JP7273661B2 - 電気車用電源装置 - Google Patents

電気車用電源装置 Download PDF

Info

Publication number
JP7273661B2
JP7273661B2 JP2019159608A JP2019159608A JP7273661B2 JP 7273661 B2 JP7273661 B2 JP 7273661B2 JP 2019159608 A JP2019159608 A JP 2019159608A JP 2019159608 A JP2019159608 A JP 2019159608A JP 7273661 B2 JP7273661 B2 JP 7273661B2
Authority
JP
Japan
Prior art keywords
inverter
capacitor
resonance
power supply
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019159608A
Other languages
English (en)
Other versions
JP2021040395A (ja
Inventor
佑介 河野
貴彦 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019159608A priority Critical patent/JP7273661B2/ja
Priority to CN202010310746.8A priority patent/CN112448584B/zh
Publication of JP2021040395A publication Critical patent/JP2021040395A/ja
Application granted granted Critical
Publication of JP7273661B2 publication Critical patent/JP7273661B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

本発明の実施形態は、電気車用電源装置に関する。
電気車(移動体)は、高圧の電車線(例えば架空電車線、または第三軌条など)から供給される直流電圧を、負荷に応じた電圧に変換し、直流電圧を負荷に出力する電源装置を備える。例えば、電気車は、電気車用電源装置として、走行用電動機の駆動用の電源装置と、照明及び空調などの他の機器に電力を供給する補助電源装置とを備える。
補助電源装置は、インバータと商用周波数変圧器(絶縁トランス)とが組み合わされた構成が一般的である。このような補助電源装置を小型化するために、高周波変圧器(絶縁トランス)の適用が進められている。このような補助電源装置として、高周波数の交流電流により励磁される高周波変圧器(絶縁トランス)と、電車線からの直流電圧を調整する昇圧チョッパと、昇圧チョッパの出力を高周波数の交流に変換し、高周波変圧器に供給するインバータと、高周波の交流を直流に変換する整流器と、を備える構成が一例としてある。なお、インバータ、高周波変圧器、及び整流器が組み合わされた構成を、高周波絶縁回路と称する。また、上記の高周波絶縁回路のインバータに共振回路を適用する(共振インバータを用いる)ことにより、スイッチング時の損失を大幅に低減することと、インバータを高周波スイッチングすることとが可能となる。
しかしながら、共振回路を構成する共振コンデンサの容量が経年劣化によって低減した場合、共振回路の共振周波数が上昇する。この為、インバータが出力する交流電流のピーク値、及び実効値などが増加する。この結果、インバータ、高周波変圧器、及び整流器における損失の増加が引き起こされ、温度上昇が許容値を超える可能性がある。インバータ(共振インバータ)から出力される交流電流を監視することにより、電流の変化を検知することができる。しかし、新たに電流センサを設置する必要がある。また、既存のセンサにより検出された高周波絶縁回路の入力電力と出力電力との差分を算出することにより、高周波絶縁回路の全体の損失の変化を検出することができる。しかし、高周波絶縁回路のどの構成により、損失の変化が生じているのかを検出することができないという課題がある。
特開2015-199145号公報 特開2015-550254号公報
本発明が解決しようとする課題は、簡易な構成で高周波絶縁回路の構成毎の損失を推定することができる電気車用電源装置を提供することである。
実施形態に係る電気車用電源装置は、高周波変圧器と、整流器と、昇圧チョッパと、インバータと、制御回路とを具備する。整流器は、前記高周波変圧器から供給される交流電流を直流電流に変換する。昇圧チョッパは、直流電源から供給される直流電圧を昇圧する。インバータは、共振コンデンサを有し、前記昇圧チョッパから供給される直流電圧を用いて、前記高周波変圧器に交流電流を供給する。制御回路は、前記インバータへの入力電圧と、前記整流器の出力電圧及び出力電流と、に基づいて、合計損失を算出し、前記合計損失に基づいて、前記インバータから出力される交流電流実効値と、前記インバータ、前記高周波変圧器、及び前記整流器のそれぞれの損失と、を算出し、前記交流電流実効値に基づいて、前記共振コンデンサの容量及び前記インバータの共振周波数の少なくとも一方を算出する。
図1は、一実施形態に係る電気車用電源装置の構成の例について説明する為の図である。 図2は、一実施形態に係る電気車用電源装置の制御回路の構成の例について説明する為の図である。
以下、実施の形態について図面を参照して説明する。
図1は、一実施形態に係る電気車用電源装置1の構成例を示す説明図である。電気車用電源装置1は、電気車などの移動体に搭載される電気車用の電力変換装置である。電気車用電源装置1は、架空電車線または第三軌条などの電車線2から集電器3を介して直流電力を受け取り、受け取った直流電力を出力端子4から出力する。本実施形態では、電気車用電源装置1は、電気車の照明及び空調などの負荷に電力を供給する補助電源装置であるとして説明する。なお、電気車は、走行用電動機を駆動する為の図示されない主電源装置を備える。主電源装置は、電車線2から集電器3を介して受け取った直流電力により、走行用電動機を駆動することにより、電気車に線路5上を走行させる。
補助電源装置としての電気車用電源装置1には、走行用電動機に比べて低圧で動作する機器が接続される。この為、電気車用電源装置1は、電力が入力される1次側と、電力を出力する2次側とが絶縁されている必要がある。
1次側と2次側との絶縁を確保するために、電磁結合する一対の巻線(コイル)を備える変圧器を用いて、1次側と2次側とを絶縁する変圧器がある。変圧器は、励磁周波数が低くなる程大型化する。例えば、商用電源の周波数に対応する励磁周波数が設定された変圧器では、大型になる。そこで、本実施形態の電気車用電源装置1は、高周波変圧器を用いることにより、1次側と2次側とを絶縁し、且つ小型化を実現する。
まず、電気車用電源装置1の構成について説明する。
電気車用電源装置1は、昇圧回路11、及び電力変換回路12を備える。また、電気車用電源装置1は、出力端子に流れる電流を検出する出力電流検出器13、出力端子の電圧を検出する出力電圧検出器14、並びに、昇圧回路11及び電力変換回路12を制御する制御回路15を備える。
昇圧回路11は、電車線2から集電器3を介して入力された直流電力を昇圧させる。昇圧回路11は、昇圧リアクトルL、第1の昇圧チョッパ21及び第2の昇圧チョッパ22を備える。また、昇圧回路11は、昇圧リアクトルLとともにLCLフィルタを構成するフィルタコンデンサ及びリアクトルをさらに備えていてもよい。
第1の昇圧チョッパ21は、第1のスイッチS1及び第1のダイオードD1を備える。第1の昇圧チョッパ21は、制御回路15の制御に基づいて、第1のスイッチS1をオンオフ制御することにより、昇圧リアクトルLに流れる電流を制御する。これにより、第1の昇圧チョッパ21は、昇圧リアクトルLに蓄えられた電磁エネルギーにより昇圧した直流電圧を出力する。また、第1の昇圧チョッパ21は、出力される直流電圧を安定させるフィルタコンデンサを備えていてもよい。
第2の昇圧チョッパ22は、第2のスイッチS2及び第2のダイオードD2を備える。第2の昇圧チョッパ22は、制御回路15の制御に基づいて、第2のスイッチS2をオンオフ制御することにより、昇圧リアクトルLに流れる電流を制御する。これにより、第2の昇圧チョッパ22は、昇圧リアクトルLに蓄えられた電磁エネルギーにより昇圧した直流電圧を出力する。また、第2の昇圧チョッパ22は、出力される直流電圧を安定させるフィルタコンデンサを備えていてもよい。
電力変換回路12は、昇圧回路11から出力された直流電力を、直流負荷用の電力に変換する高周波絶縁回路である。電力変換回路12は、例えば、第1の共振インバータ31、第1の高周波変圧器32、第1の整流器33、第1のコンデンサC1、第2の共振インバータ34、第2の高周波変圧器35、第2の整流器36、及び第2のコンデンサC2を有する。
第1の共振インバータ31は、第1の昇圧チョッパ21から供給される直流電圧を用いて、第1の高周波変圧器32に交流電流(インバータ電流、または単相交流電流など)を流すインバータ回路である。第1の共振インバータ31は、例えば、共振方式単相ハーフブリッジインバータとして構成される。第1の共振インバータ31は、第3のスイッチS3、第4のスイッチS4、第3のコンデンサC3、第4のコンデンサC4、フィルタコンデンサC7、及び第1の入力電圧検出器37を備える。第3のスイッチS3と第4のスイッチS4との接続点、及び第3のコンデンサC3と第4のコンデンサC4との接続点には、第1の高周波変圧器32が接続されている。第1の共振インバータ31は、制御回路15の制御に基づいて、第3のスイッチS3及び第4のスイッチS4をオンオフ制御することにより、第1の高周波変圧器32に交流電流を供給する。なお、第1の共振インバータ31の第3のスイッチS3側を、第1の共振インバータ31の上アーム、第1の共振インバータ31の第4のスイッチS4側を、第1の共振インバータ31の下アームと称する。
フィルタコンデンサC7は、第1の昇圧チョッパ21から供給された直流電力を平滑化し、第3のコンデンサC3及び第4のコンデンサC4に供給する。
第1の入力電圧検出器37は、第1の共振インバータ31に入力される直流電圧の値(第1の入力電圧)を検出し、制御回路15に検出結果を供給する。即ち、第1の入力電圧検出器37は、フィルタコンデンサC7の両端子間の電圧を第1の入力電圧として検出し、制御回路15に検出結果を供給する。
第1の高周波変圧器32は、磁束を発生させる1次側の巻線(1次巻線)と、1次巻線と絶縁され、且つ1次巻線に生じた磁束により励磁される2次側の巻線(2次巻線)とを有する絶縁トランスである。第1の高周波変圧器32の1次巻線に第1の共振インバータ31から交流電流が供給された場合、1次巻線に磁束が生じる。1次巻線に生じた磁束は、2次巻線に誘導電流を発生させる。これにより、第1の高周波変圧器32は、1次側から入力された交流電流に応じて、2次側に電力を供給する。
第1の整流器33は、第1の高周波変圧器32の2次巻線に生じた電力を整流する回路である。第1の整流器33は、例えば、複数のダイオードが組み合わされた整流ブリッジとして構成される。
第1のコンデンサC1は、第1の整流器33から供給された正電圧を平滑化する。第1のコンデンサC1は、並列に接続された出力端子4から、直流電圧を出力する。
第2の共振インバータ34は、第2の昇圧チョッパ22から供給される直流電圧を用いて、第2の高周波変圧器35に交流電流(インバータ電流、または単相交流電流など)を流すインバータ回路である。第2の共振インバータ34は、例えば、共振方式単相ハーフブリッジインバータとして構成される。第2の共振インバータ34は、第5のスイッチS5、第6のスイッチS6、第5のコンデンサC5、第6のコンデンサC6、フィルタコンデンサC8、及び第2の入力電圧検出器38を備える。第5のスイッチS5と第6のスイッチS6との接続点、及び第5のコンデンサC5と第6のコンデンサC6との接続点には、第2の高周波変圧器35が接続されている。第2の共振インバータ34は、制御回路15の制御に基づいて、第5のスイッチS5及び第6のスイッチS6をオンオフ制御することにより、第2の高周波変圧器35に交流電流を供給する。なお、第2の共振インバータ34の第5のスイッチS5側を、第2の共振インバータ34の上アーム、第2の共振インバータ34の第6のスイッチS6側を、第2の共振インバータ34の下アームと称する。
フィルタコンデンサC8は、第2の昇圧チョッパ22から供給された直流電力を平滑化し、第5コンデンサC5及び第6のコンデンサC6に供給する。
第2の入力電圧検出器38は、第2の共振インバータ34に入力される直流電圧の値(第2の入力電圧)を検出し、制御回路15に検出結果を供給する。即ち、第2の入力電圧検出器38は、フィルタコンデンサC8の両端子間の電圧を第2の入力電圧として検出し、制御回路15に検出結果を供給する。
第2の高周波変圧器35は、磁束を発生させる1次側の巻線(1次巻線)と、1次巻線と絶縁され、且つ1次巻線に生じた磁束により励磁される2次側の巻線(2次巻線)とを有する絶縁トランスである。第2の高周波変圧器35の1次巻線に第2の共振インバータ34から交流電流が供給された場合、1次巻線に磁束が生じる。1次巻線に生じた磁束は、2次巻線に誘導電流を発生させる。これにより、第2の高周波変圧器35は、1次側から入力された交流電流に応じて、2次側に電力を供給する。
第2の整流器36は、第2の高周波変圧器35の2次巻線に生じた電力を整流する回路である。第2の整流器36は、例えば、複数のダイオードが組み合わされた整流ブリッジとして構成される。
第2のコンデンサC2は、第2の整流器36から供給された正電圧を平滑化する。第2のコンデンサC2は、並列に接続された出力端子4から、直流電圧を出力する。この構成によると、第1のコンデンサC1及び第2のコンデンサC2からの直流電圧の和が、出力端子4から出力される。出力端子4から出力された直流電力は、図示されないインバータなどの回路により、50Hzまたは60Hzの交流に変換される。
出力電流検出器13は、出力端子4から出力される直流電流の値(出力電流)を検出し、制御回路15に検出結果を供給する。なお、出力電流検出器13は、第1のコンデンサC1と第2のコンデンサCとの接続点よりも出力端子4側であれば、どの位置で電流値を検出してもよい。
出力電圧検出器14は、一対の出力端子4の直流電圧の値(出力電圧)を検出し、制御回路15に検出結果を供給する。
制御回路15は、昇圧回路11及び電力変換回路12を制御する。制御回路15は、例えばパルス信号を生成する論理回路として構成される。また、制御回路15は、演算処理を実行する演算素子であるプロセッサと、プログラム及びプログラムで用いられるデータなどを記憶するメモリとを備え、プロセッサがプログラムを実行することにより、パルス信号を生成する構成であってもよい。
制御回路15は、パルス信号を昇圧回路11及び電力変換回路12にそれぞれ入力することにより、昇圧回路11及び電力変換回路12の動作を制御する。例えば、制御回路15は、パルス信号のオンオフデューティ比を調整するPWM制御を行う。これにより、制御回路15は、昇圧回路11の出力及び電力変換回路12の出力をそれぞれ調整する。
具体的には、制御回路15は、電圧指令及び三角波に基づいて、第1の昇圧チョッパ21のオンオフ指令、第2の昇圧チョッパ22のオンオフ指令、第1の共振インバータ31の上アームのオンオフ指令、第1の共振インバータ31の下アームのオンオフ指令、第2の共振インバータ32の上アームのオンオフ指令、及び第2の共振インバータ32の下アームのオンオフ指令を生成する。
電圧指令は、電気車の運転台、または電気車の走行を制御する制御装置から供給される制御信号(電圧値)である。三角波は、電気車の運転台、電気車の走行を制御する制御装置、または他の搬送波を出力する回路から供給される三角波である。なお、制御回路15は、三角波を自身で生成する構成であってもよい。
制御回路15は、第1の昇圧チョッパ21のオンオフ指令、第2の昇圧チョッパ22のオンオフ指令、を昇圧回路11に供給する。また、制御回路15は、第1の共振インバータ31の上アームのオンオフ指令、第1の共振インバータ31の下アームのオンオフ指令、第2の共振インバータ32の上アームのオンオフ指令、及び第2の共振インバータ32の下アームのオンオフ指令を電力変換回路12に供給する。これにより、制御回路15は、電車線2から供給される直流電圧が安定しない場合に、電力変換回路12に安定した直流電圧が供給されるように、昇圧回路11を制御する。また、制御回路15は、昇圧回路11から供給される直流電力を交流電力に変換させ、第1の共振インバータ31及び第2の共振インバータ34のそれぞれからインバータ電流を出力させるように、電力変換回路12を制御する。
また、制御回路15は、運転継続の可否を判定する。例えば、制御回路15は、電力変換回路12の性能変化の度合を推定することにより、電気車用電源装置1を稼働させ続けることが可能か否か判断する。具体的には、制御回路15は、第1の入力電圧検出器37から供給される第1の入力電圧、第2の入力電圧検出器38から供給される第2の入力電圧、出力電流検出器13から供給される出力電流、及び出力電圧検出器14から供給される出力電圧に基づいて、電力変換回路12の各部における損失変化の度合を推定し、運転継続の可否を判断する。
図2は、制御回路15が備える一部の機能をブロックとして示すブロック図である。制御回路15は、高周波絶縁回路損失演算部41、個別損失推定部42、共振コンデンサ容量推定部43、及び運転継続可否判定部44を備える。高周波絶縁回路損失演算部41、個別損失推定部42、共振コンデンサ容量推定部43、及び運転継続可否判定部44は、それぞれハードウエアにより構成されていてもよいし、制御回路15のプロセッサが実行するプログラムとして構成されていてもよい。
高周波絶縁回路損失演算部41は、電力変換回路12の損失(合計損失)を演算する。高周波絶縁回路損失演算部41は、算出した合計損失を個別損失推定部42に供給する。
個別損失推定部42は、共振インバータの交流電流実効値と、電力変換回路12の各部における損失を推定する。個別損失推定部42は、交流電流実行値を、共振コンデンサ容量推定部43に供給する。また、個別損失推定部42は、電力変換回路12の各部における損失の推定結果を、運転継続可否判定部44に供給する。
共振コンデンサ容量推定部43は、電力変換回路12内の共振コンデンサの容量を推定する。共振コンデンサ容量推定部43は、電力変換回路12内の共振コンデンサの容量の推定結果を、運転継続可否判定部44に供給する。
運転継続可否判定部44は、電力変換回路12内の共振コンデンサの容量の推定結果及び個別損失推定部42から供給された電力変換回路12の各部における損失の推定結果に基づいて、電力変換回路12の各部における損失変化の度合を判断し、運転継続の可否を判断する。
以下、高周波絶縁回路損失演算部41、個別損失推定部42、共振コンデンサ容量推定部43、及び運転継続可否判定部44の動作について詳細に説明する。なお、第1の入力電圧検出器37から供給される第1の入力電圧をVin1、第2の入力電圧検出器38から供給される第2の入力電圧をVin2、出力電流検出器13から供給される出力電流をIout、出力電圧検出器14から供給される出力電圧をVoutとそれぞれ称する。また、第1の高周波変圧器32および第2の高周波変圧器35の変圧比(一次電圧/二次電圧)をAと称する。また、第1の共振インバータ31への入力電力をPin1、第2の共振インバータ34への入力電力をPin2と称する。
まず、高周波絶縁回路損失演算部41の処理について説明する。
入力電力Pin1と入力電力Pin2とがバランスしていると仮定した場合、以下の数式(1)及び数式(2)が成り立つ。
Figure 0007273661000001
Figure 0007273661000002
この場合、第1の共振インバータ31、第1の高周波変圧器32、及び第1の整流器33で発生する合計損失Ploss1_totalは、入出力の電圧差と、出力電流との積で求められる。このため、合計損失Ploss1_totalは、以下の数式(3)で算出される。
Figure 0007273661000003
また、第2の共振インバータ34、第2の高周波変圧器35、及び第1の整流器36で発生する合計損失Ploss2_totalは、合計損失Ploss1_totalと同様に以下の数式(4)で算出される。
Figure 0007273661000004
高周波絶縁回路損失演算部41は、第1の入力電圧Vin1、出力電流Iout、及び出力電圧Voutに基づいて、上記の数式(3)を算出する。これにより、高周波絶縁回路損失演算部41は、第1の共振インバータ31、第1の高周波変圧器32、及び第1の整流器33で発生する合計損失Ploss1_totalを算出する。
また、高周波絶縁回路損失演算部41は、第2の入力電圧Vin2、出力電流Iout、及び出力電圧Voutに基づいて、上記の数式(4)を算出する。これにより、高周波絶縁回路損失演算部41は、第2の共振インバータ34、第2の高周波変圧器35、及び第1の整流器36で発生する合計損失Ploss2_totalを算出する。
次に、個別損失推定部42の処理について説明する。
個別損失推定部42は、共振インバータが出力する交流電流実効値を推定する。さらに、個別損失推定部42は、共振インバータ、高周波変圧器、及び整流器の各部における損失を推定する。個別損失推定部42は、交流電流実効値を、共振コンデンサ容量推定部43に供給する。また、個別損失推定部42は、共振インバータ、高周波変圧器、及び整流器における損失の推定結果を、運転継続可否判定部44に供給する。
上記の合計損失Ploss1_total及び合計損失Ploss2_totalは、それぞれ共振インバータ、高周波変圧器、及び整流器の全てで生じる損失の合計である。しかしながら、共振インバータ、高周波変圧器、及び整流器のそれぞれで生じる損失は、共振インバータの交流電流実効値であるIrmsと、共振インバータ、高周波変圧器、及び整流器の電気的な仕様に基づいて、推定が可能である。
例えば、第1の共振インバータ31の交流電流実効値をIrms1とする。また、第1の共振インバータ31で生じる損失の近似式=floss_inv・Irms1とし、第1の高周波変圧器32で生じる損失の近似式=floss_tr・Irms1とし、第1の整流器33で生じる損失の近似式=floss_rec・Irms1とする。この場合、以下の数式(5)が成り立つ。
Figure 0007273661000005
また、例えば、第2の共振インバータ34の交流電流実効値をIrms2とする。また、第2の共振インバータ34で生じる損失の近似式=floss_inv・Irms2とし、第2の高周波変圧器35で生じる損失の近似式=floss_tr・Irms2とし、第2の整流器36で生じる損失の近似式=floss_rec・Irms2とする。この場合、以下の数式(6)が成り立つ。
Figure 0007273661000006
例えば、各部における損失の近似式が二次関数であるとすると、個別損失推定部42は、数式(5)及び数式(6)の式を計算することにより、交流電流実効値および各部の損失を推定することができる。
即ち、個別損失推定部42は、合計損失Ploss1_totalと数式(5)とに基づいて、第1の共振インバータ31の交流電流実効値であるIrms1を推定する。さらに、個別損失推定部42は、第1の共振インバータ31の交流電流実効値であるIrms1と、数式(5)とに基づいて、第1の共振インバータ31で生じる損失であるfloss_inv・Irms1、第1の高周波変圧器32で生じる損失であるfloss_tr・Irms1、第1の整流器33で生じる損失であるfloss_rec・Irms1をそれぞれ算出する。
また、個別損失推定部42は、合計損失Ploss1_tota2と数式(6)とに基づいて、第2の共振インバータ34の交流電流実効値であるIrms2を推定する。さらに、個別損失推定部42は、第2の共振インバータ34の交流電流実効値であるIrms2と、数式(6)とに基づいて、第2の共振インバータ32で生じる損失であるfloss_inv・Irms2、第2の高周波変圧器35で生じる損失であるfloss_tr・Irms2、第2の整流器36で生じる損失であるfloss_rec・Irms2をそれぞれ算出する。
なお、個別損失推定部42は、上記のように各部における損失を近似式に基づいて算出するのではなく、交流電流実効値と、各部における損失とが対応付けられて構成されたルックアップテーブル(LUT)に基づいて、各部の損失を推定する構成であってもよい。なおこの場合、LUTは、電力変換回路12の電気的仕様に基づいて予め生成され、制御回路14のプロセッサにより読み出し可能なメモリに記憶される。
次に、共振コンデンサ容量推定部43の処理について説明する。
共振コンデンサ容量推定部43は、共振インバータの共振周波数を推定する。さらに、共振コンデンサ容量推定部43は、推定した共振インバータの共振周波数に基づいて、共振コンデンサの容量を推定する。
例えば、第1の共振インバータ31のスイッチング周波数をfsとし、第1の共振インバータ31の共振周波数をfr1とすると、次の数式(7)が成り立つ。
Figure 0007273661000007
また例えば、第2の共振インバータ34のスイッチング周波数をfsとし、第2の共振インバータ34の共振周波数をfr2とすると、次の数式(8)が成り立つ。
Figure 0007273661000008
共振コンデンサ容量推定部43は、上記の数式(7)に基づいて、第1の共振インバータ31の共振周波数fr1を算出する。さらに、共振コンデンサ容量推定部43は、算出した第1の共振インバータ31の共振周波数fr1と第1の共振インバータ31のインダクタンスL(共振回路を構成する高周波変圧器や導体のインダクタンス)と、以下の数式(9)とを用いて、第1の共振インバータ31の共振コンデンサC(第3のコンデンサC3及び第4のコンデンサC4)の容量を算出する。
Figure 0007273661000009
また、共振コンデンサ容量推定部43は、上記の数式(8)に基づいて、第2の共振インバータ34の共振周波数fr2を算出する。さらに、共振コンデンサ容量推定部43は、算出した第2の共振インバータ34の共振周波数fr2と第2の共振インバータ34のインダクタンスL(共振回路を構成する高周波変圧器や導体のインダクタンス)と、以下の数式(10)とを用いて、第2の共振インバータ34の共振コンデンサC(第5のコンデンサC5及び第6のコンデンサC6)の容量を算出する。
Figure 0007273661000010
なお、共振コンデンサ容量推定部43は、上記の数式に基づいて共振周波数を算出するのではなく、共振周波数と交流電流実効値とが対応付けられて構成されたルックアップテーブル(LUT)に基づいて、共振周波数を推定する構成であってもよい。なおこの場合、LUTは、電力変換回路12の電気的仕様に基づいて予め生成され、制御回路14のプロセッサにより読み出し可能なメモリに記憶される。
次に、運転継続可否判定部44の処理について説明する。
運転継続可否判定部44は、共振コンデンサ容量推定部43において推定された共振コンデンサの容量、及び個別損失推定部42から供給された電力変換回路12の各部における損失の推定結果に基づいて、運転継続の可否を判断する。
運転継続可否判定部44は、共振コンデンサ容量推定部43において推定された第3のコンデンサC3及び第4のコンデンサC4の容量が、予め設定された閾値未満である場合、運転継続が否であると判断する。
また例えば、運転継続可否判定部44は、推定された第3のコンデンサC3及び第4のコンデンサC4の容量と、予め設定された第3のコンデンサC3及び第4のコンデンサC4の容量(初期値)とに基づき、共振コンデンサの容量の劣化の度合を算出する。運転継続可否判定部44は、算出した共振コンデンサの容量の劣化の度合が、予め設定された閾値以上であった場合、運転継続が否であると判断してもよい。例えば、運転継続可否判定部44は、算出した共振コンデンサの容量の劣化の度合(初期値に対する容量の低下度合)が10%以上、または15%以上であった場合、運転継続が否であると判断する。
また、運転継続可否判定部44は、共振コンデンサ容量推定部43において推定された第5のコンデンサC5及び第6のコンデンサC6の容量が、予め設定された閾値未満である場合、運転継続が否であると判断する。
また例えば、運転継続可否判定部44は、推定された第5のコンデンサC5及び第6のコンデンサC6の容量と、予め設定された第5のコンデンサC5及び第6のコンデンサC6の容量(初期値)とに基づき、共振コンデンサの容量の劣化の度合を算出する。運転継続可否判定部44は、算出した共振コンデンサの容量の劣化の度合が、予め設定された閾値以上であった場合、運転継続が否であると判断してもよい。例えば、運転継続可否判定部44は、算出した共振コンデンサの容量の劣化の度合(初期値に対する容量の低下度合)が10%以上、または15%以上であった場合、運転継続が否であると判断する。
またさらに、運転継続可否判定部44は、個別損失推定部42から供給された電力変換回路12の各部における損失の推定結果に基づいて、運転継続の可否を判断する。例えば、運転継続可否判定部44は、共振インバータ、高周波変圧器、及び整流器における損失のいずれかで、予め設定された閾値以上の損失が算出された場合、運転継続が否であると判断する。
即ち、運転継続可否判定部44は、共振インバータ、高周波変圧器、及び整流器における損失がいずれも閾値未満であり、算出した共振コンデンサの容量が閾値以上である場合、運転継続が可であると判断する。運転継続可否判定部44は、運転継続可否判定結果を出力する。
なお、運転継続可否判定部44は、共振インバータの共振周波数に基づいて、運転継続の可否を判定する構成であってもよい。例えば、運転継続可否判定部44は、算出された共振インバータの共振周波数が、予め設定された閾値以上である場合、運転継続が否であると判断する。即ち、運転継続可否判定部44は、算出された共振インバータの共振周波数が、予め設定された閾値未満である場合、運転継続が可であると判断する。具体的には、運転継続可否判定部44は、数式(9)及び数式(10)に基づいて算出された第1の共振インバータ31の共振周波数fr1、または第2の共振インバータ34の共振周波数fr2が閾値以上である場合、運転継続が否であると判断する。
制御回路15は、運転継続可否判定部44から出力されている運転継続可否判定結果が「可」である場合、電圧指令及び三角波に基づいて、第1の昇圧チョッパ21のオンオフ指令、第2の昇圧チョッパ22のオンオフ指令、第1の共振インバータ31の上アームのオンオフ指令、第1の共振インバータ31の下アームのオンオフ指令、第2の共振インバータ32の上アームのオンオフ指令、及び第2の共振インバータ32の下アームのオンオフ指令を生成し、出力する。
また、制御回路15は、運転継続可否判定部44から出力されている運転継続可否判定結果が「否」である場合、第1の昇圧チョッパ21、第2の昇圧チョッパ22、第1の共振インバータ31、及び第2の共振インバータ32の動作を停止させる。
上記したように、電気車用電源装置1は、高周波変圧器と、高周波変圧器から供給される交流電流を直流電流に変換する整流器と、直流電源から供給される直流電圧を昇圧する昇圧チョッパと、共振コンデンサを有し、昇圧チョッパから供給される直流電圧を用いて、高周波変圧器に交流電流を供給するインバータと、制御回路と、を備える。制御回路は、インバータへの入力電圧と、整流器の出力電圧及び出力電流と、に基づいて、合計損失を算出し、合計損失に基づいて、インバータから出力される交流電流実効値と、インバータ、高周波変圧器、及び整流器のそれぞれの損失と、を算出する。さらに、制御回路は、交流電流実効値に基づいて、共振コンデンサの容量及びインバータの共振周波数の少なくとも一方を算出する。
このような構成によると、インバータが出力する交流電流を検出する電流検出器を設けることなく、インバータ、高周波変圧器、及び整流器のそれぞれの損失を推定することができる。またさらに、インバータ、高周波変圧器、及び整流器のそれぞれの損失から、インバータから出力される交流電流実効値を推定することができる。これにより、インバータに用いられている共振コンデンサの容量を推定することができる。通常、インバータ、高周波変圧器、及び整流器のうち、インバータの共振コンデンサが、経年劣化により電気的性質が変化するタイミングが早いことが予想される。この為、上記の方法により、インバータに用いられている共振コンデンサの容量を推定することにより、電気車用電源装置1の動作を継続させてもよいかどうかを判断することができる。
また、制御回路15は、運転継続可否判定部44から出力されている運転継続可否判定結果が「否」である場合、列車制御装置に運転継続可否判定結果が「否」であることを報知する。また、制御回路15は、運転継続可否判定部44から出力されている運転継続可否判定結果が「否」である場合、ネットワークを介して列車管理システムに運転継続可否判定結果が「否」であることを報知してもよい。またさらに、制御回路15は、運転継続可否判定結果が「否」になる原因を報知する構成であってもよい。例えば、制御回路15は、共振コンデンサの容量が閾値未満になることにより、運転継続可否判定結果が「否」になった場合、共振コンデンサの容量が閾値未満であることを報知してもよい。また、制御回路15は、共振インバータの共振周波数が閾値以上になることにより、運転継続可否判定結果が「否」になった場合、共振インバータの共振周波数が閾値以上であることを報知してもよい。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1…電気車用電源装置、2…電車線、3…集電器、4…負荷、5…線路、11…昇圧回路、12…電力変換回路、13…出力電流検出器、14…出力電圧検出器、15…制御回路、21…第1の昇圧チョッパ、22…第2の昇圧チョッパ、31…第1の共振インバータ、32…第1の高周波変圧器、33…第1の整流器、34…第2の共振インバータ、35…第2の高周波変圧器、36…第2の整流器、37…第1の入力電圧検出器、38…第2の入力電圧検出器、41…高周波絶縁回路損失演算部、42…個別損失推定部、43…共振コンデンサ容量推定部、44…運転継続可否判定部、C1…第1のコンデンサ、C2…第2のコンデンサ、C3…第3のコンデンサ、C4…第4のコンデンサ、C5…第5のコンデンサ、C6…第6のコンデンサ、C7…フィルタコンデンサ、C8…フィルタコンデンサ、D1…第1のダイオード、D2…第2のダイオード、S1…第1のスイッチ、S2…第2のスイッチ、S3…第3のスイッチ、S4…第4のスイッチ、S5…第5のスイッチ、S6…第6のスイッチ。

Claims (6)

  1. 高周波変圧器と、
    前記高周波変圧器から供給される交流電流を直流電流に変換する整流器と、
    直流電源から供給される直流電圧を昇圧する昇圧チョッパと、
    共振コンデンサを有し、前記昇圧チョッパから供給される直流電圧を用いて、前記高周波変圧器に交流電流を供給するインバータと、
    前記インバータへの入力電圧と、前記整流器の出力電圧及び出力電流と、に基づいて、合計損失を算出し、前記合計損失に基づいて、前記インバータから出力される交流電流実効値と、前記インバータ、前記高周波変圧器、及び前記整流器のそれぞれの損失と、を算出し、前記交流電流実効値に基づいて、前記共振コンデンサの容量及び前記インバータの共振周波数の少なくとも一方を算出する制御回路と、
    を具備する電気車用電源装置。
  2. 前記制御回路は、
    前記交流電流実効値に基づいて、前記共振コンデンサの容量を算出し、
    前記共振コンデンサの容量が予め設定された閾値未満である場合、前記昇圧チョッパ及び前記インバータの動作を停止させると判断する請求項1に記載の電気車用電源装置。
  3. 前記制御回路は、
    前記交流電流実効値に基づいて、前記インバータの共振周波数を算出し、
    前記インバータの共振周波数が予め設定された閾値以上である場合、前記昇圧チョッパ及び前記インバータの動作を停止させると判断する請求項1または2に記載の電気車用電源装置。
  4. 前記制御回路は、
    前記インバータ、前記高周波変圧器、及び前記整流器の損失のいずれかが予め設定された閾値以上である場合、前記昇圧チョッパ及び前記インバータの動作を停止させると判断する請求項1乃至3のいずれか1項に記載の電気車用電源装置。
  5. 前記制御回路は、
    前記共振コンデンサの容量が予め設定された閾値未満である場合、共振コンデンサの容量が閾値未満であることを報知する請求項2に記載の電気車用電源装置。
  6. 前記制御回路は、
    前記インバータの共振周波数が予め設定された閾値以上である場合、前記インバータの共振周波数が閾値以上であることを報知する請求項3に記載の電気車用電源装置。
JP2019159608A 2019-09-02 2019-09-02 電気車用電源装置 Active JP7273661B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019159608A JP7273661B2 (ja) 2019-09-02 2019-09-02 電気車用電源装置
CN202010310746.8A CN112448584B (zh) 2019-09-02 2020-04-20 电动车辆用电源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019159608A JP7273661B2 (ja) 2019-09-02 2019-09-02 電気車用電源装置

Publications (2)

Publication Number Publication Date
JP2021040395A JP2021040395A (ja) 2021-03-11
JP7273661B2 true JP7273661B2 (ja) 2023-05-15

Family

ID=74733133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019159608A Active JP7273661B2 (ja) 2019-09-02 2019-09-02 電気車用電源装置

Country Status (2)

Country Link
JP (1) JP7273661B2 (ja)
CN (1) CN112448584B (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031171A (ja) 2007-07-30 2009-02-12 Fuji Electric Systems Co Ltd 変圧器の電流検出回路
JP2013005589A (ja) 2011-06-16 2013-01-07 Daihen Corp 電力変換装置及び電力変換装置の制御方法
JP2014233121A (ja) 2013-05-28 2014-12-11 株式会社東芝 電力変換装置
JP2017184599A (ja) 2016-03-25 2017-10-05 パナソニックIpマネジメント株式会社 共振型電力変換装置および異常判定方法
JP2019092336A (ja) 2017-11-16 2019-06-13 オムロン株式会社 電源装置及び制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4191715B2 (ja) * 2005-10-03 2008-12-03 三菱電機株式会社 車載用電動機制御装置
JP2009266601A (ja) * 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd 放電灯点灯装置及び照明器具
CN103085666B (zh) * 2011-11-03 2015-02-11 中国北车股份有限公司 电力机车受电弓离线处理方法、处理系统和电力机车
JP6172014B2 (ja) * 2014-03-25 2017-08-02 株式会社豊田自動織機 送電機器及び非接触電力伝送装置
KR101796376B1 (ko) * 2016-03-24 2017-12-01 국민대학교산학협력단 Llc 컨버터를 이용하여 가변주파수로 동작하는 버스 컨버터 및 그 구동 방법
JP6946924B2 (ja) * 2017-10-19 2021-10-13 株式会社デンソー 共振インバータ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031171A (ja) 2007-07-30 2009-02-12 Fuji Electric Systems Co Ltd 変圧器の電流検出回路
JP2013005589A (ja) 2011-06-16 2013-01-07 Daihen Corp 電力変換装置及び電力変換装置の制御方法
JP2014233121A (ja) 2013-05-28 2014-12-11 株式会社東芝 電力変換装置
JP2017184599A (ja) 2016-03-25 2017-10-05 パナソニックIpマネジメント株式会社 共振型電力変換装置および異常判定方法
JP2019092336A (ja) 2017-11-16 2019-06-13 オムロン株式会社 電源装置及び制御装置

Also Published As

Publication number Publication date
CN112448584A (zh) 2021-03-05
JP2021040395A (ja) 2021-03-11
CN112448584B (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
US10286795B2 (en) Charging device for electric vehicle
US9287790B2 (en) Electric power converter
CN109247026B (zh) 用于电压转换器的开关致动测量电路
JP5530401B2 (ja) 電源装置
US10541549B2 (en) Power supply apparatus
US10763754B2 (en) Power supply device
JP2009232681A (ja) マルチレベルインバータ
JP5911553B1 (ja) 直流変換装置
CN109728728B (zh) 电力转换装置
JP6009027B1 (ja) 電力変換装置
JPWO2017104304A1 (ja) 電力変換装置
US7158389B2 (en) Switching power supply circuit
JP5893089B2 (ja) 直流変換装置の制御方法
JP7273661B2 (ja) 電気車用電源装置
US11518246B2 (en) Electric drive system, powertrain, and electric vehicle
JP2005176535A (ja) スイッチング電源装置
JP5778533B2 (ja) 回生型モータ端サージ電圧抑制装置、モータ駆動システム、および、回生型モータ端サージ電圧抑制方法
JP2015061493A (ja) 充電器
US20210320595A1 (en) Adapter device for bidirectional operation
JP7305437B2 (ja) 電気車用電源装置
JP2023092066A (ja) 補助電源装置
KR102272131B1 (ko) 철도차량용 보조전원장치
KR102346445B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
JP2022121050A (ja) 電力変換装置
KR101911266B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220610

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20230105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230428

R150 Certificate of patent or registration of utility model

Ref document number: 7273661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150