JP7128476B2 - 磁気抵抗素子の製造方法 - Google Patents

磁気抵抗素子の製造方法 Download PDF

Info

Publication number
JP7128476B2
JP7128476B2 JP2018564485A JP2018564485A JP7128476B2 JP 7128476 B2 JP7128476 B2 JP 7128476B2 JP 2018564485 A JP2018564485 A JP 2018564485A JP 2018564485 A JP2018564485 A JP 2018564485A JP 7128476 B2 JP7128476 B2 JP 7128476B2
Authority
JP
Japan
Prior art keywords
layer
cap layer
film
magnetoresistive element
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018564485A
Other languages
English (en)
Other versions
JPWO2018139249A1 (ja
Inventor
康夫 安藤
幹彦 大兼
耕輔 藤原
純一 城野
孝二郎 関根
匡章 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Konica Minolta Inc
Original Assignee
Tohoku University NUC
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Konica Minolta Inc filed Critical Tohoku University NUC
Publication of JPWO2018139249A1 publication Critical patent/JPWO2018139249A1/ja
Application granted granted Critical
Publication of JP7128476B2 publication Critical patent/JP7128476B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)
  • Measuring Magnetic Variables (AREA)

Description

本発明は、磁気抵抗素子の製造方法に関する。
磁気抵抗素子が磁気メモリ・磁気ヘッド・磁気センサーなどに利用されている。
例えば、トンネル磁気抵抗素子(TMR(Tunnel Magneto Resistive)素子)は、磁化の向きが固定された固定磁性層、外部からの磁場の影響を受けて磁化の向きが変化する自由磁性層及び固定磁性層と自由磁性層との間に配置された絶縁層を有し、磁気トンネル接合(MTJ(Magnetic Tunnel Junction))を形成する。
磁気抵抗素子の積層膜は、加工プロセスを経ることにより(大気に晒される、反応性ガスによる影響など)積層膜の一部が変質し、電流経路上の電気抵抗を増大させることになる。
積層膜中の不要な電気抵抗が増大すると、磁気抵抗特性が劣化する。従って、加工プロセスの影響で発生する不要な抵抗の混入は最小に抑えなければならない。
抵抗の増大する原因が、大気暴露したときに発生する積層膜表面の酸化膜形成、吸着ガス等であることに着目し、積層膜の表面に加工プロセス上の保護目的のキャップ層を予め形成し、上部電極を成膜する直前に、加工プロセスによって変質したキャップ層を、吸着イオンミリング等の手法で完全除去し、その後に上部電極を成膜することで、抵抗を低減させる手法が知られている(特許文献1,2)。
特許第4322213号公報 特許第4136261号公報
しかし、キャップ層をイオンミリングで除去する際、加工精度の制約から実際はキャップ層下層の膜構造も若干ミリングすることになり、本来の機能を発揮できなくなってしまうリスクや、キャップ層を除去した後には積層膜を大気暴露ができなくなる等の課題が発生する。
その為、キャップ層の一部は残したまま、変質した部分のみを適切に除去する多層膜構成と加工手順が求められる。
本発明は以上の従来技術における問題に鑑みてなされたものであって、磁気抵抗効果膜を形成するにあたり、キャップ層による保護を効果的に図るとともに同キャップ層による悪影響を低減し、所望の磁気抵抗特性を達成することを課題とする。
以上の課題を解決するための請求項1記載の発明は、磁気抵抗効果素子の製造方法であって、
磁場により抵抗を変化させる磁気抵抗効果膜と、該磁気抵抗効果膜の上層の厚さ10nmから60nmの範囲内のキャップ層とを含む積層膜を所定の形状に加工する第1工程と、前記積層膜を絶縁膜で被覆保護する第2工程と、
反応性エッチングにより前記絶縁膜に開口を形成して当該開口に前記キャップ層の表面を露出させる第3工程と、
前記第3工程により前記開口に露出した前記キャップ層の表面に対しイオンミリングを行って、当該キャップ層をその全膜厚に満たない範囲でエッチングする第4工程と、
前記第4工程後に残った前記キャップ層の表面に接して製品の一部となる上部層を成膜する第5工程と、を含み、
前記第1工程により加工された前記キャップ層の外縁より内側に、前記第3工程により形成する開口の外縁を配置する磁気抵抗素子の製造方法である。
請求項2記載の発明は、前記第4工程において前記キャップ層をイオンミリングによってエッチングする膜厚は、0.5nmから59.5nmの範囲である請求項1に記載の磁気抵抗素子の製造方法である。
請求項3記載の発明は、前記キャップ層の材料は、Ru, Ta, Al, Ag, Au, Si, Ti, V, Zr, Nb, Mo, Hf, Wの内から選択される一又は二以上の材料である請求項1又は請求項2に記載の磁気抵抗素子の製造方法である。
請求項4記載の発明は、前記絶縁膜の材料は熱酸化シリコンであって、前記反応性エッチングのプロセスガスは、フッ素系と酸素の混合ガスである請求項1、請求項2又は請求項3に記載の磁気抵抗素子の製造方法である。
本発明の磁気抵抗素子の製造方法によれば、磁気抵抗効果膜を形成するにあたり、キャップ層による保護を効果的に図るとともに同キャップ層による悪影響を低減し、所望の磁気抵抗特性を達成することができる。
従来例のトンネル磁気抵抗素子の積層構造を示す断面図である。 本発明例のトンネル磁気抵抗素子の積層構造を示す断面図である。 他の本発明例のトンネル磁気抵抗素子の積層構造を示す断面図である。 本発明の一例の磁気抵抗素子の製造方法の工程を示す断面図である。 磁場中アニール工程とこれに伴う構造・特性変化の概要を示す図である。 本発明の他の一例の磁気抵抗素子の製造方法の工程を示す断面図である。 検証1に係り、加工プロセスによるキャップ層の抵抗値の変化を示すグラフである。 検証2に係り、加工プロセス後のキャップ層の抵抗値の測定結果と、キャップ層のうちのTaに変質があったと仮定した計算値と、Taが正常である場合の計算値とを、試料の膜厚ごとに比較するグラフである。 検証3に係り、従来例のトンネル磁気抵抗素子から絶縁層(MgO)を排した積層構造を示す断面図である。 検証3に係り、本発明例のトンネル磁気抵抗素子から絶縁層(MgO)を排した積層構造を示す断面図である。 検証3に係り、図10に示した素子の直列集積化回路の積層構造を示す断面図である。 検証3に係り、加工プロセス後の各種の直列集積化回路の各サンプル1~5の抵抗値示すグラフである。
以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。
〔素子構造の概要〕
トンネル磁気抵抗素子を例として説明する。図1は従来例のトンネル磁気抵抗素子の積層構造を、図2は本発明例のトンネル磁気抵抗素子の積層構造を、図3は他の本発明例のトンネル磁気抵抗素子の積層構造を示す。
図1に示すように従来例のトンネル磁気抵抗素子101は、基板(Si,SiO2)2上に、下地層(Ta)3が形成され、その上に自由磁性層30として、下から軟磁性層(NiFe又はCoFeSiB)33、磁気結合層(Ru)32、強磁性層(CoFeB)31が積層され、絶縁層(MgO)20を介して、その上に固定磁性層10として、下から強磁性層(CoFeB)14、磁気結合層(Ru)13、強磁性層(CoFe)12、反強磁性層(IrMn)11が積層された積層構造を有する。
さらに、反強磁性層(IrMn)11上に形成されたキャップ層40と、以上の積層構造を被覆保護する絶縁膜(熱酸化シリコンなど)61とを備え、キャップ層40及び絶縁膜61に貫通形成された開口を介して反強磁性層(IrMn)11の表面に接する電極層51が形成されて、電極層51が絶縁膜61の上端に露出する。
これに対し図2に示すように本発明例のトンネル磁気抵抗素子1Aは、基板(Si,SiO2)2から反強磁性層(IrMn)11までは上記従来例のトンネル磁気抵抗素子101と同様の積層構造であるが、キャップ層40が、反強磁性層(IrMn)11と、上部層50との間に介在する。上部層50は電極層などの製品の一部となる層である。
一方、図3に示すように本発明例のトンネル磁気抵抗素子1Bは、固定磁性層10と自由磁性層30とを絶縁層(MgO)20を中心に上下逆に積層したものであり、キャップ層40が、強磁性層(CoFeB)31と、軟磁性層(NiFe又はCoFeSiB)33との間に介在する。
以上のように、磁場により抵抗を変化させる磁気抵抗効果膜が少なくとも強磁性層(CoFeB)14、絶縁層(MgO)20及び強磁性層(CoFeB)31により構成される。
本発明例1A,1Bは、該磁気抵抗効果膜(14,20,31)の上層のキャップ層40と、キャップ層40の表面に接して製品の一部となる上部層(本発明例1Aでは上部層50、本発明例1Bでは軟磁性層(NiFe又はCoFeSiB)33)とを備えた磁気抵抗素子である。
本発明例1A,1Bにおけるキャプ層40は、磁気抵抗効果膜(14,20,31)に対する反対面から凹む凹構造を有し、製品の一部となる上部層(50又は33)が接する表面は、当該凹構造の内底面である。この構造は、従来例101に比較した特有の構造となっている。なお、従来例101及び本発明例1A,1Bにおいて、キャップ層40の外縁部が残るのは、絶縁膜61を削らないようにするためである。
図2又は図3に示すように、磁気抵抗効果膜(14,20,31)の周囲、キャップ層40の周囲、キャップ層40の凹構造の内底面の周囲上端面及び製品の一部となる上部層(50又は33)の周囲が絶縁膜61で被覆保護されている。
本発明例1Bにおいては、磁気抵抗効果膜(14,20,31)のキャップ層40に接する層は強磁性層31であり、製品の一部となる上部層は軟磁性層33である。
本発明例1A,1Bにおけるキャプ層40は、Ru層41と、Ta層42とにより構成されている。キャップ層40の材料は、Ru, Ta, Al, Ag, Au, Si, Ti, V, Zr, Nb, Mo, Hf, Wの内から選択される一又は二以上の材料とすることができる。
キャップ層40のTa層42は、磁場中アニール時に高いTMR比を発現させる為に必要な材料である一方で、非常に酸化しやすい材料である為、TMRセンサー内に寄生抵抗成分となりやすく、性能劣化の原因となる。
本発明例1A,1Bでは、キャップ層40をTa層42に加えて、その上にRu層41を設け、キャップ層40を十分な厚みとし、その後表面から積層方向にエッチングにより除去するが、キャップ層40をその全膜厚に満たない範囲でエッチングするので一部が残っている。これにより、磁気抵抗効果膜を形成するにあたり、キャップ層40による保護を効果的に図るとともに同キャップ層40による悪影響を低減し、所望の磁気抵抗特性を達成する。
本発明例1Aでは、キャップ層40の内、Ru層41を積層方向に半分程度除去した構成としており、本発明例1Bでは、Ru層41を積層方向に完全除去し、Ta層42を僅かに1nm弱残した構成としている。このように、軟磁性層33と、強磁性層31との間のキャップ層40(42)の膜厚が1nm未満であることが好ましい。軟磁性層33と、強磁性層31の磁気的結合性を良好にするためである。
上述した凹構造の内底面の周囲におけるキャップ層40の層厚T1が10nmから60nmの範囲内である。層厚T1はキャップ層40の全膜厚に相当する。これによりエッチング前のキャップ層40の厚みを十分に確保する。
上述した凹構造の内底面の周囲上端と該内底面との落差T2が0.5nmから59.5nmの範囲である。落差T2はキャップ層40をエッチングする膜厚に相当する。
〔製造方法1〕
次に、本発明例のトンネル磁気抵抗素子1Aのように固定磁性層10を上側とする構造を製造する場合の製造方法につき説明する。
(第1工程)
図4(欄a)に示すような基板2上に積層された磁気抵抗効果膜に相当する強磁性トンネル接合(Magnetic Tunnel Junction : MTJ)4及びキャップ層40を含むMTJ積層膜の表面に、図4(欄b)に示すようにフォトリソグラフィもしくは電子線リソグラフィ(本実施例ではフォトリソグラフィ)によってレジストパターン71を形成する。
レジストパターン71を形成した上記MTJ積層膜に対して、Arイオンミリングを行い、上記MTJ積層膜の素子分離貫通加工(図4(欄b))及び絶縁層(MgO)20までのエッチング加工(図4(欄c))を行う。
(第2工程)
レジストパターン71を除去後、剥きだしの上記MTJ積層膜を絶縁膜61で被覆保護する(図4(欄d))。本実施例では低温CVDとTEOSを用いて絶縁膜61としてSiO2層を形成している。絶縁層61の形成にはスパッタリング法や低温CVDを使えば良い。材料はSiO2の他にも、AlO2等の絶縁材料を用いても良い。
(第3工程)
絶縁膜61で保護された上記MTJ積層膜に電気的コンタクトが必要な為、図4(欄e)に示すように開口部を作製する為のレジストパターン72を形成し、CHF3、CH4等をプロセスガスに用いて反応性エッチングを行い、絶縁層61に開口を形成してキャップ層40の表面を露出させる。
第1工程により加工されたキャップ層40の外縁より内側に、第3工程により形成する開口の外縁を配置する。
(第4工程)
絶縁膜61の開口部に露出したキャップ層40の表面に対して、Arイオンミリングによるエッチングを行い、図4(欄f)に示すように当該キャップ層40をその全膜厚に満たない範囲でエッチングする。この加工により、絶縁層61の形成時(第2工程)やコンタクトホール形成時(第3工程)にキャップ層40に生じた変質部位を除去することができ、MTJ積層膜内から寄生抵抗成分を取り除ける為、高性能なTMRセンサーを作製することができる。
また、最終的に電極材料を成膜する直前に、真空下でMTJ積層膜自体を僅かにエッチングする(逆スパッタリング)ことで、残ったキャップ層の表面が酸化などによって僅かに変質した部位を除去することが望ましい。
最後までキャップ層40は部分的に残る為、残りの加工プロセスや経年劣化から、キャップ層下層にある磁性膜を保護できる。
この第4工程においてキャップ層40をイオンミリングによってエッチングする膜厚(T2)は、0.5nmから59.5nmの範囲である。但し、キャップ層40の全膜厚(T1)に満たない範囲であることが条件となる。
本実施例でのキャップ層40は、磁場中アニール時に高いTMR比を発現させる為に必要な代表的な材料構成として、Ta層42を5nm程度、Ru層41を50nm程度の厚さとし、ArエッチングによりRu層41だけが半分程度(20nm程度)除去されている。
その他、高いTMR比を発現させる材料の組合せであっても、本発明は同等の効果を得られる。例えば、Ta層42のTaの代わりに、Si, Ti, Zr, Nb, Mo, Hf などの材料であっても構わない。また、Ru層41のRuの代わりに、Rh, Pd, Ag, Ir, Pt, Auなどの材料であっても構わない。
(第5工程)
図4(欄g)に示すように第4工程後に残ったキャップ層40の表面に接して電極材料51を成膜し、電極部を形成する。
(磁場中アニール工程)
その後、炉内の印加磁場方向と温度を異ならせた複数回の磁場中アニール工程を行うことで、固定磁性層10の磁化方向と自由磁性層30の磁化方向とが90度等にねじれた位置として、図5(欄d)に示すような磁界に対して抵抗がリニアに変化する高感度センサーに適した特性を得る。図5に磁場中アニール工程とこれに伴う構造・特性変化の概要を示した。
第5工程まで施した構造に対し図4(欄h)に示すように炉中に収め300~500℃程度の温度で磁場中アニールを行う(1st-anneal)。このとき図5(欄b)に示すようにMTJ積層膜内部を同じ結晶構造に近づけることでトンネル磁気抵抗効果のロスが少なくなる。
この熱処理(1st-anneal)によって抵抗変化率であるトンネル磁気抵抗(Tunnel Magneto-Resistance : TMR)比が大きく向上する(図5(欄c))。
さらに、2nd-annealでは、最初の磁場中アニール(1st-anneal)時よりも低温(300℃以下)、且つ、磁場印可方向も異なる方向にすることで、MTJ積層膜内の固定磁性層10のみの一軸異方性の方向が変化することで、高感度なTMRセンサーとなる(図5(欄d))。
〔製造方法2〕
次に、本発明例のトンネル磁気抵抗素子1Bのように自由磁性層30を上側とする構造を製造する場合の製造方法につき説明する。
(第1工程)
図6(欄a)に示すような基板2上に積層された磁気抵抗効果膜に相当する強磁性トンネル接合(Magnetic Tunnel Junction : MTJ)4及びキャップ層40を含むMTJ積層膜の表面に、図6(欄b)に示すようにフォトリソグラフィもしくは電子線リソグラフィ(本実施例ではフォトリソグラフィ)によってレジストパターン71を形成する。
レジストパターン71を形成した上記MTJ積層膜に対して、Arイオンミリングを行い、上記MTJ積層膜の素子分離貫通加工(図6(欄b))及び絶縁層(MgO)20までのエッチング加工(図6(欄c))を行う。
(第2工程)
レジストパターン71を除去後、剥きだしの上記MTJ積層膜を絶縁膜61で被覆保護する(図6(欄d))。本実施例では低温CVDとTEOSを用いて絶縁膜61としてSiO2層を形成している。絶縁層61の形成にはスパッタリング法や低温CVDを使えば良い。材料はSiO2の他にも、AlO2等の絶縁材料を用いても良い。
(磁場中アニール工程)
第2工程まで施した構造に対し図6(欄e)に示すように炉中に収め300~500℃程度の温度で磁場中アニールを行う(1st-anneal)。この熱処理によって抵抗変化率であるトンネル磁気抵抗(Tunnel Magneto-Resistance : TMR)比が大きく向上する。このとき図5(b)に示すようにMTJ積層膜内部を同じ結晶構造に近づけることでトンネル磁気抵抗効果のロスが少なくなる。
この熱処理(1st-anneal)によって抵抗変化率であるトンネル磁気抵抗(Tunnel Magneto-Resistance : TMR)比が大きく向上する(図5(欄c))。
本例では、MTJ積層膜への汚れやダメージを懸念して、絶縁膜61の形成直後に磁場中アニール(1st-anneal)を実施しているが、このプロセスは、後に説明するキャップ層除去の工程(第4工程)以前であれば、どの段階で実施しても構わない。
(第3工程)
絶縁膜61で保護された上記MTJ積層膜に電気的コンタクトが必要な為、図6(欄f)に示すように開口部を作製する為のレジストパターン72を形成し、CHF3、CH4等をプロセスガスに用いて反応性エッチングを行い、絶縁層61に開口を形成してキャップ層40の表面を露出させる。
第1工程により加工されたキャップ層40の外縁より内側に、第3工程により形成する開口の外縁を配置する。
(第4工程)
絶縁膜61の開口部に露出したキャップ層40の表面に対して、Arイオンミリングによるエッチングを行い、図6(欄g)に示すように当該キャップ層40をその全膜厚に満たない範囲でエッチングする。この加工により、絶縁層61の形成時(第2工程)や、磁場中アニール工程(1st-anneal)、コンタクトホール形成時(第3工程)にキャップ層40に生じた変質部位を除去することができ、MTJ積層膜内から寄生抵抗成分を取り除ける為、高性能なTMRセンサーを作製することができる。
また、最終的に軟磁性材料等を成膜する直前に、真空下でMTJ積層膜自体を僅かにエッチングする(逆スパッタリング)ことで、残ったキャップ層の表面が酸化などによって僅かに変質した部位を除去することが望ましい。
最後までキャップ層40は部分的に残る為、残りの加工プロセスや経年劣化から、キャップ層下層にある磁性膜を保護できる。
この第4工程においてキャップ層40をイオンミリングによってエッチングする膜厚(T2)は、0.5nmから59.5nmの範囲である。但し、キャップ層40の全膜厚(T1)に満たない範囲であることが条件となる。
(第5工程)
図6(欄h)に示すように第4工程後に残ったキャップ層40の表面に接して軟磁性層33と、電極層51を成膜する。これにより、磁気抵抗曲線に軟磁気特性が発現し、TMRセンサーとなる(図5(欄d))。この時、最初の磁場中アニール(1st-anneal)に対して磁場印可方向を異なる方向にした磁場発生下で軟磁性材料の成膜を行い、軟磁性層33に一軸異方性を付与して、TMRセンサーとする(図5(欄d))。
第4工程のArエッチング後にキャップ層40が僅かに残ることで、Arエッチングの工程から軟磁性層33の成膜工程までの過程でMTJ積層膜を保護することができる。
上述したように軟磁性層33の成膜直前に、真空下でMTJ積層膜自体を僅かにエッチングする(逆スパッタリング)ことで、キャップ層40の表面が酸化などによって僅かに変質した部位を除去することが望ましい。
理想的には、キャップ層40やキャップ層40より下層の磁性材料の酸化等によって、MTJ積層膜内のCoFeB層31と軟磁性層33との磁気的結合が阻害されるのを防ぐため、キャップ層40のエッチング工程から軟磁性層33の成膜工程まで基板を大気に晒さず、連続的に真空下でエッチングと成膜を行うことが望ましい。
本例でのキャップ層40は、磁場中アニール時に高いTMR比を発現させる為に必要な代表的な材料構成として、Ta層42を5nm程度、Ru層41を10nm以上の厚さとし、Arエッチングによりマスク開口内においてRu層41は完全除去、Ta層42は1nm弱残る程度に除去されている。
その他、高いTMR比を発現させる材料の組合せであっても、本発明は同等の効果を得られる。例えば、Ta層42のTaの代わりに、Si, Ti, Zr, Nb, Mo, Hf などの材料であっても構わない。また、Ru層41のRuの代わりに、Rh, Pd, Ag, Ir, Pt, Auなどの材料であっても構わない。
また、キャップ層40のエッチングでの加工精度を得る為に、Ru層41のRuの代わりにSiを用いて、Arエッチングではなく、Siだけにエッチング効果の高いSF6などの反応性ガスによって、SiとTaとのエッチング選択比を大きくする加工方法を選択しても構わない。
(追加磁場中アニール工程)
第5工程の後さらに、TMRセンサーを高感度化させる為、低温(300℃以下)で追加の磁場中アニールを実施しても構わない。このプロセスにより、軟磁性層33に付与された一軸異方性の特性に変化を与え、より高感度化させることが可能となる。
〔検証1〕
次に、加工プロセスによる材料変質の検証実験を開示する。
表Iに示すようにキャップ層40として適用し得るTa層とRu層の積層による薄膜試料(試料♯1~3)を用意し、材料変質に影響すると考えられる加工プロセスを通して、抵抗値(抵抗率計で薄膜のシート抵抗を測定)の変化を評価した。加工プロセスによるキャップ層の抵抗値の変化は、図7のグラフに示すとおりとなった。
Figure 0007128476000001
Ru層の膜厚が厚い、試料♯2, ♯3では、いずれの加工プロセスでも抵抗値の変化は生じなかった(測定誤差の範囲内)。
Ru層の膜厚が薄い、試料♯1(Ta(5)/Ru(7))の抵抗値だけ、CVD280度加熱後に微増、TEOS除去後に1.35倍増加した。
〔検証2〕
検証1の実験では、Ru層が薄いと後続の加工プロセスを経て抵抗値が増加する結果となった。この結果を受けてさらに検証した。
加工プロセスの影響(加熱やプロセスガスの影響)で、Taが変質して材料の抵抗率が増大した可能性が考えられる。
Taが変質し、抵抗率が桁違い(100倍以上)に大きくなったと仮定して、試料の抵抗値を計算した。このTaが変質したと仮定した計算値と、Taが正常である場合の計算値と、図7に記載したTEOS除去後の測定結果を図8に試料の膜厚ごとに記載した。
加工プロセス後の試料♯1は、Taが変質している場合の抵抗値に近い値を示した。一方で、加工プロセス前の試料♯1はTaが正常である場合に近い値を示した。
以上により、試料♯1のような従来のキャップ層の構成(Ta(5nm)/Ru(7nm))では、絶縁膜61としてのTEOS蒸着時(第2工程)及びコンタクトホール形成時(第3工程の反応性エッチング加工)において、Ru層の下層のTa層が変質している可能性が高い。
Ru層の膜厚を十分厚くし(50nm程度)、Ta層を加工プロセスの影響から保護する必要がある。
〔検証3〕
以上の検証1及び2を踏まえて、以下のとおりに対策A、対策Bを寄生抵抗の低減対策とし実施し比較した。
対策Aは、キャップ層のうちRu層の膜厚を 従来の7nmに対して 50nmに増大することである。
対策Bは、真空中で逆スパッタによりキャップ層のRu層の表面を20nmエッチングした後に、電極材料を成膜する。
表IIに示すように、対策なしの比較例、対策Aのみ適用した比較例にあっては、従来から行われているようにArエッチングでRu層の表面を僅かにクリーニング(デスカム)する。
本発明例は、対策ABを適用した例に相当し、表IIに示すように真空中で20分の逆スパッタによりRu層の表面を20nmエッチングする。
検証用素子の模式図を図9、図10に示す。
いずれも絶縁層(MgO)20を含めない素子構成とする。図9に示す素子101Sは、図1に示した従来例のトンネル磁気抵抗素子101から絶縁層(MgO)20を排した構造に相当する。但し、検証のためキャップ層40をそのまま残す。キャップ層40はTa層42が5nm、Ru層41が7nmである。図10に示す素子1ASは、図2に示した本発明例のトンネル磁気抵抗素子1Aから絶縁層(MgO)20を排した構造に相当する。キャップ層40はTa層42が5nm、Ru層41が50nmである。但し、Ru層41は20nmエッチングされている。対策Aのみ適用した比較例は、このエッチングが適用されていないもの相当するので、50nmのRu層がそのまま残る。
以上の素子をそれぞれ直列に集積化し、低減対策によって本来混在してはいけない抵抗値(寄生抵抗)が、加工プロセス後に十分に低減されるかどうかを検証する。素子1ASについて、直列集積化回路の積層構造を示せば図11のとおりである。その他の素子も、同様に集積化した。共通事項として、素子の寸法を 80μm× 80μm、素子の直列数を370個とした。
以上の各種(対策なし、対策A,対策AB)の直列集積化回路をサンプル1~5まで作製し、抵抗値の結果をまとめると表IIに記載した通りであり、グラフに示すと図12のとおりである。
Figure 0007128476000002
TMR素子ででは、絶縁層(MgO)20の抵抗値の変化により磁界を検出するため、絶縁層(MgO)20が無い膜構成の場合、理想的には抵抗値が0であることが求められる。
以上の低減対策Aを適用した比較例、低減対策A及びBを適用した本発明例によれば、対策なしの比較例に対して寄生抵抗を1/10~1/15倍程度にまで低減することができた。
低減対策A及びBを適用した本発明例においては、逆スパッタ(対策B)を行ったので、表IIに示すように抵抗値が最も小さくなった。加工プロセスに耐性のあるRuであっても若干の材料変質が発生している可能性がある為、Ruの表層もエッチングすることが望ましい。
以上説明したように本実施形態の磁気抵抗素子の製造方法によれば、磁気抵抗効果膜を形成するにあたり、キャップ層40を成膜初期に十分厚くするとともにその後の所定の加工プロセスを経た後にキャップ層40を全膜厚に満たない範囲でエッチングして残すことでキャップ層40による保護を効果的に図ることでき、同キャップ層40による悪影響を低減し、所望の磁気抵抗特性を達成することができる。
本発明は、磁気の測定等に利用することができる。
1A,1B トンネル磁気抵抗素子
2 基板
3 下地層
10 固定磁性層
20 絶縁層
30 自由磁性層
14,31 強磁性層
33 軟磁性層
40 キャップ層

Claims (4)

  1. 磁気抵抗効果素子の製造方法であって、
    磁場により抵抗を変化させる磁気抵抗効果膜と、該磁気抵抗効果膜の上層の厚さ10nmから60nmの範囲内のキャップ層とを含む積層膜を所定の形状に加工する第1工程と、前記積層膜を絶縁膜で被覆保護する第2工程と、
    反応性エッチングにより前記絶縁膜に開口を形成して当該開口に前記キャップ層の表面を露出させる第3工程と、
    前記第3工程により前記開口に露出した前記キャップ層の表面に対しイオンミリングを行って、当該キャップ層をその全膜厚に満たない範囲でエッチングする第4工程と、
    前記第4工程後に残った前記キャップ層の表面に接して製品の一部となる上部層を成膜する第5工程と、を含み、
    前記第1工程により加工された前記キャップ層の外縁より内側に、前記第3工程により形成する開口の外縁を配置する磁気抵抗素子の製造方法。
  2. 前記第4工程において前記キャップ層をイオンミリングによってエッチングする膜厚は、0.5nmから59.5nmの範囲である請求項1に記載の磁気抵抗素子の製造方法。
  3. 前記キャップ層の材料は、Ru, Ta, Al, Ag, Au, Si, Ti, V, Zr, Nb, Mo, Hf, Wの内から選択される一又は二以上の材料である請求項1又は請求項2に記載の磁気抵抗素子の製造方法。
  4. 前記絶縁膜の材料は熱酸化シリコンであって、前記反応性エッチングのプロセスガスは、フッ素系と酸素の混合ガスである請求項1、請求項2又は請求項3に記載の磁気抵抗素子の製造方法。
JP2018564485A 2017-01-24 2018-01-16 磁気抵抗素子の製造方法 Active JP7128476B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017010201 2017-01-24
JP2017010201 2017-01-24
PCT/JP2018/000917 WO2018139249A1 (ja) 2017-01-24 2018-01-16 磁気抵抗素子及び磁気抵抗素子の製造方法

Publications (2)

Publication Number Publication Date
JPWO2018139249A1 JPWO2018139249A1 (ja) 2019-12-12
JP7128476B2 true JP7128476B2 (ja) 2022-08-31

Family

ID=62978373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018564485A Active JP7128476B2 (ja) 2017-01-24 2018-01-16 磁気抵抗素子の製造方法

Country Status (4)

Country Link
US (1) US10892402B2 (ja)
JP (1) JP7128476B2 (ja)
CN (1) CN110199352B (ja)
WO (1) WO2018139249A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110688751A (zh) * 2019-09-24 2020-01-14 西南大学 铂掺杂改性石墨炔传感器检测sf6的仿真方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077777A1 (fr) 1999-06-14 2000-12-21 Fujitsu Limited Tete d'enregistrement magnetique utilisant un film mince et son procede de fabrication
JP2004206822A (ja) 2002-12-26 2004-07-22 Tdk Corp 磁気抵抗効果素子を有する薄膜磁気ヘッドの製造方法
JP2006261259A (ja) 2005-03-16 2006-09-28 Fujitsu Ltd 磁気抵抗効果素子、磁気抵抗効果素子の製造方法及び磁気ヘッド、磁気情報再生装置
WO2007105459A1 (ja) 2006-03-10 2007-09-20 Canon Anelva Corporation 磁気抵抗効果型薄膜磁気ヘッド及びその製造方法
WO2008117354A1 (ja) 2007-03-22 2008-10-02 Fujitsu Limited 磁気抵抗効果素子、及びこれを備えた磁気ヘッド、磁気記録装置、磁気メモリ装置
JP2016186457A (ja) 2015-03-27 2016-10-27 アルプス電気株式会社 磁気センサ
JP2016189375A (ja) 2015-03-30 2016-11-04 Tdk株式会社 磁気抵抗効果素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4136261B2 (ja) * 2000-03-29 2008-08-20 富士通株式会社 磁気抵抗効果素子を製造する方法
JP4322213B2 (ja) 2005-01-05 2009-08-26 Tdk株式会社 磁気抵抗効果素子及び薄膜磁気ヘッドの製造方法
JP4985006B2 (ja) * 2007-03-20 2012-07-25 富士通株式会社 磁気抵抗効果素子、磁性積層構造体、及び磁性積層構造体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077777A1 (fr) 1999-06-14 2000-12-21 Fujitsu Limited Tete d'enregistrement magnetique utilisant un film mince et son procede de fabrication
JP2004206822A (ja) 2002-12-26 2004-07-22 Tdk Corp 磁気抵抗効果素子を有する薄膜磁気ヘッドの製造方法
JP2006261259A (ja) 2005-03-16 2006-09-28 Fujitsu Ltd 磁気抵抗効果素子、磁気抵抗効果素子の製造方法及び磁気ヘッド、磁気情報再生装置
WO2007105459A1 (ja) 2006-03-10 2007-09-20 Canon Anelva Corporation 磁気抵抗効果型薄膜磁気ヘッド及びその製造方法
WO2008117354A1 (ja) 2007-03-22 2008-10-02 Fujitsu Limited 磁気抵抗効果素子、及びこれを備えた磁気ヘッド、磁気記録装置、磁気メモリ装置
JP2016186457A (ja) 2015-03-27 2016-10-27 アルプス電気株式会社 磁気センサ
JP2016189375A (ja) 2015-03-30 2016-11-04 Tdk株式会社 磁気抵抗効果素子

Also Published As

Publication number Publication date
WO2018139249A1 (ja) 2018-08-02
JPWO2018139249A1 (ja) 2019-12-12
CN110199352A (zh) 2019-09-03
US20190348599A1 (en) 2019-11-14
US10892402B2 (en) 2021-01-12
CN110199352B (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
US9842988B2 (en) Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications
JP6969752B2 (ja) トンネル磁気抵抗素子の製造方法
KR100697123B1 (ko) 자기 센서 및 그 제조 방법
JP4614061B2 (ja) 巨大磁気抵抗効果素子を用いた磁気センサ及び同磁気センサの製造方法
JP2008309566A (ja) 磁気センサ及びその製造方法
JP7128476B2 (ja) 磁気抵抗素子の製造方法
JP4424093B2 (ja) 磁気センサ
JP5476518B2 (ja) 磁気センサの製造方法
US20200313083A1 (en) Magnetoresistive element, manufacturing method thereof and magnetic sensor
KR102633304B1 (ko) 이상 홀 효과를 이용하는 홀 센서 및 이의 제조방법
JP5062832B2 (ja) 磁気抵抗効果素子の製造方法
JP5071042B2 (ja) 磁気センサ及びその製造方法
JP6923881B2 (ja) トンネル磁気抵抗素子及びその製造方法
US11275130B2 (en) Magnetic sensor bridge using dual free layer
JP5089853B2 (ja) 磁気センサの製造方法
JP6708232B2 (ja) 磁気抵抗効果素子とその製造方法、及び磁気センサ
JP4013853B2 (ja) 磁気センサ
JP4640370B2 (ja) 磁気センサ
JP5045273B2 (ja) 磁気センサの製造方法
EP3761050A1 (en) Magnetic field sensor for sensing a two-dimensional external magnetic field having a low anisotropy field
WO2011033981A1 (ja) 磁気センサの製造方法
JP4946591B2 (ja) 磁気センサ
CN112305468A (zh) 一种可用于巨磁阻传感器退火的方法与结构
CN113196079A (zh) 具有包括两个自由层的一个tmr叠堆的磁传感器阵列
JP2008309634A (ja) 磁気センサ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220810

R150 Certificate of patent or registration of utility model

Ref document number: 7128476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150