JP7357699B2 - 自己充填被覆ケイ素ベース複合材料、その調製方法及びその応用 - Google Patents

自己充填被覆ケイ素ベース複合材料、その調製方法及びその応用 Download PDF

Info

Publication number
JP7357699B2
JP7357699B2 JP2021569914A JP2021569914A JP7357699B2 JP 7357699 B2 JP7357699 B2 JP 7357699B2 JP 2021569914 A JP2021569914 A JP 2021569914A JP 2021569914 A JP2021569914 A JP 2021569914A JP 7357699 B2 JP7357699 B2 JP 7357699B2
Authority
JP
Japan
Prior art keywords
self
based composite
silicon
coated silicon
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021569914A
Other languages
English (en)
Other versions
JP2023509253A (ja
Inventor
安華 鄭
徳馨 余
永軍 仰
韻霖 仰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Kaijin New Energy Technology Co Ltd
Original Assignee
Guangdong Kaijin New Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Kaijin New Energy Technology Co Ltd filed Critical Guangdong Kaijin New Energy Technology Co Ltd
Publication of JP2023509253A publication Critical patent/JP2023509253A/ja
Application granted granted Critical
Publication of JP7357699B2 publication Critical patent/JP7357699B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)

Description

本発明は、電池の負極材料分野に関し、特に、自己充填被覆ケイ素ベース複合材料、その調製方法及びその応用に関する。
現在市販されている負極材料は、主に天然黒鉛、人造黒鉛及び中間に当たる黒鉛材料であるが、理論容量が小さい(372mAh/g)ため、市場の需要に応えることができないでいた。近年、新型の高比容量負極材料であるリチウム貯蔵金属及びその酸化物(例えばSn、Si)とリチウム遷移金属リン化物に注目が集まっている。多くの新しい高比容量負極材料の中で、Siは、高い理論的な比容量(4200mAh/g)を備えるため、黒鉛類材料に代替できる最も可能性のある一つとなっているが、Siベースは充放電時の大きな体積膨張があり、割れ及び微粉化が発生しやすいため、集電体から剥離することにより、サイクル性能が急激に低下する。なお、ケイ素ベース材料の真性導電率は低く、レート特性が劣る。したがって体積膨張による影響を低減し、サイクル特性及びレート特性を向上することは、リチウムイオン電池におけるケイ素ベース材料の応用にとって重要な意義を持っている。
従来のケイ素-炭素負極材料は、ナノケイ素、黒鉛及び炭素を用いて造粒して複合材料を得ている。ナノケイ素が黒鉛粒子の表面形を被覆してコアシェル構造を形成するため、ミクロンサイズ黒鉛粒子は、放電過程中の応力を十分に解放できないことにより、局所的な構造損傷が生じ、材料全体の特性にも影響を及ぼす。したがって、どのように体積膨張による影響を低減し、サイクル特性を改善するかがリチウムイオン電池におけるケイ素ベース材料の応用にとって重要な意義を持っている。
上記技術的課題を解決するため、本発明は、高い初期効率、低膨張及び長サイクル寿命などの利点を有する自己充填被覆ケイ素ベース複合材料を提供する。
本発明は、工程が単純で実施しやすく、製品性能が安定であり、良好な応用の見通しがある自己充填被覆ケイ素ベース複合材料の調製方法及びその応用も提供する。
本発明では次のような技術的手段を講じた。
自己充填被覆ケイ素ベース複合材料であって、ナノケイ素層、充填層及び表面修飾層で構成され、前記ナノケイ素層内のナノケイ素の粒径D50<200nmであり、前記充填層はナノケイ素の間に充填する炭素充填層である。
上記技術的手段の更なる改善形態として、前記自己充填被覆ケイ素ベース複合材料の粒子径D50は、2~40μmの範囲、前記自己充填被覆ケイ素ベース複合材料の比表面積は0.5~15m2/gの範囲、前記自己充填被覆ケイ素ベース複合材料の空隙率は1~20%の範囲である。
上記技術的手段の更なる改善形態として、前記自己充填被覆ケイ素ベース複合材料の酸素含有量は、0~20%の範囲、前記自己充填被覆ケイ素ベース複合材料の炭素含有量は20~90%の範囲、前記自己充填被覆ケイ素ベース複合材料のケイ素含有量は5~90%の範囲である。
上記技術的手段の更なる改善形態として、前記ナノケイ素層内のナノケイ素は、ケイ素粒子又はナノ二酸化ケイ素粒子であり、前記表面修飾層は炭素修飾層であり、前記炭素修飾層が少なくとも1つの層で、単層の厚さが0.2~1.0μmの範囲である。
上記技術的手段の更なる改善形態として、前記ナノケイ素層内のナノケイ素は、SiOであり、ここでXが0~0.8の範囲である。
上記技術的手段の更なる改善形態として、前記ナノケイ素層内のナノケイ素の酸素含有量は、0~31%の範囲であり、前記ナノケイ素層内のナノケイ素の結晶粒の大きさが1~40nmの範囲である。
自己充填被覆ケイ素ベース複合材料の調製方法であって、
ナノケイ素、分散剤、粘結剤を溶媒に均一混合して分散させ、噴霧乾燥させて前駆体Aを得る工程S0と、
前駆体Aと有機炭素源を機械的に混合させ、機械的に融合させて前駆体Bを得る工程S1と、
前駆体Bを高温真空/加圧炭化して前駆体Cを得る工程S2と、
前駆体Cを粉砕し、篩分けして前駆体Dを得る工程S3と、
前駆体Dを炭素で被覆して自己充填被覆ケイ素ベース複合材料を得る工程S4と、を含む。
上記技術的手段の更なる改善形態として、前記工程S2において、前記高温真空/加圧炭化は、真空炭化、熱間等方圧、加圧後炭化などのプロセスのうちの1種又は複数種である。
上記技術的手段の更なる改善形態として、炭素で被覆して熱処理することは、静的熱処理又は動的熱処理であり、前記静的熱処理は前駆体Dを箱型炉、真空炉又はローラーハースキルンに入れ、保護雰囲気ガス下で、400~1000℃まで1~5℃/分で昇温し、0.5~20時間温度保持し、室温まで自然冷却させることであり、前記動的熱処理は前駆体Dを回転炉に入れ、保護雰囲気ガス下で400~1000℃まで1~5℃/分で昇温し、0~20.0L/分の吹き込み速度で有機炭素源ガスを吹き込み、0.5~20時間温度保持し、室温まで自然冷却させることである。
自己充填被覆ケイ素ベース複合材料の応用であって、前記自己充填被覆ケイ素ベース複合材料は、リチウムイオン電池の負極材料に応用される。
本発明の自己充填被覆ケイ素ベース複合材料内の充填層で構成される三次元導電性炭素ネットワークは、ケイ素ベース材料の導電性を効果的に向上できるだけでなく、同時に充放電時の体積変化を効果的に緩和できることで、材料がサイクル過程中の微粉化も効果的に防ぐこともできる。充填層内の導電性炭素は、材料の導電性を向上すると共にナノケイ素材料の体積膨張を緩和できるだけでなく、サイクル過程中のナノケイ素と電解液との直接接触を抑制して副反応を減らすことができる。最外層の炭素被覆層は、ナノケイ素と電解液との直接接触を抑制して副反応を減らし、同時にケイ素ベース材料の導電性を効果的に向上できると共に充放電時の体積変化を効果的に緩和できる。
本発明の自己充填被覆ケイ素ベース複合材料の実施例4で調製された材料の構造概略図である。 本発明の自己充填被覆ケイ素ベース複合材料の実施例4で調製された材料の電子顕微鏡写真である。 本発明の自己充填被覆ケイ素ベース複合材料の実施例4で調製された材料の初回充放電曲線図である。
以下に、本発明の実施例を参照しつつ本発明の実施例における技術的手段を明確かつ完全に説明する。
自己充填被覆ケイ素ベース複合材料であって、ナノケイ素層、充填層及び表面修飾層で構成され、前記ナノケイ素層内のナノケイ素の粒径D50<200nmであり、前記充填層はナノケイ素の間に充填する炭素充填層である。
前記自己充填被覆ケイ素ベース複合材料の粒子径D50は、2~40μmの範囲、より好ましくは2~20μmの範囲、特に好ましくは2~10μmの範囲である。
前記自己充填被覆ケイ素ベース複合材料の比表面積は0.5~15m2/gの範囲、より好ましくは0.5~10m2/gの範囲、特に好ましくは0.5~5m2/gの範囲である。
前記自己充填被覆ケイ素ベース複合材料の空隙率は、1~20%の範囲、より好ましくは1~10%の範囲、特に好ましくは1~5%の範囲である。
前記自己充填被覆ケイ素ベース複合材料の酸素含有量は、0~20%の範囲、より好ましくは0~15%の範囲、特に好ましくは0~10%の範囲である。
前記自己充填被覆ケイ素ベース複合材料の炭素含有量は、20~90%の範囲、より好ましくは20~60%の範囲、特に好ましくは20~50%の範囲である。
前記自己充填被覆ケイ素ベース複合材料のケイ素含有量は、5~90%の範囲、より好ましくは20~70%の範囲、特に好ましくは30~60%の範囲である。
前記ナノケイ素層内のナノケイ素は、ケイ素粒子又はナノ二酸化ケイ素粒子であり、前記表面修飾層は炭素修飾層であり、前記炭素修飾層が少なくとも1つの層で、単層の厚さが0.2~1.0μmの範囲である。
前記ナノケイ素層内のナノケイ素は、SiOxであり、ここでXが0~0.8の範囲である。
前記ナノケイ素層内のナノケイ素の酸素含有量は、0~31%の範囲、より好ましくは0~20%の範囲、特に好ましくは0~15%の範囲である。
前記ナノケイ素層内のナノケイ素の結晶粒の大きさは、1~40nmの範囲であり、ナノケイ素が多結晶ナノケイ素又は非結晶ナノケイ素のうちの1種或いは複数種である。
自己充填被覆ケイ素ベース複合材料の調製方法であって、
ナノケイ素、分散剤、粘結剤を溶媒に均一混合して分散させ、噴霧乾燥させて前駆体Aを得る工程S0と、
前駆体Aと有機炭素源を機械的に混合させ、機械的に融合させて前駆体Bを得る工程S1と、
前駆体Bを高温真空/加圧炭化して前駆体Cを得る工程S2と、
前駆体Cを粉砕し、篩分けして前駆体Dを得る工程S3と、
前駆体Dを炭素で被覆して自己充填被覆ケイ素ベース複合材料を得る工程S4と、を含む。
前記工程S2において、前記高温真空/加圧炭化は、真空炭化、熱間等方圧、加圧後炭化などのプロセスのうちの1種又は複数種である。
炭素で被覆して熱処理することは、静的熱処理又は動的熱処理であり、前記静的熱処理は前駆体Dを箱型炉、真空炉又はローラーハースキルンに入れ、保護雰囲気ガス下で、400~1000℃まで1~5℃/分で昇温し、0.5~20時間温度保持し、室温まで自然冷却させることであり、前記動的熱処理は前駆体Dを回転炉に入れ、保護雰囲気ガス下で400~1000℃まで1~5℃/分で昇温し、0~20.0L/分の吹き込み速度で有機炭素源ガスを吹き込み、0.5~20時間温度保持し、室温まで自然冷却させることである。
自己充填被覆ケイ素ベース複合材料の応用であって、前記自己充填被覆ケイ素ベース複合材料は、リチウムイオン電池の負極材料に応用される。
(実施例1)
1、1000gの粒径D50が100nmのナノケイ素と100gのクエン酸をアルコール中に均一混合して分散させ、噴霧乾燥させて前駆体A1を得た。
2、前駆体A1とピッチを10:3質量比で溶融し、前駆体B1を得た。
3、その後前駆体B1を真空炉に入れ、真空条件下で焼結し、昇温速度を1oC/分、熱処理温度を1000oCとし、5時間温度保持し、冷却後前駆体C1を得、前駆体C1を粉砕、篩分けして前駆体D1を得た。
4、前駆体D1とピッチを10:1質量比で溶融し、その後窒素雰囲気条件下で焼結し、昇温速度を1oC/分、熱処理温度を1000oCとし、5時間温度保持し、冷却後篩分けして自己充填被覆ケイ素ベース複合材料を得た。
(実施例2)
1、1000gの粒径D50が100nmのナノケイ素と100gのクエン酸をアルコール中に均一混合して分散させ、噴霧乾燥させて前駆体A2を得た。
2、前駆体A2とピッチを10:3質量比で溶融し、前駆体B2を得た。
3、その後前駆体B2を熱処理温度1000oCの熱間等方圧加圧装置に入れ、5時間温度保持し、冷却後前駆体C2を得、前駆体C2を粉砕、篩分けして前駆体D2を得た。
4、前駆体D2とピッチを10:1質量比で溶融し、その後窒素雰囲気条件下で焼結し、昇温速度を1oC/分、熱処理温度を1000oCとし、5時間温度保持し、冷却後篩分けして自己充填被覆ケイ素ベース複合材料を得た。
(実施例3)
1、1000gの粒径D50が100nmのナノケイ素と50gのクエン酸をアルコール中に均一混合して分散させ、噴霧乾燥させて前駆体A3を得た。
2、前駆体A3とピッチを10:3質量比で溶融し、前駆体B3を得た。
3、その後前駆体B3を真空炉に入れ、真空条件下で焼結し、昇温速度を1oC/分、熱処理温度を1000oCとし、5時間温度保持し、冷却後前駆体C3を得、前駆体C3を粉砕、篩分けして前駆体D3を得た。
4、1000gの得られた前駆体D3をCVD炉に取り、1000℃まで5℃/分で昇温させ、それぞれ4.0L/分の速度で高純度窒素ガスを吹き込み、0.5L/分の速度でメタンガスを吹き込み、メタンガスの吹き込み時間が30分であり、冷却後篩分けして自己充填被覆ケイ素ベース複合材料を得た。
(実施例4)
1、1000gの粒径D50が100nmのナノケイ素と50gのクエン酸をアルコール中に均一混合して分散させ、噴霧乾燥させて前駆体A4を得た。
2、前駆体A4ピッチを10:3質量比で溶融し、前駆体B4を得た。
3、その後前駆体B4を熱処理温度1000oCの熱間等方圧加圧装置に入れ、5時間温度保持し、冷却後前駆体C4を得、前駆体C4を粉砕、篩分けして前駆体D4を得た。
4、1000gの得られた前駆体D4をCVD炉に取り、1000℃まで5℃/分で昇温させ、それぞれ4.0L/分の速度で高純度窒素ガスを吹き込み、0.5L/分の速度でメタンガスを吹き込み、メタンガスの吹き込み時間が30分であり、冷却後篩分けして自己充填被覆ケイ素ベース複合材料を得た。
<比較例>
1、1000gの粒径D50が100nmのナノケイ素と100gのクエン酸をアルコール中に均一混合して分散させ、噴霧乾燥させて前駆体A0を得た。
2、前駆体A0とピッチを10:3質量比で溶融し、前駆体B0を得た。
3、その後前駆体B0を箱型炉に入れ、窒素雰囲気条件下で焼結し、昇温速度を1oC/分、熱処理温度を1000oCとし、5時間温度保持し、冷却後篩分けしてケイ素ベース複合材料を得た。
以下の方法で材料の体積膨張率を試験及び計算した。調製されたケイ素-炭素複合材料と黒鉛複合で調製された容量500mAh/gの複合材料についてサイクル特性を試験し、膨張率=(50サイクル後のポールピースの厚さ~サイクル前のポールピースの厚さ)/(サイクル前のポールピースの厚さ~銅箔の厚さ)×100%とした。
表1は、比較例と実施例の初回サイクル試験結果を示す。表2は、サイクルの膨張試験結果を示す。
本発明の自己充填被覆ケイ素ベース複合材料内の充填層で構成される三次元導電性炭素ネットワークは、ケイ素ベース材料の導電性を効果的に向上できるだけでなく、同時に充放電時の体積変化を効果的に緩和できることで、材料がサイクル過程中の微粉化も効果的に防ぐこともできる。充填層内の導電性炭素は、材料の導電性を向上すると共にナノケイ素材料の体積膨張を緩和できるだけでなく、サイクル過程中のナノケイ素と電解液との直接接触を抑制して副反応を減らすことができる。最外層の炭素被覆層は、ナノケイ素と電解液との直接接触を抑制して副反応を減らし、同時にケイ素ベース材料の導電性を効果的に向上できると共に充放電時の体積変化を効果的に緩和できる。
以上、本発明を詳細に説明したが、以上の述べるものは本発明の好ましい実施例のみであって、これらによって本発明の保護範囲が限定的に解釈されない。当業者であれば、本発明の技術的思想を逸脱することなく、様々な変形及び改良が可能であり、かかる変形及び改良は本発明の保護範囲に含めることを指摘しておかなければならない。

Claims (10)

  1. 自己充填被覆ケイ素ベース複合材料であって、ナノケイ素層、充填層及び表面修飾層で構成され、前記ナノケイ素層内のナノケイ素の粒径D50<200nmであり、前記充填層はナノケイ素の間に充填する炭素充填層であり、
    前記自己充填被覆ケイ素ベース複合材料の空隙率は1~5%の範囲であることを特徴とする、自己充填被覆ケイ素ベース複合材料。
  2. 前記自己充填被覆ケイ素ベース複合材料の粒子径D50は、2~40μmの範囲、前記自己充填被覆ケイ素ベース複合材料の比表面積は0.5~15m2/gの範囲あることを特徴とする、請求項1に記載の自己充填被覆ケイ素ベース複合材料。
  3. 前記自己充填被覆ケイ素ベース複合材料の酸素含有量は、0~20%の範囲、前記自己充填被覆ケイ素ベース複合材料の炭素含有量は20~90%の範囲、前記自己充填被覆ケイ素ベース複合材料のケイ素含有量は5~90%の範囲であることを特徴とする、請求項1に記載の自己充填被覆ケイ素ベース複合材料。
  4. 前記ナノケイ素層内のナノケイ素は、ケイ素粒子又はナノ二酸化ケイ素粒子であり、前記表面修飾層は炭素修飾層であり、前記炭素修飾層が少なくとも1つの層で、単層の厚さが0.2~1.0μmの範囲であることを特徴とする、請求項1に記載の自己充填被覆ケイ素ベース複合材料。
  5. 前記ナノケイ素層内のナノケイ素は、SiOであり、ここでXが0~0.8の範囲であることを特徴とする、請求項1に記載の自己充填被覆ケイ素ベース複合材料。
  6. 前記ナノケイ素層内のナノケイ素の酸素含有量は、0~31%の範囲であり、前記ナノケイ素層内のナノケイ素の結晶粒の大きさが1~40nmの範囲であることを特徴とする、請求項1に記載の自己充填被覆ケイ素ベース複合材料。
  7. 請求項1に記載の自己充填被覆ケイ素ベース複合材料の調製方法であって、
    ナノケイ素、分散剤、粘結剤を溶媒に均一混合して分散させ、噴霧乾燥させて前駆体Aを得る工程S0と、
    前駆体Aと有機炭素源を機械的に混合させ、機械的に融合させて前駆体Bを得る工程S1と、
    前駆体Bを高温真空/加圧炭化して前駆体Cを得る工程S2と、
    前駆体Cを粉砕し、篩分けして前駆体Dを得る工程S3と、
    前駆体Dを炭素で被覆して自己充填被覆ケイ素ベース複合材料を得る工程S4と、
    を含むことを特徴とする、自己充填被覆ケイ素ベース複合材料の調製方法。
  8. 前記工程S2において、前記高温真空/加圧炭化は、真空炭化、熱間等方圧、加圧ちの1種又は複数あることを特徴とする、請求項7に記載の自己充填被覆ケイ素ベース複合材料の調製方法。
  9. 前記炭素で被覆して熱処理することは、静的熱処理又は動的熱処理であり、前記静的熱処理は前駆体Dを箱型炉、真空炉又はローラーハースキルンに入れ、保護雰囲気ガス下で、400~1000℃まで1~5℃/分で昇温し、0.5~20時間温度保持し、室温まで自然冷却させることであり、前記動的熱処理は前駆体Dを回転炉に入れ、保護雰囲気ガス下で400~1000℃まで1~5℃/分で昇温し、0~20.0L/分の吹き込み速度で有機炭素源ガスを吹き込み、0.5~20時間温度保持し、室温まで自然冷却させることであることを特徴とする、請求項7に記載の自己充填被覆ケイ素ベース複合材料の調製方法。
  10. リチウムイオン電池の負極材料における請求項1から請求項6のいずれか一項に記載の自己充填被覆ケイ素ベース複合材料または請求項7から請求項9のいずれか一項に記載の自己充填被覆ケイ素ベース複合材料の調製方法により調製された自己充填被覆ケイ素ベース複合材料の応用。
JP2021569914A 2020-12-07 2021-06-24 自己充填被覆ケイ素ベース複合材料、その調製方法及びその応用 Active JP7357699B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202011418740.9 2020-12-07
CN202011418740.9A CN112563503A (zh) 2020-12-07 2020-12-07 一种自填充包覆硅基复合材料、其制备方法及其应用
PCT/CN2021/101987 WO2022121281A1 (zh) 2020-12-07 2021-06-24 一种自填充包覆硅基复合材料、其制备方法及其应用

Publications (2)

Publication Number Publication Date
JP2023509253A JP2023509253A (ja) 2023-03-08
JP7357699B2 true JP7357699B2 (ja) 2023-10-06

Family

ID=75059541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021569914A Active JP7357699B2 (ja) 2020-12-07 2021-06-24 自己充填被覆ケイ素ベース複合材料、その調製方法及びその応用

Country Status (6)

Country Link
US (1) US20220181608A1 (ja)
JP (1) JP7357699B2 (ja)
KR (1) KR20220083974A (ja)
CN (2) CN112563503A (ja)
DE (1) DE102021005842A1 (ja)
WO (1) WO2022121281A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563503A (zh) * 2020-12-07 2021-03-26 广东凯金新能源科技股份有限公司 一种自填充包覆硅基复合材料、其制备方法及其应用
CN114142005B (zh) * 2021-11-09 2023-03-31 广东凯金新能源科技股份有限公司 一种长循环、低膨胀内孔结构硅碳复合材料、其制备方法及其应用
CN118039850A (zh) * 2023-04-21 2024-05-14 广东凯金新能源科技股份有限公司 硅碳复合材料的制备方法、硅碳复合材料及二次电池
CN116646482B (zh) * 2023-04-21 2024-04-05 广东凯金新能源科技股份有限公司 硅碳复合材料、硅碳复合材料的制备方法及二次电池
CN117174857A (zh) * 2023-08-29 2023-12-05 广东凯金新能源科技股份有限公司 硅基复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183043A (ja) 2013-03-19 2014-09-29 Wacker Chemie Ag リチウムイオン電池用の負極材料としてのSi/C複合体
JP2015060776A (ja) 2013-09-20 2015-03-30 株式会社東芝 非水電解質二次電池用負極材料、非水電解質二次電池用負極、非水電解質二次電池及び電池パック
CN109449423A (zh) 2018-11-13 2019-03-08 东莞市凯金新能源科技股份有限公司 一种中空/多孔结构硅基复合材料及其制法
CN111063875A (zh) 2019-12-25 2020-04-24 广东凯金新能源科技股份有限公司 一种海绵状多孔结构硅基复合材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474667B (zh) * 2013-08-16 2015-08-26 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用硅碳复合负极材料及其制备方法
CN103855364B (zh) * 2014-03-12 2017-06-06 深圳市贝特瑞新能源材料股份有限公司 一种SiOx基复合材料、制备方法及锂离子电池
CN104577084A (zh) * 2015-01-20 2015-04-29 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用纳米硅复合负极材料、制备方法及锂离子电池
CN106159229B (zh) * 2016-07-28 2020-01-24 深圳市贝特瑞新能源材料股份有限公司 硅基复合材料、制备方法及包含该复合材料的锂离子电池
CN106129411B (zh) * 2016-09-19 2020-01-24 深圳市贝特瑞新能源材料股份有限公司 一种空心硅基复合材料、制备方法及包含该复合材料的锂离子电池
CN109755517A (zh) * 2018-12-29 2019-05-14 陕西煤业化工技术研究院有限责任公司 一种锂离子电池用硅碳复合负极材料及其制备方法
CN109802120A (zh) * 2019-01-24 2019-05-24 广东凯金新能源科技股份有限公司 一种硅碳复合材料及其制法
CN112563503A (zh) * 2020-12-07 2021-03-26 广东凯金新能源科技股份有限公司 一种自填充包覆硅基复合材料、其制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183043A (ja) 2013-03-19 2014-09-29 Wacker Chemie Ag リチウムイオン電池用の負極材料としてのSi/C複合体
JP2015060776A (ja) 2013-09-20 2015-03-30 株式会社東芝 非水電解質二次電池用負極材料、非水電解質二次電池用負極、非水電解質二次電池及び電池パック
CN109449423A (zh) 2018-11-13 2019-03-08 东莞市凯金新能源科技股份有限公司 一种中空/多孔结构硅基复合材料及其制法
CN111063875A (zh) 2019-12-25 2020-04-24 广东凯金新能源科技股份有限公司 一种海绵状多孔结构硅基复合材料及其制备方法

Also Published As

Publication number Publication date
CN113193201A (zh) 2021-07-30
WO2022121281A1 (zh) 2022-06-16
US20220181608A1 (en) 2022-06-09
CN112563503A (zh) 2021-03-26
JP2023509253A (ja) 2023-03-08
DE102021005842A1 (de) 2022-06-09
KR20220083974A (ko) 2022-06-21

Similar Documents

Publication Publication Date Title
JP7357699B2 (ja) 自己充填被覆ケイ素ベース複合材料、その調製方法及びその応用
JP6563477B2 (ja) 多元系複合負極材料、その製造方法及びそれを含むリチウムイオン電池
JP2023522139A (ja) 三次元多孔質ケイ素-炭素複合材料、その調製方法及びその応用
CN110556529A (zh) 具有多层核壳结构的负极复合材料及其制备方法和应用
JP2020510962A (ja) 炭素系複合材料、その製造方法、およびそれを含むリチウムイオン二次電池
CN111244400B (zh) 一种硅氧碳复合材料、锂离子电池及其制备方法、应用
JP2023523107A (ja) 高緻密質構造のケイ素-炭素複合材料、その調製方法及びその応用
CN112366301A (zh) 一种锂离子电池用硅/硅氧化物/碳复合负极材料及其制备方法
CN108807862A (zh) 一种硅基复合材料及其制备方法、负极材料和锂电池
WO2021077586A1 (zh) 一种用于电极材料的硅氧颗粒及其制备方法和应用
JP7392030B2 (ja) ケイ素-炭素複合材料、その調製方法及びその応用
CN110660984A (zh) 一种纳米硅碳复合材料及其制备方法和应用
CN113206249B (zh) 一种具有良好电化学性能的锂电池硅氧复合负极材料及其制备方法
JP7357698B2 (ja) ガーネット類似構造のケイ素ベース複合材料、その調製方法及びその応用
CN111689500A (zh) 一种低膨胀性的SiO/石墨复合电极材料的制备方法
CN113851627A (zh) 一种多孔硅碳负极材料及其制备方法
KR102433738B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
CN113363479A (zh) 一种双层碳包覆的氧化亚硅负极材料及其制备方法和应用
CN110550635A (zh) 一种新型的碳包覆硅氧负极材料的制备方法
CN113471419A (zh) 一种硅碳复合材料及其制备方法和应用
CN113363467A (zh) 一种氮掺杂高容量硬碳负极材料及其制备方法
CN109935793B (zh) 一种锂离子电池复合石墨烯负极材料的制备方法
CN111082005A (zh) 负极材料、复合材料及其制备方法
CN114497551B (zh) 一种硅碳复合材料及其制备方法、锂离子电池
CN112421002B (zh) 一种高容量的硅碳材料及其制备方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230926

R150 Certificate of patent or registration of utility model

Ref document number: 7357699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150