JP7255169B2 - 空気吹出装置 - Google Patents

空気吹出装置 Download PDF

Info

Publication number
JP7255169B2
JP7255169B2 JP2018240806A JP2018240806A JP7255169B2 JP 7255169 B2 JP7255169 B2 JP 7255169B2 JP 2018240806 A JP2018240806 A JP 2018240806A JP 2018240806 A JP2018240806 A JP 2018240806A JP 7255169 B2 JP7255169 B2 JP 7255169B2
Authority
JP
Japan
Prior art keywords
main
airflow
flow path
downstream
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018240806A
Other languages
English (en)
Other versions
JP2020067266A (ja
Inventor
侑児 岡村
潤 山岡
雅晴 酒井
康彦 新美
隆仁 中村
祐介 小松原
真梨恵 長濱
康揮 大森
将悟 早川
悟司 蛸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to PCT/JP2019/014658 priority Critical patent/WO2019198572A1/ja
Priority to DE112019001901.5T priority patent/DE112019001901T5/de
Priority to CN201980024754.1A priority patent/CN112020627A/zh
Publication of JP2020067266A publication Critical patent/JP2020067266A/ja
Priority to US17/065,045 priority patent/US12005761B2/en
Application granted granted Critical
Publication of JP7255169B2 publication Critical patent/JP7255169B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/34Nozzles; Air-diffusers
    • B60H1/3407Nozzles; Air-diffusers providing an air stream in a fixed direction, e.g. using a grid or porous panel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/34Nozzles; Air-diffusers
    • B60H1/345Nozzles; Air-diffusers with means for adjusting divergence, convergence or oscillation of air stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/34Nozzles; Air-diffusers
    • B60H1/3457Outlets providing a vortex, i.e. a spirally wound air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F13/072Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser of elongated shape, e.g. between ceiling panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F2013/0612Induction nozzles without swirl means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Flow Control Members (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Duct Arrangements (AREA)

Description

本開示は、気流を吹き出す吹出部を備える空気吹出装置に関する。
従来、作動気流となる空気流を形成する主孔の周辺に、作動気流に引き込まれる主孔周りの空気の引き込みを阻む援護気流を形成する補助吹出口が設けられたエアーノズルが知られている(例えば、特許文献1参照)。
特開平8-318176号公報
本発明者らは、気流の到達距離を更に長くするために、主孔から気流を吹き出した際の空気の引き込み作用について鋭意検討した。この結果、空気の引き込み作用は、主孔から作動気流を吹き出した際、作動流体の速度勾配によるせん断力によって生ずる横渦に起因することが判った。なお、横渦は、主流の流れ方向に直交する渦心を有する渦である。
本発明者らが更に検討したところ、主孔の出口下流付近では、速度境界層に生ずる無数の横渦が速度境界層の厚みの中央付近で合成して大規模なものに発達することで、空気の引き込み作用がより強くなるとの知見を得た。
しかしながら、上述の従来技術では、主孔の周囲に補助吹出口を設けることが開示されているだけで、本発明者らの知見について何ら示されておらず、気流の到達距離の更なる向上を見込むことが困難である。
本開示は、主孔から吹き出す作動気流の到達距離を長くすることが可能な空気吹出装置を提供することを目的とする。
ところで、作動気流の中心部分は、作動気流の中心部分以外の部分に比べて、空気の引き込み作用の影響が小さく、作動気流の中心部分で主孔から吹き出す作動気流の到達距離が長くなる傾向がある。本発明者らの検討によれば、主孔から吹き出す作動気流の到達距離を長くする上で、作動気流の中心部分と速度境界層とが離れていることが有効であることが判った。
請求項1~4に記載の発明は、空気吹出装置であって、気流を吹き出す吹出部(10)を備える。そして、吹出部は、作動気流となる気流を吹き出す少なくとも1つの主孔(14)と、主孔の出口下流において作動気流の速度境界層(BL)の厚み(δ)の中央部分(BLc)を主孔の中心線(CLm)から離すための離間構造(50)と、を含んでいる。さらに、吹出部は、主孔から吹き出す気流を通過させる主流路(18)を含んでおり、離間構造は、主流路を形成する内壁面に沿って形成される速度境界層の厚みを小さくする層縮小構造(51、52)を含んでいる。
請求項1に記載の発明は、主流路には、層縮小構造として主流路を流れる気流を縮流させる構造物(51)が設けられており、主流路を形成する内壁面(181)には、主流路の流路断面積を気流の流れ方向の上流側から下流側に向かって縮小する縮流形状部(183)が含まれており、構造物は、主流路を流れる気流の流れ方向の下流側に位置する下流側端部(512)が、縮流形状部のうち主流路を流れる気流の流れ方向の下流側に位置する下流端(183b)よりも上流側に位置付けられている。
請求項2に記載の発明は、主流路には、層縮小構造として主流路を流れる気流を縮流させる構造物(51)が設けられており、主流路を形成する内壁面(181)には、主流路の流路断面積を気流の流れ方向の上流側から下流側に向かって縮小する縮流形状部(183)が含まれており、構造物は、主流路を流れる気流の流れ方向の上流側に位置する上流側端部(511)が縮流形状部のうち主流路を流れる気流の流れ方向の上流側に位置する上流端(183a)よりも下流側に位置付けられるとともに、主流路を流れる気流の流れ方向の下流側に位置する下流側端部(512)が、縮流形状部のうち主流路を流れる気流の流れ方向の下流側に位置する下流端(183b)よりも上流側に位置付けられている。
請求項3に記載の発明は、主流路には、層縮小構造として主流路を流れる気流を縮流させる構造物(51)が設けられており、構造物は、主流路を流れる気流の流れ方向の上流側に位置する上流側端部(511)に、縦渦を発生させる凹凸状の縦渦発生機構(53)が設けられている。
請求項4に記載の発明は、主流路の少なくとも一部には、層縮小構造として主流路における気流の流れ方向に沿って凹部と凸部とが交互に並ぶ凹凸部(52)が設けられている。
このように、主孔から吹き出された作動気流の中心部分と速度境界層の厚みの中央部分とを離す構造を採用すれば、作動気流の中心部分における流速の減衰が少なくなり、主孔から吹き出される作動気流の到達距離を長くすることが可能となる。なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態に係る空気吹出装置の模式的な斜視図である。 第1実施形態に係る空気吹出装置の模式的な正面図である。 図2のIII-III断面図である。 第1比較例となる第1ノズルの出口下流における気流の速度勾配を説明するための説明図である。 第1比較例となる第1ノズルの出口下流における気流の状態を説明するための説明図である。 第2比較例となる第2ノズルの出口下流における気流の速度勾配を説明するための説明図である。 第1実施形態に係る空気吹出装置の主孔の出口下流における作動気流の速度勾配を説明するための説明図である。 第1実施形態に係る空気吹出装置の主孔の出口下流における作動気流の状態を説明するための説明図である。 第2実施形態に係る空気吹出装置の模式的な斜視図である。 第2実施形態に係る空気吹出装置の模式的な正面図である。 図10のXI-XI断面図である。 第2実施形態に係る空気吹出装置の主孔の出口下流における作動気流の速度勾配を説明するための説明図である。 第3実施形態に係る空気吹出装置の模式的な断面図である。 図13のXIV部分の拡大図である。 第3実施形態に係る空気吹出装置の主孔の出口下流における作動気流の速度勾配を説明するための説明図である。 第4実施形態に係る空気吹出装置の模式的な断面図である。 第4実施形態に係る空気吹出装置の主孔の出口下流における作動気流の速度勾配を説明するための説明図である。 第4実施形態に係る空気吹出装置の主孔の出口下流における作動気流の状態を説明するための説明図である。 第5実施形態に係る空気吹出装置の模式的な断面図である。 第5実施形態に係る空気吹出装置の主孔の出口下流における作動気流の速度勾配を説明するための説明図である。 第6実施形態に係る空気吹出装置の模式的な断面図である。 第6実施形態に係る空気吹出装置の主孔の出口下流における作動気流の速度勾配を説明するための説明図である。 第7実施形態に係る空気吹出装置の模式的な断面図である。 第7実施形態に係る空気吹出装置の主孔の出口下流における作動気流の速度勾配を説明するための説明図である。 第8実施形態に係る空気吹出装置の模式的な断面図である。 第8実施形態に係る空気吹出装置の主孔の出口下流における作動気流の速度勾配を説明するための説明図である。 第9実施形態に係る空気吹出装置の模式的な断面図である。 第9実施形態に係る空気吹出装置に設けられた構造物の模式的な上面図である。 第9実施形態に係る空気吹出装置の主流路における主孔の出口下流における模式的な断面図である。 第10実施形態に係る空気吹出装置の模式的な断面図である。 第11実施形態に係る空気吹出装置の模式的な断面図である。 第11実施形態に係る空気吹出装置の主孔の出口下流における作動気流の速度勾配を説明するための説明図である。 第11実施形態に係る空気吹出装置の第1変形例を示す模式的な断面図である。 第11実施形態に係る空気吹出装置の第2変形例を示す模式的な断面図である。
以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。
(第1実施形態)
本実施形態について、図1~図8を参照して説明する。本実施形態の空気吹出装置1は、車室内を空調する空調ユニットの空気吹出口に適用される。図示しないが空調ユニットは、車室内の最前部に設けられたインストルメントパネルの内側に配置される。そして、空調ユニットの空気吹出口は、インストルメントパネルやその内側に設けられている。
図1および図2に示すように、空気吹出装置1は、気流を吹き出す吹出部10を備える。吹出部10は、その内部に空調ユニットで所望の温度に調整された気流を室内に導く空気流路が形成されている。吹出部10は、ダクト部16、作動気流となる気流を吹き出す主孔14を形成する孔形成部12、ダクト部16の外側に設けられたフランジ部20を含んで構成されている。
ダクト部16は、室内へ吹き出す気流を通過させる流路を形成する部材である。ダクト部16は、筒状の部材で構成されている。ダクト部16は、空気の流れ方向から見た形状が、横幅が縦幅よりも大きい扁平な形状になっている。また、ダクト部16は、空気流れ方向に沿った形状が空気流れ上流側から下流側に向けて絞られた形状になっている。
図3に示すように、ダクト部16の内部には、上流側の部位よりも下流側の部位の近くに仕切部26が設けられている。この仕切部26は、筒状に構成されており、ダクト部16の内側に、ダクト部16に対して所定の隙間があくように配置されている。ダクト部16の内部は、仕切部26によって内側の流路と外側の流路とが形成されている。すなわち、ダクト部16は、その内側に仕切部26が配置されることで二重の流路構造になっている。
ダクト部16の内部には、その中央部分に主流路18が形成されている。主流路18は、仕切部26の内側の空間で構成されている。主流路18は、後述の主孔14から吹き出される作動気流を通過させる流路である。
また、ダクト部16の内部には、主流路18の外側部分に補助流路24が形成されている。補助流路24は、仕切部26とダクト部16との間に形成される隙間で構成されている。補助流路24は、補助孔22から吹き出される援護気流を通過させる流路である。
主流路18および補助流路24は、上述の仕切部26によって仕切られている。なお、主流路18および補助流路24は、ダクト部16における上流側の部位において互いに連通している。
ダクト部16は、空気流れ上流側の部位が図示しない空調ユニットの空気吹出口に嵌合される。また、ダクト部16は、空気流れ下流側の部位が孔形成部12の外周に連なっている。
孔形成部12は、ダクト部16の空気流れ下流側の端部に位置付けられている。孔形成部12は、ダクト部16の空気流れ下流側の端面を構成する板状の部材であり、空気流れ方向において所定の厚みを有している。孔形成部12は、ダクト部16と仕切部26とを接続する接続部でもある。孔形成部12は、空気を吹き出すことが可能なように筒状に構成されている。孔形成部12は、空気流れ方向から見た形状が、横幅が縦幅よりも大きい扁平な形状になっている。孔形成部12には、その中央部分に主孔14が単一の孔として開口している。この主孔14は、空調ユニットで温度調整された空調風を作動気流として車室内へ吹き出すための開口である。
主孔14は、空気流れ方向から見た形状が、横幅が縦幅よりも大きい長円形状になっている。具体的には、主孔14は、長さの等しい平行な線分を円弧状に湾曲した一対の曲線で接続してなる形状になっている。
主孔14は、主流路18に連なる孔である。主孔14は、仕切部26において、空気流れ下流側の端から孔形成部12の厚みの分だけ上流側に位置する範囲に形成されている。主孔14は、空気流れ方向に沿って延びる内壁面141を有している。
また、孔形成部12には、主孔14の周囲を囲むように複数の補助孔22が形成されている。補助孔22は、主孔14から吹き出される作動気流による空気の引き込み作用を抑えるための援護気流を吹き出すための開口である。
図2に示すように、複数の補助孔22は、孔形成部12において主孔14を取り囲むように形成されている。複数の補助孔22は、孔形成部12における主孔14の外縁部分を形成する部位の外側に形成されている。複数の補助孔22は、互いの間隔が等しくなるように形成されている。複数の補助孔22は、主孔14に比べて断面積が小さい丸孔として形成されている。
補助孔22は、補助流路24に連なる孔である。補助孔22は、仕切部26およびダクト部16のうち、空気流れ下流側の端から孔形成部12の厚みの分だけ上流側に位置する範囲に形成されている。補助孔22は、空気流れ方向に沿って延びる内壁面221を有している。
フランジ部20は、吹出部10を図示しないインストルメントパネルに対して取り付けるための部材である。フランジ部20は、ダクト部16の外周に対してダクト部16から突き出るように設けられた矩形状の部材で構成されている。フランジ部20は、ダクト部16の上流側の部位が空調ユニットの空気吹出口に嵌合された状態で、ビス等の連結部材によってインストルメントパネルに対して取り付けられる。なお、フランジ部20には、角部をなす四隅付近にビス等の連結部材を通すための貫通穴201が形成されている。
吹出部10を構成する孔形成部12、ダクト部16、フランジ部20、仕切部26それぞれは、樹脂で構成されている。孔形成部12、ダクト部16、およびフランジ部20、仕切部26は、射出成形等の成形技術によって一体に成形された一体成形物で構成されている。なお、孔形成部12、ダクト部16、フランジ部20、仕切部26は、その一部が別体で構成されていてもよい。このように構成される吹出部10は、前述したように、図示しないインストルメントパネルに設置される。
ここで、近年、インストルメントパネルは、車室内の拡大や意匠性の観点で車両上下方向において薄型化が要求されている。また、インストルメントパネルは、車両幅方向の中央部分や車両前後方向において乗員に相対する部分に車両の運転状態を示す各種情報を報知するための大型の情報機器が設置される傾向がある。これらにより、空調ユニットでは、空気吹出口を薄幅にする等の対策が必要となるが、空気吹出口を薄幅にすると、空気吹出口の下流に生ずる横渦によって、空気吹出口から吹き出す気流のコア部の崩壊が早まり、車室内における気流の到達距離が短くなる。このため、空気吹出装置1には、車室内へ吹き出される気流の到達距離を長くすることが求められつつある。
本発明者らは、車室内へ吹き出す気流の到達距離を更に長くするために、主孔14から気流を吹き出した際の空気の引き込み作用について鋭意検討した。この結果、当該空気の引き込み作用は、主孔14から作動気流を吹き出した際に、作動気流の速度勾配によるせん断力によって生ずる横渦Vtに起因することが判った。以下、空気の引き込み作用について、図4、図5を参照して説明する。
図4は、本実施形態の空気吹出装置1の第1比較例となる第1ノズルCE1を示す模式図である。第1ノズルCE1は、断面積が略一定となる円筒管で構成され、一端側の開口が主孔Hm1を構成している。
図4に示すように、第1ノズルCE1の主孔Hm1から気流が吹き出されると、主孔Hm1の出口下流において主孔Hm1からの気流とその周囲で静止した空気との速度差に起因して速度境界層BLが形成される。速度境界層BLは、第1ノズルCE1の主孔Hm1から吹き出された気流のうち静止した空気の影響を受ける層である。
速度境界層BLでは、図5に示すように、速度勾配によるせん断力によって無数の横渦Vtが生ずる。そして、本発明者らの検討によれば、速度境界層BLに生ずる無数の横渦Vtが速度境界層BLの厚みδの中央部分BLc付近で合成して大規模なものに発達することで、空気の引き込み作用がより強くなり易いことが判った。
ここで、速度境界層の厚みδは、壁面から速度境界層BLの外側を流れる主流(すなわち、ポテンシャル流)の速度Uの99%(すなわち、0.99×U)となる位置までの長さとして定義される。速度境界層の厚みδは、例えば、次の式F1に基づいて算出される。
δ=5×(ν×x/U1/2 …(F1)
但し、式F1では、νが動粘性係数を示し、xが主流の流れ方向の位置、Uが主流の速度(すなわち、一様流速度)を示している。なお、速度境界層の厚さδの定義式としては、上述の式F1以外に、例えば、排除厚さによる定義式や運動量厚さによる定義式を用いることも可能である。
図6は、本実施形態の空気吹出装置1の第2比較例となる第2ノズルCE2を示す模式図である。第2ノズルCE2は、その一端側に主孔Hm2および当該主孔Hm2を取り囲む複数の補助孔Hsが形成された円筒管で構成されている。図6に示すように、第2ノズルCE2の主孔Hm2および補助孔Hsから気流が吹き出されると、主孔Hm2の出口下流に主孔Hm2の内壁面に沿って作動気流の速度境界層BLが形成される。この速度境界層BLには、その厚みδの中央部分BLc付近で横渦Vtが生じ易いと考えられる。
一方、補助孔Hsから吹き出された援護気流の主流は、速度境界層BLの厚みδの中央部分BLcから所定の間隔LSがあいた状態で、主孔Hm2からの作動気流と並行して吹き出される。すなわち、第2ノズルCE2では、補助孔Hsから吹き出された援護気流の主流AFsが、速度境界層BLの厚みδの中央部分BLcから離れた状態で流れる。
このような場合、援護気流の主流が速度境界層BLに生ずる横渦Vtの渦心から離れることになり、援護気流によって横渦Vtが崩壊され難く、速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ難いと考えられる。
本発明者らは、援護気流の主流と作動気流の速度境界層BLに生ずる横渦Vtの渦心とを近づけることで、速度境界層BLに生ずる横渦の発達の抑制効果が得られると考え、吹出部10に対して渦抑制構造を追加することとした。
図3に示すように、本実施形態の吹出部10には、渦抑制構造として、ダクト部16の主流路18に対して、主孔14の開口面積Smよりも断面積Scが大きくなる拡大部180が設けられている。
主流路18を形成する仕切部26の内壁面181は、拡大部180のうち断面積が最も大きくなる部位から主孔14に向かって壁面形状が先細りとなる形状になっている。拡大部180は、主流路18を形成する仕切部26の内壁面181のうち、空気流れ上流側から下流側に向かって断面積が小さくなっている部位で構成されている。すなわち、拡大部180は、主孔14に対して連続的に連なるように、主孔14に近づくにつれて断面積が連続的に小さくなっている。拡大部180は、最大となる断面積Scと主孔14の開口面積Smとの比が、例えば、7対2となるように設定されている。拡大部180の断面積Scは、主流路18において最も流路断面積が大きくなる部位での断面積である。具体的には、拡大部180の断面積Scは、仕切部26の空気流れ上流側の端部における断面積である。また、主孔14の開口面積Smは、仕切部26の空気流れ下流側の端部における断面積である。
このように構成される本実施形態の吹出部10では、図7に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。
主流路18には、主孔14の開口面積Smよりも断面積Scが大きい拡大部180が設けられているため、拡大部180から主孔14に至るまでに縮流が生ずる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が小さくなる。主流路18を形成する内壁面181付近での気流の流速が大きくなる理由としては、主流路18を形成する内壁面181の曲率の作用によって壁面に沿う気流に遠心力が働くことが挙げられる。なお、縮流は、流路断面が縮小されることで気流の流路壁面付近の流速と主流の流速との差が小さくなる現象として解釈することができる。
そして、主孔14および補助孔22から気流が吹き出されると、主孔14の出口下流に主孔14の内壁面141に沿って作動気流の速度境界層BLが形成される。この速度境界層BLの厚みδは、主流路18における縮流が生ずることで、第2比較例に比べて小さくなる。
主孔14の出口下流に形成される作動気流の速度境界層BLの厚みδが小さいと、速度境界層BLの厚みδの中央部分BLcおよび補助孔22から吹き出された援護気流の主流とが主孔14の出口下流で近づく状態になる。すなわち、本実施形態の吹出部10では、補助孔22から吹き出された援護気流の主流AFsが、速度境界層BLの厚みδの中央部分BLcに近づいた状態で流れる。具体的には、援護気流の主流と速度境界層BLの厚みδの中央部分BLcとの間隔LSが、第2比較例に比べて小さくなる。
この場合、図8に示すように、援護気流の主流が速度境界層BLに生ずる横渦Vtの渦心の近くを流れることになり、援護気流によって横渦Vtが崩壊され易いので、主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ易くなる。
このように、本実施形態の空気吹出装置1では、主流路18に設けた拡大部180によって、主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達を抑制可能となる。本実施形態では、主流路18に設けた拡大部180が渦抑制構造として機能する。より具体的には、拡大部180は、主孔14の内壁面141に沿って形成される速度境界層BLの厚みδを小さくする層縮小構造として機能する。
以上説明した空気吹出装置1では、主流路18に設けた拡大部180によって渦抑制構造が実現されている。これによると、主孔14の出口下流に形成される速度境界層BLの厚みδの中央部分BLcおよび補助孔22から吹き出される気流が主孔14の出口下流で近づく。すなわち、主流路18に拡大部180を設ける構造とすれば、主孔14付近で縮流が生ずることで主孔14の中心線CLm付近と内壁面141付近との間の流速差が小さくなり、主孔14の出口下流に形成される速度境界層BLの厚みδを小さくすることができる。
これにより、補助孔22から吹き出される援護気流によって速度境界層BLでの横渦の発達が充分に抑制される。この結果、主孔14から吹き出される作動気流への周囲からの空気の引き込みが抑えられ、主孔14から吹き出される作動気流の流速の減衰が少なくなるので、主孔14から吹き出される作動気流の到達距離が長くなる。
特に、空調ユニットで温度調整された空調風を作動気流として主孔14から吹き出す場合、主孔14から吹き出される作動気流への周囲からの空気の引き込みが抑えられることで、空気の引き込み作用に起因する作動気流の温度変化を抑えることができる。すなわち、本実施形態の空気吹出装置1によれば、適温の気流を所望の箇所に到達させることができる。このことは、車室内におけるスポット的な空調を実現する上で特に有効である。
(第2実施形態)
次に、第2実施形態について、図9~図12を参照して説明する。本実施形態では、ダクト部16の内部に主流路18を流れる気流を縮流させる縮流フィン28が設けられている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
図9に示すように、本実施形態の吹出部10には、ダクト部16の内部に縮流フィン28が設けられている。この縮流フィン28は、図10に示すように、ダクト部16の内側に形成される主流路18が上下に分断されるように、主孔14の内壁面141の短辺の略中央部分において主孔14の内壁面141の長辺に沿って延びている。図示しないが、縮流フィン28は、その長手方向の両端部がダクト部16の内側に連結されている。縮流フィン28は、層縮小構造として主流路18を流れる気流を縮流させる構造物でもある。
図11に示すように、縮流フィン28は、主孔14から突き出ないようにダクト部16の内側の主流路18を形成する部位に位置付けられている。具体的には、縮流フィン28は、ダクト部16の内部のうち、主流路18の中心線CLmと直交する方向において、仕切部26の一部と重なり合う位置であって、主孔14の内壁面141と重なり合わない位置に配置されている。
また、縮流フィン28は、その断面が空力特性に優れたティアドロップ形状になっている。すなわち、縮流フィン28は、空気流れ上流側の前縁部分が丸みを有する曲面状となり、空気流れ下流側の後縁部分が前縁部分に比べて鋭利な曲面状になっている。また、縮流フィン28は、その断面の厚みが後縁部分よりも前縁部分に近い位置で最大となっている。
このように構成される本実施形態の吹出部10では、図12に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。
主流路18には、主孔14の開口面積Smよりも断面積Scが大きい拡大部180が設けられているため、拡大部180から主孔14に至るまでに縮流が生ずる。加えて、主流路18は、縮流フィン28によって二股に分岐されることで、主孔14に至るまでに縮流が生ずる。
前述の如く、縮流フィン28は、主孔14から突き出ないようにダクト部16の内側の主流路18を形成する部位に位置付けられている。このため、ダクト部16の内側には、縮流フィン28によって流路断面積が小さくなる上流区間A、上流区間Aよりも流路断面積が拡大する中間区間B、流路断面積が殆ど変化しない下流区間Cが形成される。
上流区間Aでは、縮流フィン28によって流路断面積が小さくなり、気流が圧縮されることで、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が充分に小さくなる。すなわち、上流区間Aでは、縮流フィン28による縮流効果によって主流路18を形成する内壁面181付近の速度境界層の厚みが下流側に向かって小さくなる。
一方、上流区間Aの下流側である中間区間Bおよび下流区間Cでは、流路断面積が小さくなっていないので、主流路18を形成する内壁面181付近の速度境界層の厚みが下流側に向かって大きくなる。
具体的には、上流区間Aの下流側である中間区間Bでは、流路断面積が拡大しているので、主流路18を形成する内壁面181付近の速度境界層の厚みが下流側に向かって徐々に大きくなる。しかし、縮流フィン28は、空気流れ下流側の後縁側における断面の厚みの変化量が前縁側に比べて小さくなっている。このため、中間区間Bでの流路断面積の変化が上流区間Aの変化に比べて緩やかとなり、中間区間Bにおける速度境界層の厚みの増加量は、上流区間Aにおける速度境界層の厚みの減少量に比べて充分に小さくなる。
また、中間区間Bの下流側である下流区間Cでは、流路断面積が一定であるため、主流路18を形成する内壁面181付近の速度境界層の厚みが下流側に向かって若干大きくなる。しかし、下流区間Cにおける速度境界層の厚みの増加量は、上流区間Aにおける速度境界層の厚みの減少量に比べて極めて小さくなる。
このように、縮流フィン28による上流区間Aにおける速度境界層の厚みの減少量は、中間区間Bおよび下流区間Cにおける速度境界層の厚みの増加量に比べて充分に大きくなる。
これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が充分に小さくなる。そして、主孔14および補助孔22から気流が吹き出されると、主孔14の出口下流に主孔14の内壁面141に沿って作動気流の速度境界層BLが形成される。この速度境界層BLの厚みδは、第1実施形態に比べて小さくなる。
このため、本実施形態の吹出部10では、補助孔22から吹き出された援護気流の主流AFsが、速度境界層BLの厚みδの中央部分BLcにより近づいた状態で流れる。これにより、援護気流の主流が速度境界層BLに生ずる横渦Vtの渦心の近くを流れるので、援護気流によって横渦Vtが崩壊して、主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ易くなる。本実施形態では、主流路18に設けた拡大部180および縮流フィン28が渦抑制構造として機能する。より具体的には、拡大部180および縮流フィン28それぞれが、主孔14の内壁面141に沿って形成される速度境界層BLの厚みδを小さくする層縮小構造として機能する。
以上説明した本実施形態の空気吹出装置1は、主流路18に対して縮流フィン28が追加されているものの、その他の構成が第1実施形態と共通している。このため、本実施形態の空気吹出装置1は、第1実施形態と共通の構成から得られる作用効果を第1実施形態と同様に得ることができる。
特に、本実施形態では、層縮小構造が拡大部180だけでなく縮流フィン28を含めた構造となっている。これによれば、主流路18の拡大による装置の体格増大を抑えつつ、縮流による速度境界層BLの厚みδを小さくすることが可能となる。このような構成は、車両等の移動体の如く設置スペースが大きく制限されている場合に好適である。
(第2実施形態の変形例)
上述の第2実施形態では、縮流フィン28として、断面形状がティアドロップ形状となっているものを例示したが、これに限定されない。縮流フィン28は、例えば、断面形状が主流路18の気流に沿って延びる長円形状になっていてもよい。また、縮流フィン28としては、例えば、格子形状を有するものが採用されていてもよい。
上述の第2実施形態では、主流路18に対して拡大部180が設けられている例について説明したが、これに限定されない。空気吹出装置1は、主流路18に対して縮流フィン28が配置されるだけで、主流路18に対して拡大部180が設けられていない構成になっていてもよい。この場合、縮流フィン28が、主孔14の内壁面141に沿って形成される速度境界層BLの厚みδを小さくする層縮小構造として機能する。
(第3実施形態)
次に、第3実施形態について、図13~図15を参照して説明する。本実施形態では、主流路18を形成する内壁面181に対して凹凸部30が設けられている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
図13に示すように、本実施形態の吹出部10には、主流路18を形成する内壁面181に対して、主流路18における気流の流れ方向に沿って凹部と凸部とが交互に並ぶ凹凸部30が設けられている。具体的には、凹凸部30は、ダクト部16の内部において主流路18および補助流路24を仕切る仕切部26の内側の略全域に形成されている。
図14に示すように、凹凸部30は、主流路18を形成する内壁面181に設けられた複数の溝301によって形成されている。複数の溝301は、主流路18における気流の流れ方向に沿って所定の間隔をあけて並ぶように形成されている。溝301は、円形または多角形の窪みで構成されている。なお、溝301は、例えば、主流路18における気流の流れ方向に交差して延びる断面がV字状のスリット溝で構成されていてもよい。
このように構成される本実施形態の吹出部10では、図15に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。
主流路18には、主孔14の開口面積Smよりも断面積Scが大きい拡大部180が設けられているため、拡大部180から主孔14に至るまでに縮流が生ずる。加えて、主流路18を形成する内壁面181には、主流路18における主流の流れ方向に凹部と凸部とが交互に並ぶ凹凸部30が形成されている。
図14に示すように、凹凸部30では、気流が主流路18を形成する内壁面181付近を通過する際に、複数の溝301内に渦が生ずる。そして、凹凸部30の内側に生ずる渦がボールベアリングのような役割を果たすことで、主流路18を形成する内壁面181の摩擦係数が小さくなる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が小さくなる。
そして、主孔14および補助孔22から気流が吹き出されると、主孔14の出口下流に主孔14の内壁面141に沿って作動気流の速度境界層BLが形成される。この速度境界層BLの厚みδは、凹凸部30による摩擦係数の低減効果によって、第1実施形態に比べて小さくなる。
このため、本実施形態の吹出部10では、補助孔22から吹き出された援護気流の主流AFsが、速度境界層BLの厚みδの中央部分BLcに近づいた状態で流れる。具体的には、援護気流の主流と速度境界層BLの厚みδの中央部分BLcとの間隔LSが、第1実施形態に比べて小さくなる。これにより、援護気流の主流が速度境界層BLに生ずる横渦Vtの渦心の近くを流れるので、援護気流によって横渦Vtが崩壊して、主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ易くなる。本実施形態では、主流路18に設けた拡大部180および凹凸部30が渦抑制構造として機能する。より具体的には、拡大部180および凹凸部30それぞれが、主孔14の内壁面141に沿って形成される速度境界層BLの厚みδを小さくする層縮小構造として機能する。
以上説明した本実施形態の空気吹出装置1は、主流路18を形成する内壁面181に対して凹凸部30が追加されているものの、その他の構成が第1実施形態と共通している。このため、本実施形態の空気吹出装置1は、第1実施形態と共通の構成から得られる作用効果を第1実施形態と同様に得ることができる。
本実施形態では、層縮小構造が拡大部180だけでなく凹凸部30を含めた構造となっている。これによれば、拡大部180による縮流効果だけでなく、主流路18を形成する内壁面181の摩擦係数の低減効果によって、速度境界層BLの厚みδを充分に小さくすることが可能となる。
特に、本実施形態では、凹凸部30が主流路18の内壁面181に設けられた複数の溝301によって形成されている。これによれば、凹凸部30を複数の突起で構成する場合に比べて、主流路18の大きさを確保可能となり、主流路18における圧力損失を抑制することができる。このことは、作動気流の到達距離の向上に大きく寄与する。
(第3実施形態の変形例)
上述の第3実施形態では、凹凸部30が、複数の溝301によって形成されるものを例示したが、これに限定されない。凹凸部30は、例えば、複数の突起によって形成されていてもよい。凹凸部30が複数の突起によって形成される場合、気流が主流路18を形成する内壁面181付近を通過する際に複数の突起の隙間に渦が生ずる。この渦がボールベアリングのような役割を果たすため、本変形例によって上述の第3実施形態と同様の効果を得ることができる。
上述の第3実施形態では、凹凸部30が、ダクト部16の内部において主流路18および補助流路24を仕切る仕切部26の内側の略全域に形成されているものを例示したが、これに限定されない。凹凸部30は、仕切部26の内側の一部に形成されていてもよい。
上述の第3実施形態では、主流路18に対して拡大部180が設けられている例について説明したが、これに限定されない。空気吹出装置1は、主流路18に対して凹凸部30が配置されるだけで、主流路18に対して拡大部180が設けられていない構成になっていてもよい。この場合、凹凸部30が、主孔14の内壁面141に沿って形成される速度境界層BLの厚みδを小さくする層縮小構造として機能する。
また、上述の第3実施形態では、層縮小構造として拡大部180および凹凸部30を備える構造を例示したが、これに限定されない。層縮小構造は、例えば、拡大部180、縮流フィン28、および凹凸部30を備える構造や、縮流フィン28および凹凸部30を備える構造になっていてもよい。
(第4実施形態)
次に、第4実施形態について、図16~図18を参照して説明する。本実施形態では、主孔14がラッパ状に拡開されている点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
図16に示すように、本実施形態の吹出部10は、主孔14がラッパ状に拡開されている。具体的には、主孔14の内壁面141には、主孔14の内壁面141に沿って延びる接線TLmが補助孔22の出口下流で補助孔22の中心線CLsと交差するように補助孔22の中心線CLsに対して傾斜する主傾斜構造32が設けられている。換言すれば、主孔14の内壁面141は、その全周において、内壁面141に沿って延びる接線TLmが主孔14の中心線CLmと交差するように傾斜している。具体的には、接線TLmは、主孔14の内壁面141の下流端において当該内壁面141に沿って延びる接線である。
ここで、主孔14の出口下流に形成される速度境界層BLでは、主孔14の直後ではなく、主孔14から離れた位置で横渦Vtが生じ始める傾向がある。例えば、横渦Vtは、主孔14の短径の2倍以上離れた位置で生じ始めることがある。このため、主孔14の内壁面141は、接線TLmと中心線CLsとのなす角度θmが鋭角となる範囲内(例えば、1°~30°となる範囲内)に設定されることが望ましい。
また、本実施形態の吹出部10は、主流路18の断面積Scが、主孔14の開口面積Smよりも小さくなっている。すなわち、本実施形態の吹出部10には、第1実施形態の拡大部180に相当する構成が設けられていない。なお、主流路18の断面積Scは、仕切部26の上流側の端部における断面積である。
このように構成される本実施形態の吹出部10では、図17に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。そして、主流路18に流入した気流は、主孔14から吹き出される。この際、主孔14がラッパ状に拡開されているので、主孔14の出口下流には、作動気流の速度境界層BLが主孔14の中心線CLmから離れるように形成される。すなわち、主孔14の出口下流では、作動気流の速度境界層BLの中央部分BLcが、補助孔22から吹き出される援護気流の主流に近づく状態となる。
これにより、本実施形態の吹出部10では、補助孔22から吹き出された援護気流の主流AFsが、速度境界層BLの厚みδの中央部分BLcに近づいた状態で流れる。すなわち、図18に示すように、援護気流の主流AFsが速度境界層BLに生ずる横渦Vtの渦心の近くを流れるので、援護気流によって横渦Vtが崩壊して、主孔14の出口下流の速度境界層BLに生ずる横渦Vtの発達の抑制効果が得られ易くなる。本実施形態では、主孔14の内壁面141に設けられた主傾斜構造32が、渦抑制構造として機能する。
以上説明した本実施形態の空気吹出装置1は、主孔14を形成する内壁面141に対して主傾斜構造32が設けられている。これによると、主孔14の内壁面141付近の流速分布が主孔14の出口下流にて補助孔22からの援護気流に拡がることで、主孔14の出口下流に形成される速度境界層BLの厚みδの中央部分BLcを補助孔22から吹き出される気流に近づけることができる。このため、補助孔22から吹き出される気流によって速度境界層BLでの横渦の発達が充分に抑制される。
このように、本実施形態の空気吹出装置1によっても、主孔14から吹き出される気流への周囲からの空気の引き込みが抑えられて、主孔14から吹き出される気流の流速の減衰が少なくなるので、主孔14から吹き出される作動気流の到達距離が長くなる。
(第4実施形態の変形例)
上述の第4実施形態では、主孔14の内壁面141が、その全周において、内壁面141に沿って延びる接線TLmが主孔14の中心線CLmと交差するように傾斜しているものを例示したが、これに限定されない。空気吹出装置1は、例えば、主孔14の内壁面141の一部が、内壁面141に沿って延びる接線TLmが主孔14の中心線CLmと交差するように傾斜した構造になっていてもよい。
上述の第4実施形態では、主孔14の内壁面141が直線状に延びているものを例示したが、これに限定されない。主孔14の内壁面141は、曲線状に湾曲した状態で延びていてもよい。この場合、接線TLmは、主孔14の内壁面141の下流端における接線となる。
上述の第4実施形態では、主孔14に対して主傾斜構造32が適用され、第1~第3実施形態で説明した拡大部180、縮流フィン28、凹凸部30が適用されていないものを例示したが、これに限定されない。空気吹出装置1は、例えば、主孔14に対して主傾斜構造32が適用された吹出部10において、第1~第3実施形態で説明した拡大部180、縮流フィン28、凹凸部30の少なくとも1つの層縮小構造が適用されていてもよい。
(第5実施形態)
次に、第5実施形態について、図19、図20を参照して説明する。本実施形態では、孔形成部12に補助孔22が設けられていない点が第1実施形態と相違している。本実施形態では、第1実施形態と異なる部分について主に説明し、第1実施形態と同様の部分について説明を省略することがある。
図19に示すように、空気吹出装置1は、気流を吹き出す吹出部10を備える。吹出部10は、作動気流となる気流を吹き出す主孔14を形成する孔形成部12と、主孔14から吹き出す気流を通過させる主流路18を形成するダクト部16と、ダクト部16の外側に設けられたフランジ部20を含んで構成されている。
孔形成部12には、第1実施形態と同様に、長円形状の主孔14が単一の孔として開口している、また、孔形成部12には、第1実施形態と異なり複数の補助孔22が形成されていない。
ダクト部16は、筒状の部材である。ダクト部16の内部には、その中央部分に主孔14から吹き出される作動気流を通過させる主流路18が形成されている。具体的には、ダクト部16は、主流路18の断面積が略一定となる扁平状の筒状部材で構成されている。本実施形態のダクト部16は、主流路18の断面積と主孔14の開口面積とが同程度の大きさになっている。
本発明者らは、作動気流の到達距離を長くする上で、作動気流の中心部分と速度境界層BLとが離れていることが有効であると考え、吹出部10に対して作動気流の速度境界層BLを作動気流の中心部分から離すための離間構造50を追加することとした。
吹出部10には、離間構造50として、主流路18を流れる気流を縮流させる構造物51が設けられている。図示しないが構造物51は、主流路18が上下に分断されるように、主孔14の内壁面141の短辺の略中央部分において主孔14の内壁面141の長辺に沿って延びている。なお、構造物51は、その長手方向の両端部がダクト部16の内側に連結されている。
構造物51は、主流路18を流れる気流の流れ方向に沿った断面が流線型形状となっている。具体的には、構造物51は、空力特性に優れたティアドロップ形状になっている。すなわち、構造物51は、空気流れ上流側の上流側端部511が丸みを有する曲面状となり、空気流れ下流側に位置する下流側端部512が上流側端部511に比べて鋭利な曲面状になっている。なお、構造物51は、上流側端部511が前縁部分を構成し、下流側端部512が後縁部分を構成する。
また、構造物51は、その断面の厚みが後縁部分よりも前縁部分に近い位置で最大となっている。構造物51は、主孔14の内壁面141に沿って形成される速度境界層BLの厚みδが小さくなるように断面の厚みが設定されている。本実施形態の構造物51は、主孔14から吹き出す作動気流をトップハット型の風速分布とするために最適な形状になっている。すなわち、構造物51は、主流路18の下流側の流路断面積が上流側に比べて10分の1程度となるように構成されている。具体的には、構造物51は、主孔14の内壁面から構造物51までの最短距離Lf2と主孔14の内壁面141から主孔14の中心線までの距離Lf1とが1:3.3以上となるように断面の厚みが設定されていることが望ましい。なお、本実施形態では、構造物51が主孔14の内壁面141に沿って形成される速度境界層BLの厚みδを小さくする層縮小構造を構成する。
加えて、構造物51は、主孔14から突き出ないようにダクト部16の内側の主流路18を形成する部位に位置付けられている。具体的には、構造物51は、気流の流れ方向の下流側に位置する下流側端部512が主孔14の内側に位置付けられている。
このように構成される吹出部10では、図20に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。
主流路18を流れる気流は、構造物51によって二股に分岐されることで、主孔14に至るまでに縮流が生ずる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が充分に小さくなる。
前述の如く、構造物51は、主孔14から突き出ないようにダクト部16の内側に位置付けられている。このため、ダクト部16の内側には、構造物51によって流路断面積が小さくなる上流区間A、上流区間Aよりも流路断面積が拡大する中間区間B、流路断面積が殆ど変化しない下流区間Cが形成される。
上流区間Aでは、構造物51によって流路断面積が小さくなり、気流が圧縮されることで、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が充分に小さくなる。すなわち、上流区間Aでは、構造物51による縮流効果によって主流路18を形成する内壁面181付近の速度境界層の厚みが下流側に向かって小さくなる。
一方、上流区間Aの下流側である中間区間Bおよび下流区間Cでは、流路断面積が小さくなっていないので、主流路18を形成する内壁面181付近の速度境界層の厚みが下流側に向かって大きくなる。
具体的には、中間区間Bでは、流路断面積が拡大しているので、主流路18を形成する内壁面181付近の速度境界層の厚みが下流側に向かって徐々に大きくなる。しかし、構造物51は、空気流れ下流側の後縁側における断面の厚みの変化量が前縁側に比べて小さくなっている。このため、中間区間Bでの流路断面積の変化が上流区間Aの変化に比べて緩やかとなり、中間区間Bにおける速度境界層の厚みの増加量は、上流区間Aにおける速度境界層の厚みの減少量に比べて充分に小さくなる。
また、下流区間Cでは、流路断面積が一定であるため、主流路18を形成する内壁面181付近の速度境界層の厚みが下流側に向かって若干大きくなる。しかし、下流区間Cにおける速度境界層の厚みの増加量は、上流区間Aにおける速度境界層の厚みの減少量に比べて極めて小さくなる。
このように、構造物51による上流区間Aにおける速度境界層の厚みの減少量は、中間区間Bおよび下流区間Cにおける速度境界層の厚みの増加量に比べて充分に大きくなる。
主孔14から気流が吹き出されると、主孔14の出口下流に主孔14の内壁面141に沿って作動気流の速度境界層BLが形成される。この速度境界層BLの厚みδは、主流路18における縮流によって小さくなる。
主孔14の出口下流に形成される作動気流の速度境界層BLの厚みδが小さいと、速度境界層BLの厚みδの中央部分BLcが、主孔14の出口下流で主孔14の中心線CLmから離れた状態になる。具体的には、作動気流の速度境界層BLの厚みδの中央部分BLcと主孔14の中心線CLmとの間隔LSが大きくなる。この場合、作動気流の主流が速度境界層BLに生ずる横渦の渦心から離れることで、作動気流の中心部分における流速の減衰が少なくなり、主孔14から吹き出される作動気流の到達距離を長くすることが可能となる。
以上説明した空気吹出装置1は、主孔14の出口下流において作動気流の速度境界層BLの厚みδの中央部分BLcを主孔14の中心線CLmから離すための離間構造50が設けられている。これによれば、作動気流の中心部分における流速の減衰が少なくなり、主孔14から吹き出される作動気流の到達距離を長くすることが可能となる。
特に、本実施形態の空気吹出装置1は、離間構造50として主流路18に対して構造物51が設けられている。このように、主流路18に対して構造物51を設ける構造とすれば、主流路18に生ずる縮流によって、主孔14の中心線CLm付近と内壁面付近との間の流速差が小さくなり、速度境界層BLの厚みδを小さくすることができる。
このように、速度境界層BLの厚みδを小さくすれば、主孔14の出口下流に形成される作動気流がトップハット型の風速分布になり易くなる。トップハット型の風速分布では、主孔14の出口下流に形成される作動気流の速度境界層BLの厚みδの中央部分を主孔14の中心線CLmから大きく離れることになる。このため、作動気流の中心部分における流速の減衰を充分に抑えて、作動気流の到達距離を長くすることが可能となる。
また、構造物51は、主流路18を流れる気流の流れ方向に沿った断面形状が流線型形状となっている。このように、構造物51を流線型形状とすれば、構造物51の配置に伴う構造物51表面での気流の剥離が抑制され乱れを充分に抑制することができる。このことは、作動気流の到達距離を長くする上で有効である。
さらに、構造物51は、主流路18を流れる気流の流れ方向の下流側に位置する下流側端部512が、主孔14から外部に突き出ないように主流路18を形成する内壁面181に配置されている。これによると、主孔14から吹き出された気流が構造物51によって乱れないので、作動気流の中心部分における流速の減衰を充分に抑えることができる。
(第5実施形態の変形例)
上述の第5実施形態では、構造物51として、断面形状が流線型形状となっているものを例示したが、これに限定されない。構造物51は、例えば、断面形状が主流路18の気流に沿って延びる長円形状になっていてもよい。また、構造物51としては、例えば、格子形状を有するものが採用されていてもよい。
上述の第5実施形態では、構造物51が主孔14から外部に突き出ないように主流路18を形成する内壁面181に配置されている例について説明したが、これに限定されない。構造物51は、例えば、下流側端部512が主孔14から外部に突き出るように主流路18に配置されていてもよい。
(第6実施形態)
次に、第6実施形態について、図21、図22を参照して説明する。本実施形態では、主流路18を形成する内壁面181に対して凹凸部52が設けられている点が第5実施形態と相違している。本実施形態では、第5実施形態と異なる部分について主に説明し、第5実施形態と同様の部分について説明を省略することがある。
図21に示すように、本実施形態の吹出部10には、主流路18を形成する内壁面181に対して、主流路18における気流の流れ方向に沿って凹部と凸部とが交互に並ぶ凹凸部52が設けられている。具体的には、凹凸部52は、ダクト部16の内部において主流路18を形成する内壁面181の略全域に形成されている。なお、本実施形態の凹凸部52は、第3実施形態で説明した凹凸部30と同様の形成されている。
このように構成される吹出部10では、図22に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。
主流路18を形成するダクト部16の内壁面181には、主流路18における主流の流れ方向に凹部と凸部とが交互に並ぶ凹凸部52が形成されている。凹凸部52では、気流が主流路18を形成する内壁面181付近を通過する際に、複数の溝内に渦が生ずる。そして、凹凸部52の内側に生ずる渦がボールベアリングのような役割を果たすことで、主流路18を形成する内壁面181の摩擦係数が小さくなる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が小さくなる。
そして、主孔14および補助孔22から気流が吹き出されると、主孔14の出口下流に主孔14の内壁面141に沿って作動気流の速度境界層BLが形成される。この速度境界層BLの厚みδは、凹凸部52による摩擦係数の低減効果によって小さくなる。すなわち、作動気流の速度境界層BLの厚みδの中央部分BLcが、主孔14の出口下流で主孔14の中心線CLmから離れた状態になる。具体的には、作動気流の速度境界層BLの厚みδの中央部分BLcと主孔14の中心線CLmとの間隔LSが大きくなる。なお、本実施形態では、主流路18に設けた凹凸部52が離間構造50および層縮小構造として機能する。
以上説明した空気吹出装置1は、主流路18を形成する内壁面181に対して凹凸部52が追加されているので、主流路18を形成する内壁面181の摩擦係数の低減効果によって、速度境界層BLの厚みδを充分に小さくすることが可能となる。このため、作動気流の中心部分における流速の減衰が少なくなり、主孔14から吹き出される作動気流の到達距離を長くすることが可能となる。
(第6実施形態の変形例)
上述の第6実施形態では、凹凸部52が、複数の溝によって形成されるものを例示したが、これに限定されない。凹凸部52は、例えば、複数の突起によって形成されていてもよい。
上述の第6実施形態では、凹凸部52が、ダクト部16の内部において主流路18を形成する内壁面181の略全域に形成されているものを例示したが、これに限定されない。凹凸部52は、主流路18を形成する内壁面181の一部に形成されていてもよい。
上述の第6実施形態では、層縮小構造として凹凸部52を備える構造を例示したが、これに限定されない。層縮小構造は、例えば、構造物51および凹凸部52を備える構造になっていてもよい。
(第7実施形態)
次に、第7実施形態について、図23、図24を参照して説明する。本実施形態では、主孔14付近がラッパ状に拡開されている点が第5実施形態と相違している。本実施形態では、第5実施形態と異なる部分について主に説明し、第5実施形態と同様の部分について説明を省略することがある。
図23に示すように、本実施形態の吹出部10は、主孔14付近がラッパ状に拡開されている。具体的には、主孔14は、その内壁面141が気流の流れ方向の下流側に向かって主孔14の中心線CLmから離れるように拡大されている。
主孔14付近が極端に拡開されていると、壁面から気流が剥離し、乱れが大きくなる虞がある。このため、主孔14は、中心線CLmと内壁面141の接線TLmとのなす角度θsが、例えば、7°以下に設定されていることが望ましい。
このように構成される吹出部10では、図24に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。そして、主流路18に流入した気流は、主孔14から吹き出される。この際、主孔14がラッパ状に拡開されているので、主孔14の出口下流では、作動気流の速度境界層BLが主孔14の中心線CLmから離れる。具体的には、作動気流の速度境界層BLの厚みδの中央部分BLcと主孔14の中心線CLmとの間隔LSが大きくなる。なお、本実施形態では、主孔14の内壁面141の拡開形状が離間構造50として機能する。
以上説明した空気吹出装置1は、主孔14がラッパ状に拡開されているので、主孔14の出口下流に形成される作動気流の速度境界層BLも主孔14の中心線CLmから離れ易くなる。これによれば、作動気流の中心部分における流速の減衰が少なくなり、主孔14から吹き出される作動気流の到達距離を長くすることが可能となる。
(第7実施形態の変形例)
上述の第7実施形態では、離間構造50として主孔14の内壁面141が拡開された構造を例示したが、これに限定されない。離間構造50は、例えば、主孔14の内壁面141が拡開された構造に対して、構造物51および凹凸部52の少なくとも一方が追加された構造になっていてもよい。
(第8実施形態)
次に、第8実施形態について、図25、図26を参照して説明する。本実施形態では、主流路18に対して拡大部180が設けられている点が第5実施形態と相違している。本実施形態では、第5実施形態と異なる部分について主に説明し、第5実施形態と同様の部分について説明を省略することがある。
図25に示すように、吹出部10には、離間構造50として、構造物51だけなく、主流路18に対して主孔14の開口面積Smよりも断面積Scが大きい拡大部180が設けられている。具体的には、主流路18は、構造物51よりも空気流れ上流側で断面積が最も大きくなるとともに、構造物51が配置された箇所で断面積が最小になっている。吹出部10は、例えば、構造物51が配置された箇所で断面積が、構造物51の上流側に比べて10分の1程度となるように構成されている。具体的には、吹出部10は、構造物51が配置された箇所で内径Ld2と上流側における内径Ld1とが1:3.3以上となるように断面の厚みが設定されている。
また、本実施形態の吹出部10は、主孔14付近がラッパ状に拡開されている。具体的には、主孔14は、その内壁面141が気流の流れ方向の下流側に向かって主孔14の中心線CLmから離れるように拡大されている。なお、本実施形態では、構造物51、拡大部180、主孔14の内壁面141の拡開形状が離間構造50として機能する。また、本実施形態では、構造物51および拡大部180が層縮小構造として機能する。
このように構成される吹出部10では、図26に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。
主流路18には、主孔14の開口面積よりも断面積が大きい拡大部180が設けられているため、拡大部180から主孔14に至るまでに縮流が生ずる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が小さくなる。加えて、主流路18には、構造物51が配置されているので、構造物51によっても縮流が生ずる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が充分に小さくなる。
そして、主流路18に流入した気流は、主孔14から吹き出される。この際、主孔14がラッパ状に拡開されているので、主孔14の出口下流には、作動気流の速度境界層BLが主孔14の中心線CLmから離れるように形成される。具体的には、作動気流の速度境界層BLの厚みδの中央部分BLcと主孔14の中心線CLmとの間隔LSが大きくなる。
以上説明した空気吹出装置1は、層縮小構造が構造物51だけなく拡大部180を含めた構造となっているので、縮流による速度境界層BLの厚みδを小さくなる。また、主孔14がラッパ状に拡開されているので、主孔14の出口下流に形成される作動気流の速度境界層BLも主孔14の中心線CLmから離れ易くなる。これらにより、主孔14から吹き出される作動気流の到達距離を長くすることが可能となる。
(第9実施形態)
次に、第9実施形態について、図27~図29を参照して説明する。本実施形態では、構造物51の上流側端部511に対して縦渦発生機構53が設けられている点が第8実施形態と相違している。本実施形態では、第8実施形態と異なる部分について主に説明し、第8実施形態と同様の部分について説明を省略することがある。
図27および図28に示すように、構造物51には、上流側端部511に凹凸状の縦渦発生機構53が設けられている。縦渦発生機構53は、構造物51の上流側端部511付近に縦渦を発生させるものである。縦渦は、渦心が主流の流れ方向と同一方向を向いている螺旋状の渦である。
縦渦発生機構53は、上流側端部511から突き出た複数の凹凸状の突出片で構成されている。具体的には、縦渦発生機構53は、上流側端部511に形成された複数の三角形状の突出片で構成されている。この突出片は、先端に向かって延びる2辺が直線状に交差することで先鋭化された形状になっている。
このように構成される吹出部10では、図29に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。主流路18には、構造物51が配置されているので、構造物51によって縮流が生ずることになるが、構造物51の周囲を流れる気流が構造物51から剥離して乱れてしまう虞がある。
これに対して、本実施形態では、構造物51の上流側端部511に縦渦発生機構53が設けられているため、気流が構造物51の上流側端部511付近を通過する際に縦渦が発生する。縦渦発生機構53により発生する縦渦は、渦心が構造物51の周囲を流れる気流と同一方向を向いた螺旋状の渦であり、構造物51の表面に向かう速度成分が含まれている。このため、構造物51の周囲を流れる気流は、縦渦発生機構53にて発生した縦渦によって、構造物51の表面に近づくように押し付けられることで、構造物51の表面に沿って流れ易くなる。
その他の構成は第8実施形態と同様である。本実施形態の空気吹出装置1は、第8実施形態と共通の構成を有しているので、当該共通の構成から奏される作用効果を第8実施形態と同様に得ることができる。
特に、本実施形態の空気吹出装置1は、構造物51の上流側端部511に縦渦発生機構53が設けられているので、構造物51の周囲を流れる気流が、縦渦発生機構53にて発生した縦渦によって構造物の表面に沿って流れ易くなる。この結果、構造物51の追加に伴う作動気流の乱れを充分に抑制することができる。
(第9実施形態の変形例)
上述の第9実施形態では、第8実施形態で説明した空気吹出装置1の構造物51に縦渦発生機構53を設けたものを例示したがこれに限定されない。縦渦発生機構53は、例えば、第7実施形態で説明した構造物51に対して追加してもよい。また、縦渦発生機構53は、例えば、第2実施形態で説明した縮流フィン28に対して追加してもよい。
(第10実施形態)
次に、第10実施形態について、図30を参照して説明する。本実施形態では、主流路18に対して拡大部180が設けられている点が第6実施形態と相違している。本実施形態では、第6実施形態と異なる部分について主に説明し、第6実施形態と同様の部分について説明を省略することがある。
図30に示すように、吹出部10には、離間構造50として、凹凸部52だけなく、主流路18に対して主孔14の開口面積Smよりも断面積Scが大きい拡大部180が設けられている。具体的には、主流路18は、空気流れ上流側で断面積が最も大きくなるとともに、主孔14付近で断面積が最小になっている。吹出部10は、例えば、主孔14の開口面積が、上流側に比べて10分の1程度となるように構成されている。具体的には、吹出部10は、主孔14の内径Ld2と上流側における内径Ld1とが1:3.3以上となるように断面の厚みが設定されている。なお、本実施形態では、凹凸部52および拡大部180が離間構造50および層縮小構造として機能する。
このように構成される吹出部10では、図30に示すように、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。この際、気流が主流路18を形成する内壁面181付近を通過する際に凹凸部52の内側に生ずる渦がボールベアリングのような役割を果たすことで、主流路18を形成する内壁面181の摩擦係数が小さくなる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が小さくなる。
加えて、主流路18には、主孔14の開口面積よりも断面積が大きい拡大部180が設けられているため、拡大部180から主孔14に至るまでに縮流が生ずる。これにより、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が充分に小さくなる。そして、主流路18に流入した気流は、主孔14から吹き出される。この際、主孔14の出口下流には、作動気流の速度境界層BLが主孔14の中心線CLmから離れるように形成される。
以上説明した空気吹出装置1は、層縮小構造が凹凸部52だけなく拡大部180を含めた構造となっているので、縮流による速度境界層BLの厚みδを小さくなる。これにより、主孔14の出口下流に形成される作動気流の速度境界層BLも主孔14の中心線CLmから離れ易くなるので、主孔14から吹き出される作動気流の到達距離を長くすることが可能となる。
(第11実施形態)
次に、第11実施形態について、図31、図32を参照して説明する。本実施形態では、ダクト部16に縮流形状部183が設けられている点が第5実施形態と相違している。本実施形態では、第5実施形態と異なる部分について主に説明し、第5実施形態と同様の部分について説明を省略することがある。
図31に示すように、吹出部10は、主流路18の流路断面積が気流の流れ方向の上流側から下流側に向かって縮小されている。具体的には、主流路18を形成する内壁面181には、上流側平坦部182、縮流形状部183、および下流側平坦部184が設定されている。
上流側平坦部182は、主流路18を形成する内壁面181のうち空気流れ上流側の部位で構成されている。上流側平坦部182は、断面積が略一定となるように、気流の流れ方向に沿う平坦な形状になっている。
下流側平坦部184は、主流路18を形成する内壁面181のうち空気流れ下流側の部位で構成されている。上流側平坦部182は、流路断面積が略一定となるように構成されている。下流側平坦部184は、断面積が略一定となるように、気流の流れ方向に沿う平坦な形状になっている。なお、下流側平坦部184は、その断面積が上流側平坦部182の断面積に比べて10分の1程度となるように構成されている。
縮流形状部183は、第8実施形態で説明した拡大部180に相当するものである。縮流形状部183は、上流側平坦部182および下流側平坦部184を接続する接続部である。縮流形状部183は、主流路18の流路断面積を気流の流れ方向の上流側から下流側に向かって縮小する部位である。
縮流形状部183は、気流の流れ方向の上流側に位置する上流端183aが上流側平坦部182に連なり、気流の流れ方向の下流側に位置する下流端183bが下流側平坦部184に連なっている。縮流形状部183は、上流側平坦部182および下流側平坦部184との接続部が段差のない連続した曲面となるように、上流端183aおよび下流端183bが気流の流れ方向に沿った形状になっている。
構造物51は、気流の流れ方向における大きさが、主流路18を形成する内壁面181のうち縮流形状部183が設定された縮流形状区間の長さよりも小さくなっている。構造物51は、主流路18を形成する内壁面181のうち縮流形状区間に収まるように、主流路18に配置されている。すなわち、構造物51は、気流の流れ方向の上流側に位置する上流側端部511が縮流形状部183の上流端183aの下流側に位置付けられている。加えて、構造物51は、気流の流れ方向の下流側に位置する下流側端部512が縮流形状部183の下流端183bの上流側に位置付けられている。
このように構成される吹出部10では、空調ユニットで温度調整された空調風がダクト部16に流入すると、空調風が主流路18を介して主孔14に向かって流れる。主流路18には、構造物51が配置されるとともに、主流路18を形成する内壁面181に縮流形状部183が設けられている。このため、主流路18では、主孔14の中心線CLm付近と主流路18を形成する内壁面181付近との間の流速差が充分に小さくなる。
ここで、図32に示すように、主流路18における構造物51の下流側端部512付近では、構造物51によって凹状の風速分布Ws1となる。すなわち、主流路18における構造物51の下流側端部512付近では、構造物51および縮流形状部183による縮流効果によって、主流路18の中央部分に比べて主流路18の内壁面181付近の流速が大きくなる。このような凹状の風速分布Ws1のままで気流が主孔14から吹き出されると、主孔14から吹き出す気流のコア部の崩壊が早まってしまう虞がある。
これに対して、本実施形態では、構造物51の下流側端部512が縮流形状部183の下流端183bの上流側に位置付けられている。これによると、構造物51の下流側でも縮流形状部183によって縮流が生ずることで、構造物51が配置された箇所の下流に気流が流れ易くなる。これにより、構造物51が配置された箇所で一旦低下した流速がその下流で回復させることができるので、主孔14の出口下流に形成される作動気流がトップハット型の風速分布Ws2になり易くなる。
以上説明した空気吹出装置1は、層縮小構造が構造物51だけなく拡大部180を含めた構造となっているので、縮流による速度境界層BLの厚みδを小さくなる。構造物51の下流側端部512が縮流形状部183の下流端183bの上流側に位置付けられているので、主孔14の出口下流に形成される作動気流がトップハット型の風速分布になり易くなる。これらにより、主孔14から吹き出される作動気流の到達距離を長くすることが可能となる。
(第11実施形態の変形例)
上述の第11実施形態では、構造物51が主流路18を形成する内壁面181のうち縮流形状区間に収まるように配置されているものを例示したが、これに限定されない。
構造物51は、例えば、図33の第1変形例に示すように、下流側端部512が縮流形状部183の下流端183bの上流側に位置付けられるとともに、上流側端部511が縮流形状部183の上流端183aの上流側に位置付けられていてもよい。これによれば、第11実施形態と同様の作用効果を得ることができる。
また、構造物51は、例えば、図34の第2変形例に示すように、上流側端部511が縮流形状部183の上流端183aの下流側に位置付けられるとともに、下流側端部512が縮流形状部183の下流端183bの下流側に位置付けられていてもよい。
上述の第11実施形態では、主流路18を形成する内壁面181に、上流側平坦部182、縮流形状部183、および下流側平坦部184が設定されているものを例示したが、これに限定されない。吹出部10は、主流路18を形成する内壁面181に縮流形状部183が設定されていれば、上流側平坦部182および下流側平坦部184が設定されていなくてもよい。また、吹出部10は、縮流形状部183の下流側がラッパ状に拡開されていてもよい。
(他の実施形態)
以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
上述の実施形態では、孔形成部12に対して主孔14が1つ形成されている例について説明したが、これに限定されない。空気吹出装置1は、孔形成部12に対して複数の主孔14が形成された構造になっていてもよい。この場合、例えば、複数の補助孔22については、複数の主孔14を単一の孔群として当該孔群を取り囲むように配置したり、複数の主孔14それぞれを取り囲むように配置したりすればよい。
上述の実施形態では、補助孔22が複数の丸孔で構成されている例について説明したが、これに限定されない。補助孔22は、例えば、主孔14の周囲を囲む曲線状のスリット孔で構成されていてもよい。この場合、補助孔22は、複数のスリット孔に限らず、単一のスリット孔で構成することが可能である。
上述の実施形態では、単一のダクト部16の内部に主流路18および補助流路24が形成される構成になっているが、これに限定されない。空気吹出装置1は、例えば、ダクト部16における主流路18を形成する部分と補助流路24を形成する部分とが別々に構成されていてもよい。
上述の実施形態では、吹出部10としてフランジ部20を有するものを例示したが、これに限定されない。吹出部10は、例えば、孔形成部12およびダクト部16を有し、フランジ部20を有していない構成になっていてもよい。
上述の実施形態では、車室内を空調する空調ユニットの空気吹出口に本開示の空気吹出装置1を適用するものを例示したが、これに限定されない。本開示の空気吹出装置1は、車両等の移動体に限らず、家庭用等の設置型の空調ユニットの空気吹出口等にも広く適用可能である。また、本開示の空気吹出装置1は、室内を空調する空調ユニットに限らず、例えば、室内を加湿する加湿機器の空気吹出口や、発熱体等の温度を調整する温調風を吹き出す温調機器の空気吹出口にも適用可能である。
上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。
上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。
(まとめ)
上述の実施形態の一部または全部で示された第1の観点によれば、第11の観点によれば、空気吹出装置は、気流を吹き出す吹出部を備える。吹出部は、作動気流となる気流を吹き出す少なくとも1つの主孔と、主孔の出口下流において作動気流の速度境界層の厚みの中央部分を主孔の中心線から離すための離間構造と、を含んで構成されている。
第2の観点によれば、空気吹出装置の吹出部は、主孔から吹き出す気流を通過させる主流路を含んでいる。離間構造は、主流路の内壁面に沿って形成される速度境界層の厚みを小さくする層縮小構造を含んでいる。
このように、速度境界層の厚みを小さくすれば、主孔の出口下流に形成される作動気流がトップハット型の風速分布になり易くなる。トップハット型の風速分布では、主孔の出口下流に形成される作動気流の速度境界層の厚みの中央部分を主孔の中心線から大きく離れることになるので、作動気流の中心部分における流速の減衰を充分に抑えて、作動気流の到達距離を長くすることが可能となる。
第3の観点によれば、空気吹出装置は、主流路に、層縮小構造として主流路を流れる気流を縮流させる構造物が設けられている。このように、主流路に対して構造物を設ける構造とすれば、主流路に生ずる縮流によって、主孔の中心線付近と内壁面付近との間の流速差が小さくなり、速度境界層の厚みを小さくすることができる。すなわち、主孔の出口下流に形成される作動気流の速度境界層の厚みの中央部分を主孔の中心線から離す構造を実現することができる。
第4の観点によれば、空気吹出装置は、主流路を形成する内壁面に、主流路の流路断面積を気流の流れ方向の上流側から下流側に向かって縮小する縮流形状部が含まれている。構造物は、主流路を流れる気流の流れ方向の下流側に位置する下流側端部が、縮流形状部のうち主流路を流れる気流の流れ方向の下流側に位置する下流端よりも上流側に位置付けられている。
主流路に対して構造物を配置すると、主流路のうち構造物が配置された箇所での流速低下が生ずることで、構造物の下流側で凹状の風速分布になり易い。このような凹状の風速分布のままで気流が主孔から吹き出されると、主孔から吹き出す気流のコア部の崩壊が早まってしまう虞がある。
これに対して、構造物の下流側端部を縮流形状部の下流端よりも上流側に位置付ける場合、構造物の下流側でも縮流形状部によって縮流が生ずることで、構造物が配置された箇所の下流に気流が流れ易くなる。これによると、構造物が配置された箇所で一旦低下した流速がその下流で回復させることができるので、主孔の出口下流に形成される作動気流がトップハット型の風速分布になり易くなる。
第5の観点によれば、空気吹出装置は、主流路を形成する内壁面に、主流路の流路断面積を気流の流れ方向の上流側から下流側に向かって縮小する縮流形状部が含まれている。
構造物は、主流路を流れる気流の流れ方向の上流側に位置する上流側端部が、縮流形状部のうち主流路を流れる気流の流れ方向の上流側に位置する上流端よりも下流側に位置付けられている。このように、構造物の上流側端部を縮流形状部の上流端よりも下流側に位置付ける場合、構造物および縮流形状部それぞれによる縮流効果が得られる。
第6の観点によれば、空気吹出装置は、主流路を形成する内壁面に、主流路の流路断面積を気流の流れ方向の上流側から下流側に向かって縮小する縮流形状部が含まれている。
構造物は、主流路を流れる気流の流れ方向の上流側に位置する上流側端部が、縮流形状部のうち主流路を流れる気流の流れ方向の上流側に位置する上流端よりも下流側に位置付けられている。また、構造物は、主流路を流れる気流の流れ方向の下流側に位置する下流側端部が、縮流形状部のうち主流路を流れる気流の流れ方向の下流側に位置する下流端よりも上流側に位置付けられている。
第7の観点によれば、空気吹出装置の構造物は、主流路を流れる気流の流れ方向に沿った断面形状が流線型形状となっている。このように、構造物を流線型形状とすれば、構造物表面での気流の剥離が抑制され乱れを充分に抑制することができる。このことは、作動気流の到達距離を長くする上で有効である。
第8の観点によれば、空気吹出装置の構造物は、主流路を流れる気流の流れ方向の上流側に位置する上流側端部に、縦渦を発生させる凹凸状の縦渦発生機構が設けられている。これによると、構造物の周囲を流れる気流は、縦渦発生機構にて発生した縦渦によって構造物の表面に沿って流れ易くなることで、構造物の追加に伴う作動気流の乱れを抑制することができる。
第9の観点によれば、空気吹出装置の構造物は、主流路を流れる気流の流れ方向の下流側に位置する下流側端部が、主孔から外部に突き出ないように主流路の内側に配置されている。これによると、主孔から吹き出された気流が構造物によって乱れないので、作動気流の中心部分における流速の減衰を充分に抑えることができる。
第10の観点によれば、空気吹出装置は、主流路の少なくとも一部に、層縮小構造として主流路における気流の流れ方向に沿って凹部と凸部とが交互に並ぶ凹凸部が設けられている。このように、主流路の内壁面の一部に対して凹凸部を設ける構造とすれば、凹凸部の内側に生ずる渦がボールベアリングのような役割を果たすことで、主流路の内壁面の摩擦係数が小さくなる。このため、主孔の中心線付近と内壁面付近との間の流速差が小さくなり、速度境界層の厚みを小さくすることができる。すなわち、主孔の出口下流に形成される作動気流の速度境界層の厚みの中央部分を主孔の中心線から離す構造を実現することができる。
第11の観点によれば、空気吹出装置は、主流路に、層縮小構造として主孔の開口面積よりも断面積が大きい拡大部が設けられている。このように、主流路に対して拡大部を設ける構造とすれば、主流路に生ずる縮流によって、主孔の中心線付近と内壁面付近との間の流速差が小さくなり、速度境界層の厚みを小さくすることができる。すなわち、主孔の出口下流に形成される作動気流の速度境界層の厚みの中央部分を主孔の中心線から離す構造を実現することができる。
第12の観点によれば、空気吹出装置は、主孔の内壁面が気流の流れ方向の下流側に向かって主孔の中心線から離れるように拡大されている。これによると、主孔の内側の壁面形状に応じて主孔の出口下流に形成される作動気流の速度境界層も主孔の中心線から離れるように形成され易くなる。このため、主孔の出口下流に形成される作動気流の速度境界層の厚みの中央部分を主孔の中心線から離す構造を実現することができる。
1 空気吹出装置
10 吹出部
14 主孔
50、51 構造物(離間構造、層縮小構造)

Claims (10)

  1. 空気吹出装置であって、
    気流を吹き出す吹出部(10)を備え、
    前記吹出部は、
    作動気流となる気流を吹き出す少なくとも1つの主孔(14)と、
    前記主孔の出口下流において前記作動気流の速度境界層(BL)の厚み(δ)の中央部分(BLc)を前記主孔の中心線(CLm)から離すための離間構造(50)と、を含んで構成されており、
    前記吹出部は、前記主孔から吹き出す気流を通過させる主流路(18)を含んでおり、
    前記離間構造は、前記主流路を形成する内壁面に沿って形成される速度境界層の厚みを小さくする層縮小構造(51、52)を含んでおり、
    前記主流路には、前記層縮小構造として前記主流路を流れる気流を縮流させる構造物(51)が設けられており、
    前記主流路を形成する内壁面(181)には、前記主流路の流路断面積を気流の流れ方向の上流側から下流側に向かって縮小する縮流形状部(183)が含まれており、
    前記構造物は、前記主流路を流れる気流の流れ方向の下流側に位置する下流側端部(512)が、前記縮流形状部のうち前記主流路を流れる気流の流れ方向の下流側に位置する下流端(183b)よりも上流側に位置付けられている、空気吹出装置。
  2. 空気吹出装置であって、
    気流を吹き出す吹出部(10)を備え、
    前記吹出部は、
    作動気流となる気流を吹き出す少なくとも1つの主孔(14)と、
    前記主孔の出口下流において前記作動気流の速度境界層(BL)の厚み(δ)の中央部分(BLc)を前記主孔の中心線(CLm)から離すための離間構造(50)と、を含んで構成されており、
    前記吹出部は、前記主孔から吹き出す気流を通過させる主流路(18)を含んでおり、
    前記離間構造は、前記主流路を形成する内壁面に沿って形成される速度境界層の厚みを小さくする層縮小構造(51、52)を含んでおり、
    前記主流路には、前記層縮小構造として前記主流路を流れる気流を縮流させる構造物(51)が設けられており、
    前記主流路を形成する内壁面(181)には、前記主流路の流路断面積を気流の流れ方向の上流側から下流側に向かって縮小する縮流形状部(183)が含まれており、
    前記構造物は、前記主流路を流れる気流の流れ方向の上流側に位置する上流側端部(511)が、前記縮流形状部のうち前記主流路を流れる気流の流れ方向の上流側に位置する上流端(183a)よりも下流側に位置付けられるとともに、前記主流路を流れる気流の流れ方向の下流側に位置する下流側端部(512)が、前記縮流形状部のうち前記主流路を流れる気流の流れ方向の下流側に位置する下流端(183b)よりも上流側に位置付けられている、空気吹出装置。
  3. 空気吹出装置であって、
    気流を吹き出す吹出部(10)を備え、
    前記吹出部は、
    作動気流となる気流を吹き出す少なくとも1つの主孔(14)と、
    前記主孔の出口下流において前記作動気流の速度境界層(BL)の厚み(δ)の中央部分(BLc)を前記主孔の中心線(CLm)から離すための離間構造(50)と、を含んで構成されており、
    前記吹出部は、前記主孔から吹き出す気流を通過させる主流路(18)を含んでおり、
    前記離間構造は、前記主流路を形成する内壁面に沿って形成される速度境界層の厚みを小さくする層縮小構造(51、52)を含んでおり、
    前記主流路には、前記層縮小構造として前記主流路を流れる気流を縮流させる構造物(51)が設けられており、
    前記構造物は、前記主流路を流れる気流の流れ方向の上流側に位置する上流側端部(511)に、縦渦を発生させる凹凸状の縦渦発生機構(53)が設けられている、空気吹出装置。
  4. 空気吹出装置であって、
    気流を吹き出す吹出部(10)を備え、
    前記吹出部は、
    作動気流となる気流を吹き出す少なくとも1つの主孔(14)と、
    前記主孔の出口下流において前記作動気流の速度境界層(BL)の厚み(δ)の中央部分(BLc)を前記主孔の中心線(CLm)から離すための離間構造(50)と、を含んで構成されており、
    前記吹出部は、前記主孔から吹き出す気流を通過させる主流路(18)を含んでおり、
    前記離間構造は、前記主流路を形成する内壁面に沿って形成される速度境界層の厚みを小さくする層縮小構造(51、52)を含んでおり、
    前記主流路の少なくとも一部には、前記層縮小構造として前記主流路における気流の流れ方向に沿って凹部と凸部とが交互に並ぶ凹凸部(52)が設けられている、空気吹出装置。
  5. 前記主流路には、前記層縮小構造として前記主流路を流れる気流を縮流させる構造物(51)が設けられている請求項に記載の空気吹出装置。
  6. 前記主流路を形成する内壁面(181)には、前記主流路の流路断面積を気流の流れ方向の上流側から下流側に向かって縮小する縮流形状部(183)が含まれており、
    前記構造物は、前記主流路を流れる気流の流れ方向の上流側に位置する上流側端部(511)が、前記縮流形状部のうち前記主流路を流れる気流の流れ方向の上流側に位置する上流端(183a)よりも下流側に位置付けられている請求項に記載の空気吹出装置。
  7. 前記構造物は、前記主流路を流れる気流の流れ方向に沿った断面形状が流線型形状となっている請求項1、2、3、5、6のいずれか1つに記載の空気吹出装置。
  8. 前記構造物は、前記主流路を流れる気流の流れ方向の下流側に位置する下流側端部(512)が、前記主孔から外部に突き出ないように前記主流路の内側に配置されている請求項1、2、3、5、6、7のいずれか1つに記載の空気吹出装置。
  9. 前記主流路には、前記層縮小構造として前記主孔の開口面積よりも断面積が大きい拡大部(180)が設けられている請求項ないしのいずれか1つに記載の空気吹出装置。
  10. 前記主孔は、前記主孔の内壁面(141)が気流の流れ方向の下流側に向かって前記主孔の中心線から離れるように拡大されている請求項1ないしのいずれか1つに記載の空気吹出装置。
JP2018240806A 2018-04-11 2018-12-25 空気吹出装置 Active JP7255169B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/014658 WO2019198572A1 (ja) 2018-04-11 2019-04-02 空気吹出装置
DE112019001901.5T DE112019001901T5 (de) 2018-04-11 2019-04-02 Luftausstoßvorrichtung
CN201980024754.1A CN112020627A (zh) 2018-04-11 2019-04-02 空气吹出装置
US17/065,045 US12005761B2 (en) 2018-04-11 2020-10-07 Air discharge device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018076325 2018-04-11
JP2018076325 2018-04-11
JP2018199383 2018-10-23
JP2018199383 2018-10-23

Publications (2)

Publication Number Publication Date
JP2020067266A JP2020067266A (ja) 2020-04-30
JP7255169B2 true JP7255169B2 (ja) 2023-04-11

Family

ID=70390097

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018240806A Active JP7255169B2 (ja) 2018-04-11 2018-12-25 空気吹出装置
JP2018240805A Active JP6977706B2 (ja) 2018-04-11 2018-12-25 空気吹出装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018240805A Active JP6977706B2 (ja) 2018-04-11 2018-12-25 空気吹出装置

Country Status (4)

Country Link
US (2) US12005761B2 (ja)
JP (2) JP7255169B2 (ja)
CN (2) CN111989524B (ja)
DE (2) DE112019001873B4 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7124430B2 (ja) 2018-05-11 2022-08-24 株式会社デンソー 流体吹出装置
JP2020172189A (ja) * 2019-04-11 2020-10-22 豊田合成株式会社 空調用薄型レジスタ

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60256747A (ja) * 1984-06-01 1985-12-18 Nippon Denso Co Ltd 空調装置の吹き出し口
JP2568782Y2 (ja) * 1992-03-03 1998-04-15 和光化成工業株式会社 レジスタのエア吹出し口構造
JP3082827B2 (ja) 1995-01-27 2000-08-28 三菱重工業株式会社 風洞用縮流ノズル
JPH08210943A (ja) 1995-02-02 1996-08-20 Hitachi Zosen Corp 流体測定部の乱れ低減化方法および流路体
JPH08318176A (ja) * 1995-05-25 1996-12-03 Mitsubishi Electric Corp エアーノズル
JP3215315B2 (ja) 1996-01-30 2001-10-02 豊和化成株式会社 レジスタ
JPH10122638A (ja) 1996-10-18 1998-05-15 Suga Kogyo Kk 多連ノズル型吹出口
JP2000280736A (ja) 1999-03-30 2000-10-10 Denso Corp 吹出グリル
JP4363283B2 (ja) * 2004-09-13 2009-11-11 株式会社デンソー 空気通路開閉装置
JP5054459B2 (ja) * 2007-08-01 2012-10-24 シャープ株式会社 空気清浄装置
EP2343204A4 (en) * 2008-10-30 2013-02-20 Howa Plastics Co Ltd AIR PROPULSION DEVICE
US9550574B2 (en) 2011-11-03 2017-01-24 Gulfstream Aerospace Corporation Ventilation system and method of assembly
KR20150063366A (ko) 2012-07-24 2015-06-09 각꼬우호우진 후쿠오카다이가쿠 유체반송장치 및 유체반송방법
DE102013208944B3 (de) * 2013-05-15 2014-05-15 Eberspächer Climate Control Systems GmbH & Co. KG Luftausströmbaugruppe, insbesondere zum Leiten von Luft in einen Fahrzeuginnenraum
DE102013210053B3 (de) 2013-05-29 2014-09-11 Faurecia Innenraum Systeme Gmbh Luftausströmer
DE102013111175B3 (de) 2013-10-09 2014-09-04 Dr. Schneider Kunststoffwerke Gmbh Luftausströmer
CN203823891U (zh) * 2014-02-20 2014-09-10 大金工业株式会社 空调机室内机
JP6397201B2 (ja) 2014-03-31 2018-09-26 豊和化成株式会社 車両用の空気吹出装置
DE102014219902A1 (de) * 2014-07-03 2016-01-07 Volkswagen Aktiengesellschaft Blende für einen Fahrzeuginnenraum sowie Lüftungsanordnung für ein Kraftfahrzeug
US10099536B2 (en) * 2014-12-02 2018-10-16 GM Global Technology Operations LLC Air vent for a vehicle
JP2017116228A (ja) * 2015-12-25 2017-06-29 富士電機株式会社 エアカーテン装置
US10752082B1 (en) * 2016-05-26 2020-08-25 Apple Inc. Climate control system with slit-vent fluid delivery
CN106274379A (zh) 2016-08-31 2017-01-04 徐工集团工程机械有限公司 出风装置、空调和工程机械
JP3215056U (ja) * 2017-12-12 2018-02-22 豊和化成株式会社 レジスタ
JP7124430B2 (ja) * 2018-05-11 2022-08-24 株式会社デンソー 流体吹出装置

Also Published As

Publication number Publication date
US11718157B2 (en) 2023-08-08
JP2020067266A (ja) 2020-04-30
DE112019001873T5 (de) 2020-12-31
CN111989524B (zh) 2022-08-09
JP6977706B2 (ja) 2021-12-08
DE112019001901T5 (de) 2020-12-17
CN112020627A (zh) 2020-12-01
US20210031596A1 (en) 2021-02-04
JP2020067265A (ja) 2020-04-30
DE112019001873B4 (de) 2022-10-27
CN111989524A (zh) 2020-11-24
US12005761B2 (en) 2024-06-11
US20210016635A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
JP7255169B2 (ja) 空気吹出装置
US9821864B2 (en) Vehicle aerodynamic structure
JP7255170B2 (ja) 空気吹出装置
US10195923B2 (en) Vehicle air conditioning unit
JP2020521911A (ja) ファン及びファン用事前案内格子
JP6331798B2 (ja) 車両用スポイラ装置
WO2019198571A1 (ja) 空気吹出装置
KR20200122307A (ko) 횡단 덕트 출구 유동의 항력을 감소시키기 위한 장치
WO2019198573A1 (ja) 空気吹出装置
US10807656B2 (en) Air directing apparatus for a motor vehicle
WO2019198572A1 (ja) 空気吹出装置
JP2007331743A (ja) デフロスタ用送風ダクト
EP3450285B1 (en) Rectifying device for vehicle
CN103056044B (zh) 超声速自由旋涡纳米粒子分离装置
KR101752490B1 (ko) 회류 수조의 유동 안정성을 향상시키는 가이드 배인 시스템
JP6414342B2 (ja) 空気吹出装置
JP7457535B2 (ja) レジスタ
JP2019089385A (ja) 空気吹出装置
JP2018103762A (ja) 車両用アウタミラー
JP6781290B2 (ja) 空調用薄型レジスタ
JP2012162997A (ja) プロペラファン
NO20160088A1 (en) Priority light bar with vortex generators
JP2016155538A (ja) 車両用アウタミラー装置
JP2014218145A (ja) 車両用ドアミラー
JP2016155422A (ja) 車両用アウタミラー装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R151 Written notification of patent or utility model registration

Ref document number: 7255169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151