JP2019068598A - 可変磁力モータの制御方法および制御装置 - Google Patents

可変磁力モータの制御方法および制御装置 Download PDF

Info

Publication number
JP2019068598A
JP2019068598A JP2017191244A JP2017191244A JP2019068598A JP 2019068598 A JP2019068598 A JP 2019068598A JP 2017191244 A JP2017191244 A JP 2017191244A JP 2017191244 A JP2017191244 A JP 2017191244A JP 2019068598 A JP2019068598 A JP 2019068598A
Authority
JP
Japan
Prior art keywords
control
magnetic force
variable magnetic
force motor
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017191244A
Other languages
English (en)
Other versions
JP6998717B2 (ja
Inventor
佐々木 健介
Kensuke Sasaki
健介 佐々木
加藤 崇
Takashi Kato
崇 加藤
谷本 勉
Tsutomu Tanimoto
勉 谷本
透 松浦
Toru Matsuura
透 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2017191244A priority Critical patent/JP6998717B2/ja
Publication of JP2019068598A publication Critical patent/JP2019068598A/ja
Application granted granted Critical
Publication of JP6998717B2 publication Critical patent/JP6998717B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

【課題】着減磁制御時に要する電圧を抑制するとともに、着減磁制御完了後のトルク応答性を改善することができる可変磁力モータの制御方法を提供することを目的とする。【解決手段】駆動中に永久磁石の磁力を変化させる可変磁力モータの制御方法であって、可変磁力モータに供給される電流をフィードバックする電流フィードバックPI制御により走行要求に基づいて設定される目標トルクを出力するように当該可変磁力モータを制御するPI制御ステップと、当該目標トルクと同等のトルクを出力する指令鎖交磁束ベクトルを算出して、フィードフォワード制御により指令鎖交磁束ベクトルを実現するように可変磁力モータを制御するフィードフォワード制御ステップと、を含む。そして、PI制御ステップとフィードフォワード制御ステップとを可変磁力モータの運転状態に応じて切り替える。【選択図】図1

Description

本発明は、可変磁力モータの制御方法および制御装置に関する。
従来、インバータから固定子巻線に供給される磁化電流によって永久磁石の磁力を変化させる可変磁束(可変磁力)モータの駆動システムが知られている(特許文献1参照)。この駆動システムは、直流電圧を昇圧する昇圧回路を有しており、これを着磁制御時に動作させ、昇圧した電圧をインバータに入力することで着磁制御時の電圧不足を補償している。また、可変磁力モータは、車両の運転状態に応じて永久磁石の磁力を変化させることにより、駆動時の損失を低減させて、モータ効率を向上させることができるという特性を有している。
特開2007−240833号公報
しかしながら、上記の昇圧回路は、着磁制御時以外においてその動作を停止している際に、昇圧回路を構成する素子が電力を消費することによる損失が発生する。このため、可変磁力モータの特性による駆動時の損失低減代が相殺され、結果として駆動システム全体としての効率が向上しないという課題がある。
本発明は、着減磁制御時に要する電圧を抑制し、追加の昇圧回路を不要とすることでシステム全体の効率の改善を図るとともに、着減磁制御完了後のトルク応答性を改善することができる可変磁力モータの制御方法を提供することを目的とする。
本発明による可変磁力モータの制御方法は、駆動中に永久磁石の磁力を変化させる可変磁力モータの制御方法であって、可変磁力モータに供給される電流をフィードバックする電流フィードバックPI制御により走行要求に基づいて設定される目標トルクを出力するように当該可変磁力モータを制御するPI制御ステップと、当該目標トルクと同等のトルクを出力する指令鎖交磁束ベクトルを算出して、フィードフォワード制御により指令鎖交磁束ベクトルを実現するように可変磁力モータを制御するフィードフォワード制御ステップと、を含む。そして、PI制御ステップとフィードフォワード制御ステップとを可変磁力モータの運転状態に応じて切り替える。
本発明によれば、PI制御ステップとフィードフォワード制御ステップとを運転状態に応じて切り替えることで着減磁制御に要する電圧を抑制することができるので、追加の昇圧回路を不要とし、システム全体の効率改善を図ることができる。また、PI制御ステップおよびフィードフォワード制御ステップが同等のトルクを出力するように制御されるので、着減磁制御完了後のトルク応答性を改善することができる。
図1は、第1実施形態の可変磁力モータの制御装置の構成例を示す制御ブロック図である。 図2は、第1実施形態において可変磁力モータを制御する際のαβ座標上の鎖交磁束ベクトルを模式的に表した図である。 図3は、電流FB制御器の構成例を示す制御ブロック図である。 図4は、電流FB制御器の他の構成例を示す制御ブロック図である。 図5は、第2実施形態において、可変磁力モータが鎖交磁束ベクトル制御される際のdq座標系における動作点の軌跡を表した模式図である。 図6は、第3実施形態において可変磁力モータを制御する際のαβ座標上の鎖交磁束ベクトルを模式的に表した図である。 図7は、dq座標系における中間鎖交磁束ベクトルを説明するための図である。
以下、添付図面を参照しながら本発明の実施形態について説明する。
[第1実施形態]
図1は、本発明の第1実施形態に係る可変磁力モータの制御装置100の構成例を示す制御ブロック図である。
可変磁力モータの制御装置100(以下「モータ制御装置100」と称する)は、可変磁力モータ6を駆動するとともに、可変磁力モータ6が備える永久磁石の着減磁を制御する。モータ制御装置100は、例えば、可変磁力モータ6を備えるハイブリッド車両や電気自動車などに搭載される。
本実施形態のモータ制御装置100は、ベクトル制御器1と、電流フィードバック制御器20と、dq軸/UVW相変換器3と、切替器4と、PWM電圧インバータ5と、UVW相/dq軸変換器7と、磁束オブザーバ8と、鎖交磁束フィードフォワード制御器10とを含む。本実施形態のモータ制御装置の制御対象は可変磁力モータ6である。
モータ制御装置100は、1個、又は複数のコントローラにより構成される。コントローラは、例えば、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、および、入出力インタフェース(I/Oインタフェース)から構成される。モータ制御装置100を構成するコントローラは、以下に説明する各機能を実現するようにプログラムされている。
モータ制御装置100の制御対象である可変磁力モータ6(以下単に「モータ6」と呼ぶ)は、固定子巻線を有する固定子と、永久磁石を埋め込んだ回転子とにより構成される可変磁力モータである。回転子に埋め込まれた永久磁石は、モータ6が回転動作(駆動)しているときに固定子巻線を流れる電流により形成される磁界によってその磁力を変化させることができる特性を有している。すなわち、可変磁力モータ6が備える永久磁石は、モータ6の巻線に流れる電流によって着磁或いは減磁がなされ、その残留磁束密度が変化するものである。なお、このような特性を持つ永久磁石は低保磁力磁石とも呼ばれ、その保磁力は、一般的なIPM(Interior Permanent Magnet)モータで用いられる永久磁石(高保磁力磁石)の保持力の1/5程度である。
本実施形態のモータ6は、U相、V相及びW相の各相の固定子巻線に交流電流iu、iv、iwが供給されることによって駆動する。モータ6には、不図示の回転子位置検出器が備えられている。この回転子位置検出器がモータ6の回転子の位置を所定の周期で検出することにより、回転子の電気角(ロータ位相)θが算出される。算出されたロータ位相θは、UVW相/dq軸変換器7と、鎖交磁束フィードフォワード制御器10とに出力される。なお、回転子位置検出器は、例えばレゾルバやエンコーダである。
また、モータ制御装置100は、不図示の回転速度演算器を備え、所定の周期で取得されるロータ位相θの単位時間当たりの変化量からモータ6のロータ回転速度ωを算出する。算出されたロータ回転速度ωは、ベクトル制御器1、磁束オブザーバ8、及び鎖交磁束フィードフォワード制御器10に出力される。
ベクトル制御器1は、不図示のコントローラ、あるいはモータ制御装置100が有する不図示の機能部から、モータ6の駆動力を決定するトルク指令値T*を取得する。不図示のコントローラにおいては、車両の運転状態に応じてトルク指令値T*が算出される。例えば、車両に設けられたアクセルペダルの踏み込み量が大きくなるほど、ベクトル制御器1に出力されるトルク指令値T*は大きくなる。すなわち、トルク指令値T*は、ドライバの走行要求に基づき決定される目標トルクである。なお、以下では、可変磁力モータ6に当該目標トルクを達成させるための制御を「負荷動作制御」と称し、負荷動作制御による制御区間における可変磁力モータ6の運転状態を「第1運転状態」と称する。
ベクトル制御器1は、トルク指令値T*と、ロータ回転速度ωとに基づいて、モータ6に供給される電流の電流ベクトルを表すd軸電流指令値id*およびq軸電流指令値iq*を演算する。本実施形態では、ベクトル制御器1は、モータ6のトルク指令値T*及びロータ回転速度ωで特定される運転点ごとに、d軸電流指令値及びq軸電流指令値を互いに対応付けたベクトル制御マップを予め記憶している。このベクトル制御マップは、実験データ等により適宜設定される。
そして、ベクトル制御器1は、モータ6に対するトルク指令値T*と、ロータ回転速度ωとを取得すると、ベクトル制御マップを参照し、トルク指令値T*及びロータ回転速度ωで特定された運転点に対応付けられたd軸電流指令値id*及びq軸電流指令値iq*を算出して、電流フィードバック制御器20に出力する。なお、本明細書では、モータ6に供給される電流のd軸成分及びq軸成分を、それぞれd軸電流及びq軸電流と称している。なお、ベクトル制御器1は、ベクトル制御マップを予め記憶しておく必要は必ずしもなく、演算によりd軸電流指令値id*及びq軸電流指令値iq*を求めてもよい。
また、本実施形態のベクトル制御器1は、モータ6が備える永久磁石を所望の車速およびトルクを実現するのに適した磁化状態に制御するために、永久磁石への着減磁量を指令する着磁量指令値MS*を算出して、後述する鎖交磁束フィードフォワード制御器10に出力する。
ベクトル制御器1は、例えば、予め記憶された複数の損失マップの中から、所望の車速およびトルクを実現するのに適した損失マップを選択することにより着磁量指令値MS*を算出することができる。各損失マップは、ロータが備える永久磁石の磁化状態(magnetized state)に対応する損失特性が車速とトルクとに関連付けて示されている。したがって、磁化状態毎に記憶された複数の損失マップから、トルク指令値T*を実現するのに損失の最も少ない磁化状態を選択して、当該磁化状態にするのに必要な着減磁量を算出することができる。本実施形態のベクトル制御器1は、モータ6が備える永久磁石を所望の車速およびトルクを実現するのに理想的な磁化状態に制御するための着磁量指令値MS*を損失マップから算出し、鎖交磁束フィードフォワード制御器10に出力する。この着磁量指令値MS*に応じて実行される、鎖交磁束フィードフォワード制御器10によるモータ6に対する着減磁制御については、後述する。なお、ベクトル制御器1は、ベクトル制御マップを予め記憶しておく必要は必ずしもなく、演算により着磁量指令値MS*を求めてもよい。
電流フィードバック制御器20(以下「電流FB制御器20」と呼ぶ)は、永久磁石のS極からN極へ向かう方向を正とするd軸と、d軸と直交し、回転子の回転方向を正とするq軸とを有する回転子同期座標系であるdq軸座標系において、電流ベクトルを目標値に収束させる電流ベクトル制御を実行する。すなわち、本実施形態の電流FB制御器20は、モータ6に供給される三相の交流電流iu、iv、iwをdq軸座標へ変換したd軸電流検出値id及びq軸電流検出値iqがそれぞれd軸電流指令値id *及びq軸電流指令値iq *に収束するように、d軸電圧指令値Vd *及びq軸電圧指令値Vq *を算出する。
図2は、電流FB制御器20の制御ブロックを示す図である。電流FB制御器20は、PI制御器21、22を備え、d軸電流指令値id *及びq軸電流指令値iq *と、d軸電流検出値id及びq軸電流検出値iqとの偏差に対してそれぞれ比例演算と積分演算とを施すことにより、d軸電圧指令値vd *及びq軸電圧指令値vq *を算出する。算出したd軸電圧指令値vd *及びq軸電圧指令値vq *はdq軸/uvw相変換器3に出力される。PI制御器21、22に入力されるリセット信号Sswの機能については後述する。
なお、電流FB制御器20が算出する上記のd軸電圧指令値Vd *及びq軸電圧指令値Vq *は、走行要求に基づく負荷動作制御時においてモータ6に所望のトルクを発生させるために算出される電圧指令値である。一方で、永久磁石を着磁又は減磁する着磁制御時には、後述する鎖交磁束フィードフォワード制御器10により、モータ6に所望の磁化電流を発生させる等するための電圧指令値(Vu*、Vv*、Vw*)が算出される。
すなわち、本実施形態のモータ制御装置100は、走行要求に基づく負荷動作時においてモータ6を制御する制御区間(第1運転状態)と、永久磁石を着磁又は減磁するためにモータ6を制御する制御区間(第2運転状態)とを行き来しながら、損失のより少ない磁化状態で所望のトルクを出力できるように、モータ6を制御する。第1運転状態の制御主体は、電流FB制御器20であり、第2運転状態の制御主体は、鎖交磁束フィードフォワード制御器10である。第2運転状態の制御の詳細、及び、第2運転状態から第1運転状態に切り替わる際の第1運転状態の制御の詳細については後述する。
dq軸/UVW相変換器3は、電流FB制御器20が算出したd軸電圧指令値Vd *及びq軸電圧指令値Vq *を、三相の電圧指令値であるU相電圧指令値Vu *、V相電圧指令値Vv *及びW相電圧指令値Vw *に変換する。
切替器4は、dq軸/UVW相変換器3から出力される第1運転状態における三相電圧指令値Vu*、Vv*、Vw*(以下、「第1三相電圧指令値」と呼ぶ)と、後述する鎖交磁束フィードフォワード制御器10から出力される第2運転状態における三相電圧指令値Vu*、Vv*、Vw*(以下、「第2三相電圧指令値」と呼ぶ)とを、運転状態に応じて切替える。
より具体的には、切替器4は、走行要求に基づく負荷動作を行う制御区間では、入力される第1三相電圧指令値をPWM電圧インバータ5に出力する。一方で、モータ6の永久磁石を着減磁する制御区間では、鎖交磁束フィードフォワード制御器10から出力される切替え指令Sswに応じて、PWM電圧インバータ5に出力する出力値を第1三相電圧指令値から第2三相電圧指令値に切り替える。
PWM電圧インバータ5は、入力される第1又は第2三相電圧指令値に基づいて、不図示の電源から出力される直流電圧を各相のPWM電圧Vu、Vv、及びVwに変換し、変換された各相のPWM電圧Vu、Vv、及びVwをモータ6の各相に出力する。これにより、モータ6の各相の固定子巻線にそれぞれ三相の交流電流iu、iv、及びiwが供給される。
UVW相/dq軸変換器7は、ロータ位相θに基づいて、三相の交流電流iu、iv、iwをd軸実電流id及びq軸実電流iqに変換して、電流FB制御器20にフィードバックするとともに、磁束オブザーバ8に出力する。
磁束オブザーバ8は、d軸実電流id及びq軸実電流iqと、ロータ回転速度ωと、電流FB制御器20から出力されるd軸電圧指令値vd *及びq軸電圧指令値vq *とに基づいて、現在の鎖交磁束ベクトルの推定値λを算出する。算出方法は、従来公知の方法を用いてよい。算出した鎖交磁束ベクトル推定値λは、鎖交磁束フィードフォワード制御器10に出力される。
鎖交磁束フィードフォワード制御器10(以下「鎖交磁束FF制御器10」と呼ぶ)は、上記の第2運転状態においてモータ6の磁化状態(着減磁量)を制御する際に用いられるFF制御器である。鎖交磁束FF制御器10は、所望の着減磁量を達成するための着減磁鎖交磁束ベクトルλmagを算出し、モータ6が当該着減磁量を達成した状態で目標トルクを出力する目標鎖交磁束ベクトルλtを算出し、さらに、着減磁鎖交磁束ベクトルλmagから目標鎖交磁束ベクトルλtに至る指令鎖交磁束ベクトルλcを算出する。なお、着磁及び減磁は同様の制御となるため、以下では、着磁制御を前提として説明する。
図3は、本実施形態のモータ制御装置100が第2運転状態においてモータ6を制御する際のαβ座標上の鎖交磁束ベクトルを模式的に表した図である。図3で示すαβ座標は、モータ6のU相コイルの中心(U軸)と一致し、且つ、ロータのd軸と一致した際に磁石磁束を強める方向を正とするα軸と、α軸に対してロータ回転方向に電気角で90°回転したβ軸とで構成される直交座標系である。図中の一点鎖線は、ロータのd軸の位置を示している。ロータのd軸は、上記のとおり着磁開始時点ではα軸と一致しているが、ロータは着磁動作中にも回転するので、着磁動作完了時点では、例えば、図示するようにβ軸に近い位置まで移動する。
図示するMG点は、着磁量指令値MS*により指令された目標となる着磁量を表している。すなわち、MG点まで引かれた鎖交磁束ベクトル101は、着磁時の鎖交磁束ベクトルλmagである。着磁量指令値MS*に応じた鎖交磁束ベクトルλmagは、例えば、着磁量と当該着磁量を達成する鎖交磁束ベクトルとを対応づけたマップを予め記憶しておき、当該マップを参照することにより算出される。
目標鎖交磁束ベクトル102は、モータ6が、着磁量指令値MS*で指令される目標着磁量に着磁された状態で目標トルク(トルク指令値T*)を出力する目標鎖交磁束ベクトルλtを表している。目標鎖交磁束ベクトルλtは、例えば、磁化状態と、当該磁化状態により所定のトルクを出力する鎖交磁束ベクトルとを対応付けたマップを予め記憶しておき、当該マップを参照することにより算出される。
そして、鎖交磁束ベクトル103は、MG点から目標鎖交磁束ベクトルλtに至る指令鎖交磁束ベクトルλcである。指令鎖交磁束ベクトルλcは、本実施形態におけるモータ6が適用されたαβ座標上の鎖交磁束ベクトルであって、永久磁石を所望の磁化状態に変化させ、且つ、着磁完了後に第2運転状態から第1運転状態に切り替わる際に、モータ6のトルクを目標トルクに速やかに収束させるための鎖交磁束ベクトルである。指令鎖交磁束ベクトルλcは、以下式(1)を用いて算出される。
Figure 2019068598
ただし、λcomandは、指令鎖交磁束ベクトルλcを、λtargetは、目標鎖交磁束ベクトルλtを、λmagnetizeは、着減磁時の鎖交磁束ベクトル推定値λmagを、Vmaxは、PWM電圧インバータ5の最大出力電圧を、ωは、ロータ回転速度ωを、それぞれ示している。
上記式(1)により指令鎖交磁束ベクトルλcが算出されると、鎖交磁束FF制御器10は、指令鎖交磁束ベクトルλcを実現する第2三相電圧指令値Vu*、Vv*、及びVw*を算出して、切替器4に出力するとともに、第2三相電圧指令値の印加時間(スイッチング期間)を指令するためのスイッチング期間指令値TswをPWM電圧インバータ5に出力する。すなわち、鎖交磁束FF制御器10は、モータ6への印加電圧の振幅と位相成分(スイッチング期間)とを制御することにより、指令鎖交磁束ベクトルλcを実現する。
また、鎖交磁束FF制御器10は、PWM電圧インバータ5に出力される電圧指令値を第1三相電圧指令値から第2三相電圧指令値に切り替えるための切替え指令Sswを切替器4に出力する。切替え指令Sswが入力された切替器4は、PWM電圧インバータ5に出力する電圧指令値を第1三相電圧指令値から第2三相電圧指令値に切り替える。
そして、PWM電圧インバータ5は、入力される第2三相電圧指令値Vu*、Vv*、Vw*と、スイッチング周期を指令するためのスイッチング期間指令値Tswとに基づいて、指令鎖交磁束ベクトルλcを実現するPWM電圧Vu、Vv、Vwを、モータ6の各相に印加する。
この時、指令鎖交磁束ベクトルλc(103)は、目標の着磁量に着磁された磁化状態により目標トルクを出力する鎖交磁束ベクトルとして算出されているので、着磁制御を含む着磁制御区間(第2運転状態)の鎖交磁束ベクトルは、着磁制御区間完了時にはトルク指令値T*に相当するトルク(目標トルク)を出力するように制御される。すなわち、鎖交磁束FF制御器10は、着磁制御区間において、指令鎖交磁束ベクトルλcを第2三相電圧指令値Vu*、Vv*、及びVw*とで実現することにより、αβ座標上におけるモータの動作点を永久磁石を所望の磁化状態に変化させるMG点からトルク指令値T*に基づく目標トルクを出力する位置まで移動させる。
そして、鎖交磁束FF制御器10は、着磁制御が完了した時に切替え指令Sswを切替器4へ出力する。これにより、PWM電圧インバータ5へ入力される電圧指令値が、第2三相電圧指令値から第1三相電圧指令値に切り替わる。換言すると、モータ6を制御する主体が、鎖交磁束FF制御器10から、電流FB制御器20に切り替わる。
この時、電流FB制御器20には、上記の着磁制御によって着磁された磁化状態のモータ6がトルク指令値T*に応じた目標トルクを出力させるための電流指令値id*、iq*を入力しておく。そして、モータの動作点は、上記したとおりトルク指令値T*に基づく目標トルクを出力可能な位置にある。したがって、鎖交磁束FF制御器10による着磁制御から、電流FB制御器20による負荷動作制御に速やかに移行することができる。
ただし、着磁制御中である第2運転状態中においても、電流FB制御器20はPI制御によりdq軸電圧指令値Vd*、Vq*を算出している。したがって、鎖交磁束FF制御器10が鎖交磁束ベクトル制御を行っている期間中、電流FB制御器20が備えるPI制御器21、22が有する積分器には、電流指令値id*、iq*とdq軸実電流id、iqとの偏差が蓄積されてしまう。そうすると、電流FB制御器20を主体とするモータ制御での第1三相電圧指令値Vu*、Vv*、Vw*は、積分器に蓄積された偏差分だけ目標トルクを出力するための所望の値から外れてしまう。すなわち、着磁制御完了後に、モータ6を制御する主体を鎖交磁束FF制御器10から電流FB制御器20に単に切り替えるのみでは、着磁制御期間中に積分器に蓄積された偏差によって目標トルクに一致するトルクを出力できないだけでなく、過電流を生じさせる可能性がある。
そこで、本実施形態では、鎖交磁束FF制御器10から電流FB制御器20へ制御主体を切り替える時には、電流FB制御器20のPI制御器21、22が有する積分器をリセットする。より具体的には、鎖交磁束FF制器10は、着磁制御が完了した時に切替器4へ出力する切替え指令Sswを、リセット信号Sswとして電流FB制御器20にも出力する。そして、電流FB制御器20は、入力されるリセット信号Sswに従って、PI制御器21、22が有する積分器をリセットする。これにより、着磁制御期間中に不必要に蓄積された偏差が負荷動作制御に反映されなくなるので、制御主体が鎖交磁束FF制御器10から電流FB制御器20へ切り替わっても、モータトルクを目標トルクにトルク段差を生じさせることなく速やかに収束させることができる。
なお、本実施形態のモータ制御装置100は、上述のとおり、着磁制御時には、電流FB制御器20から鎖交磁束FF制御器10へ制御主体を切り替えて、鎖交磁束FF制御器10によって負荷動作時とは別個に着磁制御を実行する。したがって、本実施形態のモータ制御装置100は、鎖交磁束FF制御器10による着磁制御をロータの回転(位相)に同期して行う必要がない。このため、例えば高速回転時においてトルクを弱める際に、弱め界磁制御をしながら同時に着磁制御を実行するような場面を回避することができ、着磁制御に要する電圧を抑制することができるので、従来のように着磁制御時の電圧不足分を補償するための追加の昇圧回路を不要とすることができる。その結果、モータ制御装置100によってモータ6を制御する際の全体的な損失を抑え、全体効率の改善を図ることができる。
また、鎖交磁束FF制御器10によって着磁制御を実行することで、着磁期間中にロータの回転(位相)に対して着磁界を同期させる必要がないので、ロータの高速回転時でもより確実に着磁を完了させることができる。すなわち、本実施形態のモータ制御装置100は、鎖交磁束FF制御器10によって着磁制御を実行することにより、従来に比べてより高速域での着減磁を可能とする。
また、本実施形態の電流FB制御器20は、例えば図4に示すように、d軸及びq軸に発生する速度起電力を補償するd−q軸非干渉制御器23を有して構成されてもよい。d−q軸非干渉制御器23では、PI制御器21の出力から、d軸実電流idにd軸インダクタンスωLdを乗算して得たd軸干渉電圧を減算することによりd軸電圧指令値Vd*を算出する。また、PI制御器22の出力に対して、q軸実電流iqにq軸インダクタンスωLqを乗算して得たq軸干渉電圧を減算するとともに、永久磁石の鎖交磁束ωλpmを加算することによりq軸電圧指令値Vq*を算出する。これにより、上記した積分器のリセット後でも、d軸及びq軸に発生する速度起電力が補償された必要十分なdq軸電圧指令値Vd*、Vq*が出力されるので、制御主体が鎖交磁束FF制御器10から電流FB制御器20へ切り替わる際に、モータトルクを目標トルクによりトルク振動なく速やかに収束させることができる。なお、速度起電力とは、固定子巻線が励磁された状態でロータが回転する際に、回転速度に比例して発生する起電力である。
なお、d−q軸非干渉制御器23で用いられるd軸インダクタンスωLd、q軸インダクタンスωLq、および、鎖交磁束ωλpmは、推定値または固定値のどちらを用いてもよい。ただし、推定値を用いた方が、より目標トルクに一致したdq軸電圧指令値Vd*、Vq*を算出することができるので、モータトルクを目標トルクにより滑らかに収束させることができる。なお、推定方法は公知の方法を用いてよい。
以上の構成により、モータ制御装置100は、着磁するための着減磁制御区間の後、通常の負荷動作における負荷動作制御区間に切り替わる際に、トルク段差が生じることに起因するトルク振動を発生させることなく、着磁制御完了後、dq軸電流指令値id*、iq*に応じた目標トルクを出力するまでの時間(トルク応答性)を改善することができる。
以上、第1実施形態の可変磁力モータ6の制御装置100は、駆動中に永久磁石の磁力を変化させる可変磁力モータ6の制御方法を実現するモータ制御装置100である。モータ制御装置100は、可変磁力モータ6に供給される電流をフィードバックする電流フィードバックPI制御により走行要求に基づいて設定される目標トルクを出力するように当該可変磁力モータを制御する電流FB制御器20と、当該目標トルクと同等のトルクを出力する指令鎖交磁束ベクトルを算出して、フィードフォワード制御により指令鎖交磁束ベクトルを実現するように可変磁力モータ6を制御する鎖交磁束フィードフォワード制御器10と、を含む。そして、電流FB制御器20による制御と鎖交磁束FF制御器10による制御とを可変磁力モータ6の運転状態に応じて切り替える。上記の運転状態は、走行要求に基づいて設定される目標トルクを出力させる負荷動作制御が実行される状態と、永久磁石の磁力を変化させる着減磁制御が実行される状態とを含み、着減磁制御が実行される際にはフィードフォワード制御に切り替え、負荷動作制御が実行される際には電流フィードバックPI制御に切り替える。
これにより、着減磁制御を負荷動作時の電流フィードバックPI制御とは別個に実行することができるので、着減磁制御に要する電圧を抑制してシステム全体の効率改善を図ることができる。また、電流FB制御器20による電流フィードバックPI制御および鎖交磁束FF制御器10によるフィードフォワード制御が同等のトルクを出力するように制御されるので、着減磁制御完了後、目標トルクに至るまでの応答時間(トルク応答性)を改善することができる。
また、第1実施形態の可変磁力モータの制御装置100によれば、永久磁石が目標着減磁量に達した状態で目標トルクを出力する目標鎖交磁束ベクトルλtを算出し、上記式(1)を用いて指令鎖交磁束ベクトルλcを算出する。そして、フィードフォワード制御において、目標着減磁量を達成する着減磁を完了させた後に、指令鎖交磁束ベクトルλcを実現するように可変磁力モータ6を制御する。これにより、着減磁制御完了後のトルク応答性能の改善を上記式(1)により実現することができる。
また、第1実施形態の可変磁力モータ6の制御装置100によれば、鎖交磁束FF制御器10によるフィードフォワード制御の完了時に、永久磁石が目標着減磁量に達した状態で目標トルクを出力する電流指令値に基づいて実行される電流フィードバックPI制御に切り替える。これにより、目標着減磁を達成した後に目標トルクを維持した状態で、従来のモータ制御において用いられるPI制御を活用しながら負荷動作制御に移行できるので、コストを増加させることなく、着減磁制御完了後のトルク応答性の改善を図ることができる。
また、第1実施形態の可変磁力モータ6の制御装置100によれば、電流フィードバックPI制御は、d軸及びq軸の回転子同期座標系であるdq座標系において電流ベクトルを目標値に収束させる電流ベクトル制御であって、フィードフォワード制御から電流フィードバックPI制御に切り替わる時に、電流フィードバックPI制御における積分値をリセットする。これにより、フィードフォワード制御期間中に電流フィードバックPI制御で用いる積分器に蓄積された偏差をリセットすることができるので、トルク振動の発生を抑制して安定して電流ベクトル制御に移行することができる。
また、第1実施形態の可変磁力モータ6の制御装置100によれば、電流フィードバックPI制御は、d軸及びq軸に発生する速度起電力を補償する非干渉制御を含む。これにより、トルク振動を発生させることなく安定して電流ベクトル制御に移行することができる。
[第2実施形態]
以下、第2実施形態について説明する。なお、第1実施形態と同様の構成については、その説明を省略する。
図5は、第2実施形態のモータ制御装置200がモータ6を鎖交磁束ベクトル制御する際のモータ6の動作点の軌跡を模式的に表した図である。d軸はd軸電流idを表し、q軸はq軸電流iqを表している。実線で表す半円は、定格電流円を示しており、この円内がモータ6の動作点を制御可能な領域を示している。なお、d軸q軸の交点から右側の領域が強め界磁制御、左側の領域が弱め界磁制御の範囲である。
図中の点Fは、着磁制御完了時の動作点を示している。点Fは、第1実施形態において、目標鎖交磁束ベクトルλtが目標とする動作点と略一致する点である。
図中の点線は、等トルク線である。モータ6の動作点が当該線上にある場合は、同じ大きさのトルクを出力することができる。すなわち、当該線上は、第1実施形態で述べた目標トルクを出力可能な動作点である。なお、図示する等トルク線の軌跡は本実施形態における例示であって、モータの設計(トルク重視、或いは回転数重視等)によって異なるので、モータ6がどのように設計されているかによって適宜設定されてよい。
そして、点Hは、目標トルクを出力可能な動作点において、最も効率が高い最高効率点である。
ここで、着磁可能なロータ回転数の向上の観点からは、可能な限りd軸電流値が大きい動作点で着磁制御を完了させるように、目標鎖交磁束ベクトルλtを定めることが好ましい。一方で、モータ効率の観点からは、最小電流で最大のトルクが得られるように制御することが一般的には望ましく、これは、上記の目標鎖交磁束ベクトルλtと異なる場合がある。
本実施形態では、モータ6の動作点が着磁制御完了時点において点Fに到達した後、制御主体が電流FB制御器20に切り替わった際に、電流FB制御器20による電流フィードバックPI制御によって、動作点を点Fから等トルク線を辿って点Hに移動させる。これにより、可能な限りd軸電流値が大きい動作点で着磁制御を完了させた後に、最小電流で最大のトルクが得られる動作点にて目標トルクを出力することができるので、着磁可能な回転数を拡大させつつ、モータ6の効率を高めることができる。
以上、第2実施形態の可変磁力モータ6の制御装置200によれば、電流フィードバックPI制御は、d軸及びq軸の回転子同期座標系であるdq座標系において電流ベクトルを目標値に収束させる電流ベクトル制御である。電流フィードバックPI制御では、フィードフォワード制御から切り替わった時に、可変磁力モータ6の動作点を可変磁力モータ6が制御可能な電流範囲を規定する電流定格円上において目標トルクを出力する動作点から、目標トルクを出力し、且つ、最高効率となる動作点まで等トルク線上を辿って移動させる。これにより、着磁可能な回転数を拡大させつつ、モータの効率を高めることができる。
[第3実施形態]
以下、第3実施形態について説明する。なお、第1実施形態と同様の構成については、その説明を省略する。
図6は、第3実施形態のモータ制御装置300がモータ6を制御する際のαβ座標上の鎖交磁束ベクトルを模式的に表した図である。本実施形態による制御が第1実施形態と異なる点は、着磁制御中において、MG点から目標鎖交磁束ベクトルλtに至る軌跡上に折れ点λk(中間鎖交磁束ベクトルλk)を設けたことである。
中間鎖交磁束ベクトルλkは、以下式(2)に基づいて決定される。
Figure 2019068598
ただし、λkは中間鎖交磁束ベクトルλkを、λk−1は、中間鎖交磁束ベクトルλkの前回値を、λcomandは、指令鎖交磁束ベクトルλc(301)を、λtargetは、目標鎖交磁束ベクトルλtを、λmagnetizeは、着減磁時の鎖交磁束ベクトルλmagを、Vmaxは、PWM電圧インバータ5の最大出力電圧を、ωは、ロータ回転速度ωを、それぞれ示している。
本実施形態では、上記式(2)に基づいて中間鎖交磁束ベクトルλkを定め、定めた中間鎖交磁束ベクトルλkを経由して目標鎖交磁束ベクトルλtに至るような指令鎖交磁束ベクトルλc(301)を実現するようにモータ6を制御する。これにより、可変磁力モータ6の動作点は、より短い時間で着磁を完了させた後に、目標トルクを出力可能な動作点へと移動していくので、より高回転領域での着磁を可能とし、かつ、着磁制御期間中のトルク変動をより低減することができる。
また、中間鎖交磁束ベクトルλkを鎖交磁束のdq平面上で表すと、以下のように表すことができる。
図7は、dq座標系における中間鎖交磁束ベクトルλkを説明するための図である。d軸はd軸鎖交磁束λdを表し、q軸はq軸鎖交磁束λqを表している。実線で表す半円は、定格鎖交磁束円を示しており、この円内がdq平面上において実現可能な鎖交磁束の範囲を示している。また、MG点から目標鎖交磁束ベクトルλtまで引いた線は、第1実施形態で述べた指令鎖交磁束ベクトルλc(103)を示している。
図示するdq平面を参照すれば、中間鎖交磁束ベクトルλk(折れ点λk)は、MG点から定格鎖交磁束円に引いた接線との交点で表される。中間鎖交磁束ベクトルλkをこのように規定することにより、着磁可能回転数をさらに拡大することができ、より高速回転中においても着磁制御を完了させることができる。また、着磁可能回転数の観点から言えば、折れ点λkを上述の接点に設定するのが最も好ましいが、折れ点λkは、図中のMG点と、折れ点λkと、目標鎖交磁束ベクトルλtの到達点とを結ぶ三角形の領域内に設定されてもよい。この領域内に折れ点λkが設定されれば、第1実施形態での指令鎖交磁束ベクトルλc(103)のみによって着磁制御を完了させるのに比べて、着磁可能回転数を拡大することができる。
以上、第3実施形態の可変磁力モータ6の制御装置300によれば、永久磁石が目標着減磁量に達した状態で目標トルクを出力する目標鎖交磁束ベクトルを算出し、上記式(2)を用いて中間鎖交磁束ベクトルλkを算出し、フィードフォワード制御において、目標着減磁量を達成する着減磁を完了させた後に、中間鎖交磁束ベクトルλkを経由して目標鎖交磁束ベクトルλtに至る指令鎖交磁束ベクトルλcを実現するように可変磁力モータ6を制御する。これにより、より高回転領域での着磁を可能としながら、フィードフォワード制御期間中のトルク変動を最小化でき、車両の振動をより抑制することができる。
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。また、上記実施形態、及びその変形例は、適宜組み合わせ可能である。
例えば、可変磁力モータ6が備える永久磁石は、その全てが低保磁力磁石である必要は必ずしもなく、高保磁力磁石と組み合わせて用いられてもよい。
また、可変磁力モータ6の運転状態は、上述の第1運転状態と第2運転状態には限られない。例えば、可変磁力モータ6の動作中において発生し得る過渡的なトルクリップルを低減するための制御区間を第3運転状態と定義してもよい。その場合は、可変磁力モータ6の制御装置は、電流FB制御器20による負荷動作制御(第1運転状態)と、鎖交磁束FF制御器10によるトルクリップル低減制御(第3運転状態)とで、制御主体を切り替えるように構成されてよい。
6…可変磁力モータ
10…フィードフォワード制御器(鎖交磁束FF制御器)
20…PI制御器(電流FB制御器)
100、200、300…コントローラ

Claims (9)

  1. 駆動中に永久磁石の磁力を変化させる可変磁力モータの制御方法であって、
    前記可変磁力モータに供給される電流をフィードバックする電流フィードバックPI制御により、走行要求に基づいて設定される目標トルクを出力するように当該可変磁力モータを制御するPI制御ステップと、
    前記目標トルクと同等のトルクを出力する指令鎖交磁束ベクトルを算出して、フィードフォワード制御により前記指令鎖交磁束ベクトルを実現するように前記可変磁力モータを制御するフィードフォワード制御ステップと、を含み、
    前記PI制御ステップと前記フィードフォワード制御ステップとを前記可変磁力モータの運転状態に応じて切り替える、
    ことを特徴とする可変磁力モータの制御方法。
  2. 前記運転状態は、前記目標トルクを出力させる負荷動作制御が実行される状態と、前記永久磁石の磁力を変化させる着減磁制御が実行される状態とを含み、
    前記着減磁制御が実行される際には前記フィードフォワード制御ステップに切り替え、前記着減磁制御が完了して前記負荷動作制御が実行される際には前記PI制御ステップに切り替える、
    ことを特徴とする請求項1に記載の可変磁力モータの制御方法。
  3. 前記永久磁石が目標着減磁量に達した状態で前記目標トルクを出力する目標鎖交磁束ベクトルを算出し、
    下記式(1)を用いて前記指令鎖交磁束ベクトルを算出し、
    前記フィードフォワード制御ステップにおいて、前記目標着減磁量を達成する着減磁を完了させた後に、前記指令鎖交磁束ベクトルを実現するように前記可変磁力モータを制御する、
    ことを特徴とする請求項2に記載の可変磁力モータの制御方法。
    Figure 2019068598
    ただし、上記式(1)において、λcomandは指令鎖交磁束ベクトル、λtargetは目標鎖交磁束ベクトル、λmagnetizeは着減磁時の鎖交磁束ベクトル、Vmaxは前記可変磁力モータを駆動するインバータの最大出力電圧、ωは前記可変磁力モータのロータ回転速度ωを示す。
  4. 前記フィードフォワード制御ステップの完了時に、前記永久磁石が目標着減磁量に達した状態で前記目標トルクを出力する電流指令値に基づいて実行される前記PI制御ステップに切り替える、
    ことを特徴とする請求項2又は3に記載の可変磁力モータの制御方法。
  5. 前記電流フィードバックPI制御は、d軸及びq軸の回転子同期座標系であるdq座標系において電流ベクトルを目標値に収束させる電流ベクトル制御であって、
    前記フィードフォワード制御ステップから前記PI制御ステップに切り替わる時に、前記電流フィードバックPI制御における積分値をリセットする、
    ことを特徴とする請求項1から4のいずれかに記載の可変磁力モータの制御方法。
  6. 前記電流フィードバックPI制御は、前記d軸及びq軸に発生する速度起電力を補償する非干渉制御を含む、
    ことを特徴とする請求項5に記載の可変磁力モータの制御方法。
  7. 前記電流フィードバックPI制御は、d軸及びq軸の回転子同期座標系であるdq座標系において電流ベクトルを目標値に収束させる電流ベクトル制御であって、
    前記PI制御ステップでは、前記フィードフォワード制御ステップから切り替わった時に、前記可変磁力モータの動作点を前記可変磁力モータが制御可能な電流範囲を規定する電流定格円上において前記目標トルクを出力する動作点から、前記目標トルクを出力し、且つ、最高効率となる動作点まで等トルク線上を辿って移動させる、
    ことを特徴とする請求項2から6のいずれかに記載の可変磁力モータの制御方法。
  8. 前記永久磁石が目標着減磁量に達した状態で前記目標トルクを出力する目標鎖交磁束ベクトルを算出し、
    下記式(2)を用いて中間鎖交磁束ベクトルを算出し、
    前記フィードフォワード制御ステップにおいて、前記目標着減磁量を達成する着減磁を完了させた後に、前記中間鎖交磁束ベクトルを経由して前記目標鎖交磁束ベクトルに至る前記指令鎖交磁束ベクトルを実現するように前記可変磁力モータを制御する、
    ことを特徴とする請求項2に記載の可変磁力モータの制御方法。
    Figure 2019068598
    ただし、上記式(2)において、λkは中間鎖交磁束ベクトル、λcomandは指令鎖交磁束ベクトル、λtargetは目標鎖交磁束ベクトル、λmagnetizeは着減磁時の鎖交磁束ベクトル、Vmaxは前記可変磁力モータを駆動するインバータの最大出力電圧、ωは前記可変磁力モータのロータ回転速度を示す。
  9. 駆動中に永久磁石の磁力を制御するコントローラを備えた可変磁力モータの制御装置であって、
    前記コントローラは、
    前記可変磁力モータに供給される電流をフィードバックする電流フィードバックPI制御により、走行要求に基づいて設定される目標トルクを出力するように当該可変磁力モータを制御するPI制御器と、
    前記目標トルクと同等のトルクを出力する指令鎖交磁束ベクトルを算出して、フィードフォワード制御により前記指令鎖交磁束ベクトルを実現するように前記可変磁力モータを制御するフィードフォワード制御器と、を備え、
    前記PI制御器による制御と前記フィードフォワード制御器による制御とを前記可変磁力モータの運転状態に応じて切り替える、
    ことを特徴とする可変磁力モータの制御装置。
JP2017191244A 2017-09-29 2017-09-29 可変磁力モータの制御方法および制御装置 Active JP6998717B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017191244A JP6998717B2 (ja) 2017-09-29 2017-09-29 可変磁力モータの制御方法および制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017191244A JP6998717B2 (ja) 2017-09-29 2017-09-29 可変磁力モータの制御方法および制御装置

Publications (2)

Publication Number Publication Date
JP2019068598A true JP2019068598A (ja) 2019-04-25
JP6998717B2 JP6998717B2 (ja) 2022-01-18

Family

ID=66338038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017191244A Active JP6998717B2 (ja) 2017-09-29 2017-09-29 可変磁力モータの制御方法および制御装置

Country Status (1)

Country Link
JP (1) JP6998717B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110995109A (zh) * 2019-10-29 2020-04-10 东南大学 一种交流调磁型记忆电机直接转矩磁链控制方法
JP2022156909A (ja) * 2021-03-31 2022-10-14 本田技研工業株式会社 移動体、制御方法およびプログラム
WO2023276593A1 (ja) * 2021-06-29 2023-01-05 マブチモーター株式会社 制御装置、及び制御方法
DE102022117717A1 (de) 2021-07-29 2023-02-02 Sintokogio, Ltd. Kraftsensor und Verfahren zur Herstellung desselben

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072021A (ja) * 2007-09-14 2009-04-02 Toshiba Corp 永久磁石ドライブシステム
JP2012244740A (ja) * 2011-05-18 2012-12-10 Toyota Motor Corp 駆動装置
WO2017023249A1 (en) * 2015-07-31 2017-02-09 Nissan Motor Co., Ltd. Magnetization state control method and magnetization state control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072021A (ja) * 2007-09-14 2009-04-02 Toshiba Corp 永久磁石ドライブシステム
JP2012244740A (ja) * 2011-05-18 2012-12-10 Toyota Motor Corp 駆動装置
WO2017023249A1 (en) * 2015-07-31 2017-02-09 Nissan Motor Co., Ltd. Magnetization state control method and magnetization state control device
JP2018523460A (ja) * 2015-07-31 2018-08-16 日産自動車株式会社 磁化状態制御方法及び磁化状態制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110995109A (zh) * 2019-10-29 2020-04-10 东南大学 一种交流调磁型记忆电机直接转矩磁链控制方法
JP2022156909A (ja) * 2021-03-31 2022-10-14 本田技研工業株式会社 移動体、制御方法およびプログラム
WO2023276593A1 (ja) * 2021-06-29 2023-01-05 マブチモーター株式会社 制御装置、及び制御方法
DE102022117717A1 (de) 2021-07-29 2023-02-02 Sintokogio, Ltd. Kraftsensor und Verfahren zur Herstellung desselben

Also Published As

Publication number Publication date
JP6998717B2 (ja) 2022-01-18

Similar Documents

Publication Publication Date Title
US8497645B2 (en) Control device for electric motor drive device
JP5120670B2 (ja) 電動機駆動装置の制御装置
JP5120669B2 (ja) 電動機駆動装置の制御装置
US11479124B2 (en) Optimized regenerative braking control of electric motors using look-up tables
US8519648B2 (en) Temperature compensation for improved field weakening accuracy
JP6998717B2 (ja) 可変磁力モータの制御方法および制御装置
JP2007159368A (ja) モータ駆動システムの制御装置
US20200276902A1 (en) Regenerative Braking Controller for Electric Motors
JP5803559B2 (ja) 回転電機制御装置
JP2000032799A (ja) 回転電機の制御装置及び制御方法
Lu et al. Research on hub motor control of four-wheel drive electric vehicle
JP5127377B2 (ja) 永久磁石ドライブシステム
US9231514B2 (en) Motor control apparatus and motor control method
WO2016189671A1 (ja) モータ制御装置及びその停止方法
Mbayed et al. Hybrid excitation synchronous machine control in electric vehicle application with copper losses minimization
JP2008062688A (ja) モータの制御装置
JP2005033932A (ja) モータ制御装置
JP6937211B2 (ja) 可変磁力モータの制御方法および制御装置
JP5370748B2 (ja) 電動機駆動装置の制御装置
WO2021192450A1 (ja) モータ制御装置
JP5167038B2 (ja) 電動機駆動装置およびその制御方法
JP5225046B2 (ja) 可変磁束モータドライブシステム
Chandrakar et al. Gradual pole changing based field oriented control technique for pole-phase modulated induction motor drive
Ullah et al. Distortion voltage compensation in field-weakening region of IPMSM
Shadabi et al. Dynamic performance improvement of linear induction motor using DTFC method and considering end-effect phenomenon

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211221

R150 Certificate of patent or registration of utility model

Ref document number: 6998717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150