WO2021192450A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2021192450A1
WO2021192450A1 PCT/JP2020/046786 JP2020046786W WO2021192450A1 WO 2021192450 A1 WO2021192450 A1 WO 2021192450A1 JP 2020046786 W JP2020046786 W JP 2020046786W WO 2021192450 A1 WO2021192450 A1 WO 2021192450A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
transition
curve
state
intersection
Prior art date
Application number
PCT/JP2020/046786
Other languages
English (en)
French (fr)
Inventor
祐一 高野
友博 福村
勇真 大津
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202080099035.9A priority Critical patent/CN115362626A/zh
Priority to EP20927876.1A priority patent/EP4131770A4/en
Publication of WO2021192450A1 publication Critical patent/WO2021192450A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0025Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control implementing a off line learning phase to determine and store useful data for on-line control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0021Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using different modes of control depending on a parameter, e.g. the speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/027Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an over-current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a motor control device that drives and controls an electric motor.
  • IPMs embedded magnet type motors
  • Non-Patent Document 1 discloses a control algorithm using a maximum torque / current control (MTPA) curve and a maximum torque / magnetic flux control (MTPF) curve. Twice
  • MTPA maximum torque / current control
  • MTPF maximum torque / magnetic flux control
  • Patent Document 1 sets the operation mode to the maximum torque / current (MTPA) operation in order from the low speed region to the high speed region based on the current command obtained from the intersections between the curves on the xy plane calculated by the numerical analysis method.
  • the control for weak joint (CLVL) operation and maximum torque / voltage (MTPV) operation is disclosed.
  • Patent Document 1 In motor control, in order to apply the control method to actual products, it is necessary to enable stable operation in all cases of voltage and current limitation.
  • Patent Document 1 both Patent Document 1 and Non-Patent Document 1 show only a part of cases where voltage / current limitation can occur. Twice
  • a motor current command satisfies (condition i) a voltage-current limit to avoid control failure, (condition ii) a command torque to satisfy a higher command, and finally (condition ii) motor efficiency.
  • condition i a voltage-current limit to avoid control failure
  • condition ii a command torque to satisfy a higher command
  • condition ii motor efficiency
  • Non-Patent Document 1 illustrates maximum efficiency control, but does not cover all cases in that maximum efficiency control cannot be performed because there is no explanation by mathematical formulas. Further, although Non-Patent Document 1 proposes an optimum current table method, there is a problem that table generation for a current command value is costly. Twice
  • Patent Document 1 does not describe maximizing efficiency, does not consider, for example, a case where the intersection of the voltage limiting ellipse and the current limiting circle does not exist, and does not cover all voltage / current limiting conditions (voltage limiting). It does not cover cases that do not meet both the current limit and the current limit). In addition, since the intersection to be selected is determined based only on the reference rotor speed, the solution of the numerical analysis method (two-dimensional Newton method) disappears due to the fluctuation of the torque command or the voltage / current limit value, and the current output is unstable. It is also possible that there will be cases where Twice
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to generate an optimum motor current command for all voltage and current limiting conditions, including cases where the voltage and current limiting conditions are not satisfied. be.
  • the first exemplary invention of the present application is a motor control device that drives a motor by current vector control in a dq-axis Cartesian coordinate system, and has a maximum efficiency curve, a minimum current curve, and a minimum voltage in the dq-axis Cartesian coordinate plane.
  • a means for creating a state transition table in which the transition conditions from the current state to the transition destination state are set by arranging them in the direction and the column direction, respectively, and a transition from an arbitrary intersection corresponding to the current state according to the transition conditions. It is characterized by including means for generating a current command value for the motor based on the positional relationship of the intersections corresponding to the transition destination states on the curve. Twice
  • An exemplary second invention of the present application is a motor control method for driving a motor by current vector control in a dq-axis Cartesian coordinate system, wherein a maximum efficiency curve, a minimum current curve, and a minimum voltage curve in the dq-axis Cartesian coordinate plane.
  • the motor control device of the present invention by using the state transition table, it is stable in all cases including the case where there is no effective intersection as a current command based on two curves selected from a plurality of curves. Motor control current command can be output.
  • FIG. 1 is a block diagram showing an overall configuration of a motor control device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the positional relationship of a plurality of curves on the dq-axis Cartesian coordinate plane.
  • FIG. 3 is a diagram illustrating a selection range of current command values based on a plurality of curves.
  • FIG. 4 is a diagram showing various cases regarding the current commandable range due to the voltage-current limitation.
  • FIG. 5 is a diagram showing a combination effective as a current command.
  • FIG. 6 is a state transition table in which transition conditions from the current state to the transition destination state are set.
  • FIG. 7 is a flowchart showing a command current calculation process in the motor control device according to the present embodiment.
  • FIG. 1 is a block diagram showing an overall configuration of a motor control device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the positional relationship of a plurality of curves on the dq-axis
  • FIG. 8 is a diagram showing a modified example of a combination effective as a current command.
  • FIG. 9 is a state transition table corresponding to the combination of FIG.
  • FIG. 10 is a flowchart showing an example of selecting a current output intersection that does not use the state transition table.
  • FIG. 11 is a block diagram showing a configuration of a motor control device according to a modified example.
  • FIG. 1 is a block diagram showing an overall configuration of a motor control device according to an embodiment of the present invention.
  • the motor control device 1 shown in FIG. 1 includes a motor control unit 10, a motor drive unit 5 that supplies a predetermined drive current to the electric motor 15 to be controlled, and the like.
  • the motor control unit 10 controls the entire motor control device 1, for example, is composed of a microprocessor, and feedback control (F / B control) that feeds back the current value so that the current flowing through the electric motor 15 and the target current match. ), Etc. is a central control unit (CPU). Twice
  • the current command unit 2 uses a state transition table described later to obtain a two-phase command current value having a d-axis component and a q-axis component from the indicated torque (torque command value) Tq, the rotation speed ⁇ of the electric motor 15, and the like.
  • the d-axis current command value Id * and the q-axis current command value Iq * which are the target current values), are generated.
  • the memory 3 stores a state transition table, a program, and the like necessary for executing the state transition described later.
  • the memory 3 is, for example, a read-only memory (ROM).
  • the memory 3 may have a configuration built in the motor control unit 10 or an external configuration. Twice
  • the subtractor 13a calculates the difference between the q-axis current command value Iq * and the q-axis current Iq output from the coordinate conversion unit 28. Further, the subtractor 13b calculates the difference between the d-axis current command value Id * and the d-axis current Id output from the coordinate conversion unit 28.
  • the q-axis PI control unit 16a performs PI (proportional + integration) control so as to converge the difference between Iq * and Iq to zero, and calculates the q-axis voltage command value Vq *, which is the command value of the q-axis voltage. Further, the d-axis PI control unit 16b performs PI (proportional + integration) control so as to converge the difference between Id * and Id to zero, so that the d-axis voltage command value Vd *, which is the command value of the d-axis voltage, is used. Is calculated.
  • PI proportional + integration
  • the coordinate conversion unit 17 calculates the motor applied voltage from the q-axis and d-axis voltage command values Vq * and Vd * and the rotation angle ⁇ of the electric motor 15. That is, the coordinate conversion unit 17 having a two-phase / three-phase conversion function sets the q-axis voltage command value Vq * and the d-axis voltage command value Vd * to the voltage command value for each of the three phases based on the rotation angle ⁇ . It is converted into the voltage command values Vu * , Vv * , and Vw *.
  • the voltage command values Vu * , Vv * , and Vw * after the three-phase conversion are input to the PWM signal generation unit 21.
  • the PWM signal generation unit 21 generates a drive signal for the electric motor 15 by increasing or decreasing the duty of the PWM (pulse width modulation) control signal based on these voltage command values.
  • the PWM signal generation unit 21 generates ON / OFF control signals (PWM signals) of a plurality of semiconductor switching elements (FETs) constituting the inverter circuit 23 according to the voltage command value.
  • FETs semiconductor switching elements
  • the switching element is also called a power element, and for example, a switching element such as a MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor) is used. Twice
  • the PWM signal generation unit 21 may be configured to be built in a motor control integrated circuit (pre-driver IC) that generates a motor drive signal and functions as an FET drive circuit or the like. Twice
  • the inverter circuit 23 of the motor drive unit 5 is a motor drive circuit that generates an alternating current that drives the electric motor 15 from the electric power supplied from the battery BT via the power relay 24.
  • the electric motor 15 is, for example, an in-vehicle traction motor such as a surface magnet type motor (SPM) or an embedded magnet type motor (IPM).
  • the power relay 24 is configured to be able to cut off the electric power from the battery BT, and can also be configured by a semiconductor relay. Twice
  • the motor drive current supplied from the inverter circuit 23 to the electric motor 15 is detected by a current detection unit 25 including current sensors arranged corresponding to each phase.
  • the current detection unit 25 detects, for example, the direct current flowing through the shunt resistor for detecting the motor drive current by using an amplifier circuit including an operational amplifier or the like. Twice
  • the output signal (current detection signal) from the current detection unit 25 is input to the A / D conversion unit (ADC) 27.
  • ADC A / D conversion unit
  • the analog current value is converted into a digital value by the A / D conversion function of the ADC 27, and the three-phase currents Iu, Iv, and Iw obtained by the conversion are input to the coordinate conversion unit 28. Twice
  • the coordinate conversion unit 28 having a three-phase / two-phase conversion function outputs the q-axis current Iq and the d-axis current Id from the rotation angle ⁇ and the three-phase currents Iu, Iv, and Iw detected by the rotation angle sensor 29. That is, the coordinate conversion unit 28 calculates the d-axis current and the q-axis current based on the actual current of the motor (q-axis real current, d-axis real current). Twice
  • the motor control device needs to satisfy the command torque / speed and maximize the efficiency in motor control
  • the first condition is that the voltage / current limit is satisfied
  • the second As a condition, maximize the efficiency within the voltage / current limit range. Twice
  • the current minimum curve, voltage minimum curve, and current limit are defined on the current dq-axis plane (dq-axis Cartesian coordinate plane) in which the x-axis is the Iq component and the y-axis is the Id component, and the y-axis positive direction is weakened and defined as the field direction.
  • the x-axis is the Iq component
  • the y-axis is the Id component
  • the y-axis positive direction is weakened and defined as the field direction.
  • the constant torque curve (CT curve, or simply CT (Constant Torque)) is a locus of orthogonal coordinates (x, y) satisfying the constant torque T, and can be expressed by the equation (1).
  • ⁇ m is a permanent magnet coefficient, which is 1 for a motor including a permanent magnet and 0 for a motor not including a permanent magnet.
  • is the difference between the maximum value ⁇ max and the minimum value ⁇ min of the dimensionless motor constant ⁇ .
  • the constant torque curve is a hyperbola, but any of the torque command values T> 0 and T ⁇ 0 is a meaningful current command in the range of y ⁇ 0. Twice
  • the current norm upper limit is set to
  • the current limiting circle is a circle with a radius
  • LV (Limited Voltage) curve can be expressed by the equation (3).
  • the current norm minimum curve (also referred to as the current minimum curve or MA (Minimum Ampere) curve) shown in Eq. (4) is defined. Twice
  • the voltage norm minimum curve (also referred to as the voltage minimum curve or MV (Minimum Voltage) curve) shown in the equation (5) is defined. Twice
  • the maximum efficiency curve (also called the ME (Maximum Efficiency) curve) is defined as follows, for example, by deriving the hysteresis loss coefficient and the eddy current loss coefficient based on the analysis or actual measurement data, and using a mathematical formula including them. do. Twice
  • K ( ⁇ ) is the current-independent coefficients
  • the hysteresis loss coefficient k h if the eddy current loss coefficient was k e, can be defined as follows.
  • the current minimum curve, voltage minimum curve, and maximum efficiency curve are upward hyperbolas with the y-axis as the main axis.
  • the maximum efficiency curve is a quadratic curve described using the iron loss of the motor. Twice
  • FIG. 2 shows the positional relationship of five of the above-mentioned curves (MV curve, ME curve, MA curve, LA curve, LV curve) on the dq-axis Cartesian coordinate plane.
  • the horizontal axis of FIG. 2 is the iq axis (x axis)
  • the vertical axis is the id axis (y axis)
  • the magnitude relationship of each curve is MV curve> ME curve> MA curve. The relationship holds. Twice
  • the MA curve, MV curve, and ME curve do not intersect each other.
  • the MA curve and the LA curve always intersect, and the MV curve and the LV curve always intersect. Twice
  • the inside of MA, MV, LA, and LV is a region satisfying the voltage / current limit (indicated by reference numeral A), and the line of the CT curve satisfies the command torque.
  • the command torque and the maximum efficiency are compatible at the intersection of the ME curve and the CT curve, and the motor efficiency can be maximized by selecting this point as the current command value. .. Therefore, in selecting the current command value, it is an indispensable condition to satisfy the voltage-current limit. Twice
  • FIG. 3A corresponds to the case where the torque command value T> 0
  • FIG. 3B corresponds to the case where the torque command value T ⁇ 0
  • the plurality of quadratic curves described above are the limiting conditions for the current command value. Twice
  • the range between the MV curve and the MA curve which are two parabolas, is an effective operating point for the current output, and the opening in that range is limited by the LA curve and the LV curve. .. Therefore, the area surrounded by these curves and shaded in FIG. 3 is the current command output range, which is within the LV curve, within the LA curve, above the MA curve, and below the MV curve. It is a range that satisfies all the conditions. Twice
  • the output of the command torque is possible when the CT curve based on the command torque is included in the above range.
  • the torque command is large and does not include the CT curve, the point at which the torque is maximized within the voltage-current limit range is selected as the current command value.
  • the CT curve is included, the intersection with the ME curve that optimizes efficiency or the point closest to the ME curve is selected as the current command value. Twice
  • intersection of the curves uses a title connecting the abbreviations of those curves that intersect each other.
  • the intersection of the maximum efficiency curve and the constant torque curve is MECT
  • the intersection of the current limit circle and the constant torque curve is LACT
  • the intersection of the minimum current curve and the current limit circle is MALA
  • the intersection of the voltage limit ellipse and the constant torque curve Is called LVCT
  • the intersection of the minimum voltage curve and the voltage limiting ellipse is called MVLV
  • the intersection of the voltage limiting ellipse and the current limiting circle is called LVLA. Twice
  • the MVLV becomes the maximum torque point when only the voltage limit is applied (FIGS. 4 (a) and 4 (d)), and the MALA becomes the maximum torque point when only the current limit is applied (FIGS. 4 (h) and 4 (d)).
  • LVLA becomes the maximum torque point (FIGS. 4 (b) (c) (e) (f)). Twice
  • the maximum torque point is set as the current command value.
  • the point within the current output range and closest to the ME curve on the CT curve is set as the current command value. Twice
  • the current command value is the intersection of two curves selected from the six curves represented by the above equations (1) to (6), and there are 15 combinations for selecting two curves from these six curves, which are effective as current commands. As shown in FIG. 5, the combination is limited to 6 combinations of MECT, LVCT, LACT, MVLV, MALA, and LVLA. Twice
  • the motor control device regards these seven cases as states and selects the current command value using the state transition table shown in FIG. Twice
  • combinations of intersections effective as current commands are arranged as the current state and the transition destination state in the row direction and the column direction, respectively, and the transition conditions (C1 to C18) from the current state to the transition destination state are set. It is set.
  • the transition condition is a judgment condition for moving from an arbitrary intersection to another intersection, and since the judgment condition depends on the current intersection, it becomes a state transition machine.
  • a cross indicates that there is no transition. Twice
  • MALA, MVLV, LVLA, and NOVA are in a state where the torque is saturated.
  • the torques of MVLV, MALA, and LVLA are defined as voltage saturation torque Tv, current saturation torque Ta, and voltage current saturation torque Tva, respectively. Twice
  • the torque command can be followed in the three states of MECT, LVCT, and LACT, and of these, only MECT has the maximum efficiency.
  • , and ME represent the voltage norm, current norm, and ME function output of the current state, respectively. Twice
  • the transition between torque saturated states is determined by the relationship between current limit, voltage limit and speed.
  • LVCT transition
  • LACT ⁇ MALA, MVLV, LVLA transition in which torque saturation ⁇ unsaturated changes
  • the motor may be further provided with protective means for applying at least one or both of overcurrent protection and overvoltage protection. By doing so, the motor can be protected from overheating when there is no output range, and the control element can be prevented from being destroyed or malfunctioning. Twice
  • FIG. 7 is a flowchart showing a current command value calculation process in the motor control device according to the present embodiment. Twice
  • step S11 of FIG. 7 the motor control unit 10 defines the above-mentioned six quadratic curves on the dq-axis Cartesian coordinate plane. Specifically, the MV curve, ME curve, MA curve, LA curve, LV curve, and CT curve are drawn on the xy plane. In the following step S13, the intersection of two curves selected from the six curves drawn in step S11 is defined. As described above, there are a total of 7 combinations of intersections, that is, 6 combinations that are effective as current commands and combinations that do not have intersections that are valid as current commands.
  • step S15 the combinations of intersections effective as current commands obtained in step S13 above are arranged as the current state and the transition destination state in the row direction and the column direction, respectively, and transition conditions are added to them, as shown in FIG. Create a state transition table. Twice
  • step S17 the motor control unit 10 sets an initial state (for example, starting from MECT), and in step S19, determines whether or not the transition condition described later is satisfied.
  • step S21 according to the state transition table created in step S15 above, a state transition for moving from a predetermined intersection to another intersection is performed with command torque, motor rotation speed, and the like as transition conditions.
  • the transfer destination transition destination
  • the point at which the torque is maximized within the voltage / current limit range is selected as the current command.
  • the command torque is satisfied so that the current commands are output with maximum efficiency. Twice
  • the motor control unit 10 calculates the current command value at the intersection in the current state in step S23.
  • a two-variable Newton method, an algebraic solution method, or the like is used to calculate a current command value (q-axis current command value Iq * , d-axis current command value Id *) that satisfies the condition for maximizing efficiency.
  • the current command value at each intersection can be derived by selecting a two-curve and solving a quadratic quadratic equation.
  • step S25 it is determined whether or not the state transition process is completed, and if not, the process is returned to step S19, and the state transition process based on other transition conditions is executed. Twice
  • the end point has three patterns of MALA, MVLV, and LVLA, and here, the control scenario in each is verified in both the torque increasing direction and the torque decreasing direction. Furthermore, we will also verify the case where the end point changes between MALA ⁇ LVLA ⁇ MVLV. Twice
  • Example 1 of state transition the case where the end point is MALA will be verified.
  • the vehicle travels on the ME curve while satisfying the command torque and the optimum efficiency (MECT). It intersects with the LA curve and the current is saturated (
  • LACT command torque
  • the torque saturates (T * ⁇ Ta: transition condition C7) and ends at the point MALA that intersects the MA curve.
  • the maximum torque point is MALA, but MALA does not satisfy the command torque.
  • the transition condition C7 is a condition in which the orthogonal coordinates (x, y) of LACT are substituted for MA and the value is 0 or less (that is, MA ⁇ 0).
  • transition condition C9 is a condition in which the orthogonal coordinates (x, y) of LACT are substituted into MA and the value is 0 or more (that is, MA> 0).
  • Example 2 of state transition> When the end point is MVLV, the scenario is different between voltage partial saturation and voltage constant saturation. In the case of constant voltage saturation, the following plurality of relationships can be considered as the relationship between the ME curve and the LV curve. Twice
  • Scenario A Y-intercept is ME> LV Scenario B: Y-intercept is LV ⁇ ME and there are two intersections of LV curve and ME curve Scenario C: Y-intercept is LV ⁇ ME and the intersection of LV curve and ME curve is 0 ⁇ 1 piece
  • transition condition C11 In the direction to decrease the torque MVLV, if torque saturation is eliminated (T * ⁇ T v: transition condition C11), the process proceeds on LV curve while satisfying the command torque (LVCT). It intersects with the ME curve (ME ⁇ 0: transition condition C3), advances on the ME curve, and performs optimum efficiency control (MECT).
  • the transition condition C11 is a condition in which the LVCT orthogonal coordinates (x, y) are substituted into the MV to be 0 or less (that is, MV ⁇ 0).
  • the code when the orthogonal coordinates (x, y) of LVLA are substituted for ME is used, and if ME> 0, the transition to LVCT is performed and ME ⁇ If it is 0, the transition to LACT may be performed.
  • ⁇ Example 4 of state transition> [Transition of MVLV ⁇ LVLA]
  • transition condition C12 When the current of MVLV is saturated while terminating at the MVLV point (
  • the phase of LVLA advances beyond the MV curve in the state of ending at the LVLA point ( ⁇ > ⁇ MVLVA: transition condition C16), the current output transitions to MVLV.
  • the transition condition C16 is a condition in which the LVLA orthogonal coordinates (x, y) are substituted into the MV to be 0 or more (that is, MV> 0).
  • the transition condition C12 may be ⁇ ⁇ ⁇ MVLVA in which the transition condition C16 is inverted.
  • Example 5 of state transition> [Transition of MALA ⁇ LVLA]
  • transition condition C10 When the voltage of MALA is saturated (
  • the phase of LVLA lags behind the MA curve ( ⁇ ⁇ MALVA : transition condition C15) in the state of ending at the LVLA point, the current output transitions to MALA.
  • the transition condition C15 is a condition in which the orthogonal coordinates (x, y) of LVLA are substituted into MA and become 0 or less (that is, MA ⁇ 0).
  • the transition condition C10 may be ⁇ ⁇ ⁇ MALVA in which the transition condition C15 is inverted.
  • the motor control device uses a state transition table in which transition conditions from the current state to the transition destination state are set when determining the command current of the motor under the voltage / current limit. Then, the transition destination is determined based on the positional relationship on the current vector plane of each curve, and at that time, the command value of the current vector is focused on the intersection of the two curves, which is effective as a current command (current output) for the motor.
  • the amount of calculation of the current command value for the motor can be reduced, and the processing speed can be improved and the cost can be reduced. Twice
  • the method of selecting and calculating the current command value as described above avoids the processing without the transition condition marked with x in the state transition table shown in FIG. 6, and therefore, for example, the flowchart shown in FIG. Compared with the process of determining the suitability of all intersections (that is, the conditions marked with x in the state transition table are also determined each time), the processing speed is greatly improved.
  • it is a method of calculating a current command value that can be applied to all synchronous machines regardless of the presence or absence of a magnet, a surface magnet type motor (SPM), and an embedded magnet type motor (IPM). Twice
  • Tcom is the absolute value of the command torque
  • is the absolute value of the current rotation speed
  • Vlmt is the voltage limit value
  • Ilmt is the current limit value
  • V (MECT) is the MECT intersection voltage
  • I ( MECT) is the MECT intersection current
  • T (MVLV) is the MVLV intersection torque
  • T (MALA) is the MALA intersection torque
  • T (LVLA) is the LVLA intersection torque
  • w_MALVA is the triple intersection speed of MA
  • w_MVLVA is the MV.
  • w_NOVA is a speed equal to or higher than
  • the state transition calculation is performed each time to transition to an appropriate state, resulting in omission, leakage, and calculation failure.
  • a motor having severe magnetic saturation and voltage fluctuation such as a motor for driving an electric vehicle, can be controlled with maximum efficiency. Twice
  • the ME curve For example, it is possible to substitute the ME curve with the MA curve for the purpose of minimizing copper loss. In that case, there are 10 combinations for selecting 2 curves from 5 curves excluding ME.
  • LACT is not used in order to exclude the three types under the above-mentioned conditions and maintain the minimum current. As a result, the effective combinations for the current output are limited to the five combinations shown in FIG. 8, MACT, LVCT, MVLV, MALA, and LVLA. Twice
  • FIG. 9 is a state transition table in which the above five cases are regarded as states, and six states including NOVA, which is a case in which the output possible range does not exist in the combination, are arranged as the current state and the transition destination state. ..
  • the state transition table of FIG. 9 is suitable for selecting, for example, a current command value required for controlling a low-speed / high-current motor. Twice
  • the motor control device is not limited to the configuration shown in FIG. In the motor control device shown in FIG. 1, feedback control is performed so that the target value and the current detection value match. For example, as in the motor control device 1a shown in FIG. 11, the current detection value is compared with the target value. It may be configured to perform feed-forward control (F / F control) that does not perform such operations. Twice
  • the motor control device 1a performs feedforward control based on the motor voltage equation. Therefore, the voltage command unit 4 of the motor control unit 10a uses the d-axis current command value Id and the q-axis current command value Iq generated by the current command unit 2 according to the following voltage equation (10) to obtain the d-axis voltage. The command value Vd and the q-axis voltage command value Vq are calculated. Twice
  • Ld is the d-axis inductance of the motor
  • Lq is the q-axis inductance of the motor
  • R is the electrical resistance (winding resistance) of the stator coil
  • ⁇ a is the interlinkage magnetic flux of the motor
  • is the electrical angular velocity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

電流指令値の計算量を軽減して処理速度を向上させたモータ制御装置を提供する。dq軸直交座標平面に描画した最大効率曲線、電流最小曲線、電圧最小曲線、電流制限円、電圧制限楕円、および定トルク曲線より選択した2つの曲線の交点のうち電流指令として有効な交点の組合せを求める。そして、交点の組合せを現在状態と遷移先状態として配列し、さらに遷移条件を設定した状態遷移表を作成して、現在状態に対応する任意の交点から遷移条件に従って遷移したときの遷移先状態に対応する交点の曲線上における位置関係に基づいて電動モータ15に対する電流指令値を生成する。

Description

モータ制御装置
本発明は、電動モータを駆動制御するモータ制御装置に関する。
埋め込み磁石型モータ(IPM)等のリラクタンストルクを利用するモータは、高トルク運転、高速運転が可能であることから、トラクションモータとして電気自動車、ハイブリッド車両等の駆動源になっている。このようなIPM化によってトラクションモータの制御が複雑化する一方で、最大効率を得るために電圧電流限界までモータを動作させる必要がある。 
モータの最大効率制御については、従来より様々な方式が提案されている。例えば、非特許文献1は、最大トルク/電流制御(MTPA)曲線、最大トルク/磁束制御(MTPF)曲線を用いた制御アルゴリズムを開示している。 
特許文献1は、数値解析的方法によって計算したxy平面上の曲線間の交点より得られた電流指令に基づき、低速領域から高速領域に対して順に運転モードを最大トルク/電流(MTPA)運転、弱継磁(CLVL)運転、最大トルク/電圧(MTPV)運転とする制御を開示している。
特開2016-226270号公報
「リラクタンストルク応用モータ」(電気学会/オーム社(2016/1))
モータ制御において、その制御方法を実際の製品に適用するには電圧・電流制限のすべてのケースに対して安定動作を可能にする必要がある。しかしながら、特許文献1と非特許文献1はともに電圧・電流制限が発生し得るケースの一部を示しているに過ぎない。 
例えば、モータ電流指令は、(条件i)制御破綻を回避するために電圧電流制限を満たし、(条件ii)上位指令を満たすために指令トルクを満たし、最終的には、(条件iii)モータ効率の最大化条件を満たす必要がある。 
非特許文献1は、最大効率制御を図示しているが数式による説明が一切ないため、最大効率制御を実施できない点で全ケースを網羅していない。また、非特許文献1は、最適電流テーブル方式を提案しているが、電流指令値のためのテーブル生成は高コストとなるという問題がある。 
特許文献1には効率最大化の記述がなく、例えば、電圧制限楕円と電流制限円の交点を持たないケースを考慮しておらず、すべての電圧・電流制限条件を網羅していない(電圧制限と電流制限の両方を満たさないケースは網羅していない)という問題がある。また、基準回転子速度のみに基づいて選択する交点を判定しているので、トルク指令または電圧電流制限値の変動により数値解析的方法(2次元Newton法)の解がなくなり、電流出力が不安定になるケースが生じることも考えられる。 
本発明は、上述した課題に鑑みてなされたものであり、その目的は、電圧電流制限条件を満たさない場合を含む、すべての電圧電流制限条件に対して最適なモータ電流指令を生成することである。
上記の目的を達成し、上述した課題を解決する一手段として以下の構成を備える。すなわち、本願の例示的な第1の発明は、dq軸直交座標系において電流ベクトル制御によってモータを駆動するモータ制御装置であって、dq軸直交座標平面における最大効率曲線、電流最小曲線、電圧最小曲線、電流制限円、電圧制限楕円、および定トルク曲線より選択した2つの曲線の交点のうち電流指令として有効な交点の組合せを求める手段と、前記交点の組合せを現在状態と遷移先状態として行方向と列方向にそれぞれ配列し、前記現在状態から前記遷移先状態への遷移条件を設定した状態遷移表を作成する手段と、前記現在状態に対応する任意の交点から前記遷移条件に従って遷移したときの前記遷移先状態に対応する交点の前記曲線上における位置関係に基づいて前記モータに対する電流指令値を生成する手段とを備えることを特徴とする。 
本願の例示的な第2の発明は、dq軸直交座標系において電流ベクトル制御によってモータを駆動するモータ制御方法であって、dq軸直交座標平面における最大効率曲線、電流最小曲線、電圧最小曲線、電流制限円、電圧制限楕円、および定トルク曲線より選択した2つの曲線の交点のうち電流指令として有効な交点の組合せを求める工程と、前記交点の組合せを現在状態と遷移先状態として行方向と列方向にそれぞれ配列し、前記現在状態から前記遷移先状態への遷移条件を設定した状態遷移表を作成する工程と、前記現在状態に対応する任意の交点から前記遷移条件に従って遷移したときの前記遷移先状態に対応する交点の前記曲線上における位置関係に基づいて前記モータに対する電流指令値を生成する工程とを備えることを特徴とする。
本発明のモータ制御装置によれば、状態遷移表を使用することで、複数曲線より選択した2つの曲線をもとに、電流指令として有効な交点を持たないケースも含むすべてのケースにおいて安定したモータ制御電流指令を出力できる。
図1は、本発明の実施形態に係るモータ制御装置の全体構成を示すブロック図である。 図2は、dq軸直交座標平面上における複数曲線の位置関係を示す図である。 図3は、複数曲線による電流指令値の選択範囲について説明する図である。 図4は、電圧電流制限による電流指令可能範囲についての種々のケースを示す図である。 図5は、電流指令として有効な組合せを示す図である。 図6は、現在状態から遷移先状態への遷移条件が設定された状態遷移表である。 図7は、本実施形態に係るモータ制御装置における指令電流の算出処理を示すフローチャートである。 図8は、電流指令として有効な組合せの変形例を示す図である。 図9は、図8の組合せに対応する状態遷移表である。 図10は、状態遷移表を使用しない電流出力交点の選択例を示すフローチャートである。 図11は、変形例に係るモータ制御装置の構成を示すブロック図である。
以下、本発明に係る実施形態について添付図面を参照して詳細に説明する。 
<モータ制御装置の構成> 図1は、本発明の実施形態に係るモータ制御装置の全体構成を示すブロック図である。図1に示すモータ制御装置1は、モータ制御部10、制御対象である電動モータ15に所定の駆動電流を供給するモータ駆動部5等を備える。モータ制御部10は、モータ制御装置1の全体の制御を司る、例えばマイクロプロセッサからなり、電動モータ15に流れる電流と目標電流とが一致するように電流値をフィードバックするフィードバック制御(F/B制御)等を行う中央制御部(CPU)である。 
電流指令部2は、後述する状態遷移表を使用して指示トルク(トルク指令値)Tq、電動モータ15の回転速度ω等から、d軸成分およびq軸成分を持つ2相の指令電流値(目標電流値)であるd軸の電流指令値Idおよびq軸の電流指令値Iqを生成する。 
メモリ3には、モータ制御部10が実行するモータ制御プログラムに加え、後述する状態遷移の実施に必要な状態遷移表、プログラム等が記憶される。メモリ3は、例えば読み出し専用メモリ(ROM)である。メモリ3はモータ制御部10に内蔵された構成であっても、あるいは、外付けされた構成としてもよい。 
減算器13aは、q軸の電流指令値Iqと、座標変換部28より出力されたq軸電流Iqとの差分を演算する。また、減算器13bは、d軸の電流指令値Idと、座標変換部28より出力されたd軸電流Idとの差分を演算する。 
q軸PI制御部16aは、IqとIqの差分をゼロに収束させるようにPI(比例+積分)制御を行い、q軸電圧の指令値であるq軸電圧指令値Vqを算出する。また、d軸PI制御部16bは、IdとIdの差分をゼロに収束させるようにPI(比例+積分)制御を行うことで、d軸電圧の指令値であるd軸電圧指令値Vdを算出する。 
座標変換部17は、q軸、d軸の電圧指令値Vq,Vdと電動モータ15の回転角度θとからモータ印加電圧を演算する。すなわち、2相/3相変換機能を有する座標変換部17は、回転角度θに基づいて、q軸電圧指令値Vqとd軸電圧指令値Vdを3相の各相毎の電圧指令値である電圧指令値Vu,Vv,Vwに変換する。 
3相変換後の電圧指令値Vu,Vv,Vwは、PWM信号生成部21に入力される。PWM信号生成部21は、これらの電圧指令値に基づいてPWM(パルス幅変調)制御信号のデューティを増減することにより、電動モータ15の駆動信号を生成する。 
すなわち、PWM信号生成部21は、電圧指令値に従って、インバータ回路23を構成する複数の半導体スイッチング素子(FET)のON/OFF制御信号(PWM信号)を生成する。これらの半導体スイッチング素子は、電動モータ15の各相(u相、v相、w相)に対応している。 
スイッチング素子(FET)はパワー素子とも呼ばれ、例えば、MOSFET(Metal-Oxide Semiconductor Field-Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)等のスイッチング素子を用いる。 
なお、PWM信号生成部21は、モータ駆動信号を生成しFET駆動回路等として機能するモータ制御用集積回路(プリドライバIC)に内蔵される構成としてもよい。 
モータ駆動部5のインバータ回路23は、電源リレー24を介してバッテリBTから供給された電力より、電動モータ15を駆動する交流を生成するモータ駆動回路である。電動モータ15は、例えば、表面磁石型モータ(SPM)、埋め込み磁石型モータ(IPM)等の車載トラクションモータである。電源リレー24は、バッテリBTからの電力を遮断可能に構成され、半導体リレーで構成することもできる。 
インバータ回路23より電動モータ15に供給されるモータ駆動電流は、各相に対応して配置した電流センサからなる電流検出部25で検出される。電流検出部25は、例えばモータ駆動電流検出用のシャント抵抗に流れる直流電流を、オペアンプ等からなる増幅回路を用いて検出する。 
電流検出部25からの出力信号(電流検出信号)は、A/D変換部(ADC)27に入力される。ここでは、ADC27のA/D変換機能によりアナログ電流値をデジタル値に変換し、その変換により得られた3相電流Iu,Iv,Iwは、座標変換部28に入力される。 
3相/2相変換機能を有する座標変換部28は、回転角センサ29で検出された回転角度θと3相電流Iu,Iv,Iwより、q軸電流Iqとd軸電流Idを出力する。すなわち、座標変換部28はモータの実電流(q軸実電流、d軸実電流)をもとにd軸電流とq軸電流を演算する。 
<最適効率制御> 本実施形態に係るモータ制御装置は、モータ制御において指令トルク・速度を満たすとともに効率を最大化する必要があるため、第一の条件として電圧・電流制限を満たし、第二の条件として、その電圧・電流制限範囲内で効率を最大化する。 
そこで、x軸をIq成分、y軸をId成分とし、y軸正方向を弱め界磁方向と定義した電流dq軸平面(dq軸直交座標平面)上に電流最小曲線、電圧最小曲線、電流制限円、電圧制限楕円という4曲線を定義する。これら4曲線に囲まれた領域が上記第一の条件を満たす。さらに第二の条件を満たすため、上記の領域内で定トルク曲線および最大効率曲線と重なるか、あるいは最も近くなる点を電流指令値
として出力する。 
定トルク曲線(CT曲線、あるいは単にCT(Constant Torque)ともいう)は、一定トルクTを満たす直交座標(x,y)の軌跡であり、式(1)で表すことができる。式(1)において、ξは永久磁石係数であり、永久磁石を含むモータでは1、含まないモータでは0とする。Δηは、無次元モータ定数ηの最大値ηmaxと最小値ηminの差である。 
Figure JPOXMLDOC01-appb-M000001
定トルク曲線は双曲線であるが、トルク指令値T>0,T<0のいずれの場合でも、y≧0の範囲において意味のある電流指令となる。 
電流ノルム|i|を一定にする(x,y)の軌跡はi =x+yとなり、電流制限関数をLA(x,y)=x+yとする。電流ノルム上限を|imax|に設定すると、電流制限円は原点を中心とする半径|imax|の円である。そこで、式(2)で示される曲線を電流制限円、あるいはLA(Limited Ampere)曲線と呼ぶ。 
Figure JPOXMLDOC01-appb-M000002
電圧ノルム|v|を一定にする(x,y)の軌跡は電圧制限関数として、LV(x,y)=(x-ηminωy+ξm)+(y+ηmaxωy)で表される。電圧ノルムの上限を|vmax|に設定すると、電圧制限円(LV(Limited Voltage)曲線)は式(3)で表すことができる。 
Figure JPOXMLDOC01-appb-M000003
一定トルクに対する電流ノルム最小化条件を導出することで、式(4)に示す電流ノルム最小曲線(電流最小曲線、MA(Minimum Ampere)曲線ともいう)を定義する。 
Figure JPOXMLDOC01-appb-M000004
同様に、一定トルクに対する電圧ノルム最小化条件を導出することで、式(5)に示す電圧ノルム最小曲線(電圧最小曲線、MV(Minimum Voltage)曲線ともいう)を定義する。 
Figure JPOXMLDOC01-appb-M000005
最大効率曲線(ME(Maximum Efficiency)曲線ともいう)は、例えば、解析あるいは実測データをもとにヒステリシス損係数と渦電流損係数を導出し、それらを含む数式を用いて、以下のように定義する。 
Figure JPOXMLDOC01-appb-M000006
式(6)において、K(ω)は電流非依存係数であり、ヒステリシス損係数をk、渦電流損係数をkとした場合、以下のように定義できる。 
Figure JPOXMLDOC01-appb-M000007
上記の電流最小曲線、電圧最小曲線、最大効率曲線は、y軸を主軸とする上向きの双曲線である。最大効率曲線はモータの鉄損を用いて記述された2次曲線である。 
図2は、上述した曲線のうちの5曲線(MV曲線、ME曲線、MA曲線、LA曲線、LV曲線)のdq軸直交座標平面上における位置関係を示す。図2の横軸がiq軸(x軸)、縦軸がid軸(y軸)であり、各曲線の大小関係(同じx座標に対するy座標の値)は、MV曲線>ME曲線>MA曲線の関係が成り立つ。 
y>0の範囲では、MA曲線、MV曲線、ME曲線は互に交わらない。一方、MA曲線とLA曲線は必ず交わり、MV曲線とLV曲線も必ず交わる関係にある。 
次に、本実施形態に係るモータ制御装置における電流指令値の選択方法について説明する。図2において、MA,MV,LA,LVの内側は、電圧電流制限を満たす領域(符号Aで示す)であり、CT曲線の線上は指令トルクを満たす。ここでは、これらの条件を満たす点が複数存在するが、ME曲線とCT曲線の交点で指令トルクと最大効率が両立し、この点を電流指令値として選択することでモータ効率最大化が実現できる。よって、電流指令値の選択において、電圧電流制限を満たすことが必須の条件となる。 
さらに、図3を参照して電流指令値の選択範囲について説明する。図3(a)はトルク指令値T>0の場合、(b)はトルク指令値T<0の場合に対応し、上述した複数の2次曲線が電流指令値の制限条件となる。 
図3に示すように、2個の放物線であるMV曲線とMA曲線で挟まれた範囲が電流出力として有効な動作点であり、その範囲の開口部は、LA曲線とLV曲線で制限される。よって、これらの曲線で囲まれた、図3において斜線を付した領域が電流指令出力可能範囲であり、LV曲線内、かつ、LA曲線内、かつ、MA曲線以上、かつ、MV曲線以下という4条件をすべて満たす範囲である。 
指令トルクの出力が可能となるのは、上記の範囲内に指令トルクに基づくCT曲線を含む場合である。トルク指令が大きくてCT曲線を含まない場合、電圧電流制限範囲内でトルクを最大化する点を電流指令値として選択する。CT曲線を含む場合には、効率最適となるME曲線との交点、またはME曲線に最も近くなる点を電流指令値として選択する。 
電圧電流制限による電流指令可能範囲は、図4に示すように電圧飽和段階で3通り(電圧常時飽和、電圧部分飽和、電圧飽和なし)、電流飽和段階で3通り(電流常時飽和、電流部分飽和、電流飽和なし)の計9通りある。 
ただし、電圧と電流の両方が無制限のモータは存在しないので、電圧飽和なしと電流飽和なしのケース(図4(g))を除外する。また、出力可能範囲が存在しないケース(図4(j))をNOVA(No cross Voltage and Ampere)と定義する。図4の各ケースにおいて、トルク増加方向を矢印で示し、トルク最大点を二重丸(◎)で表している。 
なお、ここでは、曲線相互の交点は、交差するそれらの曲線の略称を繋いだ称呼を使用する。具体的には、最大効率曲線と定トルク曲線の交点をMECT、電流制限円と定トルク曲線の交点をLACT、電流最小曲線と電流制限円の交点をMALA、電圧制限楕円と定トルク曲線の交点をLVCT、電圧最小曲線と電圧制限楕円の交点をMVLV、電圧制限楕円と電流制限円の交点をLVLAと呼ぶ。 
図4に示すように、電圧制限のみの場合にはMVLVがトルク最大点となり(図4(a)(d))、電流制限のみであればMALAがトルク最大点となり(図4(h)(i))、電圧と電流両方の制限があるケースでは、LVLAがトルク最大点となる(図4(b)(c)(e)(f))。 
CT曲線については、それが電流出力範囲と重ならない場合、トルク最大点を電流指令値とする。CT曲線が電流出力範囲と重なる場合には、電流出力範囲内であって、かつCT曲線上で最もME曲線に近い点を電流指令値とする。 
次に、本実施形態に係るモータ制御装置において電流指令値を絞り込む方法について説明する。電流指令値は、上述した式(1)~(6)で表される6曲線より選択した2曲線の交点であり、これら6曲線から2曲線を選ぶ組合せは15通りあるが、電流指令として有効な組合せは、図5に示すように、MECT,LVCT,LACT,MVLV,MALA,LVLAの6通りに限られる。 
その理由は、上述したようにMA,MV,ME間で交点は存在せず、MALV,MVLA,MELV,MELA,MACT,MVCTは有効な電流出力にならないからである。なお、LACT,LVCT,LVLAは交点が存在しない場合がある。 
よって、電流指令として有効な交点を持たないケースも含めた7通りで、すべてのケースを網羅できる。そこで、本実施形態に係るモータ制御装置は、これらの7通りのケースを状態として捉え、図6に示す状態遷移表を用いて電流指令値の選択を実施する。 
図6の状態遷移表では、電流指令として有効な交点の組合せが行方向と列方向それぞれに現在状態と遷移先状態として配列され、現在状態から遷移先状態への遷移条件(C1~C18)が設定されている。遷移条件は、任意の交点から別の交点へ移動するための判断条件であり、その判断条件は現在の交点に依存しているため、状態遷移マシンとなる。×印は遷移がないことを示す。 
図6の状態遷移表において、MALA,MVLV,LVLA,NOVAはトルクが飽和している状態である。ここでは、MVLV,MALA,LVLAのトルクをそれぞれ電圧飽和トルクTv、電流飽和トルクTa、電圧電流飽和トルクTvaと定義する。 
これらは現在状態に依存しないが、速度や電流制限値等のパラメータにより変動する。トルク指令に追従できるのはMECT,LVCT,LACTの3状態で、それらのうち効率最大になるのはMECTのみである。|v|,|i|,MEは、それぞれ現在状態の電圧ノルム、電流ノルム、ME関数出力を表す。 
トルクが飽和している状態(MALA,MVLV,LVLA,NOVA)間の遷移は、電流制限、電圧制限および速度の関係で決まる。トルク飽和⇔未飽和が変化する遷移(LVCT,LACT⇔MALA,MVLV,LVLA)において、TvまたはTaのトルクが未飽和になった場合、遷移先が1通りである。 
一方、Tvaが未飽和になったときには、遷移先はLVCTとLACTの2通りが考えられる。いずれに遷移するかは、ME曲線、LV曲線とLA曲線の共有点速度ωMELVAで判別する。 
なお、電流指令として有効な交点を持たない場合、モータに対して少なくとも過電流保護と過電圧保護のいずれかあるいは双方を適用する保護手段をさらに備えるようにしてもよい。こうすることで、出力可能範囲がない場合においてモータを過熱から保護し、制御素子の破壊、故障等を防止できる。 
次に、本実施形態に係るモータ制御装置における電流指令の出力動作について説明する。図7は、本実施形態に係るモータ制御装置における電流指令値の算出処理を示すフローチャートである。 
図7のステップ
S11においてモータ制御部10は、上述した6個の二次曲線をdq軸直交座標平面上に定義する。具体的には、MV曲線、ME曲線、MA曲線、LA曲線、LV曲線、CT曲線をxy平面上に描画する。続くステップS13において、ステップS11で描画した6曲線より選択した2曲線の交点を定義する。ここでの交点の組合せは、上述したように電流指令として有効な6通りと、電流指令として有効な交点を持たない組合せの計7通りとなる。 
ステップS15において、上記のステップS13で得た電流指令として有効な交点の組合せを、行方向と列方向それぞれに現在状態と遷移先状態として配列し、それらに遷移条件を付加した、図6に示す状態遷移表を作成する。 
ステップS17においてモータ制御部10は、初期状態(例えば、MECTから開始する)を設定し、ステップS19で、後述する遷移条件を満たすか否かを判断する。遷移条件を満たす場合、ステップS21において、上記のステップS15で作成した状態遷移表に従い、指令トルク、モータ回転速度等を遷移条件として所定の交点から別の交点へ移動する状態遷移を実施する。これにより移転先(遷移先)を絞り込み、電圧・電流制限範囲内でトルクを最大化する点を電流指令として選択する。出力可能な電流指令が複数存在する場合には、指令トルクを満たして最大効率で出力されるようにする。 
このように、初期値(x,y)が遷移条件を満たす限り、他の状態遷移を実施する処理を繰り返す(ステップS19,S21)。遷移条件を満たさない場合(ステップS19でNO)には、ステップS23においてモータ制御部10は、現在状態の交点の電流指令値を算出する。ここでは、例えば2変数ニュートン法、代数解法等を使用して効率最大化の条件を満たす電流指令値(q軸の電流指令値Iq、d軸の電流指令値Id)を算出する。各交点の電流指令値は、2曲線を選択して2元2次方程式を解くことで導出できる。 
ステップS25において、状態遷移処理が終了したかどうかを判断し、終了していない場合、処理をステップS19に戻して、他の遷移条件に基づく状態遷移処理を実施する。 
次に、本実施形態に係るモータ制御装置において状態遷移表に基づく状態遷移を実施した最適効率制御の検証結果について説明する。 
状態遷移表を使用した状態遷移の実施において、終着点はMALA,MVLV,LVLAの3パターンがあり、ここでは、それぞれにおける制御シナリオをトルク増加方向と減少方向の双方向で検証する。さらに、終着点がMALA⇔LVLA⇔MVLVで変化するケースについても検証する。 
なお、以下において、すべて指令トルクを「正」として説明するが、指令トルクが「負」であっても同様である。 
<状態遷移の実施例1> ここでは、状態遷移の実施例1として、終着点がMALAの場合について検証する。例えば、トルクが0から増加する方向において、指令トルクと最適効率を満たしながらME曲線上を進む(MECT)。LA曲線と交わり、電流が飽和する(|i|≧|imax|:図6の遷移条件C2)。次に、指令トルクを満たしながらLA曲線上を進む(LACT)。 
トルクが飽和し(T≧Ta:遷移条件C7)、MA曲線と交わる点MALAに終着する。トルク最大点はMALAであるが、MALAでは指令トルクを満たさない。遷移条件C7は、MAにLACTの直交座標(x,y)を代入して0以下(つまり、MA<0)となる条件である。 
そこで、トルクMALAから減少する方向において、トルク飽和が解消されたならば(T<Ta:遷移条件C9)、指令トルクを満たしながらLA曲線上を進む(LACT)。ME曲線と交わり(ME>0:遷移条件C6)、ME曲線上を進んで最適効率制御を実施する(MECT)。なお、遷移条件C9は、MAにLACTの直交座標(x,y)を代入して0以上(つまり、MA>0)となる条件である。 
<状態遷移の実施例2> 終着点がMVLVとなる場合、電圧部分飽和と電圧常時飽和ではシナリオが異なる。電圧常時飽和の場合には、ME曲線とLV曲線の関係として、以下の複数通りが考えられる。 
シナリオA:Y切片がME>LVシナリオB:Y切片がLV≧ME、かつLV曲線とME曲線の交点が2個シナリオC:Y切片がLV≧ME、かつLV曲線とME曲線の交点が0~1個 
電流部分飽和の場合、上記のシナリオAのみが該当する。 
[シナリオA] トルク0から増加する方向において、指令トルクと最適効率を満たしながらME曲線上を進む(MECT)。LV曲線と交わり電圧が飽和する(|v|≧|vmax|:遷移条件C1)。次に、指令トルクを満たしながらLV曲線上を進む(LVCT)。トルクが飽和すると(T≧T:遷移条件C4)、MV曲線と交わる点MVLVに終着する。トルク最大点はMVLVであり、MVLVでは指令トルクを満たさない。遷移条件C4は具体的には、MVにLVCTの直交座標(x,y)を代入して0以上(つまり、MV>0)となる条件である。 
トルクMVLVから減少する方向において、トルク飽和が解消されたならば(T<T:遷移条件C11)、指令トルクを満たしながらLV曲線上を進む(LVCT)。ME曲線と交わり(ME<0:遷移条件C3)、ME曲線上を進み最適効率制御を実施する(MECT)。遷移条件C11は、MVにLVCTの直交座標(x,y)を代入して0以下(つまり、MV<0)となる条件である。 
[シナリオB] トルク0から増加する方向において、y軸とLV曲線の交点を始点として、LV曲線上を進む(LVCT)。ME曲線がLV曲線の内側になったとき(|v|≦|vmax|)、出力がMECTに変化する。その後、再度、ME曲線がLV曲線の外側になるため(|v|≧|vmax|:遷移条件C1)、出力はLVCTとなり、トルクが飽和すると(T≧T:遷移条件C4)、MV曲線と交わる点MVLVに終着する。 
トルクMVLVから減少する方向において、トルク飽和が解消されたならば(T<T:遷移条件C11)、指令トルクを満たしながらLV曲線上を進む(LVCT)。ME曲線と交わり(ME<0:遷移条件C3)、ME曲線上を進んで最適効率制御を実施する(MECT)が、MECTの電圧が再度飽和し(|v|≧|vmax|:遷移条件C1)、LVCTに戻る。 
[シナリオC] トルク0から増加する方向において、指令トルクを満たしながらLV曲線上を進む(LVCT)。トルクが飽和すると(T≧T:遷移条件C4)、MV曲線と交わる点MVLVに終着する。 
トルクMVLVから減少する方向において、トルク飽和が解消されたならば(T<T:遷移条件C11)、指令トルクを満たしながらLV曲線上を進む(LVCT)。 
<状態遷移の実施例3> 終着点がLVLAとなる場合、MECTの電流、電圧のどちらが先に飽和するかによって、以下の2つのシナリオある。 
[電流が先に飽和するシナリオ] トルク0から増加する方向において、指令トルクと最適効率を満たしながらME曲線上を進む(MECT)。LA曲線と交わり電流が飽和する(|i|≧|imax|:遷移条件C2)。次に、指令トルクを満たしながらLA曲線上を進む(LACT)。LV曲線と交わり電圧とトルクが飽和し(T≧Tva:遷移条件C8)、LVLAに終着する。トルク最大点はLVLAであり、LVLAでは指令トルクを満たさない。遷移条件C8は、LVにLACTの直交座標(x,y)を代入してvmax 以上(つまり、電圧飽和)となる条件である。 
トルクLVLAから減少する方向において、トルク飽和が解消されたときに(T<Tva、かつω≦ωMELVA:遷移条件C14)を満たしているので、指令トルクを満たしながらLA曲線上を進む(LACT)。ME曲線と交わると(ME>0:遷移条件C6)、ME曲線上を進み最適効率制御を実施する(MECT)。 
[電圧が先に飽和するシナリオ] トルク0から増加する場合、指令トルクと最適効率を満たしながらME曲線上を進む(MECT)。LV曲線と交わり電圧が飽和する(|v|≧|vmax|:遷移条件C1)。次に、指令トルクを満たしながらLV曲線上を進む(LVCT)。LA曲線と交わり電圧とトルクが飽和し(T≧Tva:遷移条件C5)、LVLAに終着する。トルク最大点はLVLAであり、LVLAでは指令トルクを満たさない。遷移条件C5は、LAにLVCTの直交座標(x,y)を代入して、imax 以上(つまり、電流飽和)となる条件である。 
トルクLVLAから減少する方向において、トルク飽和が解消されたときに(T<Tva、かつω>ωMELVA:遷移条件C13)を満たしているので、指令トルクを満たしながらLV曲線上を進む(LVCT)。ME曲線と交わると(ME<0:遷移条件C3)、ME曲線上を進み最適効率制御を実施する(MECT)。 
なお、遷移条件C13,C14については、ωMELVAに代えて、MEにLVLAの直交座標(x,y)を代入したときの符号を用いて、ME>0であればLVCTへ遷移し、ME≦0であればLACTへ遷移するようにしてもよい。 
<状態遷移の実施例4>[MVLV⇔LVLAの遷移] MVLV点に終着している状態でMVLVが電流飽和すると(|i|≧|imax|:遷移条件C12)、電流出力はLVLAに遷移する。同様に、LVLA点に終着している状態で、LVLAがMV曲線よりも位相が進むと(ω>ωMVLVA:遷移条件C16)、電流出力はMVLVに遷移する。なお、遷移条件C16は、MVにLVLAの直交座標(x,y)を代入して0以上(つまり、MV>0)となる条件である。遷移条件C12は、遷移条件C16を反転したω≦ωMVLVAとしてもよい。 
<状態遷移の実施例5>[MALA⇔LVLAの遷移] MALA点に終着している状態で、MALAが電圧飽和(|v|≧|vmax|:遷移条件C10)すると、電流出力はLVLAに遷移する。同様に、LVLA点に終着している状態で、LVLAがMA曲線よりも位相が遅れると(ω<ωMALVA:遷移条件C15)、電流出力はMALAに遷移する。なお、遷移条件C15は、MAにLVLAの直交座標(x,y)を代入して0以下(つまり、MA<0)となる条件である。遷移条件C10は、遷移条件C15を反転したω≧ωMALVAとしてもよい。 
<状態遷移の実施例6>[NOVA遷移] 電圧制限楕円(LV)と電流制限円(LA)が交点を持たない状態NOVAは、速度ωNOVAを遷移条件としてLVLAとの間で遷移する(遷移条件C17,C18)。この電流出力は電流・電圧を両方満たす点ではないので、次の2通りの方針が考えられる。 
(i)過電流保護を優先し、電圧絶対値が最小化されるy軸上の点(y=imax)(ii)過電圧保護を優先し、電流絶対値が最小化されるy軸上の点(LV曲線にx=0を代入した下記の式(8)の解である式(9)) 
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
以上説明したように本実施形態に係るモータ制御装置は、電圧・電流制限下でモータの指令電流を決定する際、現在状態から遷移先状態への遷移条件が設定された状態遷移表を使用して、各曲線の電流ベクトル平面上の位置関係に基づいて遷移先を決定し、その際、モータに対する電流指令(電流出力)として有効な、2つの曲線の交点に着目して電流ベクトルの指令値を計算することで、モータに対する電流指令値の計算量を軽減して、処理速度の向上とコスト削減が可能になる。 
すなわち、上記のような電流指令値を選択し計算する方法は、図6に示す状態遷移表において×印が付された遷移条件のない処理を最初から回避するので、例えば、図10に示すフローチャートのようにすべての交点の適否を判断する(つまり、状態遷移表の×印の条件も毎回判断する)処理に比べて、処理速度が大幅に改善される。加えて、磁石の有無、表面磁石型モータ(SPM)、埋め込み磁石型モータ(IPM)にかかわらず、すべての同期機に対応可能な電流指令値の算出方法である。 
なお、図10において、|Tcom|は指令トルクの絶対値、|W|は現在回転速度の絶対値、Vlmtは電圧制限値、Ilmtは電流制限値、V(MECT)はMECT交点電圧、I(MECT)はMECT交点電流、T(MVLV)はMVLV交点トルク、T(MALA)はMALA交点トルク、T(LVLA)はLVLA交点トルク、w_MALVAはMA,LV,LAの3重交点速度、w_MVLVAはMV,LV,LAの3重交点速度、w_NOVAは電圧制限楕円と電流制限円を両方満たす点が存在しない|w_MALVA|以上の速度である。 
また、本実施形態によれば、電流条件と電圧条件の双方を満たさない状態についても状態遷移表に組み込むことで、解が存在しない条件下での無駄な計算を回避でき、電流指令のための交点座標の演算の破綻を防止して制御の安定化を図ることができる。 
換言すれば、電流指令値の選択において、出力可能範囲が存在しない状態を考慮することで、曲線間において交点がない状態を確実に排除して電流制御の破綻を回避できる。 
さらに、電圧制限値、電流制限値、抵抗値、インダクタンス、鎖交磁束等のパラメータが変動してもその都度、状態遷移計算を実施して適切な状態に遷移するため、抜け、漏れ、計算破綻等がなく、例えば、電動車両駆動用モータ等の磁気飽和、電圧変動が激しいモータであっても最大効率制御が可能である。 
また、銅損のみならず、ヒステリシス損と渦電流損の和である鉄損も含めた最適化に対応させた最大効率制御ができる。これにより、効率マップを作成する従来の制御に比べて工数を削減して、実機の処理負荷軽減が可能となる。 
本発明は上述した実施形態に限定されず、種々の変形が可能である。 
<変形例1> 上述した実施形態に係るモータ制御装置では、電流指令として有効な組合せは、図5に示す6通りとしたが、モータの鉄損を考慮しない場合、組合せはこれらに限定されない。 
例えば、銅損最小を目的としてME曲線をMA曲線で代用することも可能である。その場合、MEを除いた5曲線から2曲線を選ぶ組合せは10通りある。また、上述した条件で3通りを除外し、電流最小を維持するためLACTも使わない。その結果、電流出力として有効な組合せは、図8に示すMACT,LVCT,MVLV,MALA,LVLAの5通りに限られる。 
図9は、上記の5通りのケースを状態として捉えるとともに、さらに、組合せに出力可能範囲が存在しないケースであるNOVAを加えた6状態を現在状態と遷移先状態として配列した状態遷移表である。図9の状態遷移表は、例えば、低速・大電流モータの制御に必要な電流指令値の選択に適している。 
<変形例2> 本発明の実施形態に係るモータ制御装置は、図1に示す構成に限定されない。図1に示すモータ制御装置では、目標値と電流検出値が一致するようフィードバック制御を行っているが、例えば、図11に示すモータ制御装置1aのように、電流検出値について目標値との対比等を行わないフィード・フォワード制御(F/F制御)を行う構成としてもよい。 
モータ制御装置1aは、モータ電圧方程式に基づくフィードフォワード制御を行う。そのため、モータ制御部10aの電圧指令部4は、電流指令部2で生成されたd軸の電流指令値Idとq軸の電流指令値Iqより、下記の電圧方程式(10)によって、d軸電圧指令値Vdとq軸電圧指令値Vqを演算する。 
Figure JPOXMLDOC01-appb-M000010
式(10)において、Ldはモータのd軸インダクタンス、Lqはモータのq軸インダクタンス、Rはステータコイルの電気抵抗(巻線抵抗)、Φaはモータの鎖交磁束、ωは電気角速度であり、これらを事前測定または駆動中の検出・推定により用意する。なお、pは微分演算子である。
1,1a モータ制御装置 2 中央制御部(CPU)3 メモリ4 電圧指令部5 モータ駆動部10,10a モータ制御部15 電動モータ16a q軸PI制御部16b d軸PI制御部17,28 座標変換部21 PWM信号生成部23 インバータ回路24 電源リレー25 電流検出部27 A/D変換部(ADC)29 回転角センサBT 外部バッテリ

Claims (12)

  1. dq軸直交座標系において電流ベクトル制御によってモータを駆動するモータ制御装置であって、 dq軸直交座標平面における最大効率曲線、電流最小曲線、電圧最小曲線、電流制限円、電圧制限楕円、および定トルク曲線より選択した2つの曲線の交点のうち電流指令として有効な交点の組合せを求める手段と、 前記交点の組合せを現在状態と遷移先状態として行方向と列方向にそれぞれ配列し、前記現在状態から前記遷移先状態への遷移条件を設定した状態遷移表を作成する手段と、 前記現在状態に対応する任意の交点から前記遷移条件に従って遷移したときの前記遷移先状態に対応する交点の前記曲線上における位置関係に基づいて前記モータに対する電流指令値を生成する手段と、を備えるモータ制御装置。
  2. 前記状態遷移表は、前記現在状態および前記遷移先状態として前記曲線に対して有効な交点を持たない状態を含む請求項1に記載のモータ制御装置。
  3. 前記有効な交点を持たない場合において前記モータに対して少なくとも過電流保護と過電圧保護のいずれかあるいは双方を適用する保護手段をさらに備える請求項2に記載のモータ制御装置。
  4. 前記状態遷移表は、前記最大効率曲線と前記定トルク曲線との交点座標を前記現在状態とし、所定の電流飽和を前記遷移条件として前記電流制限円と前記定トルク曲線との交点座標を前記遷移先状態とする第1の遷移と、 前記電流制限円と前記定トルク曲線との交点座標を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電流最小曲線と前記電流制限円との交点座標を前記遷移先状態とする第2の遷移と、 前記電流最小曲線と前記電流制限円との交点座標を前記現在状態とし、所定のトルク飽和の解消を前記遷移条件として前記電流制限円と前記定トルク曲線との交点座標を前記遷移先状態とする第3の遷移と、 前記電流制限円と前記定トルク曲線との交点座標を前記現在状態とし、前記最大効率曲線との交わり状態を前記遷移条件として前記最大効率曲線と前記定トルク曲線との交点座標を前記遷移先状態とする第4の遷移とを含む請求項1に記載のモータ制御装置。
  5. 前記状態遷移表は、前記最大効率曲線と前記定トルク曲線との交点座標を前記現在状態とし、所定の電圧飽和を前記遷移条件として前記電圧制限楕円と前記定トルク曲線との交点座標を前記遷移先状態とする第5の遷移と、 前記電圧制限楕円と前記定トルク曲線との交点座標を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電圧最小曲線と前記電圧制限楕円との交点座標を前記遷移先状態とする第6の遷移と、 前記電圧最小曲線と前記電圧制限楕円との交点座標を前記現在状態とし、所定のトルク飽和の解消を前記遷移条件として前記電圧制限楕円と前記定トルク曲線との交点座標を前記遷移先状態とする第7の遷移と、 前記電圧制限楕円と前記定トルク曲線との交点座標を現在状態とし、前記最大効率曲線との交わり状態を前記遷移条件として前記最大効率曲線と前記定トルク曲線との交点座標を前記遷移先状態とする第8の遷移とを含む請求項1に記載のモータ制御装置。
  6. 前記状態遷移表は、前記最大効率曲線と前記定トルク曲線との交点座標を前記現在状態とし、所定の電流飽和を前記遷移条件として前記電流制限円と前記定トルク曲線との交点座標を前記遷移先状態とする第9の遷移と、 前記電流制限円と前記定トルク曲線との交点座標を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電圧制限楕円と前記電流制限円の交点座標を前記遷移先状態とする第10の遷移と、 前記電圧制限楕円と前記電流制限円の交点座標を前記現在状態とし、所定のトルク飽和の解消と回転数を満たすことを前記遷移条件として前記電流制限円と前記定トルク曲線との交点座標を前記遷移先状態とする第11の遷移と、 前記電流制限円と前記定トルク曲線との交点座標を前記現在状態とし、前記最大効率曲線との交わり状態を前記遷移条件として前記最大効率曲線と前記定トルク曲線との交点座標を前記遷移先状態とする第12の遷移とを含む請求項1に記載のモータ制御装置。
  7. 前記状態遷移表は、前記最大効率曲線と前記定トルク曲線との交点座標を前記現在状態とし、所定の電圧飽和を前記遷移条件として前記電圧制限楕円と前記定トルク曲線との交点座標を前記遷移先状態とする第13の遷移と、 前記電圧制限楕円と前記定トルク曲線との交点座標を前記現在状態とし、所定のトルク飽和を前記遷移条件として前記電圧制限楕円と前記電流制限円との交点座標を前記遷移先状態とする第14の遷移と、 前記電圧制限楕円と前記電流制限円の交点座標を前記現在状態とし、所定のトルク飽和の解消と回転数を満たすことを前記遷移条件として前記電圧制限楕円と前記定トルク曲線との交点座標を前記遷移先状態とする第15の遷移と、 前記電圧制限楕円と前記定トルク曲線との交点座標を前記現在状態とし、前記最大効率曲線との交わり状態を前記遷移条件として前記最大効率曲線と前記定トルク曲線との交点座標を前記遷移先状態とする第16の遷移とを含む請求項1に記載のモータ制御装置。
  8. 前記状態遷移表は、前記電圧最小曲線と前記電圧制限楕円との交点座標を前記現在状態とし、所定の電流飽和を前記遷移条件として前記電圧制限楕円と前記電流制限円との交点座標を前記遷移先状態とする第17の遷移と、 前記電圧制限楕円と前記電流制限円との交点座標を前記現在状態とし、前記電圧最小曲線よりも位相が進んでいることを前記遷移条件として前記電圧最小曲線と前記電圧制限楕円との交点座標を前記遷移先状態とする第18の遷移とを含む請求項1に記載のモータ制御装置。
  9. 前記状態遷移表は、前記電流最小曲線と前記電流制限円との交点座標を前記現在状態とし、所定の電圧飽和を前記遷移条件として前記電圧制限楕円と前記電流制限円との交点座標を前記遷移先状態とする第19の遷移と、 前記電圧制限楕円と前記電流制限円との交点座標を前記現在状態とし、前記電流最小曲線より
    も位相が遅れていることを前記遷移条件として前記電流最小曲線と前記電流制限円との交点座標を前記遷移先状態とする第20の遷移とを含む請求項1に記載のモータ制御装置。
  10. 前記電圧制限楕円と前記電流制限円が交点を持たない状態を前記現在状態とし、所定の回転数を満たすことを前記遷移条件として前記電圧制限楕円と前記電流制限円との交点座標を前記遷移先状態とする第21の遷移と、 前記電圧制限楕円と前記電流制限円との交点座標を前記現在状態とし、所定の回転数を満たすことを前記遷移条件として前記電圧制限楕円と前記電流制限円が交点を持たない状態を前記遷移先状態とする第22の遷移とを含む請求項2に記載のモータ制御装置。
  11. 前記最大効率曲線は前記モータの鉄損を用いて記述された2次曲線である請求項1から10のいずれか1項に記載のモータ制御装置。
  12. dq軸直交座標系において電流ベクトル制御によってモータを駆動するモータ制御方法であって、 dq軸直交座標平面における最大効率曲線、電流最小曲線、電圧最小曲線、電流制限円、電圧制限楕円、および定トルク曲線より選択した2つの曲線の交点のうち電流指令として有効な交点の組合せを求める工程と、 前記交点の組合せを現在状態と遷移先状態として行方向と列方向にそれぞれ配列し、前記現在状態から前記遷移先状態への遷移条件を設定した状態遷移表を作成する工程と、 前記現在状態に対応する任意の交点から前記遷移条件に従って遷移したときの前記遷移先状態に対応する交点の前記曲線上における位置関係に基づいて前記モータに対する電流指令値を生成する工程と、を備えるモータ制御方法。
PCT/JP2020/046786 2020-03-26 2020-12-15 モータ制御装置 WO2021192450A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080099035.9A CN115362626A (zh) 2020-03-26 2020-12-15 马达控制装置
EP20927876.1A EP4131770A4 (en) 2020-03-26 2020-12-15 ENGINE CONTROL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020056064 2020-03-26
JP2020-056064 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021192450A1 true WO2021192450A1 (ja) 2021-09-30

Family

ID=77891181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046786 WO2021192450A1 (ja) 2020-03-26 2020-12-15 モータ制御装置

Country Status (3)

Country Link
EP (1) EP4131770A4 (ja)
CN (1) CN115362626A (ja)
WO (1) WO2021192450A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114244231A (zh) * 2021-12-28 2022-03-25 清华大学苏州汽车研究院(吴江) 一种永磁同步电机的弱磁控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003153600A (ja) * 2001-11-14 2003-05-23 Nissan Motor Co Ltd 電動機制御装置における電流指令値の補正方法
JP2012055032A (ja) * 2010-08-31 2012-03-15 Sinfonia Technology Co Ltd モータ制御装置、モータ制御システム、モータ制御プログラム
JP2014195353A (ja) * 2013-03-28 2014-10-09 Fujitsu General Ltd モータ制御装置
JP2015128355A (ja) * 2013-12-27 2015-07-09 ダイキン工業株式会社 モータ制御装置
JP2016226270A (ja) 2015-06-02 2016-12-28 エルエス産電株式会社Lsis Co., Ltd. 同期機の運転方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10106053B2 (en) * 2016-03-31 2018-10-23 Honda Motor Co., Ltd. Vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003153600A (ja) * 2001-11-14 2003-05-23 Nissan Motor Co Ltd 電動機制御装置における電流指令値の補正方法
JP2012055032A (ja) * 2010-08-31 2012-03-15 Sinfonia Technology Co Ltd モータ制御装置、モータ制御システム、モータ制御プログラム
JP2014195353A (ja) * 2013-03-28 2014-10-09 Fujitsu General Ltd モータ制御装置
JP2015128355A (ja) * 2013-12-27 2015-07-09 ダイキン工業株式会社 モータ制御装置
JP2016226270A (ja) 2015-06-02 2016-12-28 エルエス産電株式会社Lsis Co., Ltd. 同期機の運転方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4131770A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114244231A (zh) * 2021-12-28 2022-03-25 清华大学苏州汽车研究院(吴江) 一种永磁同步电机的弱磁控制方法
CN114244231B (zh) * 2021-12-28 2024-03-15 清华大学苏州汽车研究院(吴江) 一种永磁同步电机的弱磁控制方法

Also Published As

Publication number Publication date
EP4131770A1 (en) 2023-02-08
CN115362626A (zh) 2022-11-18
EP4131770A4 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
JP4754417B2 (ja) 永久磁石型回転電機の制御装置
US8390223B2 (en) Control device for electric motor drive device
US8264181B2 (en) Controller for motor drive control system
US9054623B2 (en) Motor control device
US8847527B2 (en) Control system for a rotary machine
US10778130B2 (en) Control apparatus for alternating-current rotary electric machine
EP1748550A1 (en) Synchronous machine controller
US20120293095A1 (en) Control unit of rotary device
US9935568B2 (en) Control apparatus of rotary electric machine
US7145311B2 (en) Vector control device of winding field type synchronous machine
JP2002095300A (ja) 永久磁石同期電動機の制御方法
US10608566B2 (en) Control apparatus for rotary electric machines
JP5720644B2 (ja) 車両
JP2009017706A (ja) モータ制御装置とモータ制御方法
JP6998717B2 (ja) 可変磁力モータの制御方法および制御装置
WO2021192450A1 (ja) モータ制御装置
KR100921115B1 (ko) 영구자석 동기 모터 제어시스템 및 제어방법
JP5788057B1 (ja) 同期機制御装置
JP6937211B2 (ja) 可変磁力モータの制御方法および制御装置
JP6708843B2 (ja) 駆動装置
JP3474730B2 (ja) リニア誘導電動機のベクトル制御装置
JP7317250B2 (ja) 回転電機の制御装置及び電動パワーステアリング装置
JP5351205B2 (ja) 回転電機の制御装置
JP7317249B2 (ja) 回転電機の制御装置及び電動パワーステアリング装置
JP2005102385A (ja) モーター制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020927876

Country of ref document: EP

Effective date: 20221026

NENP Non-entry into the national phase

Ref country code: JP