JP2012244740A - 駆動装置 - Google Patents

駆動装置 Download PDF

Info

Publication number
JP2012244740A
JP2012244740A JP2011111652A JP2011111652A JP2012244740A JP 2012244740 A JP2012244740 A JP 2012244740A JP 2011111652 A JP2011111652 A JP 2011111652A JP 2011111652 A JP2011111652 A JP 2011111652A JP 2012244740 A JP2012244740 A JP 2012244740A
Authority
JP
Japan
Prior art keywords
control mode
voltage
axis
inverter
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011111652A
Other languages
English (en)
Inventor
Masayoshi Suhama
将圭 洲濱
Daisuke Ogino
大介 荻野
Kazuhiro Tanaka
和宏 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Toyota Motor Corp
Original Assignee
Aisin AW Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd, Toyota Motor Corp filed Critical Aisin AW Co Ltd
Priority to JP2011111652A priority Critical patent/JP2012244740A/ja
Publication of JP2012244740A publication Critical patent/JP2012244740A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】電動機を駆動するためのインバータの制御モードを矩形波制御モードから正弦波制御モードに切り替える際の電動機の出力トルクの変動を抑制する。
【解決手段】駆動電圧系の電圧VHの上昇を伴って矩形波制御モードから正弦波制御モードに切り替えるときには、矩形波制御モードから過変調制御モードに切り替えて(S200)、電流指令Id*,Iq*を保持してインバータを制御すると共に電圧VHが切替目標電圧VHchまで上昇するよう昇圧コンバータを制御し(S210〜S230)、電圧VHが保持されるよう昇圧コンバータを制御すると共に電流指令Id*,Iq*を切替目標電流Idch,Iqchに向けて等トルクライン上を移動させながらインバータを制御し(S240〜S260)、過変調制御モードから正弦波制御モードに切り替える(S270)。
【選択図】図5

Description

本発明は、駆動装置に関し、詳しくは、電動機と、電動機を駆動するためのインバータと、二次電池と、インバータが接続された駆動電圧系と二次電池が接続された電池電圧系とに接続されて電池電圧系の電力を昇圧して駆動電圧系に供給可能な昇圧コンバータと、駆動電圧系の電圧が調節されるよう昇圧コンバータを制御すると共に、パルス幅変調による擬似的三相交流電圧を電動機に供給する正弦波制御モードと矩形波電圧を電動機に供給する矩形波制御モードと擬似的三相交流電圧と矩形波電圧との中間の過変調電圧を電動機に供給する過変調制御モードとのうち正弦波制御モードまたは過変調制御モードでインバータを制御するときには電動機のトルク指令に対応するd軸,q軸の電流指令であるd軸,q軸の制約電流指令を用いてインバータを制御し、矩形波制御モードでインバータを制御するときにはトルク指令に応じた電圧位相指令を用いてインバータを制御する制御手段と、を備える駆動装置に関する。
従来、この種の駆動装置としては、回転電機と、回転電機を駆動するための電源回路(コンバータ・インバータ)と、電源回路を介して回転電機と電力をやりとりする蓄電装置と、を備え、d軸,q軸で構成されるdq平面上において、回転電機を最大効率で運転できる最大効率特性線上で第1電流指令を実行しているときに、回転電機の動作点が最大効率特性線よりも遅角側の切替ラインを超えると、電源回路の制御モードを矩形波電圧位相制御モードから過変調電流制御モードに切り替えて、所定時間に亘って切替ライン上で第2電流指令を実行し、その後に最大効率特性線上における第1電流指令の実行に戻すものが提案されている(例えば、特許文献1参照)。この装置では、こうした制御により、矩形波電圧位相制御モードから過変調電流制御モードへの切替を滑らかに行なえるようにしている。
特開2010−81663号公報
上述のハード構成に加えて、電源回路と蓄電装置とに接続されて蓄電装置側の電力を昇圧して電源回路側に供給する昇圧コンバータを備える駆動装置では、電源回路に作用する電圧の上昇を伴って矩形波電圧位相制御モードから過変調電流制御モードを経由して正弦波電流制御モードに切り替えるよう指示されることがある。この場合、矩形波電圧位相制御モードから正弦波電流制御モードに切り替える際の回転電機の出力トルクの変動を抑制するために、電源回路に作用する電圧の上昇やdq平面上における動作点の移動をどのように行なうかが課題となる。
本発明の駆動装置は、電動機を駆動するためのインバータの制御モードを矩形波制御モードから正弦波制御モードに切り替える際の電動機の出力トルクの変動を抑制することを主目的とする。
本発明の駆動装置は、上述の主目的を達成するために以下の手段を採った。
本発明の駆動装置は、
電動機と、前記電動機を駆動するためのインバータと、二次電池と、前記インバータが接続された駆動電圧系と前記二次電池が接続された電池電圧系とに接続されて前記電池電圧系の電力を昇圧して前記駆動電圧系に供給可能な昇圧コンバータと、前記駆動電圧系の電圧が調節されるよう前記昇圧コンバータを制御すると共に、パルス幅変調による擬似的三相交流電圧を前記電動機に供給する正弦波制御モードと矩形波電圧を前記電動機に供給する矩形波制御モードと擬似的三相交流電圧と矩形波電圧との中間の過変調電圧を前記電動機に供給する過変調制御モードとのうち前記正弦波制御モードまたは前記過変調制御モードで前記インバータを制御するときには前記電動機のトルク指令と所定の制約とに応じたd軸,q軸の電流指令であるd軸,q軸の制約電流指令を用いて前記インバータを制御し、前記矩形波制御モードで前記インバータを制御するときには前記トルク指令に応じた電圧位相指令を用いて前記インバータを制御する制御手段と、を備える駆動装置において、
前記制御手段は、前記矩形波制御モードで前記インバータを制御しているときに、前記駆動電圧系の電圧の上昇を伴って前記矩形波制御モードから前記正弦波制御モードに切り替える所定切替条件が成立したときには、前記矩形波制御モードから前記過変調制御モードに切り替えて、d軸,q軸の電流指令を保持して前記過変調制御モードで前記インバータを制御すると共に前記駆動電圧系の電圧がd軸,q軸の前記制約電流指令を用いて前記正弦波制御モードで前記インバータを制御するのに必要な電圧である切替目標電圧まで上昇するよう前記昇圧コンバータを制御し、前記駆動電圧系の電圧が前記切替目標電圧まで上昇した後は、前記駆動電圧系の電圧が保持されるよう前記昇圧コンバータを制御すると共にd軸,q軸の電流指令をd軸,q軸の前記制約電流指令に向けてd軸,q軸を座標軸とするd−q座標系における前記電動機の出力トルクについての等トルクライン上を移動させながら前記過変調制御モードで前記インバータを制御し、d軸,q軸の電流指令がd軸,q軸の前記制約電流指令に一致したときに前記過変調制御モードから前記正弦波制御モードに切り替える手段である、
ことを特徴とする。
この本発明の駆動装置では、矩形波制御モードでインバータを制御しているときに、駆動電圧系の電圧の上昇を伴って矩形波制御モードから正弦波制御モードに切り替える所定切替条件が成立したときには、矩形波制御モードから過変調制御モードに切り替えて、d軸,q軸の電流指令を保持して過変調制御モードでインバータを制御すると共に駆動電圧系の電圧が電動機のトルク指令と所定の制約とに応じたd軸,q軸の電流指令であるd軸,q軸の制約電流指令を用いて正弦波制御モードでインバータを制御するのに必要な電圧である切替目標電圧まで上昇するよう昇圧コンバータを制御する。そして、駆動電圧系の電圧が切替目標電圧まで上昇した後には、駆動電圧系の電圧が保持されるよう昇圧コンバータを制御すると共にd軸,q軸の電流指令をd軸,q軸の制約電流指令に向けてd軸,q軸を座標軸とするd−q座標系における電動機の出力トルクについての等トルクライン上を移動させながら過変調制御モードでインバータを制御し、d軸,q軸の電流指令がd軸,q軸の制約電流指令に一致したときに過変調制御モードから正弦波制御モードに切り替える。これにより、駆動電圧系の電圧を上昇させる際やd軸,q軸の電流指令を移動させる際の電動機の出力トルクの変動を抑制することができる。この結果、駆動電圧系の電圧の上昇を伴って矩形波制御モードから正弦波制御モードに切り替える際の電動機の出力トルクの変動を抑制することができる。ここで、「所定の制約」は、トルク指令に対応するトルクを電動機から出力させるためのd軸,q軸の電流指令の実効値(d軸の電流指令の二乗とq軸の電流指令の二乗との和の平方根)が最小となるトルク指令とd軸,q軸の電流指令との関係を定めた制約である、ものとすることもできる。
こうした本発明の駆動装置において、前記所定切替条件は、前記矩形波制御モードで前記インバータを制御していて且つ前記電動機のトルク指令および回転数からなる目標駆動点が予め定められた所定領域内である条件である、ものとすることもできる。この態様の本発明の駆動装置において、前記所定切替条件は、前記矩形波制御モードで前記インバータを制御していて且つ前記電動機の目標駆動点が前記所定領域内であり且つ前記切替目標電圧が前記駆動電圧系の最大許容電圧以下である条件である、ものとすることもできる。
また、本発明の駆動装置において、前記切替目標電圧は、d軸,q軸を座標軸とするd−q座標系における前記電動機の出力トルクについての等トルクラインと、前記正弦波制御モードで前記インバータを制御するときの前記電動機のトルク指令とd軸,q軸の電流指令との関係を示すラインと、の交点のd軸,q軸の電流値をd軸,q軸の前記制約電流指令として用いて前記インバータを制御するのに必要な電圧である、ものとすることもできる。
本発明の一実施例としての駆動装置20の構成の概略を示す構成図である。 制御モード設定用マップの一例を示す説明図である。 電流指令設定用マップの一例を示す説明図である。 電子制御ユニット50により実行される所定切替処理指示ルーチンの一例を示すフローチャートである。 電子制御ユニット50により実行される所定切替処理ルーチンの一例を示すフローチャートである。 振動領域を示す説明図である。 ステップS110〜S130の処理の様子の一例を示す説明図である。 所定電流移動制御の実行の様子の一例を示す説明図である。
次に、本発明を実施するための形態を実施例を用いて説明する。
図1は、本発明の一実施例としての駆動装置20の構成の概略を示す構成図である。実施例の駆動装置20は、電気自動車やハイブリッド自動車に搭載され、図示するように、永久磁石が埋め込まれたロータと三相コイルが巻回されたステータとを備える周知の同期発電電動機として構成されたモータ22と、モータ22を駆動するためのインバータ24と、例えばリチウムイオン二次電池として構成されたバッテリ26と、インバータ24が接続された電力ライン(以下、駆動電圧系電力ラインという)32とバッテリ26が接続された電力ライン(以下、電池電圧系電力ラインという)34とに接続されて駆動電圧系電力ライン32の電圧VHを調節すると共に駆動電圧系電力ライン32と電池電圧系電力ライン34との間で電力のやりとりを行なう昇圧コンバータ30と、装置全体をコントロールする電子制御ユニット50と、を備える。
インバータ24は、6つのスイッチング素子としてのトランジスタT11〜T16と、トランジスタT11〜T16に逆方向に並列接続された6つのダイオードD11〜D16と、により構成されている。トランジスタT11〜T16は、駆動電圧系電力ライン32の正極母線と負極母線とに対してソース側とシンク側になるよう2個ずつペアで配置されており、対となるトランジスタ同士の接続点の各々にモータ22の三相コイル(U相,V相,W相)の各々が接続されている。したがって、インバータ24に電圧が作用している状態でトランジスタT11〜T16のオン時間の割合を調節することにより、三相コイルに回転磁界を形成でき、モータ22を回転駆動することができる。駆動電圧系電力ライン32の正極母線と負極母線とには平滑用のコンデンサ36が接続されている。
昇圧コンバータ30は、2つのスイッチング素子としてのトランジスタT31,T32とトランジスタT31,T32に逆方向に並列接続された2つのダイオードD31,D32とリアクトルLとからなる昇圧コンバータとして構成されている。2つのトランジスタT31,T32は、それぞれ駆動電圧系電力ライン32の正極母線,駆動電圧系電力ライン32および電池電圧系電力ライン34の負極母線に接続されており、その接続点とバッテリ26の正極端子とにはリアクトルLが接続されている。したがって、トランジスタT31,T32をオンオフすることにより、電池電圧系電力ライン34の電力を昇圧して駆動電圧系電力ライン32に供給したり、駆動電圧系電力ライン32の電力を降圧して電池電圧系電力ライン34に供給したりすることができる。リアクトルLと駆動電圧系電力ライン32および電池電圧系電力ライン34の負極母線とには平滑用のコンデンサ38が接続されている。
電子制御ユニット50は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポートを備える。電子制御ユニット50には、モータ22のロータの回転位置を検出する回転位置検出センサ22aからのモータ22のロータの回転位置θmや、モータ22の三相コイルのV相,W相に印加される相電流を検出する電流センサ23V,23Wからの相電流Iv,Iw,コンデンサ36の端子間に取り付けられた電圧センサ36aからの駆動電圧系電力ライン32の電圧VH,コンデンサ38の端子間に取り付けられた電圧センサ38aからの電池電圧系電力ライン34の電圧VL,バッテリ26の端子間に設置された図示しない電圧センサからの端子間電圧Vb,バッテリ26の出力端子に接続された電池電圧系電力ライン34に取り付けられた図示しない電流センサからの充放電電流Ib,バッテリ26に取り付けられた図示しない温度センサからの電池温度Tbなどが入力ポートを介して入力されている。また、電子制御ユニット50からは、インバータ24のトランジスタT11〜T16へのスイッチング制御信号や昇圧コンバータ30のトランジスタT31,T32へのスイッチング制御信号などが出力ポートを介して出力されている。なお、電子制御ユニット50は、回転位置検出センサ22aからの回転位置θmに基づいてモータ22のロータの電気角θeや回転数Nmを演算したり、電流センサにより検出されたバッテリ26の充放電電流Ibに基づいてそのときのバッテリ26から放電可能な電力の容量の全容量に対する割合である蓄電割合SOCを演算したり、演算した蓄電割合SOCと電池温度Tbとに基づいてバッテリ26を充放電してもよい最大許容電力である入出力制限Win,Woutを演算したりしている。
こうして構成された実施例の駆動装置20では、電子制御ユニット50は、バッテリ26の入出力制限Win,Woutの範囲内でモータ22から出力すべきトルクとしてのトルク指令Tm*を設定すると共に設定したトルク指令Tm*でモータ22が駆動されるようインバータ24のトランジスタT11〜T16をスイッチング制御すると共に、駆動電圧系電力ライン32の電圧VHがモータ22のトルク指令Tm*と回転数Nmとに応じた目標電圧VHtagとなるよう昇圧コンバータ30のトランジスタT31,T32をスイッチング制御する。以下、インバータ24の制御について説明する。
インバータ24の制御では、電子制御ユニット50は、まず、モータ22のトルク指令Tm*および回転数Nmと駆動電圧系電力ライン32の電圧VHとに基づいてインバータ24の制御モードを設定する。ここで、インバータ24の制御モードは、実施例では、モータ22のトルク指令Tm*および回転数Nmと駆動電圧系電力ライン32の電圧VHと制御モードとの関係を予め定めて制御モード設定用マップとして図示しないROMに記憶しておき、モータ22のトルク指令Tm*および回転数Nmと駆動電圧系電力ライン32の電圧VHとが与えられると記憶したマップから対応する制御モードを導出して設定するものとした。制御モード設定用マップの一例を図2に示す。インバータ24の制御モードは、モータ22の電圧指令と三角波電圧との比較によってトランジスタT11〜T16のオン時間の割合を調節するパルス幅変調(PWM)制御において三角波電圧の振幅以下の振幅の正弦波状の電圧指令を変換して得られる擬似的三相交流電圧をモータ22に供給する正弦波制御モード,パルス幅変調制御において三角波電圧の振幅より大きな振幅の正弦波状の電圧指令を変換して得られる過変調電圧をモータ22に供給する過変調制御モード,矩形波電圧をモータ22に供給する矩形波制御モードがあり、図2に示すように、駆動電圧系電力ライン32の電圧VH毎に、モータ22のトルク指令Tm*や回転数Nmが小さい側から順に正弦波制御モード,過変調制御モード,矩形波制御モードが定められていると共に、駆動電圧系電力ライン32の電圧VHが高いほど正弦波制御モードと過変調制御モードとの境界,過変調制御モードと矩形波制御モードとの境界が高回転高トルク側に定められている。モータ22やインバータ24の特性として、矩形波制御モード,過変調制御モード,正弦波制御モードの順で、モータ22の出力応答性や制御性がよくなり、出力可能なトルクが小さくなり、インバータ24のスイッチング損失などが大きくなることが分かっているから、低回転数低トルクの領域では、正弦波制御モードでインバータ24を制御することによってモータ22の出力応答性や制御性を良くすることができ、高回転数高トルク領域では、矩形波制御モードを用いてインバータ24を制御することによって大きなトルクを出力可能とすると共にインバータ24のスイッチング損失などを低減することができる。
インバータ24の制御モードが正弦波制御モードや過変調制御モードのときには、モータ22の三相コイルのU相,V相,W相に流れる相電流Iu,Iv,Iwの総和を値0としてモータ22の電気角θeを用いて相電流Iu,Ivをd軸,q軸の電流Id,Iqに座標変換(3相−2相変換)すると共に、モータ22のトルク指令Tm*に基づいてd軸,q軸の電流指令Id*,Iq*を設定し、d軸,q軸の電流Id,Iqと電流指令Id*,Iq*との差が打ち消されるようにするためのフィードバック制御によってd軸,q軸の電圧指令Vd*,Vq*を設定し、電気角θeを用いてd軸,q軸の電圧指令Vd*,Vq*をモータ22の三相コイルのU相,V相,W相に印加すべき電圧指令Vu*,Vv*,Vw*に座標変換(2相−3相変換)し、座標変換した電圧指令Vu*,Vv*,Vw*をインバータ24のトランジスタT11〜T16をスイッチングするためのPWM信号に変換してインバータ24のトランジスタT11〜T16に出力することにより、トランジスタT11〜T16をスイッチング制御する。ここで、d軸はモータ22のロータに埋め込まれた永久磁石によって形成される磁束の方向であり、q軸はd軸に対してモータ22の正回転方向にπ/2だけ電気角θeが進角した方向である。また、以下の説明では、d軸,q軸を座標軸とする座標系をd−q座標系と称する。さらに、d軸,q軸の電流指令Id*,Iq*は、実施例では、モータ22のトルク指令Tm*とd軸,q軸の電流指令Id*,Iq*との関係を予め定めて電流指令設定用マップとして図示しないROMに記憶しておき、モータ22のトルク指令Tm*が与えられると記憶したマップから対応するd軸,q軸の電流指令Id*,Iq*を導出して設定するものとした。このモータ22のトルク指令Tm*とd軸,q軸の電流指令Id*,Iq*との関係は、実施例では、トルク指令Tm*に対応するトルクをモータ22から出力させるための電流指令Id*,Iq*の実効値Irms(電流指令Id*の二乗と電流指令q*の二乗との和の平方根)が最小となるトルク指令Tm*と電流指令Id*,Iq*との関係(以下、この関係を示すラインを最適進角ラインという)とした。電流指令設定用マップの一例を図3に示す。図3の例では、モータ22のトルク指令Tm*がトルクT3のときにこのトルク指令Tm*に対応するd軸,q軸の電流指令Id*,Iq*を設定する際の様子を示している。なお、図3には、最適進角ラインやトルク指令Tm*,電流指令Id*,Iq*の他に、電流指令Id*,Iq*の実効値Irmsと、三相コイルに通電される電流によってステータに形成される磁界の方向のq軸に対する角度である電流指令角度θiと、についても図示した。
インバータ24の制御モードが矩形波制御モードのときには、モータ22の電気角θeを用いてモータ22の相電流Iu,Ivをd軸,q軸の電流Id,Iqに座標変換(3相−2相変換)すると共に、座標変換によって得られたd軸,q軸の電流Id,Iqに基づいてモータ22から出力されていると推定される推定トルクTmestを求めて、モータ22の推定トルクTmestとトルク指令Tm*との差が打ち消されるようにするためのフィードバック制御によって電圧位相指令θ*を設定し、設定した電圧位相指令θ*に基づく矩形波電圧がモータ22に印加されるよう矩形波信号をインバータ24のトランジスタT11〜T16に出力することにより、トランジスタT11〜t16をスイッチング制御する。
次に、こうして構成された実施例の駆動装置20の動作、特に、駆動電圧系電力ライン32の電圧VHの上昇を伴ってインバータ24の制御モードを矩形波制御モードから過変調制御モードを経由して正弦波制御モードに切り替える所定切替処理を実行する際の動作について説明する。図4は、電子制御ユニット50により実行される所定切替処理指示ルーチンの一例を示すフローチャートであり、図5は、電子制御ユニット50により実行される所定切替処理ルーチンの一例を示すフローチャートである。図4のルーチンは、矩形波制御モードでインバータ24を制御しているときに所定時間毎(例えば、数msec毎)に繰り返し実行され、図5のルーチンは、初期値として値0が設定される所定切替処理指示フラグFに図4のルーチンにより値1が設定されたときに実行される。以下、まず、図4の所定切替処理指示ルーチンについて説明し、その後に、図5の所定切替処理ルーチンについて説明する。
所定切替処理指示ルーチンが実行されると、電子制御ユニット50は、まず、モータ22のトルク指令Tm*と回転数Nmとからなるモータ22の目標駆動点が予め定められた振動領域内か否かを判定する(ステップS100)。図6は、振動領域を示す説明図である。振動領域は、インバータ24の制御モードを矩形波制御モードから過変調制御モードに切り替えて過変調制御モードでインバータ24を継続して制御するときや、インバータ24の制御モードの変更時にモータ22の出力トルクが変動したときなどに、駆動装置20やこれを搭載する自動車に比較的振動が生じやすい領域として定められ、例えば、モータ22の回転数Nmが所定回転数Nref1〜所定回転数Nref2でモータ22のトルクが所定トルクTref以上の領域などとして定めることができる。ここで、所定回転数Nref1は、例えば、1800rpmや2000rpm,2200rpmなどとすることができ、所定回転数Nref2は、例えば、2800rpmや3000rpm,3200rpmなどとすることができ、所定トルクTrefは、50N・mや60N・m,70N・mなどとすることができる。
モータ22の目標駆動点が振動領域外であると判定されたときには、そのまま本ルーチンを終了する。この場合、矩形波制御モードによるインバータ24の制御を継続することになる。
モータ22の目標駆動点が振動領域内であると判定されたときには、d−q座標系において、モータ22から現在のトルクと同一のトルクを出力するのに必要なd軸,q軸の電流Id,Iqの関係を示すラインである等トルクラインを設定し(ステップS110)、設定した等トルクラインと最適進角ラインとの交点をd軸,q軸の切替目標電流Idch,Iqchとして設定し(ステップS120)、正弦波制御モードで切替目標電流Idch,Iqchを用いてインバータ24を制御するのに必要な電圧である切替目標電圧VHchを設定し(ステップS130)、切替目標電圧VHchを駆動電圧系電力ライン32の最大許容電圧VHmaxと比較する(ステップS140)。ここで、等トルクラインの設定に用いるd軸,q軸の電流Id,Iqは、モータ22の電気角θeを用いてモータ22の相電流Iu,Ivを座標変換(3相−2相変換)することによって得ることができる。また、ステップS110〜S130の処理の様子の一例を図7に示す。図中、「Id0」,「Iq0」は、モータ22の現在のトルクに対応するd軸,q軸の電流Id,Iqであり、「VH0」は、駆動電圧系電力ライン32の現在の電圧VHである。さらに、最大許容電圧VHmaxは、コンデンサ36の耐圧以下の電圧として予め定められたものを用いることができ、例えば、600Vや650V,700Vなどを用いることができる。ステップS140の判定は、駆動電圧系電力ライン32の電圧VHの上昇を伴ってインバータ24の制御モードを矩形波制御モードから過変調制御モードを経由して正弦波制御モードに切り替える所定切替処理を実行可能か否かを判定する処理である。
切替目標電圧VHchが最大許容電圧VHmaxより高いときには、所定切替処理を実行不能であると判断し、そのまま本ルーチンを終了する。この場合、矩形波制御モードによるインバータ24の制御を継続することになる。
切替目標電圧VHchが最大許容電圧VHmax以下のときには、所定切替処理を実行可能であるであると判断し、この所定切替処理を指示するフラグとしての所定切替処理指示フラグFに値1を設定して(ステップS150)、本ルーチンを終了する。即ち、実施例では、矩形波制御モードでインバータ24を制御しているときに、モータ22の目標駆動点が振動領域内となり、切替目標電圧VHchが駆動電圧系電力ライン32の最大許容電圧VHmax以下のときには、所定切替処理の実行を指示するのである。
次に、所定切替処理指示フラグFに値1が設定されたときに実行が開始される図5の所定切替処理ルーチンについて説明する。所定切替処理ルーチンが実行されると、電子制御ユニット50は、まず、インバータ24の制御モードを矩形波制御モードから過変調制御モードに切り替えて(ステップS200)、d軸,q軸の電流指令Id*,Iq*を保持して過変調制御モードでインバータ24を制御する所定電流保持制御の実行を開始すると共に(ステップS210)、駆動電圧系電力ライン32の電圧VHが切替目標電圧VHchまで上昇するよう昇圧コンバータ30を制御する所定昇圧制御の実行を開始し(ステップS220)、駆動電圧系電力ライン32の電圧VHが切替目標電圧VHchまで上昇するのを待つ(ステップS230)。ここで、所定電流保持制御は、実施例では、矩形波制御モードから過変調制御モードに切り替えたときのd軸,q軸の電流Id,Iqを電流指令Id*,Iq*として設定して過変調制御モードでインバータ24を制御することによって実行するものとした。このように、所定電流保持制御を実行すると共に所定昇圧制御を実行することにより、駆動電圧系電力ライン32の電圧VHを上昇させる際のモータ22の出力トルクの変動を抑制することができる。しかも、インバータ24の制御モードを矩形波制御モードから過変調制御モードに切り替えてから所定昇圧制御を実行するから、矩形波制御モードのまま所定昇圧制御を実行するものに比してモータ22の出力トルクの変動を抑制することができる。
そして、駆動電圧系電力ライン32の電圧VHが切替目標電圧VHchまで上昇すると、駆動電圧系電力ライン32の電圧VHが保持されるよう昇圧コンバータ30を制御する所定電圧保持制御の実行を開始すると共に(ステップS240)、d軸,q軸の電流指令Id*,Iq*をd軸,q軸の切替目標電流Idch,Iqchに向けて等トルクライン上を移動させながら過変調制御モードでインバータ24を制御する所定電流移動制御の実行を開始し(ステップS250)、d軸,q軸の電流指令Id*,Iq*が切替目標電流Idch,Iqchに一致すると(ステップS260)、インバータ24の制御モードを過変調制御モードから正弦波制御モードに切り替えて(ステップS270)、本ルーチンを終了する。図8は、所定電流移動制御の実行の様子の一例を示す説明図である。所定電流移動制御は、実施例では、d軸,q軸の電流指令Id*,Iq*が、矩形波制御モードから過変調制御モードに切り替えたときのd軸,q軸の電流Id,Iq(電流Id0,Iq0)から切替目標電流Idch,Iqchに向けて所定回数n(例えば、5や10など)で移動するよう、等トルクライン上にi(1<i<n)回目の移動点(図中、四角印参照)を定めて、その移動点を順に電流指令Id*,Iq*として設定して過変調制御モードでインバータ24を制御することによって実行するものとした。このように、所定電圧保持制御を実行すると共に所定電流移動制御を実行することにより、d軸,q軸の電流指令id*,Iq*を移動させる際のモータ22の出力トルクの変動を抑制することができる。
こうして駆動電圧系電力ライン32の電圧VHの上昇を伴ってインバータ24の制御モードを矩形波制御モードから正弦波制御モードに切り替えると、実施例では、その後に少なくとも所定時間に亘ってもしくはモータ22の駆動点が振動領域外に移動するまで、駆動電圧系電力ライン32の電圧VHが切替目標電圧VHch以上となるよう昇圧コンバータ30を制御すると共にトルク指令Tm*と最適進角ラインとによって得られるd軸,q軸の電流指令Id*,Iq*を用いて正弦波制御モードでインバータ24を制御するものとした。これにより、モータ22の駆動点が振動領域内のときに、過変調制御モードでインバータ24が継続して制御されないようにしたり、インバータ24の制御モードが頻繁に変更されないようにしたりして駆動装置20やこれを搭載する自動車に振動が生じるのを抑制することができる。
以上説明した実施例の駆動装置20によれば、矩形波制御モードでインバータ24を制御しているときに、モータ22の目標駆動点が振動領域内となり、切替目標電圧VHchが駆動電圧系電力ライン32の最大許容電圧VHmax以下のときには、矩形波制御モードから過変調制御モードに切り替えて、d軸,q軸の電流指令Id*,Iq*を保持して過変調制御モードでインバータ24を制御すると共に駆動電圧系電力ライン32の電圧VHが切替目標電圧VHchまで上昇するよう昇圧コンバータ30を制御し、駆動電圧系電力ライン32の電圧VHが切替目標電圧VHchまで上昇すると、駆動電圧系電力ライン32の電圧VHが保持されるよう昇圧コンバータ30を制御すると共にd軸,q軸の電流指令Id*,Iq*をd軸,q軸の切替目標電流Idch,Iqchに向けて等トルクライン上を移動させながら過変調制御モードでインバータ24を制御し、d軸,q軸の電流指令Id*,Iq*が切替目標電流Idch,Iqchに一致したときに過変調制御モードから正弦波制御モードに切り替えるから、駆動電圧系電力ライン32の電圧VHを上昇させる際やd軸,q軸の電流指令Id*,Iq*を移動させる際のモータ22の出力トルクの変動を抑制することができる。この結果、駆動電圧系電力ライン32の電圧VHの上昇を伴って矩形波制御モードから正弦波制御モードに切り替える際のモータ22の出力トルクの変動を抑制することができる。
実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、モータ22が「電動機」に相当し、インバータ24が「インバータ」に相当し、バッテリ26が「二次電池」に相当し、昇圧コンバータ30が「昇圧コンバータ」に相当し、図4の所定切替処理指示ルーチンや図5の所定切替処理ルーチンの一例を実行する電子制御ユニット50が「制御手段」に相当する。
なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、駆動装置の製造産業などに利用可能である。
20 駆動装置、22 モータ、22a 回転位置検出センサ、23V,23W 電流センサ、24 インバータ、26 バッテリ、30 昇圧コンバータ、32 駆動電圧系電力ライン、34 電池電圧系電力ライン、36 コンデンサ、36a 電圧センサ、38 コンデンサ、38a 電圧センサ、50 電子制御ユニット、D11〜D16,D31,D32 ダイオード、T11〜T16,T31,T32 トランジスタ。

Claims (1)

  1. 電動機と、前記電動機を駆動するためのインバータと、二次電池と、前記インバータが接続された駆動電圧系と前記二次電池が接続された電池電圧系とに接続されて前記電池電圧系の電力を昇圧して前記駆動電圧系に供給可能な昇圧コンバータと、前記駆動電圧系の電圧が調節されるよう前記昇圧コンバータを制御すると共に、パルス幅変調による擬似的三相交流電圧を前記電動機に供給する正弦波制御モードと矩形波電圧を前記電動機に供給する矩形波制御モードと擬似的三相交流電圧と矩形波電圧との中間の過変調電圧を前記電動機に供給する過変調制御モードとのうち前記正弦波制御モードまたは前記過変調制御モードで前記インバータを制御するときには前記電動機のトルク指令と所定の制約とに応じたd軸,q軸の電流指令であるd軸,q軸の制約電流指令を用いて前記インバータを制御し、前記矩形波制御モードで前記インバータを制御するときには前記トルク指令に応じた電圧位相指令を用いて前記インバータを制御する制御手段と、を備える駆動装置において、
    前記制御手段は、前記矩形波制御モードで前記インバータを制御しているときに、前記駆動電圧系の電圧の上昇を伴って前記矩形波制御モードから前記正弦波制御モードに切り替える所定切替条件が成立したときには、前記矩形波制御モードから前記過変調制御モードに切り替えて、d軸,q軸の電流指令を保持して前記過変調制御モードで前記インバータを制御すると共に前記駆動電圧系の電圧がd軸,q軸の前記制約電流指令を用いて前記正弦波制御モードで前記インバータを制御するのに必要な電圧である切替目標電圧まで上昇するよう前記昇圧コンバータを制御し、前記駆動電圧系の電圧が前記切替目標電圧まで上昇した後は、前記駆動電圧系の電圧が保持されるよう前記昇圧コンバータを制御すると共にd軸,q軸の電流指令をd軸,q軸の前記制約電流指令に向けてd軸,q軸を座標軸とするd−q座標系における前記電動機の出力トルクについての等トルクライン上を移動させながら前記過変調制御モードで前記インバータを制御し、d軸,q軸の電流指令がd軸,q軸の前記制約電流指令に一致したときに前記過変調制御モードから前記正弦波制御モードに切り替える手段である、
    ことを特徴とする駆動装置。
JP2011111652A 2011-05-18 2011-05-18 駆動装置 Withdrawn JP2012244740A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011111652A JP2012244740A (ja) 2011-05-18 2011-05-18 駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011111652A JP2012244740A (ja) 2011-05-18 2011-05-18 駆動装置

Publications (1)

Publication Number Publication Date
JP2012244740A true JP2012244740A (ja) 2012-12-10

Family

ID=47465866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011111652A Withdrawn JP2012244740A (ja) 2011-05-18 2011-05-18 駆動装置

Country Status (1)

Country Link
JP (1) JP2012244740A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103918A (ja) * 2015-12-02 2017-06-08 三菱電機株式会社 回転電機の制御装置およびその制御方法
FR3062758A1 (fr) * 2017-02-09 2018-08-10 Valeo Equipements Electriques Moteur Procede de commande d'une machine electrique tournante lors d'un changement de modulation de type pleine onde vers une modulation de largeur d'impulsion
JP2019068598A (ja) * 2017-09-29 2019-04-25 日産自動車株式会社 可変磁力モータの制御方法および制御装置
JP2019134630A (ja) * 2018-02-01 2019-08-08 日産自動車株式会社 電動機の制御方法及び制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103918A (ja) * 2015-12-02 2017-06-08 三菱電機株式会社 回転電機の制御装置およびその制御方法
FR3062758A1 (fr) * 2017-02-09 2018-08-10 Valeo Equipements Electriques Moteur Procede de commande d'une machine electrique tournante lors d'un changement de modulation de type pleine onde vers une modulation de largeur d'impulsion
EP3361624A1 (fr) * 2017-02-09 2018-08-15 Valeo Equipements Electriques Moteur Procede de commande d'une machine electrique tournante lors d'un changement de modulation de type pleine onde vers une modulation de largeur d'impulsion
US10234025B2 (en) 2017-02-09 2019-03-19 Valeo Equipements Electriques Moteur Method for controlling a rotating electrical machine on changing from modulation of the full-wave type to pulse-width modulation
JP2019068598A (ja) * 2017-09-29 2019-04-25 日産自動車株式会社 可変磁力モータの制御方法および制御装置
JP6998717B2 (ja) 2017-09-29 2022-01-18 日産自動車株式会社 可変磁力モータの制御方法および制御装置
JP2019134630A (ja) * 2018-02-01 2019-08-08 日産自動車株式会社 電動機の制御方法及び制御装置
JP7020150B2 (ja) 2018-02-01 2022-02-16 日産自動車株式会社 電動機の制御方法及び制御装置

Similar Documents

Publication Publication Date Title
US8054031B2 (en) Converter device, rotating electrical machine control device, and drive device
JP5018516B2 (ja) 回転電機制御装置
US8390223B2 (en) Control device for electric motor drive device
US20110080125A1 (en) Control device for electric motor drive apparatus
US9407181B2 (en) Vehicle and method for controlling vehicle
JP5893876B2 (ja) モータ制御システム
JP5803559B2 (ja) 回転電機制御装置
JP2009201192A (ja) モータ駆動制御装置
US11296617B2 (en) Inverter control device
JP6777008B2 (ja) 駆動装置
JP6119585B2 (ja) 電動機駆動装置
JP2018186684A (ja) 自動車
JP2012244740A (ja) 駆動装置
JP5958400B2 (ja) モータ駆動制御装置
JP7153168B2 (ja) 電動機の制御装置
JP2013013260A (ja) 駆動装置および車両
JP2011151948A (ja) 交流モータの制御装置
JP6332015B2 (ja) 駆動装置
JP2012223026A (ja) 駆動装置
JP2011155787A (ja) 回転電機制御システム
JP6862943B2 (ja) 駆動装置
JP2010220306A (ja) モータの制御装置
JP6751496B2 (ja) 駆動装置
JP5290048B2 (ja) 車両のモータ制御システム
JP6708843B2 (ja) 駆動装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805