JP7178605B2 - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
JP7178605B2
JP7178605B2 JP2018042175A JP2018042175A JP7178605B2 JP 7178605 B2 JP7178605 B2 JP 7178605B2 JP 2018042175 A JP2018042175 A JP 2018042175A JP 2018042175 A JP2018042175 A JP 2018042175A JP 7178605 B2 JP7178605 B2 JP 7178605B2
Authority
JP
Japan
Prior art keywords
semiconductor region
type semiconductor
charge
conductivity
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018042175A
Other languages
English (en)
Other versions
JP2018160667A (ja
Inventor
学 薄田
三佳 森
繁孝 春日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JP2018160667A publication Critical patent/JP2018160667A/ja
Application granted granted Critical
Publication of JP7178605B2 publication Critical patent/JP7178605B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は固体撮像装置に関し、特に微弱な光を検出する固体撮像装置に関する。
近年、医療、バイオ、放射線計測などの分野で、1フォトンに至る微弱光を計測するために、アバランシェ・フォトダイオード(Avalanche Photodiode;以下、APDという)を搭載した固体撮像素子が利用されている。APDは光電変換で発生した信号電荷をアバランシェ降伏させて増倍し、検出感度を高めたフォトダイオードであるため、高電圧を印加して動作する必要がある。
よって、APDを搭載した固体撮像素子においては、信号読み出しのためのCMOS回路部とAPDが形成される光電変換部とを電気的に絶縁して、CMOS回路部での絶縁破壊等を防止する必要がある。光電変換部とCMOS回路部との距離を物理的に離して電気的に絶縁するために、光電変換部とCMOS回路部を別々の基板に形成した上で、光電変換部に接続するパッドとCMOS回路部に接続するパッドとを接合して、光電変換部とCMOS回路部とを一体化する構造が提案されている(例えば特許文献1参照)。
国際公開第2014/097519号
特許文献1に開示された従来の構成によれば、増倍ノイズと暗電流ノイズを抑制でき、微弱光の計測に有利である。
しかし、この構成(特許文献1の図1参照)では、APDの一部を構成するn型半導体領域と金属配線とが直接接続するため、基板表面で発生した暗電流がAPDの信号電荷に重畳してしまうという課題があることがわかった。また、n型半導体領域の飽和電荷容量以上に電子の増倍が起こると、あふれ出た不要電子を排出する機構が無く、隣接する画素との間で飽和混色が発生してしまうおそれがあることがわかった。
本開示はかかる点に鑑みてなされたもので、その主な目的は、暗電流ノイズを低減し、また飽和混色の発生を抑制できる、アバランシェ増倍部を有する固体撮像装置を提供することにある。
また、本開示の態様に係る固体撮像装置は、一以上の画素セルを有する固体撮像装置であって、前記画素セルは、入射光を光電変換して発生した電荷を増倍する光電変換部と、前記光電変換部で発生した前記電荷を蓄積する電荷蓄積部と、前記電荷蓄積部に蓄積された前記電荷を読み出す読み出し回路部と、前記読み出し回路部で読み出された前記電荷に応じて信号を出力する出力回路部と、前記電荷蓄積部からあふれ出た前記電荷を排出する電荷排出部を有し、前記電荷蓄積部と前記読み出し回路部と前記電荷排出部とが第1基板の第1主面側にそれぞれ設けられ、前記出力回路部が第2基板に設けられ、前記光電変換部は、第1の一導電型半導体領域と当該第1の一導電型半導体領域に接して設けられた第1の他導電型半導体領域とで構成されるアバランシェ増倍部と、前記アバランシェ増倍部を逆バイアス状態にするためのバイアス電圧が印加される第2の他導電型半導体領域と、を有し、前記第2の他導電型半導体領域が前記第1基板の第2主面に、前記アバランシェ増倍部が前記第1基板の内部にそれぞれ設けられ、一の前記画素セルにおいて、前記読み出し回路部と前記出力回路部とが電気的に接続され、前記電荷排出部は、前記第1の一導電型半導体領域に接して設けられた第7の一導電型半導体領域を有しており、前記第7の一導電型半導体領域は、前記第1の一導電型半導体領域よりも低濃度の一導電型不純物を含み、前記第7の一導電型半導体領域は、前記第1基板の前記第1主面に達しており、前記第2基板に設けられた接合パッドと前記第1基板の前記第1主面側に設けられた別の接合パッドとを介して、前記第2基板に設けられた電圧印加端子から電圧が印加されることで、前記電荷排出部は、所定の電位に固定されていることを特徴とする。
この構成によれば、第1基板に設けられた光電変換部及び電荷蓄積部が、同じ基板に設けられた読み出し回路部を介して、第2基板に設けられた出力回路部と電気的に接続するため、出力回路部と光電変換部及び電荷蓄積部とを直接接続することがなく、光電変換部及び電荷蓄積部への電気接点を減らすことができる。このことにより、信号電荷への暗電流の重畳を抑制できる。また、光電変換部と電荷蓄積部とが第1基板の異なる主面側に設けられ、電荷蓄積部と読み出し回路部とが第1基板の同じ主面側に設けられ、光電変換部のアバランシェ増倍部に逆バイアス電圧を印加するための第2の他導電型半導体領域が第1基板の異なる主面側に設けられる。このため、光電変換部及び電荷蓄積部への電気接点を減らすとともに、逆バイアス電圧を印加する金属配線を、アバランシェ増倍部に対して直接に接続することがなく、信号電荷への暗電流の重畳を抑制できる。さらに、光電変換部の飽和電荷容量以上に電子の増倍が起きて発生した不要電荷を電荷排出部に排出することで、光電変換部間での飽和混色を抑制することができる。
本開示の別の態様に係る固体撮像装置は、一以上の画素セルを有する固体撮像装置であって、前記画素セルは、入射光を光電変換して発生した電荷を増倍する光電変換部と、前記光電変換部で発生した前記電荷を蓄積する電荷蓄積部と、前記電荷蓄積部に蓄積された前記電荷を読み出す読み出し回路部と、前記読み出し回路部で読み出された前記電荷に応じて信号を出力する出力回路部と、隣り合う前記画素セルの境界部に設けられ、前記電荷蓄積部からあふれ出た前記電荷を蓄積する第2の電荷蓄積部と、を有し、前記電荷蓄積部と前記読み出し回路部と前記電荷排出部とが第1基板の第1主面側に設けられ、前記出力回路部が第2基板に設けられ、前記光電変換部は、第1の一導電型半導体領域と当該第1の一導電型半導体領域に接して設けられた第1の他導電型半導体領域とで構成されるアバランシェ増倍部と、前記アバランシェ増倍部を逆バイアス状態にするためのバイアス電圧が印加される第2の他導電型半導体領域と、を有し、前記第2の他導電型半導体領域が前記第1基板の第2主面に、前記アバランシェ増倍部が前記第1基板の内部にそれぞれ設けられ、前記第2の電荷蓄積部は、前記第2の電荷蓄積部と離間して、かつ前記第1基板の前記第1主面側に設けられた第5の一導電型半導体領域と、前記第2の電荷蓄積部から当該第5の一導電型半導体領域に前記電荷を転送する第3の転送ゲートと、前記第2の電荷蓄積部と離間して、かつ前記第1基板の前記第1主面側に設けられた第6の一導電型半導体領域と、前記第2の電荷蓄積部から当該第6の一導電型半導体領域に前記電荷を転送する第4の転送ゲートと、を有し、一の前記画素セルにおいて、前記読み出し回路部と前記出力回路部とが電気的に接続されていることを特徴とする。
この構成によれば、光電変換部及び電荷蓄積部への電気接点を減らすとともに、逆バイアス電圧を印加する金属配線を、アバランシェ増倍部に対して直接に接続することがなく、信号電荷への暗電流の重畳を抑制できる。また、光電変換部の飽和電荷容量以上に電子の増倍が起きて発生した不要電荷を電荷排出部に排出することで、光電変換部間での飽和混色を抑制することができる。さらに、固体撮像装置の非増倍または線形増倍動作時には、電荷蓄積部の飽和容量を超えてあふれ出た電荷を信号電荷として有効に活用することでダイナミックレンジを拡大できる。
本開示によれば、暗電流の影響が低減され、また、飽和混色が抑制された超高感度の固体撮像装置を実現できる。
第1の実施形態に係る固体撮像装置の画素部の断面図である。 第1の実施形態に係る固体撮像装置の単位画素セルの回路図である。 第2の実施形態に係る固体撮像装置の画素部の断面図である。 第2の実施形態に係る固体撮像装置の単位画素セルの回路図である。 第2の実施形態に係る固体撮像装置の単位画素セルの模式図である。 固体撮像装置の単位画素セルの別の回路図である。 第3の実施形態に係る固体撮像装置の単位画素セルの模式図である。 第4の実施形態に係る固体撮像装置の単位画素セルの模式図である。 第5の実施形態に係る固体撮像装置の単位画素セルの模式図である。
以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。また、以降の説明においてn型を一導電型と、p型を他導電型と呼ぶことがある。
(第1の実施形態)
[固体撮像装置の画素構造]
図1は、本実施形態に係る固体撮像装置の画素部の断面図を示し、図2は、本実施形態に係る固体撮像装置の単位画素セルの回路図を示す。固体撮像装置100は、単位画素セル210が行列状に配置された画素部200を有している。単位画素セル210は、入射光を光電変換して電荷を発生する光電変換部211と、光電変換部211で発生した電荷を蓄積する電荷蓄積部212と、電荷蓄積部212に蓄積された電荷を読み出す読み出し回路部213と、読み出し回路部213で読み出された電荷を出力する出力回路部214と、を有している。なお、以降の説明において光電変換部211をAPDと言うことがある。
光電変換部211と電荷蓄積部212と読み出し回路部213とは単結晶シリコン基板を含む第1基板1に設けられており、光電変換部211は第2主面S2側に、電荷蓄積部212と読み出し回路部213とは第1主面S1側にそれぞれ設けられている。また、出力回路部214は単結晶シリコン基板22を含む第2基板21に設けられている。
光電変換部211は、第1基板1の第2主面S2から順に、p型半導体領域(第2の他導電型半導体領域)2とp型半導体領域3とp型半導体領域(第1の他導電型半導体領域)4とn型半導体領域(第1の他導電型半導体領域)5とを有している。p型半導体領域2には光電変換部211が逆バイアスとなるように、具体的には、p型半導体領域4とn型半導体領域5が逆バイアスになるようにバイアス電圧VREVが印加されており、VREVの値に依存して第1基板1の内部で互いに接するp型半導体領域4とn型半導体領域5とでアバランシェ増倍部AMが形成されうる。
第2主面S2上の結晶欠陥で発生する暗電流を抑制するため、p型半導体領域2は不純物濃度を1×1018cm-3以上にし、電圧印加時にも空乏化していないことが望ましい。また、p型半導体領域2の厚さを薄くすることで短波長の光に対しての感度を向上させることが可能となる。可視光の中でもシリコン基板に対しての進入長が短い青色の波長の光を検出するためには、p型半導体領域2は第2主面S2から0.5μm以下の厚さで形成することが望ましい。赤外光の検出を目的とする場合は、p型半導体領域2は0.5μm以上で形成してもよい。
光電変換部211を厚く形成することで、第2主面S2から入射した光を光電変換できる確率が増加する。可視光の波長帯域に対しての感度を確保するため、p型半導体領域3は2μm以上の厚さであることが望ましいが、赤外光の感度向上のために5μm以上の厚みとしてもよい。また、p型半導体領域3の不純物濃度は第1基板1と同程度の1×1016cm-3以下の低い不純物濃度にすることが望ましい。これにより、光電変換部211において発生した電子が再結合する確率を下げ、n型半導体領域5まで電子が到達する確率を上げることができる。
型半導体領域2とp型半導体領域3とp型半導体領域4とは画素部200の全面に設けられているが、n型半導体領域5は単位画素セル210毎に設けられており、隣り合うn型半導体領域5の間には、これらのn型半導体領域5に接してn型半導体領域6が設けられている。n型半導体領域6は、隣接する単位画素セル210間での電荷の混入を防止するための画素分離領域として機能する。なお、n型半導体領域6をp型半導体領域としてもよいし、埋め込み絶縁領域としてもよい。
また、p型半導体領域4及びn型半導体領域5の不純物濃度はアバランシェ増倍を発生させるため、5×1016cm-3以上であることが望ましい。また、ツェナーブレークダウンを防止するために、1×1018cm-3以下であることが望ましい。
電荷蓄積部212は、第1基板1の内部で光電変換部211のn型半導体領域5と接するn型半導体領域(第2の一導電型半導体領域)7と、n型半導体領域7に接するp型半導体領域(第3の他導電型半導体領域)8とで構成されている。n型半導体領域7はn型半導体領域5との界面から第1主面S1に向けて延びるように設けられており、p型半導体領域8は第1主面S1から延びてn型半導体領域7に接している。光電変換部211で発生した電子は、電荷蓄積部212のn型半導体領域7に蓄積される。
読み出し回路部213は、電荷蓄積部212と離間して第1基板1の第1主面S1に設けられたn型半導体領域(第3の一導電型半導体領域)9と、ゲート絶縁膜10を介して、電荷蓄積部212とn型半導体領域9との間のp型半導体領域を覆うように設けられた第1の転送ゲートTX1と、を有している。また、読み出し回路部213は、n型半導体領域9を挟んでn型半導体領域7の反対側に設けられたn型半導体領域11と、n型半導体領域9とn型半導体領域11との間のp型半導体領域を覆うように設けられたリセットゲートRSTと、を有している。電荷蓄積部212とn型半導体領域9とゲート絶縁膜10と第1の転送ゲートTX1とで電荷転送トランジスタが構成されており、第1の転送ゲートTX1に所定の電圧を印加することにより、電荷蓄積部212のn型半導体領域7に蓄積された電子がn型半導体領域9に転送される。n型半導体領域9は、図2に示すフローティングディフュージョンFDに相当する。また、n型半導体領域9とn型半導体領域11とゲート絶縁膜10とリセットゲートRSTとでリセットトランジスタが構成されており、リセットゲートRSTに所定の電圧を印加することにより、n型半導体領域9に所定の正の電圧Vddが印加され、電位が固定される。
なお、ゲート絶縁膜10はシリコン酸化膜であっても、シリコン酸窒化膜であってもよく、これらの積層膜であってもよい。また、他の高誘電体材料からなる膜であってもよく、単層膜でも積層膜でもよい。第1の転送ゲートTX1及びリセットゲートRSTはシリコンからなっていても、シリコンと金属シリサイドとの積層構造であってもよい。また、他の導体からなっていてもよく、単層でも積層構造でもよい。
出力回路部214はシリコン基板22を含む第2基板21の第1主面側に設けられており、図2に示すように、単位画素セル210毎に出力回路部214を有している。
出力回路部214は、n型半導体領域23~25と、n型半導体領域23とn型半導体領域24との間のp型半導体領域を覆うように設けられた増幅ゲートSFと、n型半導体領域23とn型半導体領域25との間のp型半導体領域を覆うように設けられた選択ゲートSLと、を有している。n型半導体領域23とn型半導体領域24と増幅ゲートSFとゲート絶縁膜26とで増幅トランジスタが構成され、n型半導体領域23とn型半導体領域25と選択ゲートSLとゲート絶縁膜26とで選択トランジスタが構成されている。
選択トランジスタの出力端にあたるn型半導体領域25は、画素部200の列毎に設けられた出力線(図示せず)に接続されている。また、出力線には負荷ゲートVLを有する負荷トランジスタが設けられており、後述する信号電荷の出力時には、増幅トランジスタと負荷トランジスタとでソースフォロワアンプ(SFA)が構成される。
第1基板1の第1主面と第1の転送ゲートTX1及びリセットゲートRSTとを覆って絶縁層12が設けられており、絶縁層12の表面(第1主面S1と対向する面)に露出して接続パッド14が設けられている。読み出し回路部213のn型半導体領域9と接続パッド14とはコンタクトプラグ13によって電気的に接続されている。また、シリコン基板22の表面及び出力回路部214を覆って絶縁層27が設けられており、絶縁層27の表面に露出して接続パッド29が設けられている。出力回路部214の増幅ゲートSFと接続パッド29とはコンタクトプラグ28によって電気的に接続されている。第1基板1と第2基板21とは接続パッド14の表面と接続パッド29の表面とが対向するように配置されており、接続パッド14,29が単位画素セル210毎に接合されている。このようにすることで、第1基板1に設けられた光電変換部211、電荷蓄積部212及び読み出し回路部213と、第2基板21に設けられた出力回路部214とが電気的に接続されて単位画素セル210が機能する。
なお、絶縁層12,27はシリコン酸化層であっても、有機材料からなる絶縁層であってもよい。コンタクトプラグ13,28及び接続パッド14,29は導体であればよいが、電気抵抗を下げるために金属材料からなるのが好ましい。接続パッド14,29はCuまたはAlあるいはCuとAlとの積層膜からなるのが好ましいが、他の金属材料であってもよい。また、絶縁層12,27との界面に密着層やバリア層が設けられていてもよい。コンタクトプラグ13,28はCuまたはAlあるいはWからなるのが好ましいが、他の金属材料であってもよい。また、コンタクトプラグ13,28において、絶縁層12,27との界面やn型半導体領域9との界面や増幅ゲートSFとの界面にそれぞれ密着層やバリア層が設けられていてもよい。また、接続パッド14と接続パッド29との接合は直接接合であってもよいし、別の導電材料を介した接合であってもよい。なお、図1には、n型半導体領域9と接続パッド14とがコンタクトプラグ13によって直接接続されている構成を示したが、絶縁層12中に設けられた別の配線(図示せず)を経由していてもよい。増幅ゲートSFと接続パッド29との接続関係においても同様に、絶縁層27中に設けられた別の配線(図示せず)を経由していてもよい。
電圧Vddは、外部から第2基板21に設けられた端子(図示せず)に印加されている。第1基板1に設けられたn型半導体領域11には、第2基板21に設けられた接合パッド29及び第1基板1に設けられた接合パッド14を介して、電圧Vddが印加されている(図2参照)。第2基板21に設けられたn型半導体領域24には、上記の端子から第2基板21に設けられた配線(図1には図示せず。図2参照)介して、電圧Vddが印加されている。
[固体撮像装置の電荷読み出し動作]
次に、第1基板1の第2主面S2に光が入射したときの固体撮像装置100での電荷読み出しについて説明する。
第2主面S2から入射した光は、光電変換部211のp型半導体領域3に吸収されて光電変換され、信号電荷である電子正孔対が発生する。発生した信号電荷のうち電子は電位勾配に沿って第1主面S1側にドリフトし、p型半導体領域4とn型半導体領域5とで構成されるpn接合(アバランシェ増倍部AM)に到達する。一方、発生した電荷のうちの正孔は、増倍されることなくp型半導体領域2を介して排出される。
ここで、バイアス電圧VREVをアバランシェ増倍部AMのブレークダウン電圧以上に設定すると、アバランシェ増倍部AMに流入した電子が衝突イオン化を起してアバランシェ増倍される。これにより、電子が電荷蓄積部212に到達する前に多数の信号電子を発生させることができ、通常はノイズに埋もれて検出できないような微弱な光でも検出が可能となる。各半導体領域の厚みや不純物濃度にもよるが、アバランシェ増倍部AMを形成する場合は、通常、バイアス電圧VREVは10~100V程度に設定される。
増倍された電子はn型半導体領域5から電荷蓄積部212のn型半導体領域7に流れ込み、ここで蓄積される。電荷読み出しのタイミングで第1の転送ゲートTX1に所定の電圧、この場合は電荷転送トランジスタのしきい値電圧を超える電圧が印加されると、第1の転送ゲートTX1の直下に形成されるチャネル(図示せず)を介して、n型半導体領域7からn型半導体領域9に電子が転送される。転送された電子によって、n型半導体領域9の電位が変化し、この電位変化は、コンタクトプラグ13、接続パッド14、接続パッド29、コンタクトプラグ28を経由して、出力回路部214の増幅ゲートSFに伝達される。増幅ゲートSFの電位変化に伴い増幅トランジスタがオンする。画素選択のタイミングで、選択トランジスタがオンし、出力線の電位が変動する。負荷トランジスタがオン状態のときに増幅トランジスタと負荷トランジスタとで構成されるソースフォロワアンプにより増幅された信号が固体撮像装置100の信号出力部(図示せず)に入力される。なお、負荷トランジスタは常時オン状態にしてもよいし、電荷を読み出す所定の期間のみオン状態にしてもよい。また、露光開始前にはリセットゲートRSTに所定の電圧を印加し、n型半導体領域9(FD)の電位をVddに設定しておく。
出力回路部214を上記の構成とすることで、光電変換部211で発生した電荷を増幅して出力することができる。
[効果等]
本実施形態に係る固体撮像装置100は、一以上の単位画素セル210を有している。単位画素セル210は、入射光を光電変換して発生した電荷を増倍する光電変換部211と、光電変換部211で発生した電荷を蓄積する電荷蓄積部212と、電荷蓄積部212に蓄積された電荷を読み出す読み出し回路部213と、読み出し回路部213で読み出された電荷に応じて信号を出力する出力回路部214と、を有している。電荷蓄積部212と読み出し回路部213とが第1基板1の第1主面S1側にそれぞれ設けられ、出力回路部214が第2基板21に設けられている。また、光電変換部212は、第1基板1の内部に、n型半導体領域(第1の他導電型半導体領域)5と、これに接して設けられたp型半導体領域(第1の他導電型半導体領域)4とを有し、これらの半導体領域4,5でアバランシェ増倍部AMが構成されている。また、光電変換部212は、第1基板1の第2主面S2に設けられたp型半導体領域(第2の他導電型半導体領域)2を有し、アバランシェ増倍部AMに逆バイアス状態にするためのバイアス電圧VREVがp型半導体領域2に印加される。また、単位画素セル210において、読み出し回路部213と出力回路部214とが電気的に接続されている。
本実施形態によれば、第1基板1に光電変換部211と電荷蓄積部212と読み出し回路部213を設け、第2基板2に出力回路部214を設けて、接続パッド14,29を介して読み出し回路部213と出力回路部214とを電気的に接続することで単位画素セル210の面積を小さくできるとともに、出力回路部214のレイアウトの自由度が増す。例えば、出力回路部214を含め第2基板21に設けられた回路がCMOS化しやすくなる。また、出力回路部214と光電変換部211や電荷蓄積部212を直接接続することがなく、光電変換部211及び電荷蓄積部212への電気接点を減らすことができる。このことにより、第1基板1の第1主面S1で発生する暗電流が電荷蓄積部212や光電変換部211に流れ込むことを防止し、信号電荷に対する暗電流の重畳を抑制できる。さらに、アバランシェ増倍部AMを逆バイアス状態にするためのバイアス電圧VREVが印加されるp型半導体領域2を第1基板1の第2主面S2に設けるため、逆バイアス電圧を印加するための金属配線を、アバランシェ増倍部AMに対して直接に接続することがなく、信号電荷への暗電流の重畳を抑制できる。
さらに、露光時には、第1の転送ゲートTX1に印加する電圧を電荷転送トランジスタのしきい値以下にすることで、電荷蓄積部212のn型半導体領域7と読み出し回路部213及び出力回路部214とを電気的に分離でき、電荷蓄積部212への暗電流の流れ込みをさらに抑制できる。また、読み出し回路部213と出力回路部214とを金属配線等の導体で接続するため、両者の間での信号伝達ロスを少なくできる。
また、電荷蓄積部212において、第1基板1の第1主面から内部に延びるp型半導体領域(第3の他導電型半導体領域)8を設けることで、第1基板1の第1主面S1の表面の空乏化を抑えることができ、電荷蓄積部212における第1主面S1での結晶欠陥によって発生する暗電流を大幅に低減できる。なお、p型半導体領域8は所定の電位、例えばグラウンド電位に固定されているのがよい。p型半導体領域8中の正孔濃度を一定にでき、暗電流を抑制する効果が安定する。また、n型半導体領域(第3の一導電型半導体領域)9に流入した電子は長時間、n型半導体領域9に蓄積されることがないため、n型半導体領域9の表面(第1主面S1側)には特にp型半導体領域を設けなくてもよいが、p型半導体領域をn型半導体領域9の表面に設けてもよい。
また、光電変換部212はアバランシェ増倍部AMを有しており、アバランシェ増倍部AMに印加されるバイアス電圧VREVを適切に設定することで、1フォトンに至る微弱光を確実に検出できる。
(第2の実施形態)
図3は、本実施形態に係る固体撮像装置の画素部の断面図を示し、図4は、本実施形態に係る固体撮像装置の単位画素セルの回路図を示す。図5は、図3および図4に示した単位画素セルを説明するための模式図である。
本実施形態に示す構成と、第1の実施形態に示す構成とでは、以下の点が異なる。
読み出し回路部213において、電荷蓄積部212と離間して、かつ電荷蓄積部212を挟んでn型半導体領域9と反対側にn型半導体領域(第4の一導電型半導体領域)15が設けられている。また、ゲート絶縁膜10を介して、電荷蓄積部212とn型半導体領域15との間のp型半導体領域を覆うように第2の転送ゲートTX2が設けられている。n型半導体領域15とゲート絶縁膜10と第2の転送ゲートTX2と電荷蓄積部212とで不要電荷転送トランジスタが構成される。
以下に、本実施形態に係る固体撮像装置100での電荷排出動作について説明する。なお、上記の相違点以外は、実施形態1と共通するため、共通部分の構造や機能、動作の説明は省略する。
光電変換部211で発生しアバランシェ増倍された電子の総量が電荷蓄積部212の飽和容量を超えると、画素分離領域として設けているn型半導体領域6によるポテンシャル障壁を乗り越えて増倍された電子があふれ出し、画素間での混色(飽和混色ともいう)が起きるおそれがある。このような場合には、飽和容量を超える電子を排出してやることで画素間での混色を防止することができる。
図3に示す構成において、第2の転送ゲートTX2に所定の電圧を印加して不要電荷転送トランジスタをオンにすることで、電荷蓄積部212に蓄積された電子は、n型半導体領域15に転送される。ここで、第1基板1に設けられたn型半導体領域15には、第2基板21に設けられた接合パッド29及び第1基板1に設けられた接合パッド14を介して、電圧Vddが印加され正の電位Vddに固定されているため(図4、図5参照)、n型半導体領域15に転送された電子は、そのまま第2基板21に設けられた電圧印加端子(図4または図5のVdd)に吸収される。つまり、n型半導体領域15は不要電荷の排出部として機能している。
本実施形態によれば、読み出し回路部213に電荷排出用の第2の転送ゲートTX2及びn型半導体領域15を設け、さらに、電荷排出部であるn型半導体領域15を正の電位に固定することで、電荷蓄積部212の飽和総量を超えて発生する電荷を排出でき、画素間での混色を防止できる。
なお、第1及び第2の実施形態において、固体撮像装置100の画素部200が複数の単位画素セル210,210・・・を有する構成を示したが、画素セルは一つでもよい。また、単位画素セル210毎にマイクロレンズ等の光学素子を設けてもよい。
また、図6に示すように、単位画素セル210において、光電変換部211(APD)を複数有し、各々のAPD11~APD14に対応する読み出しゲートTX11~TX14及びフローティングディフュージョンFDが設けられ、これらのFDが一つのリセットゲートRST及び増幅ゲートSFに電気的に接続される構成であってもよい。このようにすることで、単位画素セル210における素子数を減少できる。また、図6に示す構成において、図4に示すように電荷排出用のゲート及び電荷排出部(図示せず)をAPD11~APD14に対してそれぞれ設けてもよい。
(第3の実施形態)
図7は、本実施形態に係る固体撮像装置の画素部の断面図を、第2の実施形態における図5と同様の模式図で示したものである。
本実施形態に示す構成と、第2の実施形態に示す構成とでは、以下の点が異なる。
読み出し回路部213において、第2の実施形態における図5のn型半導体領域6とn型半導体領域15と第2の転送ゲートTX2を省略し、隣り合う単位画素セル210の境界部に、これらのn型半導体領域5に接して、n型半導体領域40および41を設けている。n型半導体領域40および41はn型半導体領域5よりも低濃度のn型不純物を含む。n型半導体領域40および41は、隣り合う単位画素セル210の境界部の一部に設けられていてもよいし、当該境界部を囲むように設けられていてもよい。
以下に、本実施形態に係る固体撮像装置100での電荷排出動作について説明する。なお、上記の相違点以外は、第1および第2の実施形態と共通するため、共通部分の構造や機能、動作の説明は省略する。
光電変換部211で発生しアバランシェ増倍された総量が電荷蓄積部212の飽和容量を超えてあふれ出た電荷は、隣り合う単位画素セル210の境界部に設けられたn型半導体領域40および41へあふれ出す。このn型半導体領域40および41には、第2基板21に設けられた接合パッド29及び第1基板1に設けられた接合パッド14を介して、電圧Vddが印加され正の電位Vddに固定されているため、n型半導体領域40および41にあふれ出た電荷は、そのまま第2基板21に設けられた電圧印加端子(図7のVdd)に吸収される。つまり、n型半導体領域40および41は不要電荷の排出部として機能している。このようにして、飽和容量を超える電子を排出してやることで画素間での混色を防止することができる。
(第4の実施形態)
図8は、本実施形態に係る固体撮像装置の画素部の断面図を、第3の実施形態における図7と同様の形態で示した図である。
本実施形態に示す構成と、第3の実施形態に示す構成とでは、以下の点が異なる。
単位画素セル210の境界部に配置したn型半導体領域40の表面、つまり、第1基板1の第1主面S1に、第1主面S1から内部に延びるp型半導体領域42を設けることで、n型半導体領域40を第2の電荷蓄積部として機能させている。また、n型半導体領域40と離間してn型半導体領域(第5の一導電型半導体領域)43が設けられ、ゲート絶縁膜10を介して、n型半導体領域40とn型半導体領域43との間のp型半導体領域を覆うように第3の転送ゲートTX3が設けられている。これにより、n型半導体領域40とn型半導体領域43とゲート絶縁膜10と第3の転送ゲートTX3とで電荷転送トランジスタが構成される。一方、n型半導体領域40と離間して、n型半導体領域43とは別のn型半導体領域(第6の一導電型半導体領域)44が設けられ、ゲート絶縁膜10を介して、n型半導体領域40とn型半導体領域44との間のp型半導体領域を覆うように第4の転送ゲートTX4が設けられている。これにより、n型半導体領域40とn型半導体領域44とゲート絶縁膜10と第4の転送ゲートTX4とで電荷転送トランジスタが構成される。
以下に、本実施形態に係る固体撮像装置100での電荷排出動作について説明する。なお、上記の相違点以外は、第3の実施形態と共通するため、共通部分の構造や機能、動作の説明は省略する。
まず、固体撮像装置100をガイガー増倍動作させて用いる場合について説明する。ここで、「ガイガー増倍動作」とは、光電変換されて発生した信号電荷である電子正孔対が、アバランシェ増倍部AMに流入して増倍されるときの増倍率が無限値の状態で固体撮像装置100が動作することをいう。
この動作時には、第3の転送ゲートTX3を有する電荷転送トランジスタをオフ状態にし、第4の転送ゲートTX4を有する電荷転送トランジスタをオン状態にする。この場合、光電変換部211で発生しアバランシェ増倍された電荷の総量が電荷蓄積部212の飽和容量を超えてあふれ出た電荷は、画素境界部に設けたn型半導体領域40および41へあふれ出し、第4の転送ゲートTX4を有するオン状態の電荷転送トランジスタを介してn型半導体領域44へと転送され、そのまま第2基板21に設けられた電圧印加端子(図8のVdd)に吸収される。つまり、n型半導体領域40および41は不要電荷の排出部として機能している。このようにして、飽和容量を超える電荷を排出してやることで画素間での混色を防止することができる。
次に、固体撮像装置100を非増倍または線形増倍動作させて用いる場合について説明する。ここで、「線形増倍動作」とは、光電変換されて発生した信号電荷である電子正孔対が、アバランシェ増倍部AMに流入して増倍される際の増倍率が有限値の状態で固体撮像装置100が動作することをいう。バイアス電圧VREVを調整することで、通常、この増倍率は数倍から数十倍程度に設定される。また、「非増倍動作」とは、通常の光電変換動作であり、光子1個に対して電子正孔対が一対発生して、固体撮像装置100が動作することをいう。
これらの動作において、電荷蓄積時は第3の転送ゲートTX3を有する電荷転送トランジスタと第4の転送ゲートTX4を有する電荷転送トランジスタをともにオフ状態する。強い光が入射して光電変換部211で大量に発生した電子の総量が電荷蓄積部212の飽和容量を超えてあふれ出た場合、あふれ出た電子をn型半導体領域40に蓄積し、電荷読み出し時に第1の転送ゲートTX1および第1の転送ゲートTX3に電荷転送トランジスタのしきい値を超える電圧を印加して、n型半導体領域40に蓄積された電荷を読み出し回路部213に転送する。n型半導体領域40から読み出し回路部213に転送された電荷は、信号電荷として画像形成に利用される。このように、電荷蓄積部212の飽和容量を超えてあふれ出た電荷を信号電荷として有効に活用することで、非増倍または線形増倍動作時のダイナミックレンジを拡大することができる。
(第5の実施形態)
図9は、本実施形態に係る固体撮像装置の画素部の断面図を、第4の実施形態における図8と同様の形態で示した図である。
本実施形態に示す構成と、第4の実施形態に示す構成とでは、ゲート絶縁膜10を介して、電荷蓄積部212とn型半導体領域44との間のp型半導体領域を覆うように第5の転送ゲートTX5が設けられている点が異なる。この場合、電荷蓄積部212のn型半導体領域7とn型半導体領域44とゲート絶縁膜10と第5の転送ゲートTX5とで不要電荷転送トランジスタが構成される。なお、上記の相違点以外は、第4の実施形態と共通するため、共通部分の構造や機能、動作の説明は省略する。
本実施形態によれば、電荷排出用の第5の転送ゲートTX5及びn型半導体領域44を介して、読み出し回路部213に電荷蓄積部212の飽和総量を超えて発生する電荷を排出でき、あふれ出す電荷の排出能率を強化することが可能で、更なる混色の抑制が実現できる。 なお、本明細書で説明した各実施形態において、信号電荷が電子である構成を示したが、信号電荷が正孔であってもよい。その場合は、p型を一導電型と、n型を他導電型と呼ぶことがある。
本開示に係る固体撮像装置は、微弱な光を検出し、かつ暗電流の影響を抑制できるため、医療、バイオ、放射線計測等の分野に用いられる高感度な固体撮像装置として有用である。
1 第1基板
2 p型半導体領域(第2の他導電型半導体領域)
3 p型半導体領域
4 p型半導体領域(第1の他導電型半導体領域)
5 n型半導体領域(第1の一導電型半導体領域)
6 n型半導体領域(画素分離領域)
7 n型半導体領域(第2の一導電型半導体領域)
8 p型半導体領域(第3の他導電型半導体領域)
9 n型半導体領域(第3の一導電型半導体領域)
10,26 ゲート絶縁膜
11 n型半導体領域
12,27 絶縁層
13,28 コンタクトプラグ
14,29 接続パッド
15 n型半導体領域(第4の一導電型半導体領域)
18 配線
21 第2基板
22 n型シリコン基板
23~25 n型半導体領域
40,41 n型半導体領域(電荷排出部、第7の一導電型半導体領域
42 p型半導体領域
43 n型半導体領域(第5の一導電型半導体領域)
44 n型半導体領域(第6の一導電型半導体領域)
100 固体撮像装置
200 画素部
210 単位画素セル
211 光電変換部
212 電荷蓄積部
213 読み出し回路部
214 出力回路部
AM アバランシェ増倍部
RST リセットゲート
S1 第1基板の第1主面
S2 第1基板の第2主面(光入射面)
SF 増幅ゲート
SL 選択ゲート
TX1~TX5 第1~第5の転送ゲート
VL 負荷ゲート

Claims (6)

  1. 一以上の画素セルを有する固体撮像装置であって、
    前記画素セルは、
    入射光を光電変換して発生した電荷を増倍する光電変換部と、
    前記光電変換部で発生した前記電荷を蓄積する電荷蓄積部と、
    前記電荷蓄積部に蓄積された前記電荷を読み出す読み出し回路部と、
    前記読み出し回路部で読み出された前記電荷に応じて信号を出力する出力回路部と、
    前記電荷蓄積部からあふれ出た前記電荷を排出する電荷排出部を有し、
    前記電荷蓄積部と前記読み出し回路部と前記電荷排出部とが第1基板の第1主面側にそれぞれ設けられ、
    前記出力回路部が第2基板に設けられ、
    前記光電変換部は、
    第1の一導電型半導体領域と当該第1の一導電型半導体領域に接して設けられた第1の他導電型半導体領域とで構成されるアバランシェ増倍部と、前記アバランシェ増倍部を逆バイアス状態にするためのバイアス電圧が印加される第2の他導電型半導体領域と、を有し、
    前記第2の他導電型半導体領域が前記第1基板の第2主面に、前記アバランシェ増倍部が前記第1基板の内部にそれぞれ設けられ、
    一の前記画素セルにおいて、前記読み出し回路部と前記出力回路部とが電気的に接続され、
    前記電荷排出部は、前記第1の一導電型半導体領域に接して設けられた第7の一導電型半導体領域を有しており、
    前記第7の一導電型半導体領域は、前記第1の一導電型半導体領域よりも低濃度の一導電型不純物を含み、
    前記第7の一導電型半導体領域は、前記第1基板の前記第1主面に達しており、
    前記第2基板に設けられた接合パッドと前記第1基板の前記第1主面側に設けられた別の接合パッドとを介して、前記第2基板に設けられた電圧印加端子から電圧が印加されることで、前記電荷排出部は、所定の電位に固定されていることを特徴とする固体撮像装置。
  2. 前記電荷排出部は隣り合う前記画素セルの境界部に配置されていることを特徴とする請求項に記載の固体撮像装置。
  3. 前記電荷排出部は隣り合う前記画素セルの境界部に、前記画素セルを囲むように配置されていることを特徴とする請求項に記載の固体撮像装置。
  4. 一以上の画素セルを有する固体撮像装置であって、
    前記画素セルは、
    入射光を光電変換して発生した電荷を増倍する光電変換部と、
    前記光電変換部で発生した前記電荷を蓄積する電荷蓄積部と、
    前記電荷蓄積部に蓄積された前記電荷を読み出す読み出し回路部と、
    前記読み出し回路部で読み出された前記電荷に応じて信号を出力する出力回路部と、
    隣り合う前記画素セルの境界部に設けられ、前記電荷蓄積部からあふれ出た前記電荷を蓄積する第2の電荷蓄積部と、を有し、
    前記電荷蓄積部と前記読み出し回路部と前記第2の電荷蓄積部とが第1基板の第1主面側に設けられ、
    前記出力回路部が第2基板に設けられ、
    前記光電変換部は、
    第1の一導電型半導体領域と当該第1の一導電型半導体領域に接して設けられた第1の他導電型半導体領域とで構成されるアバランシェ増倍部と、前記アバランシェ増倍部を逆バイアス状態にするためのバイアス電圧が印加される第2の他導電型半導体領域と、を有し、
    前記第2の他導電型半導体領域が前記第1基板の第2主面に、前記アバランシェ増倍部が前記第1基板の内部にそれぞれ設けられ、
    前記第2の電荷蓄積部は、前記第2の電荷蓄積部と離間して、かつ前記第1基板の前記第1主面側に設けられた第5の一導電型半導体領域と、前記第2の電荷蓄積部から当該第5の一導電型半導体領域に前記電荷を転送する第3の転送ゲートと、前記第2の電荷蓄積部と離間して、かつ前記第1基板の前記第1主面側に設けられた第6の一導電型半導体領域と、前記第2の電荷蓄積部から当該第6の一導電型半導体領域に前記電荷を転送する第4の転送ゲートと、を有し、
    一の前記画素セルにおいて、前記読み出し回路部と前記出力回路部とが電気的に接続されていることを特徴とする固体撮像装置。
  5. 前記電荷蓄積部は前記第1基板の前記第1主面から前記第1基板の内部に延びて設けられた第3の他導電型半導体領域と、当該第3の他導電型半導体領域と前記光電変換部との間に設けられた第2の一導電型半導体領域とで構成され、
    当該第2の一導電型半導体領域は前記光電変換部と前記第3の他導電型半導体領域の両方に接していることを特徴とする請求項1ないしのいずれか1項に記載の固体撮像装置。
  6. 前記読み出し回路部は、前記電荷蓄積部と離間して、かつ前記第1基板の前記第1主面側に設けられた第3の一導電型半導体領域と、前記電荷蓄積部から当該第3の一導電型半導体領域に前記電荷を転送する第1の転送ゲートとを有し、
    前記第3の一導電型半導体領域と前記出力回路部とが導体を介して電気的に接続されていることを特徴とする請求項1ないしのいずれか1項に記載の固体撮像装置。
JP2018042175A 2017-03-22 2018-03-08 固体撮像装置 Active JP7178605B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017056353 2017-03-22
JP2017056353 2017-03-22

Publications (2)

Publication Number Publication Date
JP2018160667A JP2018160667A (ja) 2018-10-11
JP7178605B2 true JP7178605B2 (ja) 2022-11-28

Family

ID=63796841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018042175A Active JP7178605B2 (ja) 2017-03-22 2018-03-08 固体撮像装置

Country Status (1)

Country Link
JP (1) JP7178605B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7329318B2 (ja) * 2018-10-25 2023-08-18 ソニーグループ株式会社 固体撮像装置及び撮像装置
JP7395300B2 (ja) 2019-03-22 2023-12-11 キヤノン株式会社 光電変換装置、光電変換システム、および移動体
WO2021044770A1 (ja) * 2019-09-06 2021-03-11 パナソニックIpマネジメント株式会社 撮像装置
WO2021084819A1 (ja) * 2019-10-29 2021-05-06 ソニーセミコンダクタソリューションズ株式会社 撮像素子および撮像装置
WO2021157386A1 (ja) * 2020-02-03 2021-08-12 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子および撮像装置
JP2021158320A (ja) * 2020-03-30 2021-10-07 キヤノン株式会社 半導体装置及びその製造方法、機器
JP7558822B2 (ja) * 2020-10-29 2024-10-01 キヤノン株式会社 光電変換装置、光電変換システム、および移動体
WO2023002662A1 (ja) * 2021-07-19 2023-01-26 ソニーセミコンダクタソリューションズ株式会社 光検出装置及び電子機器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041866A (ja) 2004-07-27 2006-02-09 Sony Corp 固体撮像装置
JP2010161321A (ja) 2009-01-09 2010-07-22 Panasonic Corp 光学デバイスおよびその製造方法
WO2011077580A1 (ja) 2009-12-26 2011-06-30 キヤノン株式会社 固体撮像装置および撮像システム
JP2012015400A (ja) 2010-07-02 2012-01-19 Canon Inc 固体撮像装置
JP2012204524A (ja) 2011-03-24 2012-10-22 Panasonic Corp 固体撮像装置
WO2016013170A1 (ja) 2014-07-25 2016-01-28 パナソニックIpマネジメント株式会社 フォトダイオード、フォトダイオードアレイ、及び固体撮像素子
JP2016510191A (ja) 2013-02-28 2016-04-04 イー・2・ブイ・セミコンダクターズ ブルーミング防止ゲートを有する画像センサ
JP2017054911A (ja) 2015-09-09 2017-03-16 リコーイメージング株式会社 撮像素子および撮像装置
WO2017043068A1 (ja) 2015-09-09 2017-03-16 パナソニックIpマネジメント株式会社 固体撮像素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041866A (ja) 2004-07-27 2006-02-09 Sony Corp 固体撮像装置
JP2010161321A (ja) 2009-01-09 2010-07-22 Panasonic Corp 光学デバイスおよびその製造方法
WO2011077580A1 (ja) 2009-12-26 2011-06-30 キヤノン株式会社 固体撮像装置および撮像システム
JP2012015400A (ja) 2010-07-02 2012-01-19 Canon Inc 固体撮像装置
JP2012204524A (ja) 2011-03-24 2012-10-22 Panasonic Corp 固体撮像装置
JP2016510191A (ja) 2013-02-28 2016-04-04 イー・2・ブイ・セミコンダクターズ ブルーミング防止ゲートを有する画像センサ
WO2016013170A1 (ja) 2014-07-25 2016-01-28 パナソニックIpマネジメント株式会社 フォトダイオード、フォトダイオードアレイ、及び固体撮像素子
JP2017054911A (ja) 2015-09-09 2017-03-16 リコーイメージング株式会社 撮像素子および撮像装置
WO2017043068A1 (ja) 2015-09-09 2017-03-16 パナソニックIpマネジメント株式会社 固体撮像素子

Also Published As

Publication number Publication date
JP2018160667A (ja) 2018-10-11

Similar Documents

Publication Publication Date Title
JP7178605B2 (ja) 固体撮像装置
US10559621B2 (en) Imaging device
US9743026B2 (en) Semiconductor photodetector
JP5328224B2 (ja) 固体撮像装置
JP6045136B2 (ja) 光電変換装置
WO2020202880A1 (ja) アバランシェフォトダイオードセンサおよびセンサ装置
EP1850387B1 (en) Solid-state image pickup device
US9425225B2 (en) Solid-state imaging device
WO2014002362A1 (ja) 固体撮像装置及びその製造方法
JP2009181986A (ja) 固体撮像素子および固体撮像装置
KR101465860B1 (ko) 고체 촬상 장치
JP2015162604A (ja) Cmosイメージセンサ
JP4474962B2 (ja) 裏面照射型固体撮像素子、電子機器モジュール及びカメラモジュール
TWI648847B (zh) 放射線影像感測器
KR100790585B1 (ko) Cmos 이미지 센서 픽셀 및 그 신호 감지 방법
WO2009119573A1 (ja) 固体撮像装置
JP2010141045A (ja) 固体撮像装置
KR100790587B1 (ko) 커플링 캐패시터를 사용하는 핀드 포토다이오드를 포함하는이미지 센서 픽셀 및 그의 신호 감지 방법
US20230420475A1 (en) Photoelectric conversion device
JP4957775B2 (ja) 裏面照射型固体撮像素子、電子機器モジュール及びカメラモジュール
JP5007739B2 (ja) 裏面照射型固体撮像素子、電子機器モジュール及びカメラモジュール
WO2019180898A1 (ja) 固体撮像素子
JP4957776B2 (ja) 裏面照射型固体撮像素子、電子機器モジュール及びカメラモジュール
KR20060077119A (ko) 변환 이득의 비선형성을 개선할 수 있는 씨모스 이미지센서
KR20060020365A (ko) 캐패시턴스 측정이 가능한 이미지센서 및 그의 캐패시턴스측정 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221101

R151 Written notification of patent or utility model registration

Ref document number: 7178605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151