JP7153168B2 - 電動機の制御装置 - Google Patents

電動機の制御装置 Download PDF

Info

Publication number
JP7153168B2
JP7153168B2 JP2019039225A JP2019039225A JP7153168B2 JP 7153168 B2 JP7153168 B2 JP 7153168B2 JP 2019039225 A JP2019039225 A JP 2019039225A JP 2019039225 A JP2019039225 A JP 2019039225A JP 7153168 B2 JP7153168 B2 JP 7153168B2
Authority
JP
Japan
Prior art keywords
switching
pattern
modulation
rectangular wave
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019039225A
Other languages
English (en)
Other versions
JP2020145795A (ja
Inventor
佳大 社本
博之 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019039225A priority Critical patent/JP7153168B2/ja
Priority to RU2020106113A priority patent/RU2730301C1/ru
Priority to BR102020002773-5A priority patent/BR102020002773A2/pt
Priority to KR1020200017799A priority patent/KR102565516B1/ko
Priority to EP20157290.6A priority patent/EP3706310A1/en
Priority to CN202010099115.6A priority patent/CN111669102B/zh
Priority to US16/794,684 priority patent/US11108351B2/en
Publication of JP2020145795A publication Critical patent/JP2020145795A/ja
Priority to US17/390,384 priority patent/US11757395B2/en
Priority to KR1020220096648A priority patent/KR20220116104A/ko
Application granted granted Critical
Publication of JP7153168B2 publication Critical patent/JP7153168B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4807Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P23/0027Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using different modes of control depending on a parameter, e.g. the speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0021Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using different modes of control depending on a parameter, e.g. the speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/09Boost converter, i.e. DC-DC step up converter increasing the voltage between the supply and the inverter driving the motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、電動機の制御装置に関する。
従来、この種の電動機の制御装置としては、モータの動作点が昇圧回路で共振が生じる共振領域に該当する場合には、1周期で3個のパルスによる新パルスパターンによる矩形波制御方式でインバータのスイッチング素子をスイッチング制御するものが提案されている(例えば、特許文献1参照)。この新パルスパターンは、スイッチング制御によりモータの駆動電力における電気6次周波数を高周波化することにより、電気6次周波数での昇圧回路におけるLC共振の発生を抑制している。
特開2017-131094号公報
しかしながら、上述の電動機の制御装置では、パルス幅変調制御モード(PWM制御モード)から矩形波制御モードに切り替えるときに変調度が高い領域(例えば変調度が0.70以上の領域)で共振が生じる場合がある。変調度が高い領域でPWM制御モードによりインバータのスイッチング素子をスイッチング制御すると、モータの駆動電力における電気6次成分が増加し、この成分の周波数がLC共振周波数近傍となると共振が生じると考えられる。
また、矩形波制御モードにおいて、モータの回転数に応じて複数のスイッチングパターンを用いる場合、この複数のスイッチングパターンの切替時に変調度が急変することによりトルク変動による振動が生じる場合がある。
本発明の電動車両の制御装置は、制御モードやスイッチングパターンを切り替える際に生じ得る共振や振動を抑制することを主目的とする。
本発明の電動機の制御装置は、上述の主目的を達成するために以下の手段を採った。
本発明の第1の電動機の制御装置は、
電動機と、前記電動機を駆動するインバータと、前記電動機と前記インバータを介して電力のやりとりを行なう蓄電装置と、を備える駆動装置に搭載され、前記インバータのスイッチング素子をスイッチング制御する電動機の制御装置であって、
変調度が第1所定値未満のときには、パルス幅変調制御モードにより前記インバータのスイッチング素子をスイッチング制御し、
変調度が前記第1所定値より大きい第2所定値以上のときには、矩形波制御モードにより前記インバータのスイッチング素子をスイッチング制御し、
変調度が前記第1所定値以上で前記第2所定値未満のときには、前記矩形波制御モードにおけるパルスパターンにおいて、相電流がゼロクロスするタイミングでパルスが存在しているときにはスリットを形成し、パルスが存在していないときには前記スリットと同一幅の短パルスを形成したスイッチングパターンによる中間制御モードにより前記インバータのスイッチング素子をスイッチング制御する、
ことを特徴とする。
この本発明の第1の電動機の制御装置では、変調度が第1所定値未満のときにはパルス幅変調制御モードによりインバータのスイッチング素子をスイッチング制御し、変調度が第1所定値より大きい第2所定値以上のときには矩形波制御モードによりインバータのスイッチング素子をスイッチング制御し、変調度が第1所定値以上で第2所定値未満のときには、矩形波制御モードにおけるパルスパターンにおいて、相電流がゼロクロスするタイミングでパルスが存在しているときにはスリットを形成し、パルスが存在していないときにはスリットと同一幅の短パルスを形成したスイッチングパターンによる中間制御モードによりインバータのスイッチング素子をスイッチング制御する。これにより、変調度が第1所定値から第2所定値に急変しないから、トルク変動による振動を抑制することができる。また、パルス幅変調制御モードから中間制御モードを介して矩形波制御モードに切り替えることにより、共振が生じるような変調度が高い領域でパルス幅変調制御モードを用いないようにし、変調度が高い領域でパルス幅変調制御モードを用いることによって生じ得る共振を抑制することができる。
こうした本発明の第1の電動機の制御装置において、前記中間制御モードは、変調度が大きくなるほど前記スリットおよび前記短パルスの幅が小さくなるスイッチングパターンによるモードであるものとしてもよい。こうすれば、パルス幅変調制御モードから中間制御モードを介して矩形波制御モードに移行する際に変調度やスリットおよび短パルスの幅を滑らかに変化させることができる。この場合、前記中間制御モードから前記矩形波制御モードに切り替えるときには、前記スリットおよび前記短パルスの幅が値0となるまで徐変するものとしてもよい。こうすれば、中間制御モードから前記矩形波制御モードへの切り替えの際に生じ得るトルク変動を抑制することができる。
本発明の第1の電動機の制御装置において、前記矩形波制御モードは、前記電動機の回転数が第1共振領域より大きい第1所定回転数以上のときには、1周期の前半周期または後半周期が矩形波パルスとなる矩形波パルスパターンを用い、前記電動機の回転数が前記第1所定回転数未満のときには、前記矩形波パルスパターンにおける矩形波パルスが存在している領域に1つ以上のスリットを形成すると共に矩形波パルスが存在していない領域において前記スリットと同一のタイミングに前記スリットと同一幅の短パルスを形成したパターンであって前記第1共振領域におけるLC共振を抑制する第1スイッチングパターンを用いるモードであり、前記第2所定値は、前記電動機の回転数が前記第1所定回転数以上のときの方が前記第1所定回転数未満のときより大きい値であるものとしてもよい。こうすれば、第1共振領域におけるLC共振を抑制することができる。
本発明の第1の電動機の制御装置において、前記矩形波制御モードは、前記電動機の回転数が前記第1所定回転数より小さい第2所定回転数未満のときには、前記第1スイッチングパターンよりスリット数および短パルス数が多いパターンであって前記第2所定回転数より小さい回転数範囲に含まれる第2共振領域におけるLC共振を抑制する第2スイッチングパターンを用いるモードであり、前記第2所定値は、前記電動機の回転数が前記第2所定回転数未満のときの方が前記第2所定回転数以上のときより小さい値であるものとしてもよい。こうすれば、第2共振領域におけるLC共振を抑制することができる。
本発明の第2の電動機の制御装置は、
電動機と、前記電動機を駆動するインバータと、前記電動機と前記インバータを介して電力のやりとりを行なう蓄電装置と、を備える駆動装置に搭載され、変調度によりパルス幅変調制御モードと矩形波制御モードとを切り替えて前記インバータのスイッチング素子をスイッチング制御する電動機の制御装置であって、
前記矩形波制御モードは、前記電動機の回転数が第1共振領域より大きい第1所定回転数以上のときには、1周期の前半周期または後半周期が矩形波パルスとなる矩形波パルスパターンを用い、前記電動機の回転数が前記第1所定回転数未満のときには、前記矩形波パルスパターンにおける矩形波パルスが存在している領域に1つ以上のスリットを形成すると共に矩形波パルスが存在していない領域において前記スリットと同一のタイミングに前記スリットと同一幅の短パルスを形成したパターンであって前記第1共振領域におけるLC共振を抑制する第1スイッチングパターンを用いるモードであり、
前記第1スイッチングパターンから前記矩形波パルスパターンに切り替えるときには、前記第1スイッチングパターンのスリットおよび短パルスの幅が小さくなるように徐変する第1徐変制御を実行する、
ことを特徴とする。
この本発明の第2の電動機の制御装置では、変調度によりパルス幅変調制御モードと矩形波制御モードとを切り替えて電動機を駆動するインバータのスイッチング素子をスイッチング制御する。矩形波制御モードとしては、電動機の回転数が第1共振領域より大きい第1所定回転数以上のときには、1周期の前半周期または後半周期が矩形波パルスとなる矩形波パルスパターンを用いる。また、電動機の回転数が第1所定回転数未満のときには、矩形波パルスパターンにおける矩形波パルスが存在している領域に1つ以上のスリットを形成すると共に矩形波パルスが存在していない領域においてスリットと同一のタイミングに前記スリットと同一幅の短パルスを形成したパターンであって第1共振領域におけるLC共振を抑制する第1スイッチングパターンを用いる。これにより、電動機の回転数が第1所定回転数未満のときに生じ得る共振を抑制することができる。そして、第1スイッチングパターンから矩形波パルスパターンに切り替えるときには、第1スイッチングパターンのスリットおよび短パルスの幅が小さくなるように徐変する第1徐変制御を実行する。これにより、第1スイッチングパターンから矩形波パルスパターンに切り替えるときに生じ得る変調度の急変に伴うトルク変動による振動を抑制することができる。
こうした本発明の第2の電動機の制御装置において、前記第1徐変制御は、複数段階に分けて段階的にスリットおよび短パルスの幅および変調度を設定するものとしてもよい。こうすれば、段階的にスリットおよび短パルスの幅や変調度を変化させて第1スイッチングパターンから矩形波パルスパターンに切り替えることができ、切り替えの際に生じ得るトルク変動による振動を抑制することができる。
本発明の第2の電動機の制御装置において、前記第1徐変制御は、前記電動機の回転数が前記第1スイッチングパターンから前記矩形波パルスパターンに切り替える第1閾値回転数を超える際に、変調度を前記第1スイッチングパターンの変調度から前記矩形波パルスパターンの変調度に向けて徐々に大きくなるように設定すると共に設定した変調度と変調度が大きくなるほど幅が小さくなる関係とを用いてスリットおよび短パルスの幅を設定するものとしてもよい。こうすれば、滑らかにスリットおよび短パルスの幅や変調度を変化させて第1スイッチングパターンから矩形波パルスパターンに切り替えることができ、切り替えの際に生じ得るトルク変動による振動を抑制することができる。
本発明の第2の電動機の制御装置において、前記第1徐変制御は、前記設定した変調度に応じて電圧位相を設定し、前記設定した幅のスリットおよび短パルスを用いた第1スイッチングパターンで前記設定した電圧位相となるように前記インバータのスイッチング素子をスイッチング制御するものとしてもよい。こうすれば、トルク変動を抑制することができる。
本発明の第2の電動機の制御装置において、前記矩形波制御モードは、前記電動機の回転数が前記第1所定回転数より小さい第2所定回転数未満のときには、前記第1スイッチングパターンよりスリット数および短パルス数が多いパターンであって前記第2所定回転数より小さい回転数範囲に含まれる第2共振領域におけるLC共振を抑制する第2スイッチングパターンを用いるモードであり、前記第2スイッチングパターンから前記第1スイッチングパターンに切り替えるときには、前記第2スイッチングパターンのスリットおよび短パルスのうち前記第1スイッチングパターンのスリットおよび短パルスに相当しないスリットおよび短パルスの幅が小さくなるように徐変する第2徐変制御を実行するものとしてもよい。こうすれば、電動機の回転数が第2所定回転数未満のときに生じ得る共振を抑制することができると共に、第2スイッチングパターンから第1スイッチングパターンに切り替えるときに生じ得る変調度の急変に伴うトルク変動による振動を抑制することができる。
第2徐変制御を実行する態様の本発明の第2の電動機の制御装置において、前記第2徐変制御は、複数段階に分けて段階的にスリットおよび短パルスの幅および変調度を設定するものとしてもよい。こうすれば、段階的にスリットおよび短パルスの幅や変調度を変化させて第2スイッチングパターンから第1スイッチングパターンに切り替えることができ、切り替えの際に生じ得るトルク変動による振動を抑制することができる。
第2徐変制御を実行する態様の本発明の第2の電動機の制御装置において、前記第2徐変制御は、前記電動機の回転数が前記第2スイッチングパターンから前記第1スイッチングパターンに切り替える第2閾値回転数を超える際に、変調度を前記第2スイッチングパターンの変調度から前記第1スイッチングパターンの変調度に向けて徐々に大きくなるように設定すると共に設定した変調度と変調度が大きくなるほど幅が小さくなる関係とを用いてスリットおよび短パルスの幅を設定するものとしてもよい。こうすれば、滑らかにスリットおよび短パルスの幅や変調度を変化させて第2スイッチングパターンから第1スイッチングパターンに切り替えることができ、切り替えの際に生じ得るトルク変動による振動を抑制することができる。
第2徐変制御を実行する態様の本発明の第2の電動機の制御装置において、前記第2徐変制御は、前記設定した変調度に応じて電圧位相を設定し、前記設定した幅のスリットおよび短パルスを用いた第2スイッチングパターンで前記設定した電圧位相となるように前記インバータのスイッチング素子をスイッチング制御するものとしてもよい。こうすれば、トルク変動を抑制することができる。
第2徐変制御を実行する態様の本発明の第2の電動機の制御装置において、前記第2徐変制御は、前記第2スイッチングパターンから前記第1スイッチングパターンに切り替えるときには、前記第2スイッチングパターンのスリットおよび短パルスのうち前記第1スイッチングパターンのスリットおよび短パルスに相当するスリットおよび短パルスについては、タイミングおよび幅が徐々に前記第1スイッチングパターンのスリットおよび短パルスのタイミングおよび幅に一致するように徐変するものとしてもよい。こうすれば、第2スイッチングパターンから第1スイッチングパターンに切り替える際に、第2スイッチングパターンのスリットおよび短パルスのうち第1スイッチングパターンのスリットおよび短パルスに相当するスリットおよび短パルスのタイミングを滑らかに変化させることができ、切り替えの際に生じ得るトルク変動に伴う振動を抑制することができる。
本発明の第1実施例の電動車両の制御装置を搭載する電気自動車20の構成の概略を示す構成図である。 電子制御ユニット50により実行される制御モード設定処理の一例を示すフローチャートである。 モータ32の回転数NmとトルクTmと制御モードとの関係の一例を示す説明図である。 電子制御ユニット50により実行される矩形波制御モードパルスパターン設定処理の一例を示すフローチャートである。 矩形波パルスパターンと第1スイッチングパターンと第2スイッチングパターンの一例を示す説明図である。 電子制御ユニット50により実行される中間制御モードパルスパターン設定処理の一例を示すフローチャートである。 中間矩形波パルスパターンと中間第1スイッチングパターンと中間第2スイッチングパターンの一例を示す説明図である。 スリット幅設定用マップの一例を示す説明図である。 変形例のモータ32の回転数NmとトルクTmと制御モードとの関係の一例を示す説明図である。 変形例の制御モード設定処理の一例を示すフローチャートである。 変形例の中間制御モードパルスパターン設定処理の一例を示すフローチャートである。 変形例のモータ32の回転数NmとトルクTmと制御モードとの関係の一例を示す説明図である。 変形例のモータ32の回転数NmとトルクTmと制御モードとの関係の一例を示す説明図である。 変形例のモータ32の回転数NmとトルクTmと制御モードとの関係の一例を示す説明図である。 第2実施例の電子制御ユニット50により実行される第1・矩形切替処理の一例を示すフローチャートである。 矩形波パルスパターンと第1スイッチングパターンとをスリットや短パルスの幅p1と共に示す説明図である。 切替時スリット幅設定用マップの一例を示す説明図である。 モータ32のトルクTmと電圧位相θとの関係の一例を示す説明図である。 第1スイッチングパターンおよび矩形波パルスパターンでモータ32からトルク指令Tm*のトルクを出力するのときの電圧ベクトルの一例を示す説明図である。 第2実施例の電子制御ユニット50により実行される第2・第1切替処理の一例を示すフローチャートである。 第2スイッチングパターンと第1スイッチングパターンとをスリットや短パルスの幅p1,p2と共に示す説明図である。 変形例のパルスパターン切替処理の一例を示すフローチャートである。 変調度設定用マップの一例を示す説明図である。 タイミング設定用マップの一例を示す説明図である。
次に、本発明を実施するための形態を実施例を用いて説明する。
図1は、本発明の第1実施例の電動機の制御装置を搭載する電気自動車20の構成の概略を示す構成図である。第1実施例の電気自動車20は、図示するように、モータ32と、インバータ34と、電源としてのバッテリ36と、昇圧コンバータ40と、電子制御ユニット50と、を備える。電動機の制御装置としては、電子制御ユニット50が相当する。
モータ32は、同期発電電動機として構成されており、永久磁石が埋め込まれた回転子と、三相コイルが巻回された固定子と、を備える。このモータ32の回転子は、駆動輪22a,22bにデファレンシャルギヤ24を介して連結された駆動軸26に接続されている。
インバータ34は、モータ32の駆動に用いられる。このインバータ34は、高電圧側電力ライン42を介して昇圧コンバータ40に接続されており、6つのスイッチング素子としてのトランジスタT11~T16と、6つのトランジスタT11~T16のそれぞれに並列に接続された6つのダイオードD11~D16と、を有する。トランジスタT11~T16は、それぞれ、高電圧側電力ライン42の正極側ラインと負極側ラインとに対してソース側とシンク側になるように2個ずつペアで配置されている。また、トランジスタT11~T16の対となるトランジスタ同士の接続点の各々には、モータ32の三相コイル(U相,V相,W相のコイル)の各々が接続されている。したがって、インバータ34に電圧が作用しているときに、電子制御ユニット50によって、対となるトランジスタT11~T16のオン時間の割合が調節されることにより、三相コイルに回転磁界が形成され、モータ32が回転駆動される。高電圧側電力ライン42の正極側ラインと負極側ラインとには、平滑用のコンデンサ46が取り付けられている。
バッテリ36は、例えばリチウムイオン二次電池やニッケル水素二次電池として構成されており、低電圧側電力ライン44を介して昇圧コンバータ40に接続されている。低電圧側電力ライン44の正極側ラインと負極側ラインとには、平滑用のコンデンサ48が取り付けられている。
昇圧コンバータ40は、高電圧側電力ライン42と低電圧側電力ライン44とに接続されており、2つのトランジスタT31,T32と、2つのトランジスタT31,T32のそれぞれに並列に接続された2つのダイオードD31,D32と、リアクトルLと、を有する。トランジスタT31は、高電圧側電力ライン42の正極側ラインに接続されている。トランジスタT32は、トランジスタT31と、高電圧側電力ライン42および低電圧側電力ライン44の負極側ラインと、に接続されている。リアクトルLは、トランジスタT31,T32同士の接続点と、低電圧側電力ライン44の正極側ラインと、に接続されている。昇圧コンバータ40は、電子制御ユニット50によって、トランジスタT31,T32のオン時間の割合が調節されることにより、低電圧側電力ライン44の電力を昇圧して高電圧側電力ライン42に供給したり、高電圧側電力ライン42の電力を降圧して低電圧側電力ライン44に供給したりする。
電子制御ユニット50は、CPU52を中心とするマイクロプロセッサとして構成されており、CPU52に加えて、処理プログラムを記憶するROM54や、データを一時的に記憶するRAM56、入出力ポートを備える。電子制御ユニット50には、各種センサからの信号が入力ポートを介して入力されている。電子制御ユニット50に入力される信号としては、例えば、モータ32の回転子の回転位置を検出する回転位置検出センサ(例えばレゾルバ)32aからの回転位置θmや、モータ32の各相の相電流を検出する電流センサ32u,32vからの相電流Iu,Ivを挙げることができる。また、バッテリ36の端子間に取り付けられた電圧センサ36aからの電圧Vbや、バッテリ36の出力端子に取り付けられた電流センサ36bからの電流Ibも挙げることができる。さらに、リアクトルLに直列に取り付けられた電流センサ40aからの電流ILや、コンデンサ46の端子間に取り付けられた電圧センサ46aからのコンデンサ46(高電圧側電力ライン42)の電圧VH、コンデンサ48の端子間に取り付けられた電圧センサ48aからのコンデンサ48(低電圧側電力ライン44)の電圧VLも挙げることができる。加えて、イグニッションスイッチ60からのイグニッション信号や、シフトレバー61の操作位置を検出するシフトポジションセンサ62からのシフトポジションSPも挙げることができる。また、アクセルペダル63の踏み込み量を検出するアクセルペダルポジションセンサ64からのアクセル開度Accや、ブレーキペダル65の踏み込み量を検出するブレーキペダルポジションセンサ66からのブレーキペダルポジションBP、車速センサ68からの車速Vも挙げることができる。電子制御ユニット50は、回転位置検出センサ32aからの回転位置θmに基づいてモータ32の回転数Nmを演算したり、電流センサ36bからのバッテリ36の電流Ibの積算値に基づいてバッテリ36の蓄電割合SOCを演算したりしている。ここで、蓄電割合SOCは、バッテリ36の全容量に対するバッテリ36の蓄電量(放電可能な電力量)の割合である。
電子制御ユニット50からは、各種制御信号が出力ポートを介して出力されている。電子制御ユニット50から出力される信号としては、例えば、インバータ34のトランジスタT11~T16へのスイッチング制御信号や、昇圧コンバータ40のトランジスタT31,T32へのスイッチング制御信号を挙げることができる。
こうして構成された実施例の電気自動車20では、電子制御ユニット50は、以下の走行制御を行なう。走行制御では、アクセル開度Accと車速Vとに基づいて駆動軸26に要求される要求トルクTd*を設定し、設定した要求トルクTd*をモータ32のトルク指令Tm*に設定し、モータ32がトルク指令Tm*で駆動されるようにインバータ34のトランジスタT11~T16のスイッチング制御を行なう。また、走行制御では、モータ32をトルク指令Tm*で駆動できるように高電圧側電力ライン42の目標電圧VH*を設定し、高電圧側電力ライン42の電圧VHが目標電圧VH*となるように昇圧コンバータ40のトランジスタT31,T32のスイッチング制御を行なう。
次に、第1実施例の電気自動車20が搭載する制御装置における制御、特にインバータ34のスイッチング素子のスイッチング制御について説明する。図2は、電子制御ユニット50により実行される制御モード設定処理の一例を示すフローチャートである。この処理は所定時間毎に繰り返し実行される。
制御モード設定処理が実行されると、電子制御ユニット50は、まず、モータ32の回転数Nmと変調度Mとを入力する処理を実行する(ステップS100)。モータ32の回転数Nmは、回転位置検出センサ32aからの回転位置θmに基づいて演算したものを入力することができる。変調度Mは、電圧ベクトルにおけるd軸成分Vdとq軸成分Vqの2乗和の平方根を高電圧側電力ライン42の電圧VHで除することにより得ることができる。
続いて、入力したモータ32の回転数Nmを閾値Nref1および閾値Nref2と比較する(ステップS110)。閾値Nref1,閾値Nref2については後述する。モータ32の回転数Nmが閾値Nref1未満のときには閾値Mref2に値Mset1を設定し(ステップS120)、モータ32の回転数Nmが閾値Nref1以上で閾値Nref2未満のときには閾値Mref2に値Mset2を設定し(ステップS130)、モータ32の回転数Nmが閾値Nref2以上のときには閾値Mref2に値Mset3を設定する(ステップS140)。閾値Mref2,値Mset1,値Mset2、値Mset3については後述する。
次に、変調度Mを閾値Mref1および閾値Mref2と比較し(ステップS150)、変調度Mが閾値Mref1未満であると判定したときにはPWM制御モードを設定し(ステップS160)、変調度Mが閾値Mref1以上で閾値Mref2未満であると判定したときには中間制御モードを設定し(ステップS170)、変調度Mが閾値Mref2以上であると判定したときには矩形波制御モードを設定して(ステップS180)、本処理を終了する。閾値Mref1は、パルス幅変調制御モード(以下、PWM制御モードと称す。)と中間制御モードとを区分けする変調度であり、閾値Mref2は、中間制御モードと矩形波制御モードとを区分けする変調度である。PWM制御モードは、擬似的な三相交流電圧がモータ32に印加(供給)されるようにインバータ34を制御する制御モードであり、矩形波制御モードは、矩形波電圧がモータ32に印加されるようにインバータ34を制御する制御モードである。中間制御モードは、詳細は後述するが矩形波制御モードにおけるパルスパターンにおいて、相電流が値0を跨ぐゼロクロスするタイミングでスリットまたは短パルスを形成したパルスパターンの電圧がモータ32に印加されるようにインバータ34を制御する制御モードである。図3にモータ32の回転数NmとトルクTmと制御モードとの関係の一例を示す。図中、左下の領域がPWM制御モードであり、ハッチングの領域が中間制御モードであり、右上の領域が矩形波制御モードである。
PWM制御モードにおける制御は周知のパルス幅変調により形成されるパルスパターンを用いており、本発明の中核をなさないからその詳細な説明は省略する。また、説明の容易のために、まず、矩形波制御モードにおけるパルスパターンについて説明し、その後、中間制御モードにおけるパルスパターンについて説明する。
第1実施例の電気自動車20が搭載する制御装置では、矩形波制御モードは、第1スイッチングパターン、第2スイッチングパターン、矩形波パルスパターンの3つのパルスパターンによりインバータ34を制御する。図4は、電子制御ユニット50により実行される矩形波制御モードパルスパターン設定処理の一例を示すフローチャートである。矩形波制御モードパルスパターン設定処理では、まず、モータ32の回転数Nmを入力し(ステップS200)、入力したモータ32の回転数Nmを閾値Nref1、閾値Nref2と比較する(ステップS210)。閾値Nref2は、モータ32の電気6次変動周波数によってLC共振が生じる領域をモータ32の回転数に変換した第1共振領域の上限値より大きな回転数であり、閾値Nref1は、モータ32の電気12次変動周波数によってLC共振が生じる領域をモータ32の回転数に変換した第2共振領域の上限値より大きく第1共振領域の下限値より小さな回転数である。モータ32の回転数Nmが閾値Nref1未満であると判定したときには第2スイッチングパターンを設定し(ステップS220)、モータ32の回転数Nmが閾値Nref1以上で閾値Nref2未満であると判定したときには第1スイッチングパターンを設定し(ステップS230)、モータ32の回転数Nmが閾値Nref2以上であると判定したときには矩形波パルスパターンを設定して(ステップS240)、本処理を終了する。
図5は、矩形波パルスパターンと第1スイッチングパターンと第2スイッチングパターンの一例を示す説明図である。矩形波パルスパターンは、図示するように、時間T1~T2の1周期の前半周期全体が1つのパルス(矩形波パルス)となると共に後半周期にはパルスが形成されないパルスパターン(通常の矩形波制御におけるパルスパターン)である。第1スイッチングパターンは、時間T1~T2の1周期の前半周期の矩形波パルスパターンの矩形波パルスが存在する領域に1つのスリットが形成されると共に後半周期のスリットと同じタイミングに1つの短パルスが形成されたパルスパターンであり、電気6次変動周波数成分を高周波化するスイッチングパターンである。電気6次変動周波数成分を高周波化するスイッチングパターンとして、図示するように、1周期に3つのパルスを有するパルスパターンだけでなく、1周期に4つ以上のパルスを有するパルスパターンも有効であるが、第1実施例では、1周期のうち最もパルス数が少ないものを第1スイッチングパターンとして用いた。第2スイッチングパターンは、第1スイッチングパターンに加えて更に1つのスリット(合計2つのスリット)と1つの短パルス(合計2つの短パルス)が形成されたパルスパターンであり、電気6次変動周波数成分に加えて電気12次変動周波数成分を高周波化するスイッチングパターンである。電気6次変動周波数成分に加えて電気12次変動周波数成分を高周波化するスイッチングパターンは、図示するように、1周期に4つのパルスを有するパルスパターンだけでなく、1周期に5つ以上のパルスを有するパルスパターンも有効であるが、第1実施例では、1周期のうち最もパルス数が少ないものを第2スイッチングパターンとして用いた。図3における右上の領域の矩形波制御モードにおいても、閾値Nref1、閾値Nref2により区分される領域により、左から順に第2スイッチングパターン、第1スイッチングパターン、矩形波パルスパターンを示した。
以上の説明から、上述の矩形波制御モードパルスパターン設定処理では、ステップS210において、モータ32の回転数Nmが閾値Nref1未満であると判定したときには、モータ32の電気12次変動周波数によるLC共振を抑制するために、第2スイッチングパターンを設定し、モータ32の回転数Nmが閾値Nref1以上で閾値Nref2未満であるときには、電気6次変動周波数によるLC共振を抑制するために、第1スイッチングパターンを設定し、モータ32の回転数Nmが閾値Nref2以上であるときには、LC共振は生じないことから、矩形波パルスパターンを設定するものとなる。これにより、電気6次変動周波数や電気12次変動周波数によるLC共振によって生じ得る振動を抑制することができる。
ここで、図2のステップS110~S140で閾値Mref2に設定する値Mset1や値Mset2、値Mset3の意義について説明する。値Mset1は、矩形波制御モードにおいて第2スイッチングパターンを用いているときの変調度であり、第1実施例では0.75を用いている。値Mset2は、第1スイッチングパターンを用いているときの変調度であり、値Mset1より大きな値、第1実施例では0.756を用いている。値Mset3は矩形波パルスパターンを用いているときの変調度であり、値Mset2より大きな値、第1実施例では0.78を用いている。図3に示すように、中間制御モードの変調度Mの上限値としての閾値Mref2には矩形波制御モードにおける変調度を用いるから、モータ32の回転数Nmが閾値Nref1未満のときには第2スイッチングパターンを用いているときの変調度(値Mset1)となり、回転数Nmが閾値Nref1以上で閾値Nref2未満のときには第1スイッチングパターンを用いているときの変調度(値Mset2)となり、回転数Nmが閾値Nref2以上のときには矩形波パルスパターンを用いているときの変調度(値Mset3)となる。図2の制御モード設定処理に蹴るステップS110~S140の処理は、この事情を考慮して閾値Mref2を設定している。
次に、中間制御モードにおけるパルスパターンについて説明する。図6は、電子制御ユニット50により実行される中間制御モードパルスパターン設定処理の一例を示すフローチャートである。中間制御モードパルスパターン設定処理では、まず、モータ32の回転数Nmを入力し(ステップS300)、入力したモータ32の回転数Nmを閾値Nref1、閾値Nref2と比較する(ステップS310)。モータ32の回転数Nmが閾値Nref1未満であると判定したときには中間第2スイッチングパターンを設定し(ステップS320)、モータ32の回転数Nmが閾値Nref1以上で閾値Nref2未満であると判定したときには中間第1スイッチングパターンを設定し(ステップS330)、モータ32の回転数Nmが閾値Nref2以上であると判定したときには中間矩形波パルスパターンを設定する(ステップS340)。中間矩形波パルスパターンと中間第1スイッチングパターンと中間第2スイッチングパターンの一例を図7に示す。中間矩形波パルスパターンは、矩形波パルスパターン(図5参照)に対して、時間T1~T2の1周期のうち前半周期では相電流が値0を跨ぐゼロクロスのタイミングT1(1)で矩形波パルスにスリットが形成され、後半周期ではゼロクロスのタイミングT1(2)でスリットと同じ幅の短パルスが形成されるパルスパターンである。即ち、中間矩形波パルスパターンは、矩形波パルスパターンに対して、相電流がゼロクロスするタイミングでパルスが存在しているときにはスリットを形成し、パルスが存在していないときにはスリットと同一幅の短パルスを形成したスイッチングパターンとなる。中間第1スイッチングパターンおよび中間第2スイッチングパターンは、中間矩形波パルスパターンと同様に、第1スイッチングパターンや第2スイッチングパターン(図5参照)に対して、前半周期ではゼロクロスのタイミングT1(1)で矩形波パルスにスリットが形成され、後半周期ではゼロクロスのタイミングT1(2)でスリットと同じ幅の短パルスが形成されるパルスパターンである。即ち、中間第1スイッチングパターンおよび中間第2スイッチングパターンは、第1スイッチングパターンや第2スイッチングパターンに対して、相電流がゼロクロスするタイミングでパルスが存在しているときにはスリットを形成し、パルスが存在していないときにはスリットと同一幅の短パルスを形成したスイッチングパターンとなる。図3におけるハッチングの領域の中間制御モードにおいても、閾値Nref1、閾値Nref2により区分される領域により、左から順に中間第2スイッチングパターン、中間第1スイッチングパターン、中間矩形波パルスパターンを示した。
そして、変調度Mに基づいてスリット幅pを設定し(ステップS350)、本処理を終了する。上述したように、短パルスはスリットと同じ幅であるから、ステップS350のスリット幅pの設定は短パルス幅pの設定と同意となる。スリット幅pは、実施例では、各パルスパターンにおいて、変調度Mが閾値Mref1から閾値Mref2まで変化するように実験などにより求めたパルス幅pと変調度Mとの関係をスリット幅設定用マップとして予め記憶しておき、変調度Mが与えられるとマップから対応するスリット幅を導出することにより設定するものとした。スリット幅設定用マップの一例を図8に示す。スリット幅pは、図示するように、変調度Mが大きくなるほど小さくなり、変調度Mが閾値Mref2に至ると値0となる。即ち、変調度Mが閾値Mref2に至ると、中間制御モードから矩形波制御モードに切り替えられるため、中間矩形波パルスパターンや中間第1スイッチングパターン、中間第2スイッチングパターンは矩形波パルスパターンや第1スイッチングパターン、第2スイッチングパターンに切り替えられる。このとき、スリット幅pが変調度Mが大きくなるに従って徐々に小さくなって値0となるから、中間制御モードから矩形波制御モードへの切り替えの際にトルク変動は生じない。なお、相電流のゼロクロスのタイミングでスリットや短パルスを形成するのは、相電流の波形への影響を小さくするためであると考えている。
以上説明した第1実施例の電気自動車20が搭載する制御装置では、変調度Mが閾値Mref1以上で閾値Mref2未満のときには、中間制御モードとして、矩形波制御モードにおけるパルスパターンにおいて、相電流がゼロクロスするタイミングでパルスが存在しているときにはスリットを形成し、パルスが存在していないときにはスリットと同一幅の短パルスを形成したスイッチングパターンを設定する。そして、スリット幅p(短パルス幅p)を変調度Mが大きくなるに従って徐々に小さくなって閾値Mref2に至ったときに値0となるスリット幅設定用マップを用いて設定し、求めたスイッチングパターンによりインバータのスイッチング素子をスイッチング制御する。これにより、変調度Mが閾値Mref1から閾値Mref2まで徐変することができるから、変調度Mが急変することによって生じるトルク変動による振動を抑制することができる。
しかも、第1実施例の電気自動車20が搭載する制御装置では、中間制御モードにおいて、モータ32の電気6次変動周波数によるLC共振が生じ得る閾値Nref1以上で閾値Nref2未満のモータ32の回転数領域では、電気6次変動周波数を高周波化する第1スイッチングパターンに対して相電流がゼロクロスするタイミングでパルスが存在しているときにはスリットを形成し、パルスが存在していないときにはスリットと同一幅の短パルスを形成した中間第1スイッチングパターンとすることにより、電気6次変動周波数によるLC共振によって生じ得る振動を抑制することができる。また、中間制御モードにおいて、モータ32の電気12次変動周波数によるLC共振が生じ得る閾値Nref1未満のモータ32の回転数領域では、電気6次変動周波数だけでなく電気12次変動周波数も高周波化する第2スイッチングパターンに対して相電流がゼロクロスするタイミングでパルスが存在しているときにはスリットを形成し、パルスが存在していないときにはスリットと同一幅の短パルスを形成した中間第1スイッチングパターンとすることにより、電気12次変動周波数によるLC共振によって生じ得る振動を抑制することができる。
第1実施例の電気自動車20が搭載する制御装置では、中間制御モードにおいて、中間第2スイッチングパターンと中間第1スイッチングパターンと中間矩形波パルスパターンとを有するものとしたが、図9の変形例のモータ32の回転数NmとトルクTmと制御モードとの関係に示すように、中間制御モードにおいて、中間第2スイッチングパターンと中間第1スイッチングパターンとを有するものの、中間矩形波パルスパターンは有しないものとしてもよい。上述したように、中間制御モードでは、電気6次変動周波数や電気12次変動周波数によるLC共振が生じるのを抑制することを考えると、中間制御モードを電気6次変動周波数によるLC共振が生じる領域の上限値より大きな閾値Nref2までの領域とすることができる。この場合、図2の制御モード設定処理に代えて図10の制御モード設定処理を実行すると共に、図6の中間制御モードパルスパターン設定処理に代えて図11の中間制御モードパルスパターンを実行すればよい。
図10の制御モード設定処理では、モータ32の回転数Nmと変調度Mとを入力し(ステップS100)、モータ32の回転数Nmが閾値Nref1以上であるか否かを判定する(ステップS110B)。モータ32の回転数Nmが閾値Nref1未満であると判定したときには、閾値Mref2に値Mset1を設定し(ステップS120)、モータ32の回転数Nmが閾値Nref1以上であると判定したときには閾値Mref2に値Mset2を設定する(ステップS130)。そして、変調度Mを閾値Mref1および閾値Mref2と比較し(ステップS150)、変調度Mが閾値Mref1未満であると判定したときにはPWM制御モードを設定し(ステップS160)、変調度Mが閾値Mref1以上で閾値Mref2未満であると判定したときには中間制御モードを設定し(ステップS170)、変調度Mが閾値Mref2以上であると判定したときには矩形波制御モードを設定して(ステップS180)、本処理を終了する。即ち、図2の制御モード設定処理からステップS140を削除した処理を実行するのである。
図11の中間制御モードパルスパターン設定処理では、モータ32の回転数Nmを入力し(ステップS300)、モータ32の回転数Nmが閾値Nref1以上であるか否かを判定する(ステップS310B)。モータ32の回転数Nmが閾値Nref1未満であると判定したときには中間第2スイッチングパターンを設定し(ステップS320)、モータ32の回転数Nmが閾値Nref1以上であると判定したときには中間第1スイッチングパターンを設定する(ステップS330)。そして、変調度Mに基づいてスリット幅pを設定し(ステップS350)、本処理を終了する。即ち、図6の中間制御モードパルスパターン設定処理のステップS340を削除した処理を実行するのである。
こうした変形例の電気自動車が搭載する制御装置でも、第1実施例の電気自動車20が搭載する制御装置が奏する効果と同様の効果を奏することができる。
また、図12や図13に例示する変形例のモータ32の回転数NmとトルクTmと制御モードとの関係のように、矩形波制御モードにおいて、矩形波パルスパターンと第1スイッチングパターンを有するものの、第2スイッチングパターンを有しないものとしてもよい。この場合、制御モード設定処理としては、図2の制御モード設定処理のステップS110をモータ32の回転数Nmが閾値Nref2以上であるか否かを判定する処理に変更すると共にステップS120を削除するものを実行するか、図10の制御モード設定処理のステップS110BとステップS120とを削除したものを実行すればよい。また、中間制御モードパルスパターン設定処理としては、図6の中間制御モードパルスパターン設定処理のステップS310をモータ32の回転数Nmが閾値Nref2以上であるか否かを判定する処理に変更すると共にステップS320を削除するものを実行するか、図11の中間制御モードパルスパターン設定処理のステップS310BとステップS320とを削除したものを実行すればよい。この場合でも、変調度Mが急変することによって生じるトルク変動による振動を抑制することができると共に、電気6次変動周波数によるLC共振によって生じ得る振動を抑制することができる。
さらに、図14に例示する変形例のモータ32の回転数NmとトルクTmと制御モードとの関係のように、矩形波制御モードにおいて、矩形波パルスパターンだけを有するものとしてもよい。この場合、制御モード設定処理としては、図2の制御モード設定処理のステップS110~S140を削除したものを実行し、中間制御モードパルスパターン設定処理としては、図6の中間制御モードパルスパターン設定処理のステップS310~S330を削除したものを実行すればよい。この場合でも、変調度Mが急変することによって生じるトルク変動による振動を抑制することができる。
次に、第2実施例の電気自動車120が搭載する制御装置について説明する。第2実施例の電気自動車120は、図1に例示する第1実施例の電気自動車20と同一の構成をしている。したがって、重複する説明を回避するため、第2実施例の電気自動車120の構成については、図1に例示する第1実施例の電気自動車20の構成と同一の符号を付し、その説明は省略する。第2実施例の電気自動車120が搭載する制御装置でも、第1実施例の電気自動車20と同様に、図2のモータ32の回転数NmとトルクTmと制御モードとの関係に示すように、PWM制御モード、中間制御モード、矩形波制御モードを有する。したがって、図2の制御モード設定処理が実行される。また、第2実施例の電気自動車120が搭載する制御装置は、第1実施例の電気自動車20と同様に、矩形波制御モードにおいて、モータ32の回転数Nmが閾値Nref1未満であるときには第2スイッチングパターンが用いられ、モータ32の回転数Nmが閾値Nref1以上で閾値Nref2未満であるときには第1スイッチングパターンが用いられ、モータ32の回転数Nmが閾値Nref2以上であるときには矩形波パルスパターンが用いられる。即ち、図4の矩形波制御モードパルスパターン設定処理も実行される。さらに、第2実施例の電気自動車120が搭載する制御装置は、第1実施例の電気自動車20と同様に、中間制御モードにおいて、モータ32の回転数Nmが閾値Nref1未満であるときには中間第2スイッチングパターンが用いられ、モータ32の回転数Nmが閾値Nref1以上で閾値Nref2未満であるときには中間第1スイッチングパターンが用いられ、モータ32の回転数Nmが閾値Nref2以上であるときには中間矩形波パルスパターンが用いられる。したがって、図6の中間制御モードパルスパターン設定処理も実行される。
次に、第2実施例の電気自動車120が搭載する制御装置の制御、特に第1スイッチングパターンから矩形波パルスパターンに切り替える際の制御や第2スイッチングパターンから第1スイッチングパターンに切り替える際の制御について説明する。図15は、第1スイッチングパターンから矩形波パルスパターンに切り替える際に、第2実施例の電気自動車120の電子制御ユニット50により実行される第1・矩形切替処理の一例を示すフローチャートである。
第1・矩形切替処理では、まず、モータ32の回転数Nmや電圧センサ46aからの高電圧側電力ライン42の電圧VH、モータ32のトルク指令Tm*などを入力し(ステップS400)、カウンタCを値0に初期化する(ステップS410)。モータ32の回転数Nmは、回転位置検出センサ32aからの回転位置θmに基づいて演算したものを入力することができる。トルク指令Tm*は、走行制御により設定されたものを入力することができる。カウンタCは、本処理で用いるカウンタである。
続いて、カウンタCが閾値Cref1に至るまで、ステップS420~S460の処理を繰り返す。閾値Cref1は変調度Mを段階的に変更する段数である。繰り返し処理は、まず、カウンタCを値1だけインクリメントし(ステップS420)、次式(1)により変調度Mを設定する(ステップS430)。変調度Mは、式(1)に示すように、閾値Mset3から閾値Mset2を減じ、これを閾値Cref1で除したものにカウンタCの値を乗じ、これを閾値Mref2に加えたものとして計算する。即ち、変調度Mは、閾値Mset3と閾値Mset2との差分を繰り返し回数の閾値Cref1で按分して1段分の変化量を定め、閾値Mset2からカウンタCの値(段数)に応じた変化量だけ変化させたものとして計算するのである。
M=Mset2+C・(Mset3-Mset2)/Cref1 (1)
続いて、変調度Mに基づいて第1スイッチングパターンのスリット幅p1を設定する(ステップS440)。上述したように、第1スイッチングパターンにおけるスリットと短パルスは同一の幅であるから、スリット幅p1の設定は短パルス幅p1の設定を意味する。図16に矩形波パルスパターンと第1スイッチングパターンをスリットや短パルスの幅p1と共に示す。スリット幅p1は、第2実施例では、スリット幅p1と変調度Mとの関係を予め調べて切替時スリット幅設定用マップとして記憶しておき、変調度Mが与えられるとマップから対応するスリット幅p1を導出することにより設定するものとした。切替時スリット幅設定用マップの一例を図17に示す。図17には、第2スイッチングパターンから第1スイッチングパターンに切り替える際の2つのスリットの幅p1,p2における切替時スリット幅設定用マップも記載されている。第1・矩形切替処理で用いる切替時スリット幅設定用マップは、図17において閾値Mset2から閾値Mset3の間のp1である。スリット幅p1は、変調度Mが閾値Mset2から大きくなるほど閾値Mset2の値p1(1)から徐々に小さくなり、変調度Mが閾値Mset3に至ったときに値0となる。なお、変調度Mは、カウンタCにより段階的に設定されるから、スリット幅p1も段階的に設定されることになる。
次に、角速度ωや変調度M、高電圧側電力ライン42の電圧VH、トルク指令Tm*に基づいて電圧位相θを設定する(ステップS450)。角速度ωは、モータ32の回転数Nmから計算することができる。電圧位相θとモータ32のトルクTmとの関係は次式(2)により得られる。式(2)中、Vは電圧VHと変調度Mの積であり、pはモータ32の極対数であり、φは磁束であり、Ldはd軸インダクタンスであり、Lqはq軸インダクタンスである。したがって、式(2)に角速度ω、変調度M、高電圧側電力ライン42の電圧VHを適用すれば、トルクTmと電圧位相θとの関係を図に示すことができる。トルクTmと電圧位相θとの関係の一例を図18に示す。図中、実線による曲線は第1スイッチングパターンのときのトルクTmと電圧位相θとの関係であり、破線による曲線は矩形波パルスパターンのときのトルクTmと電圧位相θとの関係である。また、Tm*はモータ32のトルク指令であり、θ1は第1スイッチングパターンでモータ32からトルク指令Tm*のトルクを出力するのときの電圧位相であり、θ2は矩形波パルスパターンでモータ32からトルク指令Tm*のトルクを出力するのときの電圧位相である。図示するように、トルク指令Tm*に対する各パターンにおける電圧位相θは複数(図中2個)存在することになるが、用いる電圧位相θは、そのうち最も小さいものとなる。いま、第1スイッチングパターンから矩形波パルスパターンへの切り替え時を考えているから、トルクTmと電圧位相θとの関係は、両曲線の中間の曲線となる。このため、求めるべき電圧位相θはθ1とθ2の間の値となる。第1スイッチングパターンおよび矩形波パルスパターンでモータ32からトルク指令Tm*のトルクを出力するのときの電圧ベクトルを図19に示す。この図から、第1スイッチングパターンから矩形波パルスパターンに切り替える際にモータ32のトルクTmを同一にするには、電圧ベクトルのq軸成分Vqが同一になるようにすればよいことが解る。求めるべき電圧位相θはθ1とθ2の間の値であるから、その電圧ベクトルは図19における2つのベクトルの中間のベクトルとなる。なお、ステップS440の処理は、第2実施例では、角速度ωや変調度M、高電圧側電力ライン42の電圧VH、トルク指令Tm*に対して最も小さい電圧位相θを予め求めて電圧位相設定用マップとして記憶しておき、角速度ωや変調度M、高電圧側電力ライン42の電圧VH、トルク指令Tm*が与えられるとマップから対応する電圧位相θを導出することにより設定するものとした。
Figure 0007153168000001
続いて、カウンタCが閾値Cref1に至ったか否かを判定する(ステップS460)、カウンタCが閾値Cref1に至っていないと判定したときにはステップS420に戻り、カウンタCが閾値Cref1に至ったと判定したときには本処理を終了する。閾値Cref1は、上述したように、変調度Mを段階的に変更する段数であるが、このステップS420~S460を繰り返すのに必要な時間により定められる。即ち、閾値Cref1は、ステップS420~S460を実行するのに必要な時間が長い場合には小さくなり、ステップS420~S460を実行するのに必要な時間が短い場合には大きくなる。従って、閾値Cref1が大きいほど変調度Mを変更する段数を多くすることができるから、第1スイッチングパターンから矩形波パルスパターンへの切り替えを滑らかに行なうことができる。
図15の第1・矩形切替処理は、第1スイッチングパターンから矩形波パルスパターンに切り替える際の処理であるが、同様に矩形波パルスパターンから第1スイッチングパターンに切り替える際の処理とすることができる。
図20は、第2スイッチングパターンから第1スイッチングパターンに切り替える際に、第2実施例の電気自動車120の電子制御ユニット50により実行される第2・第1切替処理の一例を示すフローチャートである。第2・第1切替処理では、まず、モータ32の回転数Nmや電圧センサ46aからの高電圧側電力ライン42の電圧VH、モータ32のトルク指令Tm*などを入力し(ステップS500)、カウンタCを値0に初期化する(ステップS510)。続いて、カウンタCが閾値Cref2に至るまで、ステップS520~S560の処理を繰り返す。閾値Cref2は変調度Mを段階的に変更する段数である。
繰り返し処理では、まず、カウンタCを値1だけインクリメントし(ステップS520)、次式(3)により変調度Mを設定する(ステップS530)。変調度Mは、式(3)に示すように、閾値Mset2から閾値Mset1を減じ、これを閾値Cref2で除したものにカウンタCの値を乗じ、これを閾値Mref1に加えたものとして計算する。即ち、変調度Mは、閾値Mset2と閾値Mset1との差分を繰り返し回数の閾値Cref2で按分して1段分の変化量を定め、閾値Mset1からカウンタCの値(段数)に応じた変化量だけ変化させたものとして計算するのである。
M=Mset1+C・(Mset2-Mset1)/Cref2 (3)
続いて、変調度Mに基づいて第2スイッチングパターンの2つのスリット幅p1,p2を設定する(ステップS540)。上述したように、第1スイッチングパターンにおける2つのスリットと2つの短パルスは各々同一の幅であるから、スリット幅p1,p2の設定は短パルス幅p1,p2の設定を意味する。図21に第2スイッチングパターンと第1スイッチングパターンをスリットや短パルスの幅p1,p2と共に示す。スリット幅p1,p2は、第2実施例では、スリット幅p1,p2と変調度Mとの関係を予め調べて切替時スリット幅設定用マップとして記憶しておき、変調度Mが与えられるとマップから対応するスリット幅p1,p2を導出することにより設定するものとした。このスリット幅p1,p2を設定する切替時スリット幅設定用マップは、図17において閾値Mset1から閾値Mset2の間のp1,p2である。スリット幅p1は、変調度Mが閾値Mset1から大きくなるほど閾値Mset1の値p1(2)から徐々に閾値Mset2の値p1(1)に近づき、変調度Mが閾値Mset2に至ったときに値p1(1)となる。スリット幅p2は、変調度Mが閾値Mset1から大きくなるほど閾値Mset1の値p2(2)から徐々に小さくなり、変調度Mが閾値Mset2に至ったときに値0となる。なお、変調度Mは、カウンタCにより段階的に設定されるから、スリット幅p1,p2も段階的に設定されることになる。
次に、第2スイッチングパターンの2つのスリットと2つの短パルスのうち第1スイッチングパターンのスリットと短パルスに相当するスリットと短パルス(図21ではスリット幅p1のスリットと短パルス)のタイミングtp1を次式(4)により設定する(ステップS545)。式(4)中、tpi(2)は第2スイッチングパターンにおけるスリット幅p1のスリットや短パルスの前半周期や後半周期の始点からのタイミングであり、tpi(1)は第1スイッチングパターンにおけるスリット幅p1のスリットや短パルスの前半周期や後半周期の始点からのタイミングである。タイミングtp1は、式(4)に示すように、タイミングtp1(1)からタイミングtp1(2)を減じ、これを閾値Cref2で除したものにカウンタCの値を乗じ、これをタイミングtp1(2)に加えたものとして計算する。即ち、タイミングtp1は、タイミングtp1(1)とタイミングtp1(2)との差分を繰り返し回数の閾値Cref2で按分して1段分の変化量を定め、タイミングtp1(2)からカウンタCの値(段数)に応じた変化量だけ変化させたものとして計算するのである。第1スイッチングパターンのスリットや短パルスのタイミングtp1(1)と第2スイッチングパターンの対応するスリットや短パルスのタイミングtp1(2)が若干異なるのは、電気6次変動周波数に加えて電気12次変動周波数を高周波化するためにスリットや短パルスを形成して最適化したことによる。なお、第1スイッチングパターンのスリットや短パルスの幅p1(1)と第2スイッチングパターンの対応するスリットや短パルスの幅p1(2)とが若干異なるのも同様の理由である。変調度Mは、カウンタCにより段階的に設定されるから、タイミングtp1も段階的に設定されることになる。
tp1=tp1(2)+C・(tp1(1)-tp1(2))/Cref2 (4)
次に、図15の第1・矩形切替処理のステップS450と同様に、角速度ωや変調度M、高電圧側電力ライン42の電圧VH、トルク指令Tm*に基づいて電圧位相θを設定し(ステップS550)、カウンタCが閾値Cref2に至ったか否かを判定し(ステップS560)、カウンタCが閾値Cref2に至っていないと判定したときにはステップS520に戻り、カウンタCが閾値Cref2に至ったと判定したときには本処理を終了する。閾値Cref2は、上述したように、変調度Mを段階的に変更する段数であるが、このステップS520~S560を繰り返すのに必要な時間により定められる。即ち、閾値Cref2は、ステップS520~S560を実行するのに必要な時間が長い場合には小さくなり、ステップS520~S560を実行するのに必要な時間が短い場合には大きくなる。従って、閾値Cref2が大きいほど変調度Mを変更する段数を多くすることができ、第2スイッチングパターンから第1スイッチングパターンへの切り替えを滑らかに行なうことができる。
図20の第2・第1切替処理は、第2スイッチングパターンから第1スイッチングパターンに切り替える際の処理であるが、同様に第1スイッチングパターンから第2スイッチングパターンに切り替える際の処理とすることができる。
中間制御モードにおける中間第1スイッチングパターンから中間矩形波パルスパターンへの切り替えは、第1スイッチングパターンを中間第1スイッチングパターンに変更すると共に矩形波パルスパターンを中間矩形波パルスパターンに変更して図15の第1・矩形切替処理を適用することにより、第1スイッチングパターンから矩形波パルスパターンへの切り替えと同様に行なうことができる。また、中間制御モードにおける中間第2スイッチングパターンから中間第1スイッチングパターンへの切り替えは、第2スイッチングパターンを中間第2スイッチングパターンに変更すると共に第1スイッチングパターンを中間第1スイッチングパターンに変更して図20の第1・第2切替処理を適用することにより、第2スイッチングパターンから第1スイッチングパターンへの切り替えと同様に行なうことができる。
以上説明した第2実施例の電気自動車120が搭載する制御装置では、矩形波制御モードにおいて、第1スイッチングパターンから矩形波パルスパターンに切り替えるときには、第1スイッチングパターンのスリットおよび短パルスの幅p1が徐々に小さくなるように徐変する。これにより、第1スイッチングパターンから矩形波パルスパターンに切り替えるときに生じ得る変調度Mの急変に伴うトルク変動による振動を抑制することができる。また、矩形波制御モードにおいて、第2スイッチングパターンから第1スイッチングパターンに切り替えるときには、第2スイッチングパターンの2つのスリットおよび2つの短パルスのうち第1スイッチングパターンのスリットおよび短パルスに相当する幅p1のスリットおよび短パルスについては幅p1が徐々に第1スイッチングパターンのスリットおよび短パルスの幅p1(1)に近づくように徐変し、第2スイッチングパターンの2つのスリットおよび2つの短パルスのうち追加したスリットおよびパルスについては幅p2が徐々に小さくなるように徐変する。これにより、第2スイッチングパターンから第1スイッチングパターンに切り替えるときに生じ得る変調度Mの急変に伴うトルク変動による振動を抑制することができる。
また、中間制御モードにおける中間第1スイッチングパターンから中間矩形波パルスパターンへの切り替えや中間第2スイッチングパターンから中間第1スイッチングパターンへの切り替えも、矩形波制御モードにおける第1スイッチングパターンから矩形波パルスパターンへの切り替えや第2スイッチングパターンから第1スイッチングパターンへの切り替えと同様に処理する。これにより、中間制御モードにおける中間第1スイッチングパターンから中間矩形波パルスパターンへの切り替えや中間第2スイッチングパターンから中間第1スイッチングパターンへの切り替えの際に生じ得る変調度Mの急変に伴うトルク変動による振動を抑制することができる。
第2実施例の電気自動車120が搭載する制御装置では、矩形波制御モードにおける第1スイッチングパターンから矩形波パルスパターンへの切り替えや第2スイッチングパターンから第1スイッチングパターンへの切り替えをカウンタCを用いて段階的に行なうものとした。しかし、カウンタCを用いずにスリット幅p1、p2を徐変するものとしてもよい。例えば、図15の第1・矩形切替処理や図20の第2・第1切替処理に代えて図22のパルスパターン切替処理を実行するものとしてもよい。この図22のパルスパターン切替処理は、矩形波制御モードにおいて所定時間毎(例えば数msec毎)に繰り返し実行される。
パルスパターン切替処理では、まず、モータ32の回転数Nmや電圧センサ46aからの高電圧側電力ライン42の電圧VH、モータ32のトルク指令Tm*などを入力し(ステップS600)、モータ32の回転数Nmに応じて変調度Mを設定する(ステップS610)。変調度Mは、この変形例では、モータ32の回転数Nmと変調度Mとを予め定めて変調度設定用マップとして記憶しておき、モータ32の回転数Nmが与えられるとマップから対応する変調度Mを導出することにより設定するものとした。変調度設定用マップの一例を図23に示す。図示するように、変調度Mは、閾値Nref1および閾値Nref2を中心として滑らかに変化するように傾斜が設けられている。即ち、モータ32の回転数Nmが大きくなって閾値Nref1に近づくと、回転数Nmが大きくなるほど変調度Mは値Mset1から値Mset2に向けて大きくなり、モータ32の回転数Nmが大きくなって閾値Nref2に近づくと、回転数Nmが大きくなるほど変調度Mは値Mset2から値Mset3に向けて大きくなる。
続いて、変調度Mに基づいて第1スイッチングパターンのスリット幅p1や第2スイッチングパターンの2つのスリット幅p1,p2を設定する(ステップS620)。このスリット幅p1,p2の設定については図15の第1・矩形切替処理のステップS440の処理や図20の第2・第1切替処理のステップS540の処理と同様である。そして、パルスパターンの切り替えが第2スイッチングパターンから第1スイッチングパターンへの切り替えか否かを判定し(ステップS630)、第2スイッチングパターンから第1スイッチングパターンへの切り替えであると判定したときには、変調度Mに基づいて幅p1のスリットや短パルスのタイミングtp1を設定する(ステップS640)。タイミングtp1は、この変形例では、変調度Mとタイミングtp1との関係を予め定めてタイミング設定用マップとして記憶しておき、変調度Mが与えられるとマップから対応するタイミングtp1を導出することにより設定するものとした。タイミング設定用マップの一例を図24に示す。この変形例では、タイミングtp1は、図示するように、変調度Mが値Mset1の第2スイッチングパターンにおけるスリット幅p1のスリットや短パルスのタイミングtp1(2)から変調度Mが大きくなるほど変調度Mが値Mset2の第1スイッチングパターンにおけるスリット幅p1のスリットや短パルスのタイミングtp1(1)に近づくように設定されている。なお、ステップS630で第2スイッチングパターンから第1スイッチングパターンへの切り替えではないと判定したときには、第1スイッチングパターンから矩形波パルスパターンへの切り替えであるから、このタイミングtp1を設定する処理は不要である。
次に、図15の第1・矩形切替処理のステップS450と同様に、角速度ωや変調度M、高電圧側電力ライン42の電圧VH、トルク指令Tm*に基づいて電圧位相θを設定し(ステップS650)、本処理を終了する。
以上では、パルスパターン切替処理を用いて、第2スイッチングパターンから第1スイッチングパターンへの切り替えや第1スイッチングパターンから矩形波パルスパターンへの切り替えについて説明したが、パルスパターン切替処理では、矩形波パルスパターンから第1スイッチングパターンへの切り替えや第1スイッチングパターンから第2スイッチングパターンへの切り替えも同様に行なうことができる。また、図22のパルスパターン切替処理は、中間制御モードにおける中間第2スイッチングパターンと中間第1スイッチングパターンとの切り替えや、中間第1スイッチングパターンと中間矩形波パルスパターンとの切り替えについても同様に適用することができる。
以上説明した変形例の電気自動車が搭載する制御装置でも、矩形波制御モードにおいて、第1スイッチングパターンと矩形波パルスパターンとを切り替えるときには、第1スイッチングパターンのスリットおよび短パルスの幅p1を徐変する。これにより、第1スイッチングパターンと矩形波パルスパターンとを切り替えるときに生じ得る変調度Mの急変に伴うトルク変動による振動を抑制することができる。また、矩形波制御モードにおいて、第2スイッチングパターンと第1スイッチングパターンとを切り替えるときには、第2スイッチングパターンの2つのスリットおよび2つの短パルスのうち第1スイッチングパターンのスリットおよび短パルスに相当する幅p1のスリットおよび短パルスについては幅p1を徐変し、第2スイッチングパターンの2つのスリットおよび2つの短パルスのうち追加したスリットおよびパルスについては幅p2を徐変する。これにより、第2スイッチングパターンと第1スイッチングパターンとを切り替えるときに生じ得る変調度Mの急変に伴うトルク変動による振動を抑制することができる。
第2実施例の電気自動車120が搭載する制御装置やその変形例では、中間制御モードにおいて、中間第2スイッチングパターンと中間第1スイッチングパターンと中間矩形波パルスパターンとを有するものとしたが、図9の変形例のモータ32の回転数NmとトルクTmと制御モードとの関係に示すように、中間制御モードにおいて、中間第2スイッチングパターンと中間第1スイッチングパターンとを有するものの、中間矩形波パルスパターンは有しないものとしてもよい。また、図12や図13に例示する変形例のモータ32の回転数NmとトルクTmと制御モードとの関係のように、矩形波制御モードにおいて、矩形波パルスパターンと第1スイッチングパターンを有するものの、第2スイッチングパターンを有しないものとしてもよい。さらに、中間制御モードを有しないものとしても構わない。
実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、モータ32が「電動機」に相当し、インバータ34が「インバータ」に相当し、バッテリ36が「蓄電装置」に相当し、電子制御ユニット50が「制御装置」に相当する。
なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、電動機の制御装置の製造産業などに利用可能である。
20 電気自動車、22a,22b 駆動輪、24 デファレンシャルギヤ、26 駆動軸、32 モータ、32a 回転位置検出センサ、32u,32v 電流センサ、34 インバータ、36 バッテリ、36a 電圧センサ、36b 電流センサ、40 昇圧コンバータ、40a 電流センサ、42 高電圧側電力ライン、44 低電圧側電力ライン、46,48 コンデンサ、46a,48a 電圧センサ、50 電子制御ユニット、52 CPU、54 ROM、56 RAM、60 イグニッションスイッチ、61 シフトレバー、62 シフトポジションセンサ、63 アクセルペダル、64 アクセルペダルポジションセンサ、65 ブレーキペダル、66 ブレーキペダルポジションセンサ、68 車速センサ、D11~D16,D31,D32 ダイオード、L リアクトル、T11~T16,T31,T32 トランジスタ。

Claims (14)

  1. 電動機と、前記電動機を駆動するインバータと、前記電動機と前記インバータを介して電力のやりとりを行なう蓄電装置と、を備える駆動装置に搭載され、前記インバータのスイッチング素子をスイッチング制御する電動機の制御装置であって、
    変調度が第1所定値未満のときには、パルス幅変調制御モードにより前記インバータのスイッチング素子をスイッチング制御し、
    変調度が前記第1所定値より大きい第2所定値以上のときには、矩形波制御モードにより前記インバータのスイッチング素子をスイッチング制御し、
    変調度が前記第1所定値以上で前記第2所定値未満のときには、前記矩形波制御モードにおけるパルスパターンにおいて、相電流がゼロクロスするタイミングでパルスが存在しているときにはスリットを形成し、パルスが存在していないときには前記スリットと同一幅の短パルスを形成したスイッチングパターンによる中間制御モードにより前記インバータのスイッチング素子をスイッチング制御する、
    ことを特徴とする電動機の制御装置。
  2. 請求項1記載の電動機の制御装置であって、
    前記中間制御モードは、変調度が大きくなるほど前記スリットおよび前記短パルスの幅が小さくなるスイッチングパターンによるモードである、
    電動機の制御装置。
  3. 請求項2記載の電動機の制御装置であって、
    前記中間制御モードから前記矩形波制御モードに切り替えるときには、前記スリットおよび前記短パルスの幅が値0となるまで徐変する、
    電動機の制御装置。
  4. 請求項1ないし3のうちのいずれか1つの請求項に記載の電動機の制御装置であって、
    前記矩形波制御モードは、前記電動機の回転数が第1共振領域より大きい第1所定回転数以上のときには、1周期の前半周期または後半周期が矩形波パルスとなる矩形波パルスパターンを用い、前記電動機の回転数が前記第1所定回転数未満のときには、前記矩形波パルスパターンにおける矩形波パルスが存在している領域に1つ以上のスリットを形成すると共に矩形波パルスが存在していない領域において前記スリットと同一のタイミングに前記スリットと同一幅の短パルスを形成したパターンであって前記第1共振領域におけるLC共振を抑制する第1スイッチングパターンを用いるモードであり、
    前記第2所定値は、前記電動機の回転数が前記第1所定回転数以上のときの方が前記第1所定回転数未満のときより大きい値である、
    電動機の制御装置。
  5. 請求項4記載の電動機の制御装置であって、
    前記矩形波制御モードは、前記電動機の回転数が前記第1所定回転数より小さい第2所定回転数未満のときには、前記第1スイッチングパターンよりスリット数および短パルス数が多いパターンであって前記第2所定回転数より小さい回転数範囲に含まれる第2共振領域におけるLC共振を抑制する第2スイッチングパターンを用いるモードであり、
    前記第2所定値は、前記電動機の回転数が前記第2所定回転数未満のときの方が前記第2所定回転数以上のときより小さい値である、
    電動機の制御装置。
  6. 電動機と、前記電動機を駆動するインバータと、前記電動機と前記インバータを介して電力のやりとりを行なう蓄電装置と、を備える駆動装置に搭載され、変調度によりパルス幅変調制御モードと矩形波制御モードとを切り替えて前記インバータのスイッチング素子をスイッチング制御する電動機の制御装置であって、
    前記矩形波制御モードは、前記電動機の回転数が第1共振領域より大きい第1所定回転数以上のときには、1周期の前半周期または後半周期が矩形波パルスとなる矩形波パルスパターンを用い、前記電動機の回転数が前記第1所定回転数未満のときには、前記矩形波パルスパターンにおける矩形波パルスが存在している領域に1つ以上のスリットを形成すると共に矩形波パルスが存在していない領域において前記スリットと同一のタイミングに前記スリットと同一幅の短パルスを形成したパターンであって前記第1共振領域におけるLC共振を抑制する第1スイッチングパターンを用いるモードであり、
    前記第1スイッチングパターンから前記矩形波パルスパターンに切り替えるときには、前記第1スイッチングパターンのスリットおよび短パルスの幅が小さくなるように徐変する第1徐変制御を実行する、
    ことを特徴とする電動機の制御装置。
  7. 請求項6記載の電動機の制御装置であって、
    前記第1徐変制御は、複数段階に分けて段階的にスリットおよび短パルスの幅および変調度を設定する、
    電動機の制御装置。
  8. 請求項6記載の電動機の制御装置であって、
    前記第1徐変制御は、前記電動機の回転数が前記第1スイッチングパターンから前記矩形波パルスパターンに切り替える第1閾値回転数を超える際に、変調度を前記第1スイッチングパターンの変調度から前記矩形波パルスパターンの変調度に向けて徐々に大きくなるように設定すると共に設定した変調度と変調度が大きくなるほど幅が小さくなる関係とを用いてスリットおよび短パルスの幅を設定する、
    電動機の制御装置。
  9. 請求項7または8記載の電動機の制御装置であって、
    前記第1徐変制御は、前記設定した変調度に応じて電圧位相を設定し、前記設定した幅のスリットおよび短パルスを用いた第1スイッチングパターンで前記設定した電圧位相となるように前記インバータのスイッチング素子をスイッチング制御する、
    電動機の制御装置。
  10. 請求項6ないし9のうちのいずれか1つの請求項に記載の電動機の制御装置であって、
    前記矩形波制御モードは、前記電動機の回転数が前記第1所定回転数より小さい第2所定回転数未満のときには、前記第1スイッチングパターンよりスリット数および短パルス数が多いパターンであって前記第2所定回転数より小さい回転数範囲に含まれる第2共振領域におけるLC共振を抑制する第2スイッチングパターンを用いるモードであり、
    前記第2スイッチングパターンから前記第1スイッチングパターンに切り替えるときには、前記第2スイッチングパターンのスリットおよび短パルスのうち前記第1スイッチングパターンのスリットおよび短パルスに相当しないスリットおよび短パルスの幅が小さくなるように徐変する第2徐変制御を実行する、
    電動機の制御装置。
  11. 請求項10記載の電動機の制御装置であって、
    前記第2徐変制御は、複数段階に分けて段階的にスリットおよび短パルスの幅および変調度を設定する、
    電動機の制御装置。
  12. 請求項10記載の電動機の制御装置であって、
    前記第2徐変制御は、前記電動機の回転数が前記第2スイッチングパターンから前記第1スイッチングパターンに切り替える第2閾値回転数を超える際に、変調度を前記第2スイッチングパターンの変調度から前記第1スイッチングパターンの変調度に向けて徐々に大きくなるように設定すると共に設定した変調度と変調度が大きくなるほど幅が小さくなる関係とを用いてスリットおよび短パルスの幅を設定する、
    電動機の制御装置。
  13. 請求項11または12記載の電動機の制御装置であって、
    前記第2徐変制御は、前記設定した変調度に応じて電圧位相を設定し、前記設定した幅のスリットおよび短パルスを用いた第2スイッチングパターンで前記設定した電圧位相となるように前記インバータのスイッチング素子をスイッチング制御する、
    電動機の制御装置。
  14. 請求項10ないし13のうちのいずれか1つの請求項に記載の電動機の制御装置であって、
    前記第2徐変制御は、前記第2スイッチングパターンから前記第1スイッチングパターンに切り替えるときには、前記第2スイッチングパターンのスリットおよび短パルスのうち前記第1スイッチングパターンのスリットおよび短パルスに相当するスリットおよび短パルスについては、タイミングおよび幅が徐々に前記第1スイッチングパターンのスリットおよび短パルスのタイミングおよび幅に一致するように徐変する、
    電動機の制御装置。
JP2019039225A 2019-03-05 2019-03-05 電動機の制御装置 Active JP7153168B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2019039225A JP7153168B2 (ja) 2019-03-05 2019-03-05 電動機の制御装置
RU2020106113A RU2730301C1 (ru) 2019-03-05 2020-02-10 Устройство управления электромотором
BR102020002773-5A BR102020002773A2 (pt) 2019-03-05 2020-02-10 Dispositivo de controle de motor elétrico
KR1020200017799A KR102565516B1 (ko) 2019-03-05 2020-02-13 전동기의 제어 장치
EP20157290.6A EP3706310A1 (en) 2019-03-05 2020-02-14 Electric motor control device
CN202010099115.6A CN111669102B (zh) 2019-03-05 2020-02-18 电动机的控制装置
US16/794,684 US11108351B2 (en) 2019-03-05 2020-02-19 Electric motor control device
US17/390,384 US11757395B2 (en) 2019-03-05 2021-07-30 Electric motor control device
KR1020220096648A KR20220116104A (ko) 2019-03-05 2022-08-03 전동기의 제어 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019039225A JP7153168B2 (ja) 2019-03-05 2019-03-05 電動機の制御装置

Publications (2)

Publication Number Publication Date
JP2020145795A JP2020145795A (ja) 2020-09-10
JP7153168B2 true JP7153168B2 (ja) 2022-10-14

Family

ID=69593564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019039225A Active JP7153168B2 (ja) 2019-03-05 2019-03-05 電動機の制御装置

Country Status (7)

Country Link
US (2) US11108351B2 (ja)
EP (1) EP3706310A1 (ja)
JP (1) JP7153168B2 (ja)
KR (2) KR102565516B1 (ja)
CN (1) CN111669102B (ja)
BR (1) BR102020002773A2 (ja)
RU (1) RU2730301C1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7153168B2 (ja) 2019-03-05 2022-10-14 株式会社デンソー 電動機の制御装置
JP2022112443A (ja) * 2021-01-21 2022-08-02 トヨタ自動車株式会社 駆動装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279110A (ja) 2009-05-27 2010-12-09 Toyota Industries Corp インバータ装置
JP2015112949A (ja) 2013-12-10 2015-06-22 トヨタ自動車株式会社 ハイブリッド車両のモータ制御装置
EP3121956A1 (en) 2015-07-24 2017-01-25 Rich Life Consultants Limited Brushless motor controller and method of controlling a brushless motor
JP2017131094A (ja) 2016-01-20 2017-07-27 トヨタ自動車株式会社 モータ制御装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047083A (en) * 1976-03-08 1977-09-06 General Electric Company Adjustable speed A-C motor drive with smooth transition between operational modes and with reduced harmonic distortion
US4561055A (en) * 1982-12-06 1985-12-24 Deere & Company Transmission controller
JP3533091B2 (ja) * 1998-07-29 2004-05-31 トヨタ自動車株式会社 交流電動機の駆動制御装置
JP3685138B2 (ja) * 2002-02-18 2005-08-17 日産自動車株式会社 モーター制御装置
JP4706324B2 (ja) * 2005-05-10 2011-06-22 トヨタ自動車株式会社 モータ駆動システムの制御装置
JP4710588B2 (ja) * 2005-12-16 2011-06-29 トヨタ自動車株式会社 昇圧コンバータの制御装置
JP4925181B2 (ja) * 2006-03-09 2012-04-25 国立大学法人長岡技術科学大学 電力システム
JP4743082B2 (ja) * 2006-11-01 2011-08-10 トヨタ自動車株式会社 電源システムおよびそれを備えた車両
JP4729526B2 (ja) * 2007-03-29 2011-07-20 トヨタ自動車株式会社 電動機の駆動制御装置
JP4353304B2 (ja) * 2008-02-19 2009-10-28 トヨタ自動車株式会社 モータ駆動制御装置
JP4670882B2 (ja) * 2008-03-18 2011-04-13 トヨタ自動車株式会社 電動機駆動制御装置、それを備えた車両および電動機駆動制御方法
JP4497235B2 (ja) * 2008-08-08 2010-07-07 トヨタ自動車株式会社 交流電動機の制御装置および制御方法
EP2463165B1 (en) * 2009-08-07 2015-03-18 Toyota Jidosha Kabushiki Kaisha Brake control system, and brake control method
WO2011099122A1 (ja) * 2010-02-10 2011-08-18 株式会社 日立製作所 電力変換装置
WO2011135696A1 (ja) * 2010-04-28 2011-11-03 株式会社 日立製作所 電力変換装置
US20130033205A1 (en) * 2010-04-28 2013-02-07 Hitachi, Ltd. Power Conversion Device
JP5661008B2 (ja) * 2011-09-06 2015-01-28 トヨタ自動車株式会社 モータ制御システム
JP2014128052A (ja) 2012-12-25 2014-07-07 Toyota Motor Corp 車両の制御装置
JP5955761B2 (ja) * 2012-12-25 2016-07-20 トヨタ自動車株式会社 車両の制御装置
RU2557686C1 (ru) * 2014-03-04 2015-07-27 Общество с ограниченной ответственностью "Электропривод" Способ согласованного управления электромеханической трансмиссией гибридных транспортных средств
JP6565531B2 (ja) * 2015-09-18 2019-08-28 シンフォニアテクノロジー株式会社 インバータ制御装置
US10158312B2 (en) * 2016-01-20 2018-12-18 Toyota Jidosha Kabushiki Kaisha Motor control apparatus
JP6458761B2 (ja) * 2016-04-28 2019-01-30 トヨタ自動車株式会社 自動車
JP6439745B2 (ja) * 2016-04-28 2018-12-19 トヨタ自動車株式会社 自動車
JP6950560B2 (ja) 2018-02-15 2021-10-13 株式会社デンソー 電動車両の制御装置
CN108322077B (zh) * 2018-03-28 2020-02-18 中车青岛四方车辆研究所有限公司 基于shepwm的脉宽调制系统及调制方法
JP7153168B2 (ja) 2019-03-05 2022-10-14 株式会社デンソー 電動機の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279110A (ja) 2009-05-27 2010-12-09 Toyota Industries Corp インバータ装置
JP2015112949A (ja) 2013-12-10 2015-06-22 トヨタ自動車株式会社 ハイブリッド車両のモータ制御装置
EP3121956A1 (en) 2015-07-24 2017-01-25 Rich Life Consultants Limited Brushless motor controller and method of controlling a brushless motor
JP2017131094A (ja) 2016-01-20 2017-07-27 トヨタ自動車株式会社 モータ制御装置

Also Published As

Publication number Publication date
JP2020145795A (ja) 2020-09-10
US11108351B2 (en) 2021-08-31
BR102020002773A2 (pt) 2020-10-06
KR102565516B1 (ko) 2023-08-09
RU2730301C1 (ru) 2020-08-21
CN111669102B (zh) 2023-10-20
KR20220116104A (ko) 2022-08-22
EP3706310A1 (en) 2020-09-09
US20200287496A1 (en) 2020-09-10
US20210359635A1 (en) 2021-11-18
KR20200106825A (ko) 2020-09-15
CN111669102A (zh) 2020-09-15
US11757395B2 (en) 2023-09-12

Similar Documents

Publication Publication Date Title
US9935568B2 (en) Control apparatus of rotary electric machine
JP6950560B2 (ja) 電動車両の制御装置
KR20220116104A (ko) 전동기의 제어 장치
JP6119585B2 (ja) 電動機駆動装置
JP7343269B2 (ja) モータの制御装置および制御方法
JP2018143054A (ja) 車両
CN108696230B (zh) 驱动装置和驱动系统
JP2012244740A (ja) 駆動装置
JP2020156223A (ja) 駆動装置
JP6772501B2 (ja) 自動車
JP7073799B2 (ja) モータ制御方法、及び、モータ制御装置
JP6696456B2 (ja) モータ駆動装置
JP6862943B2 (ja) 駆動装置
JP6751496B2 (ja) 駆動装置
KR20180121386A (ko) 구동 시스템, 자동차, 및 구동 시스템의 제어 방법
US11637522B2 (en) Drive device
JP6693442B2 (ja) モータ駆動装置
JP2020089054A (ja) 電動車両
JP7144197B2 (ja) 回転電機の制御装置
JP6766538B2 (ja) 駆動装置
JP2022096717A (ja) 駆動装置
JP6828297B2 (ja) 自動車
JP2017147839A (ja) 駆動装置
JP2014162293A (ja) 車両の駆動力制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210624

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220908

R150 Certificate of patent or registration of utility model

Ref document number: 7153168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150