孔質炭素構造体と(b)前記多孔質炭素構造体の前記ミクロ孔および/またはメソ孔の内側に位置した複数のナノスケールの元素状シリコンドメインを有し、
(i)前記ミクロ孔とメソ孔はP1cm3/gという、ガス吸着によって測定される合計細孔容積を有し、ここで、P1は少なくとも0.6で、2を超えない
(ii)ミクロ孔の体積分率(φa)は、ミクロ孔とメソ孔のトータルの体積に基づいて0.5から0.9までの範囲内にある
(iii)10nmよりも小さい細孔直径を有する細孔の体積分率(φ10)は、ミクロ孔とメソ孔のトータルの体積に基づき、少なくとも0.75であり、そして
(iv)前記多孔質炭素構造体は20μmよりも少ないというD50粒子径を有し、
前記複合粒子における、シリコンの前記多孔質炭素構造体に対する質量比は、[1×P1~1.9×P1]:1の範囲内である。
[1] シリコンと炭素を含む複合体粒子において、複合体粒子の小角X線散乱において得られるスペクトルに炭素-空孔2元系における球モデルでフィッティングを行うことにより得られる空孔のドメインサイズの体積分布情報を小さい順から積算していった際、2nm以下のドメインサイズ領域が44体積%以上70体積%以下であり、ヘリウムガスを用いた定容積膨張法による乾式密度測定で算出される真密度が1.80g/cm3以上2.20g/cm3以下である複合体粒子。
[2] 複合体粒子中のシリコン含有量が30質量%以上80質量%以下であり、複合体粒子中のシリコン含有量を100質量%とした時の酸素含有量が0.1質量%以上30質量%以下である、[1]に記載の複合体粒子。
[3] ラマンスペクトルにおいてシリコンに起因するピークが450~495cm-1に存在している、[1]または[2]いずれかに記載の複合体粒子。
[4] ラマンスペクトルにおいてR値(ID/IG)が0.30以上1.30未満である、[1]~[3]のいずれかに記載の複合体粒子。
[5] Cu-Kα線を用いた粉末XRD測定によるXRDパターンにおいて、(SiC111面のピーク強度)/(Si111面のピーク強度)が0.01以下である、[1]~[4]のいずれかに記載の複合体粒子。
[6] 平均粒子径DV50が1.0μm以上30μm以下であり、BET比表面積が0.1m 2 /g以上100m2/g以下である、[1]~[5]のいずれかに記載の複合体粒子。
[7] 複合体粒子表面の少なくとも一部に無機粒子及びポリマーが存在し、ポリマー含有量が0.1質量%~10.0質量%であり、無機粒子が黒鉛及びカーボンブラックから選択される1種以上である[1]~[6]のいずれかに記載の複合体粒子。
[8] 炭素が非晶質炭素である[1]~[7]のいずれかに記載の複合体粒子。
[9] [1]~[8]のいずれかに記載の複合体粒子を含む、負極活物質。
[10][9]に記載の負極活物質を含む、負極合剤層。
[11] [10]に記載の負極合剤層を含む、リチウムイオン二次電池。
[1]炭素-シリコン複合体
本発明の一実施形態に係るシリコンと炭素を含む複合体粒子は、小角X線散乱において得られるスペクトルに炭素-空孔2元系における球モデルでフィッティングを行うことにより得られる空孔のドメインサイズの体積分布情報を小さい順から積算していった際、2nm以下のドメインサイズ領域が44体積%以上70体積%以下であり、ヘリウムガスを用いた定容積膨張法による乾式密度測定で算出される真密度が1.80g/cm3以上2.20g/cm3以下である。
複合体に炭素、シリコン以外のその他の成分を含む場合も、その他の成分と炭素またはシリコンとの密度差よりも、その他の成分と空孔の密度差の方が大きい。したがって、SAXSパターンには、空孔とそれ以外の成分の散乱情報に分けることができる。また複合体に酸素が含まれる場合は、主に酸化物として含まれるため独自のドメインを形成せず散乱情報は得られない。
複合体粒子中のシリコン含有量を100質量%とした時の酸素含有量は、0.1質量%以上30質量%以下であることが好ましい。純Siは活性が高いため、表面を酸化し活性を下げることで複合体粒子の急激な変質を抑制できることから、0.1質量%以上であるとことが好ましい。同様の観点から0.4質量%以上がより好ましく、0.9質量%以上がさらに好ましい。30質量%以下であるとシリコンの酸化が適度に抑えられることで、負極材として用いた時の不可逆容量を小さくすることがきる。同様の観点から10.0質量%以下がより好ましく、5.0質量%以下がさらに好ましく、3.0質量%以下が最も好ましい。
本発明の一実施形態に係る複合体粒子は、BET比表面積が0.1m2/g以上100m2/g以下であることが好ましい。0.1m2/g以上であることで電極作製時のスラリー粘度を好適にすることができ、良好な電極を製造できる。同様の観点から0.4m2/g以上がより好ましく、0.7m2/g以上がさらに好ましい。100m2/g以下であることで、電解液との副反応を低減できる。同様の観点から、BET比表面積は20m2/g以下がより好ましく、6.9m2/g以下がさらに好ましい。
前記ポリマーの含有率は、複合体粒子全体中に0.1質量%~10.0質量%であることが好ましい。前記の範囲内であると、導電性の低下を抑制しつつサイクル耐久性を向上することができる。本発明の一実施形態に係る複合体粒子全体中のポリマーの含有率は、0.2質量%~7.0質量%であることが好ましく、0.2質量%~5.0質量%であることがより好ましい。
ポリマーの種類は、特に制限されない。例えば、多糖類、セルロース誘導体、動物性水溶性ポリマー、リグニンの誘導体及び水溶性合成ポリマー、単糖、二糖、オリゴ糖、アミノ酸、没食子(もっしょくし)酸、タンニン、サッカリン、サッカリンの塩及びブチンジオール、ソルビトール等の糖アルコール類、グリセリン、1,3-ブタンジオール、ジプロピレングリコール等の多価アルコール類からなる群から選ばれる少なくとも1種が挙げられる。
本発明の一実施形態に係る炭素-シリコン複合体の原料となる炭素材料は、特に限定されないが黒鉛または非晶質炭素が好ましく、非晶質炭素が特に好ましい。また、多孔質炭素材料が好ましい。多孔質炭素材料とは、全細孔容積が0.20cc/g以上、またはBET比表面積が200m2/g以上の炭素材料のことである。多孔質炭素材料は、シランの吸着速度が高いと考えられるため、例えばシランガスを用いたCVDを用いて複合体粒子を製造するときに、細孔内に微細なシリコンを析出させることができる。形状としては粒子状または繊維状が挙げられ、粒子状が好ましい。粒子状であると細孔が等方的に形成されるため、リチウムイオンの脱挿入時に複合体粒子が等方的に膨張収縮するためサイクル特性に優れるからである。等方的な膨張収縮するため、粒子のアスペクト比が小さい方が好ましく、球状(断面が円形)であることがさらに好ましい。多孔質炭素材料として例えば活性炭が挙げられる。なお活性炭は通常、非晶質炭素である。
本発明の一実施態様に係る複合体粒子は、例えば下記工程(1)および(2)により製造することができるがこれに限定されるものではない。
相対圧P/P0が最大値のときの全細孔容積をV0、
相対圧P/P0=0.1のときの累計細孔容積をV1、
相対圧P/P0=10-7のときの累計細孔容積をV2としたとき、
V1/V0>0.8かつ、V2/V0<0.1であり、
BET比表面積が800m2/g以上である、炭素材料を得る工程。
工程(2):加熱した前記炭素材料にSi含有ガスを作用させて、炭素材料の表面および細孔内にSi含有化合物を析出させ、多孔質炭素とSiを含む複合体粒子を得る工程。
上記の炭素材料の製造方法は、例えば前記V0、V1、V2、V3、BET比表面積の変化を調べながら、樹脂や有機物などの炭素材料前駆体を熱分解する条件を調整することや、カーボンブラックなどの炭素材料前駆体に酸化処理や賦活処理等を施し、前記特徴を持つように調製することが挙げられる。炭素材料前駆体としては、フェノール樹脂や、レゾルシノールとホルムアルデヒドの共重合体樹脂が好ましい。炭化に先立ち、前記樹脂を150℃~300℃で1~6時間熱処理し、硬化させてもよい。また硬化の後、樹脂を解砕し、0.5~5.0mm程度の粒子径にしてもよい。
賦活処理は、得られた炭化物に対して窒素吸着試験を行い、細孔容積やBET比表面積の値が望ましいものでない場合、必要に応じて行う。前記炭化物を不活性雰囲気下で昇温し、800℃~1100℃にし、その後CO2ガスや水蒸気ガスなどの賦活ガスに切り替え、1~20時間その温度を保持する。この処理により、炭化物には細孔がより発達する。
(工程(2))
工程(2)は、加熱した炭素材料にSi含有ガス、好ましくはシランガスを作用させて、前記炭素材料の表面および細孔内で前記Si含有ガスの熱分解が起きることで、Si含有化合物を前記炭素材料の表面および細孔内に析出させ、複合体粒子を得る工程である。
ポリマーを複合体粒子表面の一部少なくともに存在させる方法は特に制限されない。例えば、ポリマーを溶解又は分散させた液体にコア粒子を入れ、必要に応じて撹拌することにより、ポリマーをコア粒子に付着させることができる。その後、ポリマーが付着したコア粒子を液体から取り出し、必要に応じて乾燥することで、ポリマーが表面に付着した複合体粒子を得ることができる。
溶液に用いる溶媒はポリマー及びポリマーの前駆体を溶解、分散可能な溶媒であれば用いることができる。例えば、水、アセトニトリルやメタノール、エタノール、2-プロパノールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類、酢酸エチル、酢酸n-ブチルなどのエステル類など溶媒として使用されるものが挙げられ、2種以上を混合して使用しても構わない。また、必要に応じて、酸や塩基を加えて溶液のpHを調整しても構わない。酸や塩基は公知の物を選択して使用してかまわない。
前記撹拌時の溶液の温度は特に制限されず、例えば5℃~95℃から選択することができる。溶液を加温する場合は、溶液に用いる溶媒が留去することにより、溶液濃度が変化する可能性がある。それを避けるためには、閉鎖系の容器内で調整するか、溶媒を還流するようにする必要がある。均一にポリマーをコア粒子表面の少なくとも一部に存在させる事ができれば、溶媒を留去しながら処理しても構わない。複合体粒子の性能を損なわない限り、撹拌雰囲気は特に制限されない。
Si含有化合物の経時酸化の抑制とは、複合体粒子を空気や酸素含有ガス雰囲気に曝した際に、時間の経過と共にSi含有化合物が酸化することを抑制することを意味する。複合体粒子表面にコート層が存在することにより、複合体粒子内部への空気や酸素含有ガスの侵入を抑制することができる。
本発明の一実施形態に係る負極活物質は、複合体粒子を含む。複合体粒子は二種以上を混合して使用しても構わない。さらに他の成分を含むことができる。他の成分としては、リチウムイオン二次電池の負極活物質として一般的に用いられるものが挙げられる。例えば黒鉛、ハードカーボン、ソフトカーボン、チタン酸リチウム(Li4Ti5O12)や、シリコン、スズなどの合金系活物質およびその複合材料等が挙げられる。これらの成分は通常粒子状のものが用いられる。複合体粒子以外の成分としては、一種を用いても、二種以上を用いてもよい。その中でも特に黒鉛粒子やハードカーボンが好ましく用いられる。
本発明の一実施形態に係る負極合剤層は、前記[4]で述べた負極活物質を含む。
本発明の負極合剤層は、リチウムイオン二次電池用の負極合剤層として用いることができる。負極合剤層は一般に、負極材活物質、バインダー、任意成分としての導電助剤とからなる。
電極塗工用のスラリーを調製する際の溶媒としては、特に制限はなく、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、イソプロパノール、テトラヒドロフラン(THF)、水などが挙げられる。溶媒として水を使用するバインダーの場合は、増粘剤を併用することも好ましい。溶媒の量はスラリーが集電体に塗工しやすい粘度となるように調整することができる。
本発明に係るリチウムイオン二次電池は、前記負極合剤層を含む。前記リチウムイオン二次電池は、通常は前記負極合剤層および集電体からなる負極と、正極合剤層および集電体からなる正極、その間に存在する非水系電解液および非水系ポリマー電解質の少なくとも一方、並びにセパレータ、そしてこれらを収容する電池ケースを含む。前記リチウムイオン二次電池は、前記負極合剤層を含んでいればよく、それ以外の構成としては、従来公知の構成を含め、特に制限なく採用することができる。
リチウムイオン電池に用いられる非水系電解液および非水系ポリマー電解質は、リチウムイオン二次電池の電解液として公知であるものが使用できる。例えば、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3、CH3SO3Liなどのリチウム塩を、以下の溶媒やポリマーに溶解したものを使用する。溶媒としては、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、アセトニトリル、プロピオニトリル、ジメトキシエタン、テトラヒドロフラン、γ-ブチロラクトンなどの非水系溶媒;ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビリニデン、及びポリメチルメタクリレートなどを含有するゲル状のポリマー;エチレンオキシド結合を有するポリマーなどが挙げられる。
本発明に係るリチウムイオン二次電池は、スマートホン、タブレットPC、携帯情報端末などの電子機器の電源;電動工具、掃除機、電動自転車、ドローン、電気自動車などの電動機の電源;燃料電池、太陽光発電、風力発電などによって得られる電力の貯蔵などに用いることができる。
[1-1]DV10、DV50、DV90(粒度分布測定)
サンプルを極小型スパーテル1杯分、および、非イオン性界面活性剤(SARAYA ヤシの実洗剤ハイパワー)原液(32質量%)の100倍希釈液2滴を水15mLに添加し、3分間超音波分散させた。この分散液をセイシン企業社製レーザー回折式粒度分布測定器(LMS-2000e)に投入し、体積基準累積粒度分布を測定し、10%粒子径DV10、50%粒子径DV50、90%粒子径DV90を決定した。
測定装置としてカンタクローム(Quantachrome)社製NOVA 4200eを用い、サンプルセル(9mm×135mm)にサンプルの合計表面積が2~60m2となるようにサンプルを入れ、300℃、真空条件下で1時間乾燥後、サンプル重量を測定し、測定を行った。測定用のガスには窒素を用いた。
サンプルをチャック付きポリエチレン袋(株式会社生産日本社製ユニパック A-4)に0.2g程度いれ、試料ホルダーに挟み、以下のような条件で測定を行った。
(装置条件)
XRD装置 :株式会社リガク製 SmartLab(登録商標)
X線ターゲット :Cu
X線源 :Cu-Kα線(波長:1.541867Å)
検出器 :シンチエーションカウンター SC-70
ゴニオメーター半径 :300mm
光学系+選択スリット :CBO + SA
入射光学スリット :OPEN
アタッチメントベース :標準アタッチメントベース
アタッチメントヘッド :XY-20mmアタッチメントヘッド
試料板 :透過X線小角試料ホルダー
受光光学ユニット :真空パス
(測定条件)
X線管球出力 :45kV、200mA
スキャン範囲 :0.06~9.98deg(予備測定の強度により条件決定)
スキャンステップ :0.02or0.04deg(予備測定の強度により条件決定)
スキャンスピード :0.79or0.99deg/min(予備測定の強度により条件決定)
試料の入っていないポリエチレン袋をブランクとして測定し、そのブランクデータを差し引いて、以下のような条件で解析を行った。前述の通り、SAXSパターンの解析においては、炭素と空孔の2元系における球モデルでのシミュレーションフィッティングによる解析を行った。
(解析条件)
ソフトウェア :株式会社リガク製 Nano-solver
散乱体モデル :球
粒子/空孔 :Pore
マトリックス :カーボン
スリット補正 :高
アナライザー結晶 :なし
分布関数 :Γ分布
まずは一つの分布でフィッティングを行った。一つの分布ではフィッティングが悪い場合、フィッティングを増やしていき、R因子が5%以下になることをフィッティングの目安とし、その分布から粒子内のドメインサイズの分布を得た。この結果から、空孔のドメインサイズが2nmの積算体積分率を算出した。ただし、解析結果からドメインサイズが2nmのデーターポイントが算出されない場合は、ドメインサイズが2nm前後の値から直線近似にてドメインサイズ2nmの積算体積分率を算出する。
サンプルを180℃で12時間真空乾燥した後、乾燥アルゴン雰囲気下のグローブボックス内にてサンプルを測定セルの4~6割になる様に充填し、セルを100回以上タッピングした後サンプルの重量を測定した。その後試料を大気下に取り出し、以下の方法でヘリウムガスを用いた定容積膨張法による乾式密度測定を行い、真密度を算出した。
装置 :Micromeritics製 AccuPyc2 1340 Gas Pycnometer
測定セル :アルミ製 深さ39.3mm、内径18mm
キャリアガス :ヘリウムガス
ガス圧 :19.5psig(134.4kPag)
測定時パージ回数 :200回
温度 :25℃±1℃
[1-5]シリコン含有量
以下の条件でサンプルのSi含有率の測定を行った。
蛍光X線装置 :Rigaku製 NEX CG
管電圧 :50kV
管電流 :1.00mA
サンプルカップ :Φ32 12mL CH1530
サンプル重量 :2~3g
サンプル高さ : 5~18mm
サンプルカップにサンプルを充填し、上記方法で測定を行い、ファンダメンタル・パラメータ(FP法)を用いて複合体粒子中のシリコン含有量を質量%の単位で算出した。
サンプル20mgをニッケルカプセルに秤量し、酸素・窒素分析装置EMGA-920(株式会社堀場製作所社製)により複合体粒子中の酸素含有量を質量%の単位で算出した。この複合体粒子中の酸素含有量を前記シリコン含有量で割ることで、複合体粒子中のシリコン含有量を100質量%とした時の酸素含有量を質量%の単位で得た。
以下の条件で測定を行った。
顕微ラマン分光測定装置 :株式会社堀場製 LabRAM HR Evolution
励起波長 :532nm
露光時間 :10秒
積算回数 :2回
回折格子 :300本/mm(600nm)
測定サンプル :スパチュラを用いて複合体粒子をガラスプレパラート上に乗せ、粉体均一になる様にする。後述する測定範囲より広くする。
測定範囲 :縦80μm×横100μm、測定範囲内には複合体粒子のみが敷き詰められている部位である。
ポイント数:縦送り17.8μm、横送り22.2μmで100ポイント測定を実施し、それらを平均化したスペクトルを取得して以下の解析を実施した。
サンプルをガラス製試料板(窓縦横:18mm×20mm、深さ:0.2mm)に充填し、以下のような条件で測定を行った。
XRD装置 :株式会社リガク製 SmartLab(登録商標)
X線源 :Cu-Kα線
Kβ線除去方法 :Niフィルター
X線出力 :45kV、200mA
測定範囲 :10.0~80.0°.
スキャンスピード :10.0°/min
得られたXRDパターンに対し、解析ソフト(PDXL2、株式会社リガク製)を用い、バックグラウンド除去、スムージングを行った後に、ピークフィットを行い、ピーク位置と強度を求めた。得られたXRDスペクトルから、(SiC111面のピーク強度)/(Si111面のピーク強度)を求めた。なお、Si111面は2θ=28°付近の回折ピークであり、SiC111面は2θ=35°付近の回折ピークである。
[1-9]ポリマー含有量の測定
以下の方法で測定を行った。
TG-DTA用装置 :NETZSCH JAPAN製 TG-DTA2000SE
サンプル重量 :10~20mg
サンプルパン :アルミナパン
リファレンス :アルミナパン
ガス雰囲気 :Ar
ガス流量 :100ml/min
昇温測度 :10℃/min
測定温度範囲 :室温~1000℃
200℃から350℃の熱分解による減量をポリマー量として、ポリマー濃度を算出した。
[2-1]負極シートの作製
バインダーとしてスチレンブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)を用いた。
混合導電助剤として、カーボンブラック(SUPER C 45(登録商標)、イメリス・グラファイト&カーボン社製)および気相法炭素繊維(VGCF(登録商標)-H、昭和電工株式会社製)を3:2の質量比で混合したものを調製した。
負極の電極密度(負極密度)は以下の様に計算した。前述の方法で得られた負極の質量と厚みを測定し、そこから別途測定しておいた16mmφに打ち抜いた集電体箔の質量と厚みを差し引いて負極合剤層の質量と厚みを求め、その値から電極密度(負極密度)を計算した。
ポリプロピレン製の絶縁ガスケット(内径約18mm)内において、前述した負極と17.5mmφに打ち抜いた厚み1.7mmの金属リチウム箔で電解液を含侵させたセパレータ(ポリプロピレン製マイクロポーラスフィルム)を挟み込んで積層する。この際には、負極の負極合剤層の面はセパレータを挟んで金属リチウム箔と対向するように積層する。これを2320コイン型セルに設置し、カシメ機で封止して試験用セル(リチウム対極セル)とした。
リチウム対極セルを用いて試験を行った。OCV(Open Circuit Voltage)から0.005Vまで、0.1C相当の電流値で定電流(コンスタントカレント:CC)充電を行った。0.005Vに到達した時点で定電圧(コンスタントボルテージ:CV)充電に切り替えた。カットオフ条件は、電流値が0.005C相当まで減衰した時点とした。このときの比容量を初回充電比容量とする。次に、上限電圧1.5Vとして0.1C相当の電流値で定電流放電を行った。このときの比容量を初回放電比容量とする。
初回放電比容量を初回充電比容量で割った値を百分率で表した数値、(初回放電比容量)/(初回充電比容量)×100を初回クーロン効率(%)とする。
[3-1]三極ラミネート型ハーフセルの作製
[2-1]で得られた負極シートを、ロールプレスを用いて負極合剤層密度を1.3~1.6g/ccとなるように調整し、合剤層塗布部の面積が4.0cm2(2.0cm×2.0cm)、合剤層未塗布部(=タブ部)が0.5cm2(1.0cm×0.5cm)となるように打ち抜き作用極とする。
[3-2]Cレートの決定
[2-3]で算出した初回放電比容量と負極上の負極活物質量から、それぞれの負極シートを用いたセルのCレートを算出した。
[3-1]で得られた、得られた三極ラミネート型ハーフセルを充放電装置にセットし、以下の条件でエージングを6サイクル行った。エージングの内1サイクル目は、レストポテンシャルから0.005Vvs.Li/Li+まで、0.05Cの定電流(CC)充電を行った。放電は0.05Cの定電流(CC)で1.5Vvs.Li/Li+まで行った。エージングの内2~6サイクル目は、0.005Vvs.Li/Li+まで0.2Cの定電流(CC)で充電し、0.005Vvs.Li/Li+に達した時点で定電圧(CV)充電に切り替え、カットオフ電流を0.025Cとして充電を行った。放電は0.2Cの定電流(CC)で1.5V vs.Li/Li+まで行った。
50サイクル目放電(脱Li)容量維持率(%)={(1C試験開始後50サイクル目脱Li容量)/(1C試験開始後1サイクル目脱Li容量)}×100
表1に示されている材料の詳細は以下の通りである。
BET=2.7m2/g、DV10=7μm、DV50=14μm、DV90=27μm、タップ密度=0.98g/cc、初回充電(脱Li)比容量360mAh/g、初回クーロン効率92%の人造黒鉛を使用した。
無機粒子として、平均粒子径DV50が3μmの鱗片状黒鉛(KS-6、Timcal製)及びアセチレンブラック(HS100、電気化学工業株式会社製)を準備した。水800gに対して、鱗片状黒鉛156g、アセチレンブラック40g、カルボキシメチルセルロース4g入れ、ビーズミルで分散及び混合し、導電性粒子分散液(固形分20質量%)を得た。
球状フェノール樹脂1に対して、窒素雰囲気下1時間900℃で焼成を行い炭化した後、表1に記載の各条件で賦活処理を実施し球状活性炭1を炭素材料として得た。炭素材料の材料特性を表1に示す。
[実施例2]
不定形活性炭1を炭素材料として用いた。炭素材料の材料特性を表1に示す。
[実施例3、比較例2]
不定形活性炭2を炭素材料として用いた。炭素材料の材料特性を表1に示す。
[実施例4、比較例1]
球状フェノール樹脂2に対して、窒素雰囲気下1時間900℃で焼成を行い炭化した後、表1に記載の各条件で賦活処理を実施し球状活性炭2、3を炭素材料として得た。炭素材料の材料特性を表1に示す。
[実施例5]
実施例2と同様の手法で得た複合体粒子7g、水1.98g、第一ポリマー水溶液として2.5質量%のタマリンシードガム水溶液3.84g、第二ポリマー水溶液として2.5質量%のソルビトール水溶液0.43g、無機粒子分散液1.60gを用意した。容量内容量105mlのポリエチレン製の蓋つきボトルに水と第一ポリマー水溶液を投入し、自転公転ミキサー(株式会社シンキー社製)にて1000rpmで2分間混合する。複合体粒子を追加し、1000rpmで2分間混合した。導電性粒子分散液を加え1000rpmで2分間混合した。第一ポリマー水溶液を加え1000rpmで2分間混合した。得られたスラリーをSUS製のトレイに広げ、熱風乾燥機にて150℃で5時間乾燥した。乾燥後の固形物を回収し、メノウ製乳鉢にて凝集粒を解砕した。得られた複合体粒子をSEM観察したところ、コア粒子の表面に、鱗片状黒鉛とアセチレンブラックが存在しており、鱗片状黒鉛による突起構造をなしていることを確認した。ポリマーの含有量は1.5質量%だった。材料特性を表2に示す。
[実施例6]
水0.29g、第一ポリマー水溶液として2.5質量%のプルラン水溶液5.14g、第二ポリマー水溶液として2.5質量%のトレハロース水溶液0.57g、無機粒子の分散液2.14gを用いた以外は実施例5と同様の方法で処理した。得られた複合体粒子をSEM観察したところ、コア粒子の表面に、鱗片状黒鉛とアセチレンブラックが存在しており、鱗片状黒鉛による突起構造をなしていることを確認した。ポリマーの含有量は1.9質量%だった。材料特性を表2に示す。
[実施例7]
水1.98g、第一ポリマー水溶液として2.5質量%のペクチン水溶液3.84g、第二ポリマー水溶液は2.5質量%としてソルビトール水溶液0.43g、無機粒子の分散液1.60gを用いた以外は実施例5と同様の方法で処理した。得られた複合体粒子をSEM観察したところ、コア粒子の表面に、鱗片状黒鉛とアセチレンブラックが存在しており、鱗片状黒鉛による突起構造をなしていることを確認した。ポリマーの含有量は1.5質量%だった。材料特性を表2に示す。
[比較例3]
50%水湿潤状態の活性炭素繊維を熱風乾燥機にて150℃で乾燥し、ワンダーブレンダー(大阪ケミカル株式会社製)で粉砕し、目開き45μmの篩で粗粒を取り除くことで円柱状活性炭を炭素材料として得た。炭素材料の材料特性を表1に示す。
実施例1~7の複合体粒子を用いた電池の特性はサイクル特性が優れているが、比較例1~3の複合体を用いた電池の特性はサイクル特性が劣っている。比較例1、2は2nm以下ドメインサイズの積算値が少ないことから、リチウム挿入脱離時のシリコン膨張収縮による体積変化を吸収することができずサイクル特性が劣ると考えられる。比較例3は真密度低いことから、炭素材料内部においてシリコンが充填されないほど小さいサイズの空孔が多く、強度が低くなったためサイクル特性が低下したり、不均一なシリコンの析出により初回クーロン効率が低下したりしたと考えられる。
Claims (10)
- シリコンと炭素を含む複合体粒子において、複合体粒子の小角X線散乱において得られるスペクトルに炭素-空孔2元系における球モデルでフィッティングを行うことにより得られる空孔のドメインサイズの体積分布情報を小さい順から積算していった際、2nm以下のドメインサイズ領域が44体積%以上70体積%以下であり、ヘリウムガスを用いた定容積膨張法による乾式密度測定で算出される真密度が1.80g/cm3以上2.20g/cm3以下であり、複合体粒子中のシリコン含有量が30質量%以上80質量%以下であり、複合体粒子中のシリコン含有量を100質量%とした時の酸素含有量が0.1質量%以上30質量%以下である複合体粒子。
- ラマンスペクトルにおいてシリコンに起因するピークが450~495cm-1に存在している、請求項1に記載の複合体粒子。
- ラマンスペクトルにおいてR値(ID/IG)が0.30以上1.30未満である、請求項1または2に記載の複合体粒子。
- Cu-Kα線を用いた粉末XRD測定によるXRDパターンにおいて、(SiC111面のピーク強度)/(Si111面のピーク強度)が0.01以下である、請求項1~3のいずれか1項に記載の複合体粒子。
- 平均粒子径DV50が1.0μm以上30μm以下であり、BET比表面積が0.1m2/g以上100m2/g以下である、請求項1~4のいずれか1項に記載の複合体粒子。
- 複合体粒子表面の少なくとも一部に無機粒子及びポリマーが存在し、ポリマー含有量が0.1質量%~10.0質量%であり、無機粒子が黒鉛及びカーボンブラックから選択される1種以上である請求項1~5のいずれか1項に記載の複合体粒子。
- 炭素が非晶質炭素である請求項1~6のいずれか1項に記載の複合体粒子。
- 請求項1~7のいずれか1項に記載の複合体粒子を含む、負極活物質。
- 請求項8に記載の負極活物質を含む、負極合剤層。
- 請求項9に記載の負極合剤層を含む、リチウムイオン二次電池。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020093159 | 2020-05-28 | ||
JP2020093159 | 2020-05-28 | ||
JP2021005095 | 2021-01-15 | ||
JP2021005095 | 2021-01-15 | ||
PCT/JP2021/020503 WO2021241754A1 (ja) | 2020-05-28 | 2021-05-28 | 複合体粒子、負極活物質およびリチウムイオン二次電池 |
Publications (3)
Publication Number | Publication Date |
---|---|
JPWO2021241754A1 JPWO2021241754A1 (ja) | 2021-12-02 |
JPWO2021241754A5 JPWO2021241754A5 (ja) | 2023-07-18 |
JP7405249B2 true JP7405249B2 (ja) | 2023-12-26 |
Family
ID=78744818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022526683A Active JP7405249B2 (ja) | 2020-05-28 | 2021-05-28 | 複合体粒子、負極活物質およびリチウムイオン二次電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US12002958B2 (ja) |
EP (1) | EP4160726A4 (ja) |
JP (1) | JP7405249B2 (ja) |
KR (1) | KR102723357B1 (ja) |
CN (1) | CN115668545A (ja) |
WO (1) | WO2021241754A1 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024142644A1 (ja) * | 2022-12-28 | 2024-07-04 | 株式会社レゾナック | 複合体粒子、その製造方法およびその用途 |
WO2024142699A1 (ja) * | 2022-12-28 | 2024-07-04 | 株式会社レゾナック | 複合体粒子、その製造方法およびその用途 |
CN115818620A (zh) * | 2022-12-30 | 2023-03-21 | 宁波杉杉新材料科技有限公司 | 硬炭负极材料及其制备方法、应用、钠离子电池 |
WO2024161756A1 (ja) * | 2023-02-02 | 2024-08-08 | 株式会社レゾナック | Si-C複合体粒子、その製造方法およびその用途 |
CN116022771B (zh) * | 2023-03-23 | 2023-08-25 | 宁德新能源科技有限公司 | 硬碳材料、负极极片以及电化学装置 |
CN116598452B (zh) * | 2023-05-15 | 2024-03-12 | 江门市和创新能源材料有限公司 | 一种硅碳负极材料及其制备方法和应用 |
CN117253992A (zh) * | 2023-09-26 | 2023-12-19 | 宇恒电池股份有限公司 | 一种钠离子电池负极材料及其制备方法 |
CN117727926B (zh) * | 2024-02-07 | 2024-05-14 | 武汉天钠科技有限公司 | 一种硬碳负极材料及其制备方法,以及钠离子电池 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007008790A (ja) | 2005-07-04 | 2007-01-18 | Sanyo Electric Co Ltd | カーボン微粒子の製造方法、分極性電極の製造方法および電気二重層キャパシタ |
JP2017088443A (ja) | 2015-11-09 | 2017-05-25 | 住友電気工業株式会社 | 多孔質炭素材料、その製造方法、それを用いた電極及びキャパシタ |
JP2017222547A (ja) | 2016-06-16 | 2017-12-21 | 進和テック株式会社 | 活性炭の製造方法及び活性炭製造システム |
JP2018032588A (ja) | 2016-08-26 | 2018-03-01 | 株式会社リコー | 非水電解液蓄電素子 |
WO2018163778A1 (ja) | 2017-03-08 | 2018-09-13 | 学校法人 関西大学 | アルカリ金属-硫黄系二次電池用電解液及びアルカリ金属-硫黄系二次電池 |
JP2019179679A (ja) | 2018-03-30 | 2019-10-17 | 住友大阪セメント株式会社 | リチウムイオン電池用電極材料及びリチウムイオン電池 |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2948206B1 (ja) | 1998-05-25 | 1999-09-13 | 花王株式会社 | 非水系二次電池用負極材料 |
EP1115130A4 (en) | 1998-08-25 | 2007-05-02 | Fuji Heavy Ind Ltd | MATERIAL FOR ELECTRODES AND PROCESS FOR PRODUCING THE SAME |
JP3897709B2 (ja) | 2002-02-07 | 2007-03-28 | 日立マクセル株式会社 | 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池 |
JP4968425B2 (ja) | 2005-08-04 | 2012-07-04 | 戸田工業株式会社 | 球状多孔性炭素粒子粉末及びその製造法 |
JP4949971B2 (ja) | 2007-08-21 | 2012-06-13 | エア・ウォーター・ベルパール株式会社 | 炭素電極材、炭素電極材混合物および炭素電極材の製造方法、ならびに電気二重層キャパシタ、リチウムイオン電池およびリチウムイオンキャパシタ |
EP2104164A4 (en) | 2006-12-28 | 2012-01-18 | Dow Corning Toray Co Ltd | POROUS SILICON-BASED CARBON-BASED COMPOSITE MATERIAL, ELECTRODE AND BATTERY COMPOSED THEREOF |
US8828481B2 (en) | 2007-04-23 | 2014-09-09 | Applied Sciences, Inc. | Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries |
JP2010095390A (ja) | 2008-09-16 | 2010-04-30 | Tokyo Institute Of Technology | メソポーラス炭素複合材料およびこれを用いた二次電池 |
JP5411781B2 (ja) * | 2010-04-05 | 2014-02-12 | 信越化学工業株式会社 | 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池 |
JP5376530B2 (ja) | 2010-11-29 | 2013-12-25 | テックワン株式会社 | 負極活物質、負極製造方法、負極、及び二次電池 |
JP6324726B2 (ja) | 2010-12-28 | 2018-05-16 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 電気化学特性が向上した炭素材料 |
CN103947017B (zh) | 2011-06-03 | 2017-11-17 | 巴斯福股份公司 | 用于混合能量存储装置中的碳‑铅共混物 |
AU2012275046A1 (en) | 2011-06-30 | 2014-01-23 | Cornell University | Hybrid materials and nanocomposite materials, methods of making same, and uses thereof |
KR20130056668A (ko) | 2011-11-22 | 2013-05-30 | 삼성전자주식회사 | 복합 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 |
US20130252082A1 (en) * | 2012-01-11 | 2013-09-26 | Energ2 Technologies, Inc. | Hard carbon materials |
WO2013120011A1 (en) | 2012-02-09 | 2013-08-15 | Energ2 Technologies, Inc. | Preparation of polymeric resins and carbon materials |
FR2989687B1 (fr) | 2012-04-24 | 2016-10-28 | Mgi France | Composition de vernis a viscosite faible pour substrat imprime par jet d’encre |
US20130344391A1 (en) | 2012-06-18 | 2013-12-26 | Sila Nanotechnologies Inc. | Multi-shell structures and fabrication methods for battery active materials with expansion properties |
US8729523B2 (en) | 2012-08-31 | 2014-05-20 | Micron Technology, Inc. | Three dimensional memory array architecture |
US20140272592A1 (en) * | 2013-03-14 | 2014-09-18 | Energ2 Technologies, Inc. | Composite carbon materials comprising lithium alloying electrochemical modifiers |
WO2014160385A2 (en) * | 2013-03-14 | 2014-10-02 | Energ2 Technologies, Inc. | Energy storage devices based on hybrid carbon electrode systems |
JP6664040B2 (ja) | 2013-08-05 | 2020-03-13 | 昭和電工株式会社 | リチウムイオン電池用負極材及びその用途 |
JP2015050050A (ja) | 2013-09-02 | 2015-03-16 | 大阪瓦斯株式会社 | ナトリウム二次電池用負極材料及びその製造方法、並びに該ナトリウム二次電池用負極材料を用いたナトリウム二次電池 |
JP2015130287A (ja) | 2014-01-08 | 2015-07-16 | 株式会社デンソー | 炭素複合体及び蓄電デバイス |
JP6451340B2 (ja) | 2015-01-22 | 2019-01-16 | 株式会社豊田中央研究所 | 複合体及びその製造方法 |
JP6509591B2 (ja) | 2015-03-10 | 2019-05-08 | 大阪ガスケミカル株式会社 | 疎水化炭素材及びその製造方法 |
EP3836261A1 (en) * | 2015-08-28 | 2021-06-16 | Group14 Technologies, Inc. | Novel materials with extremely durable intercalation of lithium and manufacturing methods thereof |
EP3593369A4 (en) | 2017-03-09 | 2021-03-03 | Group14 Technologies, Inc. | DECOMPOSITION OF PRECURSORS CONTAINING SILICON ON POROUS SCAFFOLDING MATERIALS |
WO2019031597A1 (ja) | 2017-08-10 | 2019-02-14 | 昭和電工株式会社 | リチウムイオン二次電池用負極材料およびリチウムイオン二次電池 |
JP6619123B2 (ja) | 2017-12-28 | 2019-12-11 | 昭和電工株式会社 | リチウムイオン二次電池用負極材 |
WO2019131862A1 (ja) | 2017-12-28 | 2019-07-04 | 昭和電工株式会社 | リチウムイオン二次電池用負極材 |
JP2019145212A (ja) | 2018-02-15 | 2019-08-29 | 株式会社クラレ | ケイ素酸化物/炭素複合体、その複合体を含む非水電解質二次電池用負極、及びその負極を含む非水電解質二次電池 |
CN108565437B (zh) * | 2018-05-18 | 2019-06-11 | 国家能源投资集团有限责任公司 | 硅碳复合材料及其制备方法和应用 |
KR102377948B1 (ko) | 2018-05-18 | 2022-03-22 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지 |
GB2584615C (en) * | 2019-05-20 | 2023-10-25 | Nexeon Ltd | Electroactive materials for metal-ion batteries |
GB201818232D0 (en) | 2018-11-08 | 2018-12-26 | Nexeon Ltd | Electroactive materials for metal-ion batteries |
GB2580033B (en) | 2018-12-19 | 2021-03-10 | Nexeon Ltd | Electroactive materials for metal-Ion batteries |
-
2021
- 2021-05-28 CN CN202180037826.3A patent/CN115668545A/zh active Pending
- 2021-05-28 JP JP2022526683A patent/JP7405249B2/ja active Active
- 2021-05-28 EP EP21812328.9A patent/EP4160726A4/en active Pending
- 2021-05-28 KR KR1020227045413A patent/KR102723357B1/ko active Active
- 2021-05-28 US US17/928,195 patent/US12002958B2/en active Active
- 2021-05-28 WO PCT/JP2021/020503 patent/WO2021241754A1/ja unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007008790A (ja) | 2005-07-04 | 2007-01-18 | Sanyo Electric Co Ltd | カーボン微粒子の製造方法、分極性電極の製造方法および電気二重層キャパシタ |
JP2017088443A (ja) | 2015-11-09 | 2017-05-25 | 住友電気工業株式会社 | 多孔質炭素材料、その製造方法、それを用いた電極及びキャパシタ |
JP2017222547A (ja) | 2016-06-16 | 2017-12-21 | 進和テック株式会社 | 活性炭の製造方法及び活性炭製造システム |
JP2018032588A (ja) | 2016-08-26 | 2018-03-01 | 株式会社リコー | 非水電解液蓄電素子 |
WO2018163778A1 (ja) | 2017-03-08 | 2018-09-13 | 学校法人 関西大学 | アルカリ金属-硫黄系二次電池用電解液及びアルカリ金属-硫黄系二次電池 |
JP2019179679A (ja) | 2018-03-30 | 2019-10-17 | 住友大阪セメント株式会社 | リチウムイオン電池用電極材料及びリチウムイオン電池 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021241754A1 (ja) | 2021-12-02 |
KR102723357B1 (ko) | 2024-10-31 |
WO2021241754A1 (ja) | 2021-12-02 |
US12002958B2 (en) | 2024-06-04 |
CN115668545A (zh) | 2023-01-31 |
EP4160726A4 (en) | 2024-07-03 |
US20230223537A1 (en) | 2023-07-13 |
KR20230017259A (ko) | 2023-02-03 |
EP4160726A1 (en) | 2023-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7405249B2 (ja) | 複合体粒子、負極活物質およびリチウムイオン二次電池 | |
JP7472972B2 (ja) | リチウムイオン二次電池用負極材およびその用途 | |
US12327863B2 (en) | Electroactive materials for metal-ion batteries | |
JP6511726B2 (ja) | リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
JP7509200B2 (ja) | 複合粒子、その製造方法およびその用途 | |
JP7236613B1 (ja) | 複合体粒子、その製造方法およびその用途 | |
WO2014038494A1 (ja) | 非水電解質二次電池負極用材料 | |
WO2022270539A1 (ja) | 複合炭素粒子およびその用途 | |
US20240250242A1 (en) | Composite particles, negative electrode mixture layer and lithium-ion secondary battery | |
JP7420241B2 (ja) | 複合粒子、負極材およびリチウムイオン二次電池 | |
WO2022249476A1 (ja) | 複合体粒子、負極活物質およびリチウムイオン二次電池 | |
JP2023059283A (ja) | 複合体粒子、その製造方法およびその用途 | |
US20250219053A1 (en) | Negative electrode material for lithium-ion secondary battery and use thereof | |
WO2023053548A1 (ja) | 複合体粒子、その製造方法およびその用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221104 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20230131 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20230201 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20230307 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230725 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230904 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231127 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7405249 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |