WO2011033981A1 - 磁気センサの製造方法 - Google Patents

磁気センサの製造方法 Download PDF

Info

Publication number
WO2011033981A1
WO2011033981A1 PCT/JP2010/065477 JP2010065477W WO2011033981A1 WO 2011033981 A1 WO2011033981 A1 WO 2011033981A1 JP 2010065477 W JP2010065477 W JP 2010065477W WO 2011033981 A1 WO2011033981 A1 WO 2011033981A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
layer
magnetic layer
magnetic field
manufacturing
Prior art date
Application number
PCT/JP2010/065477
Other languages
English (en)
French (fr)
Inventor
昌廣 川村
一郎 徳永
武也 猪俣
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to DE112010003703T priority Critical patent/DE112010003703T5/de
Priority to JP2011531902A priority patent/JPWO2011033981A1/ja
Publication of WO2011033981A1 publication Critical patent/WO2011033981A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/305Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
    • H01F41/306Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling conductive spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/305Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
    • H01F41/307Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling insulating or semiconductive spacer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets

Definitions

  • the present invention relates to a method of manufacturing a magnetic sensor including a plurality of magnetic detection elements having different magnetization fixed directions.
  • a magnetic sensor used in a potentiometer or the like has a configuration in which a plurality of chips including magnetic detection elements having different magnetization fixed directions (PIN direction; sensitivity axis direction) are mounted on a support plate.
  • PIN direction magnetization fixed directions
  • sensitivity axis direction magnetization fixed directions
  • the magnetization direction of the free magnetic layer constituting the magnetic detection element changes, the resistance value changes in relation to the magnetization fixed direction of the fixed magnetic layer, and the rotation angle or the like depends on the output based on the resistance change. Can be detected.
  • the magnetic detection element 100 was laminated in order of an antiferromagnetic layer 101, a pinned magnetic layer 102, a nonmagnetic material layer 103, a free magnetic layer 104, and a protective layer 105 from the bottom.
  • the pinned magnetic layer 102 was formed in a laminated ferrimagnetic structure in which the first magnetic layer 106, the nonmagnetic intermediate layer 107, and the second magnetic layer 108 were laminated in this order from the bottom.
  • the first magnetic layer 106 and the second magnetic layer 108 have substantially the same thickness, and the first magnetic layer 106 and the second magnetic layer 108 are formed of the same magnetic material, so that the first magnetic layer 106 and the second magnetic layer 108 are formed of the same magnetic material.
  • Ms ⁇ t Ms is saturation magnetization and t is film thickness
  • the first magnetic layer 106 and the second magnetic layer 108 can be pinned in an antiparallel manner by an exchange coupling magnetic field generated between the first magnetic layer 106 and the second ferromagnetic layer 101 and an RKKY coupling magnetic field via a nonmagnetic intermediate layer.
  • the magnetization fixed directions of the magnetic detection elements are all the same direction.
  • the large substrate was cut out for each magnetic detection element to form a large number of chips.
  • a plurality of chips are mounted on a common support plate.
  • the magnetization of each magnetic detection element mounted on the support plate is mechanically changed by changing the mounting angle of each chip with respect to the support plate.
  • the fixing direction was adjusted to a different direction.
  • the Ms ⁇ t of the first magnetic layer 106 and the second magnetic layer 108 constituting the pinned magnetic layer 102 formed in the laminated ferrimagnetic structure is adjusted to be approximately equal, so that the heat resistance and the external magnetic field resistance are improved.
  • An excellent magnetic sensor with excellent linearity accuracy can be manufactured.
  • the Ms ⁇ t of the first magnetic layer 106 and the second magnetic layer 108 are substantially equal, a strong magnetic field of several kOe or more is required to fix the magnetization.
  • the first magnetic layer 106 and the second magnetic layer 108 are once magnetized in the same direction by the strong magnetic field, but when the strong magnetic field is removed, the first magnetic layer 106 and the second magnetic layer 108 become the antiferromagnetic layer.
  • the magnetization is fixed in antiparallel based on the exchange coupling magnetic field and RKKY coupling magnetic field generated between the two.
  • Patent Document 1 discloses an invention of a sensor element in which a conductor path is positioned above a magnetic detection element.
  • a current is passed through the conductor path, and the bias layer portion is magnetized by a magnetic field generated at that time.
  • Patent Document 1 does not recognize the above-described conventional problems, and does not disclose means for solving the conventional problems.
  • the invention described in Patent Document 1 it is unclear whether the bias layer portion has a laminated ferrimagnetic structure, and it is unclear whether the bias layer portion can be stably fixed with magnetization.
  • the invention described in Patent Document 2 is a configuration including a single-layered pinned magnetic layer in contact with an antiferromagnetic layer, and the pinned magnetic layer is not a laminated ferrimagnetic structure. Absent. Furthermore, in the invention described in Patent Document 2, the magnetization of the pinned magnetic layers of a plurality of tunnel type magnetoresistive effect elements is pinned in different directions using the remanent magnetization of the magnetic layer for applying a magnetic field. In the method using, it is difficult to control each magnetization fixed direction with high accuracy, and variations tend to occur.
  • the present invention is for solving the above-described conventional problems, and provides a method of manufacturing a magnetic sensor capable of pinning a plurality of magnetic detection elements with high accuracy in different directions using a weak magnetic field on the same substrate.
  • the purpose is to provide.
  • the present invention provides a method for manufacturing a magnetic sensor provided in a non-contact manner with a magnetic field generating means for generating a detection magnetic field, and comprising a plurality of magnetic detection elements for detecting the detection magnetic field.
  • each magnetic sensing element is laminated in order of an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic material layer and a free magnetic layer from the bottom, and the pinned magnetic layer is laminated from the bottom to the first magnetic layer and the nonmagnetic intermediate layer.
  • the magnetic layer having a large Ms ⁇ t is obtained when a weak magnetic field is used. Magnetization can be preferentially fixed in the direction of weak magnetic field application. On the other hand, the magnetic layer having a small Ms ⁇ t is magnetized antiparallel by the RKKY coupling magnetic field. Thus, by first adjusting Ms ⁇ t of the first magnetic layer and the second magnetic layer to an unbalanced state, the magnetization fixed control can be performed with a weak magnetic field.
  • step (b) the Ms ⁇ t of the first magnetic layer and the second magnetic layer are adjusted substantially equally.
  • the heat treatment in the magnetic field is performed with the Ms ⁇ t of the first magnetic layer and the second magnetic layer in an unbalanced state (a), and then the step (b) of aligning Ms ⁇ t is achieved without using a strong magnetic field.
  • the first magnetic layer and the second magnetic layer having substantially the same Ms ⁇ t can be stably pinned in an antiparallel manner.
  • the magnetic sensor according to the present invention is provided with a plurality of magnetic detection elements having different magnetization fixed directions.
  • magnetization can be fixed by a weak magnetic field
  • two or more magnetic detection elements having different magnetization fixing directions can be easily and highly accurately formed on the same substrate by adjusting the magnetic field application direction.
  • a plurality of magnetic sensing elements having a laminated ferrimagnetic structure having substantially the same Ms ⁇ t and different magnetization fixed directions can be formed on the same substrate with high accuracy using heat treatment in a weak magnetic field.
  • a one-chip magnetic sensor having excellent heat resistance and external magnetic field resistance and high linearity accuracy can be manufactured.
  • step (a) Ms ⁇ t of the second magnetic layer is formed larger than Ms ⁇ t of the first magnetic layer,
  • step (b) a part of the second magnetic layer may be shaved so that the Ms ⁇ t of the first magnetic layer and the second magnetic layer can be adjusted to be substantially equal.
  • step (a) a part of the second magnetic layer is formed such that Ms ⁇ t is smaller than Ms ⁇ t of the first magnetic layer,
  • step (b) the remaining second magnetic layer can be formed, and the Ms ⁇ t of the first magnetic layer and the second magnetic layer can be made substantially equal.
  • a lower second magnetic layer having a smaller Ms ⁇ t than the first magnetic layer is formed, a protective layer is formed on the lower second magnetic layer, and (B) having a step of forming an upper second magnetic layer on the protective layer in the step;
  • the protective layer is formed with a film thickness in which the lower second magnetic layer and the upper second magnetic layer are magnetization fixed in the same direction, It is preferable that Ms ⁇ t obtained by adding the lower second magnetic layer and the upper second magnetic layer is approximately equal to Ms ⁇ t of the first magnetic layer.
  • the protective layer is preferably formed of a Cr layer.
  • the first magnetic layer and the second magnetic layer are formed of the same magnetic material, and in the step (a), the first magnetic layer and the second magnetic layer are formed with different film thicknesses, In the step (b), it is preferable to adjust the Ms ⁇ t easily by adjusting the first magnetic layer and the second magnetic layer to substantially the same film thickness.
  • a magnetic sensor manufacturing method including a plurality of magnetic detection elements that are provided in a non-contact manner with a magnetic field generation unit that generates a detection magnetic field and detects the detection magnetic field.
  • each magnetic sensing element is laminated in order of an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic material layer and a free magnetic layer from the bottom, and the pinned magnetic layer is laminated from the bottom to the first magnetic layer and the nonmagnetic intermediate layer.
  • the first magnetic layer / nonmagnetic intermediate layer are formed, and a weak magnetic field is used by performing a heat treatment in a magnetic field before forming the second magnetic layer.
  • the magnetization of the first magnetic layer can be fixed in the applied magnetic field direction.
  • the second magnetic layer can be fixed in magnetization antiparallel to the fixed magnetization direction of the first magnetic layer by the RKKY coupling magnetic field. In this way, if the heat treatment in a magnetic field is performed in a state where the film is formed up to the nonmagnetic intermediate layer and the second magnetic layer is not formed, the magnetization fixed control can be performed with a weak magnetic field.
  • the second magnetic layer is formed so as to be substantially equal to Ms ⁇ t of the first magnetic layer.
  • the magnetization of the first magnetic layer and the second magnetic layer having substantially the same Ms ⁇ t can be stably fixed in antiparallel without using a strong magnetic field.
  • the magnetic sensor according to the present invention is provided with a plurality of magnetic detection elements having different magnetization fixed directions.
  • the magnetization can be fixed by a weak magnetic field
  • two or more magnetic detection elements having different magnetization fixing directions can be easily and highly accurately formed on the same substrate by adjusting the magnetic field application direction.
  • a plurality of magnetic sensing elements having a laminated ferrimagnetic structure having substantially the same Ms ⁇ t and different magnetization fixed directions can be formed on the same substrate with high accuracy using heat treatment in a weak magnetic field.
  • a one-chip magnetic sensor having excellent heat resistance and external magnetic field resistance and high linearity accuracy can be manufactured.
  • a step of cutting the surface layer of the nonmagnetic intermediate layer is provided between the step (c) and the step (d).
  • conductive portions having different energization directions are arranged opposite to the laminated film formed up to the step (a) or the step (c), and different directions are generated by energizing the conductive portions. It is preferable that the external magnetic field is applied to different element formation regions of the laminated film to perform the heat treatment in the magnetic field.
  • magnetization fixing control can be performed at a time for each element formation region, the manufacturing process is facilitated, and each magnetic detection element can be formed with high accuracy.
  • a heat treatment in a magnetic field having a different magnetic field application direction can be performed.
  • each element formation region is subjected to a heat treatment in a magnetic field having a different magnetic field application direction on different element formation regions of the laminated film formed up to the step (a) or the step (c).
  • the nonmagnetic material layer, the free magnetic layer, and the protective layer are formed, and each magnetic detection element is patterned for each element formation region, so that the magnetism, electricity, temperature of each magnetic detection element is formed.
  • a plurality of magnetic detection elements can be formed on the same substrate so that the magnetization fixed directions are different from each other by 90 degrees, and a magnetic sensor for potentiometers with excellent detection accuracy can be manufactured.
  • a plurality of magnetic sensing elements having a laminated ferrimagnetic structure having substantially the same Ms ⁇ t and different magnetization fixed directions can be formed on the same substrate with high accuracy using heat treatment in a weak magnetic field,
  • a one-chip magnetic sensor with excellent heat resistance and external magnetic field resistance and high linearity accuracy can be manufactured.
  • Process drawing schematically showing a first manufacturing method of a magnetic sensor Process diagram schematically showing a second manufacturing method of the magnetic sensor, Process diagram schematically showing a third manufacturing method of the magnetic sensor, Process diagram schematically showing a fourth manufacturing method of the magnetic sensor,
  • the process figure which showed the manufacturing method following FIG. 4 typically, Plan view of magnetic field application device, Schematic diagram showing another magnetic field application method, The top view which shows the wafer-like large board
  • FIG. 1 schematically shows a first method of manufacturing a magnetic sensor according to the present invention.
  • Each process drawing is a schematic view of a longitudinal section cut along the film thickness direction.
  • thin film technology such as sputtering is used continuously in the same vacuum in the order of the seed layer 11, the antiferromagnetic layer 12, and the fixed magnetic layer 13 from the bottom over the entire surface of the substrate 10.
  • the substrate 10 is made of, for example, silicon, and the surface of the substrate 10 is a thermally oxidized silicon layer.
  • the seed layer 11 is formed of Ni—Fe—Cr, Cr, Ru, or the like.
  • An underlayer (not shown) made of a nonmagnetic element such as Ta may be formed between the seed layer 11 and the substrate 10.
  • the antiferromagnetic layer 12 is formed of an antiferromagnetic material containing the element X (where X is one or more of Pt, Pd, Ir, Rh, Ru, and Os) and Mn. To do.
  • the antiferromagnetic layer 12 is preferably formed of Pt—Mn or Ir—Mn.
  • the antiferromagnetic layer 12 is formed with a thickness of about 80 to 300 mm.
  • the pinned magnetic layer 13 is laminated in order of the first magnetic layer 13a, the nonmagnetic intermediate layer 13b, and the second magnetic layer 13c from the bottom.
  • Both the first magnetic layer 13a and the second magnetic layer 13c are formed of a magnetic material such as Co—Fe, Ni—Fe, Co—Fe—Ni, or Co, but a magnetic material containing Co (Co—Fe or the like).
  • the nonmagnetic intermediate layer 13b is formed of a nonmagnetic conductive material such as Ru, Rh, Ir, Cr, Re, or Cu, but it is particularly preferable that the nonmagnetic intermediate layer 13b be formed of Ru.
  • the pinned magnetic layer 13 has a laminated ferrimagnetic structure of a first magnetic layer 13a; Co—Fe / nonmagnetic intermediate layer 13b; Ru / second magnetic layer 13c; Co—Fe.
  • the second magnetic layer 13c is formed thicker than the first magnetic layer 13a.
  • the first magnetic layer 13a and the second magnetic layer 13c are formed of the same magnetic material, and the second magnetic layer 13c is made thicker than the first magnetic layer 13a.
  • the magnetic layer 13c has Ms ⁇ t (Ms is saturation magnetization and t is film thickness) larger than Ms ⁇ t of the first magnetic layer 13a.
  • the magnetic material is made different between the first magnetic layer 13a and the second magnetic layer 13c, and Ms is made different between the first magnetic layer 13a and the second magnetic layer 13c, whereby Ms ⁇ t is made different from that of the first magnetic layer 13a.
  • Ms ⁇ t is made different from that of the first magnetic layer 13a.
  • the first magnetic layer 13a is formed with a thickness of about 10 to 20 mm
  • the second magnetic layer 13c is formed with a thickness of about 12 to 36 mm.
  • the film thickness difference between the first magnetic layer 13a and the second magnetic layer 13c is about 2 to 16 mm.
  • the nonmagnetic intermediate layer 13b is formed with a thickness of about 8 to 10 mm.
  • the first magnetic layer 13a and the second magnetic layer 13c preferably have a difference in Ms ⁇ t of about 0.4 (T ⁇ nm) to 3.0 (T ⁇ nm).
  • the magnetic field application device 8 in which the conductive portion (coil layer) 6 is formed on the surface of the support plate 7 above the laminated film 20 from the seed layer 11 to the pinned magnetic layer 13. Are placed opposite each other.
  • the conductive portion 6 is formed as a thin film with a pattern shape shown in FIG. 6, for example.
  • a conductive portion 6 made of a good conductor such as Cu is patterned on the surface 7a of the support plate 7 with high accuracy using a photolithography technique.
  • the conductive portion 6 has a shape in which a plurality of pattern portions extending in the X1-X2 direction and the Y1-Y2 direction are connected.
  • the X1-X2 direction and the Y1-Y2 direction indicate two directions orthogonal to each other on a plane (a plane parallel to the surface of the substrate 10).
  • the conductive portion 6 includes a first pattern portion 6a and a third pattern portion 6c extending in the Y1-Y2 direction, and a second pattern portion 6b and a fourth pattern portion 6d extending in the X1-X2 direction. Has been.
  • the current I flows through the conductive portion 6 from the direction of the arrow (wide) shown in FIG. 6, the current I flows in the first pattern portion 6a of the conductive portion 6 in the Y1 direction.
  • the current I flows in the pattern portion 6b in the X1 direction, the current I flows in the Y2 direction in the third pattern portion 6c of the conductive portion 6, and the current I flows in the X2 direction in the fourth pattern portion 6d of the conductive portion 6. .
  • an external magnetic field is applied from the pattern portions 6a to 6d to the laminated film 20 according to the right-handed screw law.
  • the external magnetic field is applied from the pattern portions 6a to 6d to the laminated film 20 due to a difference in current direction. On the other hand, it is applied in different directions by 90 degrees.
  • the conductive portion 6 is energized while being heated and the external magnetic field is applied to the laminated film 20 (heat treatment in a magnetic field).
  • the heating temperature is about 270 ° C. to 310 ° C.
  • the second magnetic layer 13c since the second magnetic layer 13c has a larger Ms ⁇ t than the first magnetic layer 13a, the second magnetic layer 13c is preferentially magnetized in the direction of the external magnetic field.
  • the second magnetic layer 13c is magnetization fixed in the right direction on the paper surface, and in the element formation region B, the second magnetic layer 13c is left on the paper surface.
  • the second magnetic layer 13c is magnetization fixed in the direction perpendicular to the plane of the drawing
  • the second magnetic layer 13c is magnetization fixed in the direction perpendicular to the plane of the drawing (see FIG.
  • the magnetization fixed direction is indicated by an arrow (the same applies to FIGS. 2, 3, 4, 5, and 7).
  • the first magnetic layer 13a in each of the element formation regions A to D is magnetized antiparallel to the magnetization fixed direction of the second magnetic layer 13c by the RKKY coupling magnetic field generated through the nonmagnetic intermediate layer 13b.
  • an exchange coupling magnetic field is generated between the first magnetic layer 13a and the antiferromagnetic layer 12, and even if the conduction to the conductive portion 6 is stopped, each element is based on the RKKY coupling magnetic field and the exchange coupling magnetic field.
  • the first magnetic layer 13a and the second magnetic layer 13c can be stably pinned in an antiparallel state.
  • the surface layer of the second magnetic layer 13c is removed by etching or the like, so that the Ms ⁇ t of the first magnetic layer 13a and the second magnetic layer 13c are substantially equal.
  • the same magnetic material is used for the first magnetic layer 13a and the second magnetic layer 13c, and in order to make Ms ⁇ t substantially equal, in FIG.
  • the film thickness of the second magnetic layer 13c is adjusted so that the film thickness of 13c is substantially the same as the film thickness of the first magnetic layer 13a.
  • a sputtering method or the like is successively performed in the same vacuum in the order of the nonmagnetic material layer 14, the free magnetic layer 15, and the protective layer 16 from the bottom over the entire surface of the fixed magnetic layer 13.
  • the thin film technology is used to form a film.
  • the nonmagnetic material layer 14 is made of Cu, for example.
  • the film thickness of the nonmagnetic material layer 14 is about 18 to 26 mm.
  • the magnetic detection element 4 is formed of a CIP (current in the plane) type giant magnetoresistive element (GMR element), but a tunnel type magnetoresistive element (TMR element) is used.
  • the nonmagnetic material layer 14 is formed of an insulating barrier layer made of Mg—O, Ti—O, Al—O or the like.
  • a tunnel type magnetoresistive effect element or a CPP current perpendicular to the plane
  • an electrode layer is provided below the fixed magnetic layer 13 and above the free magnetic layer 15 shown in FIG. Keep it.
  • the free magnetic layer 15 may have a single-layer structure of a magnetic layer, but a configuration in which an enhancement layer and a soft magnetic layer are laminated in this order from the bottom is preferable.
  • the enhancement layer is formed of, for example, Co—Fe.
  • the soft magnetic layer is formed of a material excellent in soft magnetic properties such as a lower coercive force and a lower anisotropic magnetic field than the enhancement layer.
  • the free magnetic layer 15 is preferably formed with a thickness of about 5 to 20 mm for the enhancement layer and about 10 to 40 mm for the soft magnetic layer.
  • the protective layer 16 is formed of a nonmagnetic material such as Ta and has a thickness of about 30 to 100 mm.
  • the laminated film 21 from the seed layer 11 to the protective layer 16 is patterned into a predetermined shape (for example, meander shape) for each element formation region A to D, and magnetization is fixed to each element formation region A to D, respectively.
  • the magnetic sensing elements having different directions are patterned.
  • the layer contributing to the resistance change is the nonmagnetic material layer 14 of the first magnetic layer 13a and the second magnetic layer 13c constituting the pinned magnetic layer. Therefore, unless otherwise specified, the “magnetization pinned direction” of the magnetic detection element refers to the magnetization pinned direction of the second magnetic layer 13c.
  • Ms ⁇ t of the second magnetic layer 13c is made larger than Ms ⁇ t of the first magnetic layer 13a in the step shown in FIG. Accordingly, in the step of FIG. 1B, when the external magnetic field applied to the pinned magnetic layer 13 is a weak magnetic field, the second magnetic layer 13c having a large Ms ⁇ t is preferentially directed to the magnetic field application direction of the external magnetic field. On the other hand, the magnetization of the first magnetic layer 13a having a small Ms ⁇ t can be fixed in the anti-parallel direction with respect to the second magnetic layer 13c by the RKKY coupling magnetic field.
  • magnetization fixed control can be performed with a weak magnetic field.
  • the Ms ⁇ t of the first magnetic layer 13a and the second magnetic layer 13c are substantially equal to each other as in the step of FIG. 1C. It is adjusted so that The figure which adjusts Ms * t through the process of FIG.1 (b) which adjusts Ms * t to an unbalanced state by the 1st magnetic layer 13a and the 2nd magnetic layer 13c, and performs the heat processing in a magnetic field in a weak magnetic field.
  • the first magnetic layer and the second magnetic layer having substantially the same Ms ⁇ t can be stably fixed in the antiparallel state without using a strong magnetic field. .
  • FIG. 2 schematically shows a second manufacturing method of the magnetic sensor according to the present invention.
  • Each process drawing is a schematic view of a longitudinal section cut along the film thickness direction. The same layers as those in FIG.
  • the seed layer 11, the antiferromagnetic layer 12, the first magnetic layer 13a, the nonmagnetic intermediate layer 13b, the second magnetic layer 13c1, and the Cr layer (protective layer) 13d are formed on the substrate 10 from below.
  • the films are successively formed in the same vacuum using a thin film technique such as sputtering.
  • the Ms ⁇ t of the second magnetic layer 13c1 is made smaller than the Ms ⁇ t of the first magnetic layer 13a.
  • the thickness of the second magnetic layer 13c1 is set to the thickness of the first magnetic layer 13a. It is made thinner.
  • the second magnetic layer 13c1 is referred to as a “lower second magnetic layer”.
  • the Cr layer 13d is a layer for protecting the lower second magnetic layer 13c1 from oxidation or the like, and may be a nonmagnetic material other than Cr, but the Cr layer 13d is preferably used.
  • the magnetic field application device 8 including the conductive portions 6 having different energization directions is disposed above the stacked film 23 from the seed layer 11 to the Cr layer 13d.
  • an electric current is passed through the conductive portion 6 to apply an external magnetic field in a direction different by 90 degrees from the conductive portion 6 to each element formation region A to D of the laminated film 23 (heat treatment in a magnetic field).
  • a weak external magnetic field is applied to the laminated film 23 to magnetize the first magnetic layer 13a in each of the element formation regions A to D by 90 degrees in different directions.
  • the first magnetic layer 13a having a large Ms ⁇ t can be magnetized in the direction of the external magnetic field.
  • the lower second magnetic layer 13c1 is magnetized antiparallel to the magnetization direction of the first magnetic layer 13a by the RKKY coupling magnetic field generated between the first magnetic layer 13a and the second magnetic layer 13c.
  • the first magnetic layer 13a and the lower second magnetic layer 13c1 can be stably pinned in an antiparallel state.
  • the upper second magnetic layer 13c2 is formed on the Cr layer 13d by using a thin film technique such as sputtering.
  • the film of the upper second magnetic layer 13c2 is set such that Ms ⁇ t of the lower second magnetic layer 13c1 and the upper second magnetic layer 13c2 is substantially equal to Ms ⁇ t of the first magnetic layer 13a. Adjust the thickness.
  • the lower second magnetic layer 13c1 and the upper second magnetic layer 13c2 are magnetically coupled via the Cr layer 13d and fixed in the same direction. It is formed with a thin film thickness.
  • the thickness of the Cr layer 13d is preferably about 0.5 to 1.5 mm.
  • the Cr layer 13d can be completely removed in the step between FIG. 2B and FIG. 2C, and the upper second magnetic layer 13c2 can be added directly on the lower second magnetic layer 13c1. If the layer 13d is formed thin as described above and the lower second magnetic layer 13c1 and the upper second magnetic layer 13c2 can be fixed in the same direction, there is no problem even if the Cr layer 13d is left.
  • the Cr layer 13d oxidized by the intermediate heat treatment step can function as a NOL (Nano Oxide Layer) having a specular reflection effect, and the resistance change rate ( ⁇ R / R) of each magnetic detection element can be effectively improved. Is also possible.
  • a sputtering method or the like is performed on the entire surface of the pinned magnetic layer 13 in the same vacuum successively from the bottom in the order of the nonmagnetic material layer 14, the free magnetic layer 15, and the protective layer 16.
  • the thin film technology is used to form a film.
  • the laminated film 21 from the seed layer 11 to the protective layer 16 is patterned into a predetermined shape (for example, meander shape) for each element formation region A to D, and magnetization is fixed to each element formation region A to D, respectively.
  • the magnetic sensing elements having different directions are patterned.
  • the Ms ⁇ t of the first magnetic layer 13a is changed from the Ms ⁇ t of the second magnetic layer 13c (lower second magnetic layer 13c1) in the step shown in FIG. It is getting bigger. Therefore, in the step of FIG. 2B, when the external magnetic field applied to the pinned magnetic layer 13 is a weak magnetic field, the first magnetic layer 13a having a large Ms ⁇ t is preferentially directed toward the magnetic field application direction of the external magnetic field.
  • the lower second magnetic layer 13c1 having a small Ms ⁇ t can be fixed in the anti-parallel direction to the first magnetic layer 13a by the RKKY coupling magnetic field.
  • the magnetization fixed control can be performed with a weak magnetic field.
  • the Ms ⁇ t of the first magnetic layer 13a and the second magnetic layer 13c are substantially equal to each other as in the step of FIG. 2C. It is adjusted so that The first magnetic layer 13a and the second magnetic layer 13c are adjusted in an unbalanced state and subjected to a heat treatment in a magnetic field with a weak magnetic field, through the process of FIG.
  • the process of adjusting the Ms ⁇ t of the two magnetic layers 13c to the step shown in FIG. 2 (c) stabilizes the first magnetic layer and the second magnetic layer having substantially the same Ms ⁇ t without using a strong magnetic field.
  • the magnetization can be fixed in an antiparallel state.
  • FIG. 3 schematically shows the manufacturing process of the magnetic sensor according to the third embodiment.
  • Each process drawing is a schematic view of a longitudinal section cut along the film thickness direction. The same layers as those in FIG.
  • the seed layer 11, the antiferromagnetic layer 12, the first magnetic layer 13a, and the nonmagnetic intermediate layer 13b are successively applied to the entire surface of the substrate 10 from the bottom in the same vacuum.
  • Film formation is performed using thin film technology such as sputtering.
  • the nonmagnetic intermediate layer 13b is formed to have a thickness greater than a predetermined thickness.
  • the magnetic field application device 8 including the conductive portions 6 having different energization directions is disposed above the stacked film 22 from the seed layer 11 to the nonmagnetic intermediate layer 13b. Then, an electric current is passed through the conductive portion 6 while heating, and an external magnetic field of 90 degrees is applied from the conductive portion 6 to each of the element formation regions A to D of the laminated film 22 (heat treatment in a magnetic field).
  • a weak external magnetic field is applied to the laminated film 22 to magnetize the first magnetic layer 13a in each of the element formation regions A to D by 90 degrees in different directions.
  • the first magnetic layer 13a can be magnetized in the magnetic field application direction of the external magnetic field using a weak magnetic field.
  • an exchange coupling magnetic field is generated between the antiferromagnetic layer 12 and the first magnetic layer 13a by the heat treatment in the magnetic field, and therefore the first magnetic layer 13a even after the conduction to the conductive portion 6 is stopped. Can be held in the magnetic field application direction.
  • the surface layer of the nonmagnetic intermediate layer 13b is shaved by etching or the like, and the nonmagnetic intermediate layer 13b is controlled to a predetermined thickness. Since the surface layer of the nonmagnetic intermediate layer 13b is oxidized or the like by the heat treatment in the magnetic field of FIG. 3B, the nonmagnetic intermediate layer 13b is formed thicker than a predetermined thickness in the step of FIG. In addition, after the heat treatment in a magnetic field, it is preferable that the surface layer of the nonmagnetic intermediate layer 13b is shaved and adjusted to a predetermined thickness in the step of FIG.
  • the second magnetic layer 13c, the nonmagnetic material layer 14, the free magnetic layer 15 and the protective layer are formed on the entire surface of the nonmagnetic intermediate layer 13b in each of the element formation regions A to D from below.
  • the films are continuously formed in the same vacuum using a thin film technique such as sputtering.
  • Ms ⁇ t of the second magnetic layer 13c is made substantially equal to Ms ⁇ t of the first magnetic layer 13a.
  • the film thickness of the second magnetic layer 13c is made substantially the same as the film thickness of the first magnetic layer 13a.
  • the Ms ⁇ t of the first magnetic layer 13a and the second magnetic layer 13c are set to be approximately equal.
  • the magnetization of the second magnetic layer 13c is caused by the RKKY coupling magnetic field generated between the first magnetic layer 13a and the second magnetic layer 13c. Is antiparallel to the magnetization direction of the first magnetic layer 13a and is based on the RKKY coupling magnetic field and the exchange coupling magnetic field generated between the antiferromagnetic layer 12 and the first magnetic layer 13a and the second magnetic layer 13c. Can be stably fixed in the antiparallel state.
  • the laminated film 21 from the seed layer 11 to the protective layer 16 is patterned into a predetermined shape (for example, meander shape) for each element formation region A to D, and magnetization is fixed to each element formation region A to D, respectively.
  • the magnetic sensing elements having different directions are patterned.
  • the nonmagnetic intermediate layer 13b is formed, and the heat treatment in a magnetic field is performed without forming the second magnetic layer 13c.
  • the magnetization control for the first magnetic layer 13a can be performed with a weak magnetic field.
  • the second magnetic layer 13c is formed so as to be substantially equal to Ms ⁇ t of the first magnetic layer 13a as shown in FIG. 3C.
  • the process up to the nonmagnetic intermediate layer 13b is formed and the first magnetic layer 13a is subjected to the heat treatment in the magnetic field, and then the second magnetic layer 13c is formed, without using a strong magnetic field.
  • the first magnetic layer 13a and the second magnetic layer 13c having substantially the same Ms ⁇ t can be stably pinned in an antiparallel manner.
  • the laminated film 20 in FIG. 1B and the laminated film in FIG. 23 and an external magnetic field in a different direction can be applied to each of the element formation regions A to D of the laminated film 22 in FIG.
  • the external magnetic field since the external magnetic field only needs to be a weak magnetic field, the current value flowing through the conductive portion 6 can be small, the burden on the magnetic field application device 8 is small, and magnetic field interference between external magnetic fields in different directions is reduced.
  • the external magnetic field in different directions can be appropriately applied to each of the element formation regions A to D.
  • the pattern shown in FIG. It can be formed with high accuracy. Therefore, the first pattern portion 6a and the third pattern portion 6c of the conductive portion 6 can be patterned with high precision along the Y1-Y2 direction, and the second pattern portion 6b and the fourth pattern portion 6d of the conductive portion 6 are X1-X2 Patterns can be formed with high accuracy along the direction.
  • each external magnetic field generated by energizing each pattern portion 6a to 6d can be controlled with high accuracy in different directions by 90 degrees, and the magnetization fixed direction in each element formation region A to D can be controlled with high accuracy in different directions by 90 degrees. It is possible to control.
  • a plurality of magnetic sensing elements having a laminated ferrimagnetic structure having substantially the same Ms ⁇ t and different magnetization fixed directions are formed on the same substrate with high accuracy by using heat treatment in a weak magnetic field. It is possible to manufacture a one-chip magnetic sensor having excellent heat resistance and external magnetic field resistance and high linearity accuracy.
  • the one-chip configuration can facilitate downsizing of the magnetic sensor.
  • the magnetization fixing control can be performed on each of the element formation regions A to D at a time. Further, the film formation up to the pinned magnetic layer 13 shown in FIG. 1B, the film formation up to the protective layer 16 shown in FIG. 1D, or the film formation up to the Cr layer 13d shown in FIG. Film formation up to the protective layer 16 shown in FIG. 2 (d), or film formation up to the nonmagnetic intermediate layer 13b shown in FIG. 3 (b), film formation up to the protective layer 16 shown in FIG. It can be performed simultaneously on the element formation regions A to D, and after each step of FIG. 1D, FIG. 2D, and FIG. The element patterning process can be performed simultaneously. Therefore, the manufacturing process can be simplified, and the magnetic, electrical, and temperature characteristics of each magnetic detection element can be matched with high accuracy, and a magnetic sensor with excellent detection accuracy can be manufactured.
  • the magnetic field application device 8 is disposed so as to face the laminated films 20, 22, and 23, and the magnetic field application device 8 is discharged to the outside after applying the magnetic field (inside the magnetic sensor).
  • the magnetic field applying device 8 is not incorporated in the above. Thereby, the magnetic field application apparatus 8 can be repeatedly used every time the magnetic sensor is manufactured.
  • the conductive portion 6 is formed in a predetermined pattern on the substrate 10 by using a photolithography technique, and the laminated film 21 from the seed layer 11 to the protective layer 16 is formed on the conductive portion 6.
  • Ms ⁇ t of the first magnetic layer 13a and the second magnetic layer 13c is adjusted to an unbalanced state, or
  • FIG. 3 (b) in the state where the nonmagnetic intermediate layer 13b is formed, the conductive portion 6 is energized to control magnetization fixing in different directions by 90 degrees with respect to the element formation regions A to D. I do.
  • FIG. 1 (c) ⁇ FIG. 1 (d) ⁇ patterning to the magnetic detection element
  • FIG. 2 (c) ⁇ FIG. 2 (d) ⁇ patterning to the magnetic detection element
  • FIG. 3 (c). ⁇ FIG. 3D ⁇ Patterning is performed on the magnetic detection element.
  • the conductive portion 6 is formed on the substrate 10 in the same manner as the magnetic detection element, and the formation position of the conductive portion 6 with respect to the substrate 10 can be controlled with high accuracy using a photolithography technique.
  • the magnetization fixed direction of each magnetic detection element can be adjusted with higher accuracy.
  • the magnetic sensor since the conductive portion 6 remains on the substrate 10, the magnetic sensor includes the conductive portion 6.
  • FIG. 4 and 5 schematically show a manufacturing process of the magnetic sensor according to the fourth embodiment.
  • Each process drawing is a schematic view of a longitudinal section cut along the film thickness direction. The same layers as those in FIG.
  • the seed layer 11, the antiferromagnetic layer 12, the first magnetic layer 13a, the nonmagnetic intermediate layer 13b, the lower second magnetic layer 13c1, and the Cr layer 13d are formed on the entire surface of the substrate 10 from below.
  • the films are continuously formed in this order.
  • the heat treatment in a magnetic field is performed on the laminated film 23 from the seed layer 11 to the Cr layer 13d.
  • the heat treatment in a magnetic field in this step is performed on the entire laminated film 23.
  • a weak external magnetic field is applied, and at this time, the first magnetic layer 13a having a large Ms ⁇ t is magnetized in the magnetic field application direction of the external magnetic field.
  • the lower second magnetic layer 13c1 is magnetized antiparallel to the magnetization direction of the first magnetic layer 13a by the RKKY coupling magnetic field generated between the first magnetic layer 13a and the second magnetic layer 13c.
  • the first The magnetic layer 13a and the lower second magnetic layer 13c1 can be stably pinned in an antiparallel state.
  • the upper second magnetic layer 13c2 is formed on the Cr layer 13d by using a thin film technique such as sputtering.
  • the film of the upper second magnetic layer 13c2 is set such that Ms ⁇ t of the lower second magnetic layer 13c1 and the upper second magnetic layer 13c2 is substantially equal to Ms ⁇ t of the first magnetic layer 13a. Adjust the thickness.
  • the Cr layer 13d formed in FIG. 4A is magnetically coupled to the lower second magnetic layer 13c1 and the upper second magnetic layer 13c2 via the Cr layer 13d and fixed in the same direction. It is formed with a thin film thickness.
  • a thin film such as a sputtering method is continuously formed in the same vacuum in the order of the nonmagnetic material layer 14, the free magnetic layer 15 and the protective layer 16 from the bottom over the entire surface of the pinned magnetic layer 13. Deposition using technology.
  • a mask layer 25 made of a resist or the like is formed on the upper surface of the laminated film 21 from the seed layer 11 to the protective layer 16, and in the step of FIG.
  • the laminated film 21 not covered with 25 is removed by etching or the like.
  • the magnetization fixed direction of the second magnetic layer 13c (the lower second magnetic layer 13c1 and the upper second magnetic layer 13c2) is controlled to the left side of the drawing, and the magnetization fixed direction of the first magnetic layer 13a is controlled to the right side of the drawing.
  • the formed first magnetic detection element 2 can be patterned.
  • the planar shape of the magnetic detection element 2 can be formed in a meander shape.
  • an insulating separation layer 26 made of Al 2 O 3 or SiO 2 is formed from the upper surface to the side surface of the first magnetic detection element 2. Then, from above the separation layer 26 to the substrate 10, the seed layer 11, the antiferromagnetic layer 12, the first magnetic layer 27a, the nonmagnetic intermediate layer 27b, and the lower second magnetic layer 27c1 (Ms ⁇ t is the first magnetic layer) from the bottom. The smaller layers 27a) and the Cr layer 27d are successively formed.
  • the magnetic field application direction is set to a direction different from the magnetic field application direction in FIG.
  • the magnetic field application direction is the left direction of the paper.
  • the first The magnetic layer 27a and the lower second magnetic layer 27c1 can be stably pinned in an antiparallel state.
  • the external magnetic field can be a weak magnetic field.
  • the external magnetic field is set to a value smaller than the RKKY coupling magnetic field. Therefore, the magnetization fixed directions of the first magnetic layer 13a and the second magnetic layer 13c (the lower second magnetic layer 13c1 and the upper second magnetic layer 13c2) of the already completed first magnetic sensing element 2 shown in FIG.
  • the magnetization fixed directions of the first magnetic layer 13a and the second magnetic layer 13c of the first magnetic detection element 2 are stably maintained in the antiparallel state without being fluctuated by the external magnetic field applied in the step of FIG. I can do it.
  • the magnetization fixed direction of the first magnetic layer 27a of the laminated film 28 is the left direction on the drawing
  • the magnetization fixed direction of the lower second magnetic layer 27c1 is the right direction on the drawing
  • the first magnetic layer 13a and the second magnetic layer 13c of the magnetic detection element 2 are directed in directions different by 180 degrees.
  • the upper second magnetic layer 27c2 is formed on the Cr layer 27d by using a thin film technique such as sputtering.
  • the film of the upper second magnetic layer 27c2 is such that Ms ⁇ t of the lower second magnetic layer 27c1 and the upper second magnetic layer 27c2 is substantially equal to Ms ⁇ t of the first magnetic layer 27a. Adjust the thickness.
  • the lower second magnetic layer 27c1 and the upper second magnetic layer 27c2 are magnetically coupled via the Cr layer 27d and fixed in the same direction. It is formed with a thin film thickness.
  • the nonmagnetic material layer 14, the free magnetic layer 15 and the protective layer 16 are sequentially applied from the bottom to the entire surface of the pinned magnetic layer 13 in the same vacuum.
  • Film formation is performed using thin film technology.
  • a mask layer (not shown) made of a resist or the like is formed on the upper surface of the laminated film 29 from the seed layer 11 to the protective layer 16 in a region different from the formation position of the first magnetic detection element 2, and FIG.
  • the laminated film 29 not covered with the mask layer is removed by etching or the like. Accordingly, the second magnetic detection element 3 having a magnetization fixed direction different from that of the first magnetic detection element 2 can be patterned on the same substrate 10 as the first magnetic detection element 2.
  • the four magnetic detection elements 2 to 5 having different magnetization fixed directions by 90 degrees are formed on the same substrate. 10 can be formed.
  • heat treatment in a magnetic field was performed in a state where Ms ⁇ t of the first magnetic layer was larger than that of the second magnetic layer, but Ms ⁇ t was changed from the first magnetic layer 13a as in FIG.
  • Ms ⁇ t was changed from the first magnetic layer 13a as in FIG.
  • the first magnetic layer and the second magnetic layer having substantially the same Ms ⁇ t can be obtained without using a strong magnetic field. Magnetization can be stably fixed in antiparallel.
  • the magnetization can be fixed by a weak magnetic field, as shown in FIG. 5A, the magnetic field application direction is adjusted, and a plurality of magnetic detection elements 2 to 2 having different magnetization fixing directions are formed on the same substrate 10. 5 can be formed easily and with high accuracy.
  • a plurality of magnetic sensing elements having a laminated ferrimagnetic structure having substantially the same Ms ⁇ t and different magnetization fixed directions are formed on the same substrate with high accuracy by using heat treatment in a weak magnetic field. It is possible to manufacture a one-chip magnetic sensor having excellent heat resistance and external magnetic field resistance and high linearity accuracy.
  • the process does not proceed to the process of FIG. 4C, and the laminated film 23 is left in the element formation region of the first magnetic detection element 2 (in the shape of the final magnetic detection element).
  • the pattern may not be formed and may be left in a state having a large area to some extent).
  • the process proceeds to FIG. 5A and the formation of the laminated film 28 and the heat treatment in the magnetic field on the second magnetic detection element 3 are performed. Do. Then, the laminated film 28 is left in the element formation region of the second magnetic detection element 3.
  • the laminated films constituting the third magnetic detection element 4 and the fourth magnetic detection element 5 are similarly formed.
  • the nonmagnetic material layer 14, the free magnetic layer 15, and the protective layer 16 are sequentially formed from the bottom over the entire surface of the laminated film formed in each element formation region. Then, each of the magnetic detection elements 2 to 5 is patterned for each element formation region.
  • the manufacturing process can be facilitated, and the film formation from the nonmagnetic material layer 14 to the protective layer 16 can be made common to each of the magnetic detection elements 2 to 5, so that the magnetic, electrical, Each characteristic of temperature can be adjusted.
  • the second magnetic layer 13c in FIG. 1A is formed on the entire surface of the wafer-like large substrate 30, and the seed layer 11 to the second magnetic layer 13c are formed.
  • the magnetic field application device 32 is disposed opposite to the stacked film 20 up to the above.
  • the conductive portion 31 formed in the magnetic field application device 32 shown in FIG. 8 is linear in the X1-X2 direction in FIG. 8, but the bent pattern shape as shown in FIG. It is formed to face each region 30a delimited by a dotted line.
  • the magnetization fixed control can be performed on the laminated film 20 formed on the entire surface of the large substrate 30 at a time. Thereafter, a manufacturing process according to FIGS. 1C and 1D is performed, and after patterning each magnetic detection element, each region shown in FIG. 8 is diced to manufacture a large number of magnetic sensors. In this way, a large number of magnetic sensors can be manufactured at the same time, and a simple manufacturing method can be realized without the need for adjustment of the mount angle and the die bonding process as in the prior art.
  • the magnetic sensor in the present embodiment is used for a potentiometer, for example.
  • the magnetization fixing directions of the magnetic detection elements 2 to 5 are different by 90 degrees.
  • the magnetic detection elements 2 to 5 are wired to a full bridge circuit or a voltage dividing circuit.
  • a non-contact magnet (magnetic field generating means) is disposed opposite to the magnetic sensor, and a detection magnetic field acts on the magnetic sensor as the magnet rotates. This detection magnetic field acts on each of the magnetic detection elements 2 to 5, and the rotation angle of the magnet can be detected from the output value based on the resistance change of each of the magnetic detection elements 2 to 5.
  • the magnetic sensor 1 in this embodiment can be used not only as a potentiometer but also as a magnetic encoder, a magnetic switch, or the like.
  • This embodiment is applied to all magnetic sensor manufacturing methods in which the magnetization fixed directions of the magnetic detection elements formed on the same substrate 10 are controlled to be different in at least two directions.
  • Magnetic detection elements 6 and 31 Conductive portions 6a to 6d
  • Conductive portions 6a to 6d Each pattern portion 8 and 32 Magnetic field applying device 10
  • Substrate 12 Antiferromagnetic layer 13
  • Fixed magnetic layers 13a and 27a First magnetic layers 13b and 27b Nonmagnetic intermediate layer 13c First 2 Magnetic layer 13c1, 27c1 Lower second magnetic layer 13c2, 27c2 Upper second magnetic layer 13d, 27d Cr layer 14
  • Mask layer 30 Large board I Current

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

【課題】 同一基板上で、複数の磁気検出素子を、弱磁場を用いて異なる方向に高精度に磁化固定できる磁気センサの製造方法を提供することを目的とする。 【解決手段】 (a)工程では、第2磁性層13cを第1磁性層13aのMs・tよりも大きく形成する。(b)工程では、積層膜20に対して磁場中熱処理を行う。このとき導電部6に流れる電流方向が異なり、積層膜20の各領域A~Dには異なる方向の外部磁場が印加される。外部磁場を弱磁場とすることでMs・tが大きい第2磁性層13cの磁化は印加磁場方向を向き、RKKY結合磁界により第1磁性層13aは第2磁性層13cに対し反平行に磁化固定される。(c)工程では、第2磁性層13cの一部を削って、Ms・tを第1磁性層13aと第2磁性層13cとで同等に合わせる。(d)工程では、非磁性材料層、フリー磁性層及び保護層を成膜し、各領域ごとに磁気検出素子をパターン形成する。

Description

磁気センサの製造方法
 本発明は、磁化固定方向が異なる複数の磁気検出素子を備える磁気センサの製造方法に関する。
 従来、ポテンショメータ等に使用される磁気センサは、支持板上に、磁化固定方向(PIN方向;感度軸方向)が異なる磁気検出素子を備える複数のチップが搭載された構成となっていた。
 検出磁界が作用すると、磁気検出素子を構成するフリー磁性層の磁化方向が変動し、固定磁性層の前記磁化固定方向との関係で抵抗値が変化し、その抵抗変化に基づく出力により回転角度等の検知を行うことが可能となっている。
 従来では、まず、ウエハ状の大基板上に多数の磁気検出素子を成膜した。図9に示すように、前記磁気検出素子100を、下から反強磁性層101、固定磁性層102、非磁性材料層103、フリー磁性層104及び保護層105の順に積層した。
 図9に示すように固定磁性層102を下から第1磁性層106、非磁性中間層107及び第2磁性層108の順に積層してなる積層フェリ構造で形成した。図9に示すように、第1磁性層106と第2磁性層108の膜厚をほぼ同じとし、第1磁性層106と第2磁性層108を同じ磁性材料で形成することで、第1磁性層106と第2磁性層108のMs・t(Msは飽和磁化、tは膜厚)をほぼ同じに調整した。続いて、多数の前記磁気検出素子に対して同一の磁場中熱処理を施した。第1磁性層106及び第2磁性層108を、反強磁性層101との間で生じる交換結合磁界及び、非磁性中間層を介したRKKY結合磁界により、反平行に磁化固定できる。
 上記のように、従来では、多数の磁気検出素子に対して同一の磁場中熱処理を施すことで、各磁気検出素子の磁化固定方向は全て同一方向となった。
 続いて、各磁気検出素子ごとに前記大基板を切り出して多数のチップを形成した。続いて、複数のチップを共通の支持板上に搭載するが、このとき、機械的に、各チップの支持板に対するマウント角度を変えることで、支持板上に搭載される各磁気検出素子の磁化固定方向を異なる方向に調整していた。
特表平11-505931号公報 特開2002-299728号公報
 上記したように、積層フェリ構造で形成された固定磁性層102を構成する第1磁性層106及び第2磁性層108のMs・tをほぼ同等に調整したことで、耐熱、耐外部磁場耐性に優れ、リニアリティ精度に優れた磁気センサを製造できる。
 しかしながら、第1磁性層106と第2磁性層108のMs・tをほぼ同等にした場合、磁化固定のために、数kOe以上の強磁場を必要とした。強磁場により、第1磁性層106及び第2磁性層108は一旦、同じ方向に磁化されるが、強磁場を取り除くと、第1磁性層106及び第2磁性層108は、反強磁性層との間で生じる交換結合磁界及びRKKY結合磁界に基づいて反平行に磁化固定される。
 このように、従来では数kOe以上という強磁場を用いたため、同一基板上に、磁化固定方向が異なる複数の磁気検出素子を成膜することは出来なかった。
 そこで従来では、強磁場の磁場中熱処理により磁化固定方向が全て同一とされた多数の磁気検出素子をチップ化し、複数のチップを共通の支持板上に搭載する際、マウント角度を異ならせることで、共通の支持板上に搭載する各磁気検出素子の磁化固定方向を異ならせていた。
 しかしながら、各磁気検出素子の磁化固定方向を機械的なマウント角度の調整により制御する従来の制御方法では、マウント角度のばらつきにより、各磁気検出素子の磁化固定方向が所定方向からずれやすく、磁気センサの角度検出精度が低下する問題があった。また従来では、ダイボンダーを用いて機械的なマウント角度の調整及びダイボンド工程を必要とし、生産コストが上昇しまた煩雑な製造工程が必要となった。
 特許文献1には、磁気検出素子の上方に導体経路を位置させたセンサ素子の発明が開示されている。特許文献1では、前記導体経路に電流を流し、そのときに生じる磁界によりバイアス層部を磁化する。
 しかしながら特許文献1に記載された発明では、上記した従来課題に関する認識はなく、従来課題を解決するための手段は開示されていない。また特許文献1に記載された発明では、バイアス層部を積層フェリ構造としているのか不明であり、バイアス層部を安定して磁化固定できるか定かでない。
 特許文献2に記載された発明は、反強磁性層と接する単層構造の固定磁性層を備えた構成であり、固定磁性層を積層フェリ構造としたものでなく、上記した従来課題に関する認識はない。更に、特許文献2に記載された発明では、磁場印加用磁性層の残留磁化を用いて複数のトンネル型磁気抵抗効果素子の固定磁性層の磁化を異なる方向に固定するものであるが、残留磁化を用いる方法では、各磁化固定方向を高精度に制御することが困難であり、ばらつきが生じやすい。
 そこで本発明は、上記従来の課題を解決するためのものであり、同一基板上で、複数の磁気検出素子を、弱磁場を用いて異なる方向に高精度に磁化固定できる磁気センサの製造方法を提供することを目的とする。
 本発明は、検出磁界を生じる磁界発生手段と非接触に設けられ、前記検出磁界を検知する複数の磁気検出素子を備えた磁気センサの製造方法において、
 同一基板上に、各磁気検出素子を、下から反強磁性層、固定磁性層、非磁性材料層及びフリー磁性層の順に積層し、前記固定磁性層を下から第1磁性層、非磁性中間層及び第2磁性層の積層フェリ構造で形成するとき、
 (a) 前記第1磁性層と前記第2磁性層とを、異なるMs・t(Msは飽和磁化、tは膜厚)で形成して、磁場中熱処理を施す工程、
 (b) 前記第1磁性層と前記第2磁性層のMs・tをほぼ同等に調整する工程、
 を有し、
 前記(a)工程での磁場印加方向を調整して、2以上の各磁気検出素子の磁化固定方向を異なる方向に制御することを特徴とするものである。
 本発明では、(a)工程に示すように、第1磁性層と第2磁性層とのMs・tを異ならせているから、弱磁場を用いたとき、Ms・tの大きい磁性層を、弱磁場の磁場印加方向に優先的に磁化固定できる。一方、Ms・tの小さい磁性層は、RKKY結合磁界により反平行に磁化される。このように最初、第1磁性層と第2磁性層のMs・tをアンバランスな状態に調整すれば、弱磁場で磁化固定制御を行うことができる。本発明では、その後、(b)工程のように、第1磁性層と前記第2磁性層のMs・tをほぼ同等に調整している。第1磁性層と第2磁性層のMs・tをアンバランスな状態として磁場中熱処理を行う(a)工程を経て、Ms・tを揃える(b)工程に至ることで、強磁場を用いずとも、Ms・tがほぼ同等の第1磁性層と前記第2磁性層を、反平行に安定して磁化固定することができる。
 本発明における磁気センサには、磁化固定方向が異なる複数の磁気検出素子が設けられる。本発明では、弱磁場により磁化固定できるから、磁場印加方向を調整して、同一基板上に、磁化固定方向が異なる2以上の磁気検出素子を容易に且つ高精度に形成することができる。
 このように本発明では、Ms・tがほぼ同等の積層フェリ構造を備え、且つ磁化固定方向が異なる複数の磁気検出素子を同一基板上に弱磁場の磁場中熱処理を用いて高精度に形成でき、耐熱、耐外部磁場性に優れ、リニアリティ精度の高い1チップ構成の磁気センサを製造できる。
 本発明では、前記(a)工程にて、前記第2磁性層のMs・tを前記第1磁性層のMs・tよりも大きく形成し、
 前記(b)工程にて、前記第2磁性層を一部削って、前記第1磁性層と前記第2磁性層のMs・tをほぼ同等に合わせることが出来る。
 あるいは本発明では、前記(a)工程にて、Ms・tが前記第1磁性層のMs・tよりも小さくなるように前記第2磁性層の一部を形成し、
 前記(b)工程にて、残りの前記第2磁性層を形成して、前記第1磁性層と前記第2磁性層のMs・tをほぼ同等に合わせることが出来る。
 かかる場合、前記(a)工程にて、Ms・tが前記第1磁性層よりも小さい下側第2磁性層を形成し、前記下側第2磁性層の上に保護層を形成し、前記(b)工程にて、前記保護層の上に上側第2磁性層を形成する工程を有し、
 前記保護層を、前記下側第2磁性層と、前記上側第2磁性層とが同一方向に磁化固定される膜厚で形成し、
 前記下側第2磁性層と前記上側第2磁性層とを足したMs・tを、前記第1磁性層のMs・tとほぼ同等に合わせることが好ましい。本発明では、前記保護層をCr層で形成することが好ましい。
 また本発明では、前記第1磁性層と前記第2磁性層を同じ磁性材料で形成し、前記(a)工程では、前記第1磁性層と前記第2磁性層を異なる膜厚で形成し、前記(b)工程では、前記第1磁性層と前記第2磁性層をほぼ同等の膜厚に調整することが、Ms・tの調整を簡単に行うことが出来、好適である。
 また本発明は、検出磁界を生じる磁界発生手段と非接触に設けられ、前記検出磁界を検知する複数の磁気検出素子を備えた磁気センサの製造方法において、
 同一基板上に、各磁気検出素子を、下から反強磁性層、固定磁性層、非磁性材料層及びフリー磁性層の順に積層し、前記固定磁性層を下から第1磁性層、非磁性中間層及び第2磁性層の積層フェリ構造で形成するとき、
 (c) 前記第1磁性層及び前記非磁性中間層を成膜して、磁場中熱処理を施す工程、
 (d) 前記非磁性中間層上に前記第1磁性層とほぼ同等のMs・tを有する第2磁性層を形成する工程、
 を有し、
 前記(c)工程での磁場印加方向を調整して、2以上の各磁気検出素子の磁化固定方向を異なる方向に制御することを特徴とするものである。
 本発明では、(c)工程に示すように、第1磁性層/非磁性中間層まで成膜し、第2磁性層を成膜する前に、磁場中熱処理を施すことで、弱磁場を用いて、第1磁性層を、印加磁場方向に磁化固定できる。その後、第2磁性層を成膜すると、RKKY結合磁界により、前記第2磁性層を第1磁性層の固定磁化方向に対して反平行に磁化固定できる。このように最初、非磁性中間層まで成膜し第2磁性層を成膜しない状態で磁場中熱処理を施せば、弱磁場で磁化固定制御を行うことができる。本発明では、その後、(d)工程のように、第2磁性層を第1磁性層のMs・tとほぼ同等となるように成膜している。第1磁性層/非磁性中間層まで成膜して磁場中熱処理を行う(c)工程を経て、第1磁性層と同等のMs・tを有する第2磁性層を成膜する(d)工程に至ることで、強磁場を用いずとも、Ms・tがほぼ同等の第1磁性層と前記第2磁性層を、反平行に安定して磁化固定することができる。
 本発明における磁気センサには、磁化固定方向が異なる複数の磁気検出素子が設けられる。本発明では、弱磁場により磁化固定できるから、磁場印加方向を調して、同一基板上に、磁化固定方向が異なる2以上の磁気検出素子を容易に且つ高精度に形成することができる。
 このように本発明では、Ms・tがほぼ同等の積層フェリ構造を備え、且つ磁化固定方向が異なる複数の磁気検出素子を同一基板上に弱磁場の磁場中熱処理を用いて高精度に形成でき、耐熱、耐外部磁場性に優れ、リニアリティ精度の高い1チップ構成の磁気センサを製造できる。
 本発明では、前記(c)工程と前記(d)工程の間に、前記非磁性中間層の表面層を削る工程を備えることが好ましい。
 また本発明では、前記(a)工程、あるいは前記(c)工程までに形成された積層膜に対して、通電方向が異なる導電部を対向配置し、前記導電部への通電により生じる、異なる方向の外部磁場を夫々、前記積層膜の異なる素子形成領域に印加して、前記磁場中熱処理を行うことが好ましい。
 上記では各素子形成領域に対して、一度に、磁化固定制御を行うことができ、製造工程が容易化し、且つ各磁気検出素子を高精度に形成することができる。
 あるいは、前記(a)工程、あるいは前記(c)工程までに形成された積層膜を異なる素子形成領域に形成するごとに、磁場印加方向が異なる磁場中熱処理を施すことも出来る。
 また本発明では、前記(a)工程、あるいは前記(c)工程までに形成された積層膜の異なる素子形成領域に対して、磁場印加方向が異なる磁場中熱処理を施した後、各素子形成領域上に同時に、前記非磁性材料層、前記フリー磁性層及び前記保護層を成膜し、各素子形成領域ごとに各磁気検出素子をパターン形成することで、各磁気検出素子の磁気、電気、温度の各特性を高精度に合わせ込むことが出来る。
 本発明では、同一基板上に、複数の磁気検出素子を、磁化固定方向が90度ずつ異なる方向を向くように形成することができ、検出精度に優れたポテンショメータ用磁気センサを製造できる。
 本発明によれば、Ms・tがほぼ同等の積層フェリ構造を備え、且つ磁化固定方向が異なる複数の磁気検出素子を同一基板上に弱磁場の磁場中熱処理を用いて高精度に形成でき、耐熱、耐外部磁場性に優れ、リニアリティ精度の高い1チップ構成の磁気センサを製造できる。
磁気センサの第1の製造方法を模式的に示した工程図、 磁気センサの第2の製造方法を模式的に示した工程図、 磁気センサの第3の製造方法を模式的に示した工程図、 磁気センサの第4の製造方法を模式的に示した工程図、 図4に続く製造方法を模式的に示した工程図、 磁場印加装置の平面図、 別の磁場印加方法を示す模式図、 多数の磁気センサを製造するためのウエハ状の大基板と磁場印加装置とを示す平面図。 従来の磁気検出素子の構成を示す断面図。
 図1は、本発明における磁気センサの第1の製造方法を模式的に示したものである。各工程図は、膜厚方向に沿って切断した縦断面の模式図である。
 図1(a)に示す工程では、基板10上の全面に下からシード層11、反強磁性層12、固定磁性層13の順に、同一真空中で連続してスパッタ法等の薄膜技術を用いて成膜する。なお基板10は例えば、シリコンで形成され、基板10の表面は熱酸化シリコン層となっている。
 シード層11を、Ni-Fe-CrまたはCr、あるいはRu等によって形成する。またシード層11と基板10との間にTa等の非磁性元素で形成された下地層(図示しない)を形成してもよい。
 反強磁性層12を、元素X(ただしXは、Pt,Pd,Ir,Rh,Ru,Osのうち1種または2種以上の元素である)とMnとを含有する反強磁性材料で形成する。反強磁性層12をPt-MnやIr-Mnで形成することが好適である。前記反強磁性層12の膜厚を80Å~300Å程度で形成する。
 図1(a)に示すように固定磁性層13を下から第1磁性層13a、非磁性中間層13b及び第2磁性層13cの順に積層する。
 第1磁性層13a及び第2磁性層13cを、共に、Co-Fe,Ni-Fe,Co-Fe-Ni,Coなどの磁性材料で形成るが、Coを含む磁性材料(Co-Fe等)であることが好適である。また非磁性中間層13bを、Ru、Rh、Ir、Cr、Re、Cuなどの非磁性導電材料で形成するが特にRuで形成することが好適である。一例を示すと固定磁性層13は、第1磁性層13a;Co-Fe/非磁性中間層13b;Ru/第2磁性層13c;Co-Feの積層フェリ構造である。
 図1(a)では、第1磁性層13aの膜厚より第2磁性層13cの膜厚を厚く形成している。本実施形態では、第1磁性層13aと第2磁性層13cを同じ磁性材料で形成し、第2磁性層13cの膜厚を、第1磁性層13aの膜厚より厚くすることで、第2磁性層13cのMs・t(Msは飽和磁化、tは膜厚)を第1磁性層13aのMs・tより大きくしている。
 第1磁性層13aと第2磁性層13cとで磁性材料を異ならせ、Msを第1磁性層13aと第2磁性層13cとで異ならせることで、Ms・tを第1磁性層13aと第2磁性層13cとでアンバランスな状態にすることも出来るが、使用する磁性材料は第1磁性層13aと第2磁性層13cとで同じとして膜厚を変えるほうが、Ms・tの調整を容易化できて好ましい。
 図1(a)では、第1磁性層13aを、10Å~20Å程度の膜厚で形成し、第2磁性層13cを、12Å~36Å程度の膜厚で形成する。第1磁性層13aと第2磁性層13cとの膜厚差は、2Å~16Å程度とする。また、非磁性中間層13bを8Å~10Å程度の膜厚で形成する。また、第1磁性層13aと第2磁性層13cとでは、0.4(T・nm)~3.0(T・nm)程度のMs・tの差があることが好適である。
 次に、図1(b)の工程では、シード層11から固定磁性層13までの積層膜20の上方に、支持板7の表面に導電部(コイル層)6が形成された磁場印加装置8を対向配置させる。
 前記導電部6は、例えば、図6に示すパターン形状で薄膜形成されている。Cu等の良導体から成る導電部6を支持板7の表面7aにフォトリソグラフィ技術を用いて高精度にパターン形成する。
 図6に示すように、導電部6は、X1-X2方向及びY1-Y2方向に延びる複数のパターン部が連結した形状となっている。ここで、X1-X2方向及びY1-Y2方向は平面(基板10の表面と平行な面)にて直交する2方向を指す。
 図6に示すように導電部6には、Y1-Y2方向に延びる第1パターン部6a及び第3パターン部6cと、X1-X2方向に延びる第2パターン部6b及び第4パターン部6dが形成されている。
 そして、導電部6内に電流Iを図6に示す矢印方向(幅広)から流したとすると、導電部6の第1パターン部6aには電流IがY1方向に流れ、導電部6の第2パターン部6bには電流IがX1方向に流れ、導電部6の第3パターン部6cには電流IがY2方向に流れ、導電部6の第4パターン部6dには電流IがX2方向に流れる。
 このとき、右ねじの法則により、各パターン部6a~6dから積層膜20に外部磁場が印加されるが、前記外部磁場は、電流方向の違いにより、各パターン部6a~6dから積層膜20に対して90度ずつ異なる方向に印加される。
 図1(b)の工程では、加熱しながら導電部6に通電して前記外部磁場を積層膜20に印加する(磁場中熱処理)。加熱温度は、270℃~310℃程度である。
 図1(a)で説明したようにMs・tは第2磁性層13cのほうが第1磁性層13aより大きくなっているため、前記第2磁性層13cが外部磁場の方向に優先的に磁化される。
 図1(b)に示すように、例えば、積層膜20の素子形成領域Aでは、第2磁性層13cが紙面右方向に磁化固定され、素子形成領域Bでは、第2磁性層13cが紙面左方向に磁化固定され、素子形成領域Cでは、第2磁性層13cが紙面垂直上方向に磁化固定され、素子形成領域Dでは、第2磁性層13cが紙面垂直下方向に磁化固定されている(矢印で磁化固定方向を示す。図2、図3、図4、図5、図7においても同じ)。一方、各素子形成領域A~Dの第1磁性層13aは、非磁性中間層13bを介して生じるRKKY結合磁界により第2磁性層13cの磁化固定方向に対して反平行に磁化される。また、第1磁性層13aと反強磁性層12との間では交換結合磁界が生じており、導電部6への通電を停止しても、RKKY結合磁界及び交換結合磁界に基づいて、各素子形成領域A~Dにて、第1磁性層13aと第2磁性層13cとを反平行状態に安定して磁化固定できる。
 次に、図1(c)の工程では、第2磁性層13cの表面層をエッチング等で除去し、第1磁性層13aと第2磁性層13cのMs・tをほぼ同等に合わせている。
 図1の実施形態では、第1磁性層13a及び第2磁性層13cに使用する磁性材料を同じとしており、Ms・tをほぼ同等に合わせるために、図1(c)では、第2磁性層13cの膜厚を第1磁性層13aの膜厚とほぼ同じとなるように第2磁性層13cの膜厚を調整している。
 次に、図1(d)の工程では、固定磁性層13上の全面に下から非磁性材料層14、フリー磁性層15及び保護層16の順に、連続して同一真空中で、スパッタ法等の薄膜技術を用いて成膜する。
 非磁性材料層14を、例えば、Cuで形成する。非磁性材料層14の膜厚は、18Å~26Å程度である。なお、図1に示す実施形態では磁気検出素子4をCIP(current in the plane)型の巨大磁気抵抗効果素子(GMR素子)で形成するが、トンネル型磁気抵抗効果素子(TMR素子)とする場合、非磁性材料層14を、Mg-O、Ti-O、Al-O等から成る絶縁障壁層で形成する。トンネル型磁気抵抗効果素子やCPP(current perpendicular to the plane)型の巨大磁気抵抗効果素子の場合、図1に示す固定磁性層13の下側と、フリー磁性層15の上側に夫々電極層を設けておく。
 フリー磁性層15は磁性層の単層構造でもよいが、下からエンハンス層,軟磁性層の順に積層した構成が好適である。エンハンス層を、例えばCo-Feで形成する。また、軟磁性層を、エンハンス層よりも低保磁力、低異方性磁界である等、軟磁気特性に優れた材質で形成する。フリー磁性層15の膜厚を、エンハンス層は5Å~20Å程度、軟磁性層は10Å~40Å程度で形成することが好適である。
 また、保護層16をTa等の非磁性材料で形成し、30Å~100Å程度の膜厚で形成する。
 次に、シード層11から保護層16までの積層膜21を、各素子形成領域A~Dごとに所定形状(例えばミアンダ形状)にパターンニングし、各素子形成領域A~Dに夫々、磁化固定方向が異なる磁気検出素子をパターン形成する。なお、図1(d)の積層膜21を備える磁気検出素子において、抵抗変化に寄与する層は、固定磁性層を構成する第1磁性層13aと第2磁性層13cのうち非磁性材料層14に接する第2磁性層13cであるため、特に断らない限り磁気検出素子の「磁化固定方向」とは第2磁性層13cの磁化固定方向を指すものとする。
 図1に示す磁気センサの製造方法では、図1(a)に示す工程で、第2磁性層13cのMs・tを第1磁性層13aのMs・tより大きくしている。したがって図1(b)の工程で、固定磁性層13に印加される外部磁場を弱磁場としたとき、Ms・tが大きい第2磁性層13cを優先的に外部磁場の磁場印加方向を向けて磁化固定でき、一方、Ms・tが小さい第1磁性層13aをRKKY結合磁界により第2磁性層13cに対して反平行を向けて磁化固定出来る。
 このように最初、Ms・tを第1磁性層13aと第2磁性層13cとでアンバランスな状態にすれば、弱磁場で磁化固定制御を行うことができる。本実施形態では、図1(b)の弱磁場での磁場中熱処理の次に、図1(c)工程のように、第1磁性層13aと第2磁性層13cのMs・tをほぼ同等となるように調整している。第1磁性層13aと第2磁性層13cとでMs・tをアンバランスな状態に調整して弱磁場での磁場中熱処理を行う図1(b)の工程を経て、Ms・tを合わせる図1(c)の工程に至ることで、強磁場を用いずとも、Ms・tがほぼ同等の第1磁性層と前記第2磁性層を、安定して反平行状態に磁化固定することができる。
 図2は、本発明における磁気センサの第2の製造方法を模式的に示したものである。各工程図は、膜厚方向に沿って切断した縦断面の模式図である。なお図1と同じ層には同じ符号を付した。
 図2(a)では、基板10上に下からシード層11、反強磁性層12、第1磁性層13a、非磁性中間層13b、第2磁性層13c1、及びCr層(保護層)13dの順に、連続して同一真空中でスパッタ法等の薄膜技術を用いて成膜する。
 図2(a)に示す工程では、図1(a)と異なって、第2磁性層13c1のMs・tを第1磁性層13aのMs・tよりも小さく形成する。図2(a)に示す実施形態では、第1磁性層13aと第2磁性層13c1を同じ磁性材料で形成しているので、第2磁性層13c1の膜厚を第1磁性層13aの膜厚より薄く形成している。なお以下では、第2磁性層13c1を、「下側第2磁性層」と称することとする。
 Cr層13dは、下側第2磁性層13c1を酸化等から保護するための層であり、Cr以外の非磁性材料であってもよいがCr層13dが好ましく使用される。
 続いて、図2(b)の工程では、シード層11からCr層13dまでの積層膜23の上方に、通電方向が異なる導電部6を備える磁場印加装置8を対向配置する。
 そして、加熱しながら、前記導電部6に電流を流して前記導電部6から積層膜23の各素子形成領域A~Dに90度ずつ異なる方向の外部磁場を印加する(磁場中熱処理)。
 図2(b)に示す工程では、弱磁場の外部磁場を積層膜23に印加して、各素子形成領域A~Dの第1磁性層13aを90度ずつ異なる方向に磁化する。本実施形態では、Ms・tが大きい第1磁性層13aを外部磁場の方向に磁化できる。また、第1磁性層13aと第2磁性層13cとの間で生じるRKKY結合磁界により下側第2磁性層13c1は第1磁性層13aの磁化方向に対して反平行に磁化される。図2(b)の工程では磁場中熱処理により反強磁性層12と第1磁性層13aとの間に生じる交換結合磁界、及びRKKY結合磁界により、導電部6への通電を停止しても、第1磁性層13aと下側第2磁性層13c1とを反平行状態に安定して磁化固定できる。
 次に図2(c)の工程では、Cr層13d上に上側第2磁性層13c2をスパッタ法等の薄膜技術を用いて成膜する。このとき、下側第2磁性層13c1と上側第2磁性層13c2とを合わせたMs・tが第1磁性層13aのMs・tとほぼ同等となるように、上側第2磁性層13c2の膜厚を調整する。
 また、図2(a)で形成されるCr層13dを、下側第2磁性層13c1と上側第2磁性層13c2とがCr層13dを介して磁気的に結合し同一方向に磁化固定される程度の薄い膜厚で形成する。Cr層13dの膜厚を、0.5Å~1.5Å程度の膜厚で形成することが好適である。
 Cr層13dを図2(b)と図2(c)の間の工程で全て除去して、下側第2磁性層13c1上に直接、上側第2磁性層13c2を付け足すことも出来るが、Cr層13dを上記したように薄く形成して、下側第2磁性層13c1と上側第2磁性層13c2とを同一方向に磁化固定できればCr層13dを残しておいても問題はなく、むしろ、磁場中熱処理工程により酸化されたCr層13dを、鏡面反射効果を有するNOL(Nano Oxide Layer)として機能させることができ、各磁気検出素子の抵抗変化率(ΔR/R)を効果的に向上させることも可能である。
 次に、図1(d)の工程では、固定磁性層13上の全面に、下から非磁性材料層14、フリー磁性層15及び保護層16の順に連続して同一真空中で、スパッタ法等の薄膜技術を用いて成膜する。
 次に、シード層11から保護層16までの積層膜21を、各素子形成領域A~Dごとに所定形状(例えばミアンダ形状)にパターンニングし、各素子形成領域A~Dに夫々、磁化固定方向が異なる磁気検出素子をパターン形成する。
 図2に示す磁気センサの製造方法では、図2(a)に示す工程で、第1磁性層13aのMs・tを第2磁性層13c(下側第2磁性層13c1)のMs・tより大きくしている。したがって図2(b)の工程で、固定磁性層13に印加される外部磁場を弱磁場としたとき、Ms・tが大きい第1磁性層13aを優先的に外部磁場の磁場印加方向に向けて磁化固定でき、一方、Ms・tが小さい下側第2磁性層13c1をRKKY結合磁界により第1磁性層13aに対して反平行に向けて磁化固定出来る。
 このように最初、第1磁性層13aと第2磁性層13cとのMs・tをアンバランスな状態に調整すれば、弱磁場で磁化固定制御を行うことができる。本実施形態では、図2(b)の弱磁場での磁場中熱処理の次に、図2(c)工程のように、第1磁性層13aと第2磁性層13cのMs・tをほぼ同等となるように調整している。第1磁性層13aと第2磁性層13cのMs・tをアンバランスな状態に調整して弱磁場での磁場中熱処理を行う図2(b)の工程を経て、第1磁性層13aと第2磁性層13cのMs・tを合わせる図2(c)の工程に至ることで、強磁場を用いずとも、Ms・tがほぼ同等の第1磁性層と前記第2磁性層を、安定して反平行状態に磁化固定することができる。
 図3は、第3実施形態における磁気センサの製造工程を模式的に示したものである。各工程図は、膜厚方向に沿って切断した縦断面の模式図である。なお図1と同じ層には同じ符号を付した。
 図3(a)に示す工程では、基板10上の全面に下からシード層11、反強磁性層12、第1磁性層13a及び非磁性中間層13bの順に、連続して同一真空中で、スパッタ法等の薄膜技術を用いて成膜する。このとき、非磁性中間層13bの膜厚を所定厚よりも厚く形成しておく。
 次に、図3(b)に示す工程では、通電方向が異なる導電部6を備える磁場印加装置8を、シード層11から非磁性中間層13bまでの積層膜22の上方に対向配置する。そして、加熱しながら前記導電部6に電流を流して前記導電部6から積層膜22の各素子形成領域A~Dに90度ずつ異なる方向の外部磁場を印加する(磁場中熱処理)。
 図3(b)に示す工程では、弱磁場の外部磁場を積層膜22に印加して、各素子形成領域A~Dの第1磁性層13aを90度ずつ異なる方向に磁化する。
 本実施形態では、第2磁性層13cを成膜する前に、磁場中熱処理を施すため、弱磁場を用いて、第1磁性層13aを外部磁場の磁場印加方向に磁化できる。図3(b)の工程では磁場中熱処理により反強磁性層12と第1磁性層13aとの間に交換結合磁界が生じるため、導電部6への通電を停止した後でも第1磁性層13aを磁場印加方向に保持できる。
 次に、図3(c)の工程では、非磁性中間層13bの表面層をエッチング等で削り、前記非磁性中間層13bを所定厚に制御する。非磁性中間層13bの表面層は、図3(b)の磁場中熱処理により、酸化等されているため、図3(a)の工程では非磁性中間層13bを所定厚よりも厚く形成しておき、磁場中熱処理後、図3(c)の工程で、非磁性中間層13bの表面層を削って所定厚に調整することが好適である。
 次に、図3(d)の工程では、各素子形成領域A~Dの非磁性中間層13b上の全面に下から第2磁性層13c、非磁性材料層14、フリー磁性層15及び保護層16の順に、連続して同一真空中でスパッタ法等の薄膜技術を用いて成膜する。
 このとき、第2磁性層13cのMs・tを第1磁性層13aのMs・tとほぼ同等とする。図3(d)では、第2磁性層13cを第1磁性層13aと同じ磁性材料で形成しているため、第2磁性層13cの膜厚を第1磁性層13aの膜厚とほぼ同じにして、第1磁性層13aと第2磁性層13cのMs・tをほぼ同等に合わせている。
 第1磁性層13aの磁化は磁場印加方向に保持された状態となっているため、第1磁性層13aと第2磁性層13cとの間に生じるRKKY結合磁界により、第2磁性層13cの磁化は第1磁性層13aの磁化方向に対して反平行を向き、RKKY結合磁界、及び反強磁性層12との間で生じる交換結合磁界に基づいて、第1磁性層13aと第2磁性層13cとを反平行状態に安定して磁化固定することが出来る。
 続いて、シード層11から保護層16までの積層膜21を、各素子形成領域A~Dごとに所定形状(例えばミアンダ形状)にパターンニングし、各素子形成領域A~Dに夫々、磁化固定方向が異なる磁気検出素子をパターン形成する。
 図3に示す磁気センサの製造方法では、図3(a)の工程で、非磁性中間層13bまで成膜し、第2磁性層13cを成膜しない状態で磁場中熱処理を施しており、これにより、第1磁性層13aに対する磁化制御を、弱磁場で行うことができる。そして本実施形態では、磁場中熱処理後、図3(c)工程のように、第2磁性層13cを第1磁性層13aのMs・tとほぼ同等となるように成膜している。このように、非磁性中間層13bまでを成膜して第1磁性層13aに対する磁場中熱処理を施し、その後、第2磁性層13cを成膜する工程に至ることで、強磁場を用いずとも、Ms・tがほぼ同等の第1磁性層13aと第2磁性層13cを、反平行に安定して磁化固定することができる。
 また図1ないし図3に示す磁気センサの製造方法では、通電方向が異なる導電部6を備える磁場印加装置8を用いて、図1(b)の積層膜20、図2(b)の積層膜23、及び図3(b)の積層膜22の各素子形成領域A~Dに異なる方向の外部磁場を印加できる。そして本実施形態では、外部磁場を弱磁場とすればよいから導電部6に流す電流値が小さくて済み、磁場印加装置8にかかる負担が小さく、また、異なる方向の外部磁場間の磁場干渉を小さくでき、適切に各素子形成領域A~Dに異なる方向の外部磁場を印加できる。
 外部磁場の大きさがRKKY結合磁界より小さくなるように、導電部6への電流値を調整することが好適である。具体的には外部磁場を100~800Oe程度の範囲内で調整することが好適である。
 また磁場印加装置8に形成された導電部6を、支持板7の表面7aの全面にスパッタ法等の薄膜技術を用いて成膜した後、フォトリソグラフィ技術を用いて図6に示すパターンにて高精度に形成することができる。したがって導電部6の第1パターン部6a及び第3パターン部6cをY1-Y2方向に沿って高精度にパターン形成でき、導電部6の第2パターン部6b及び第4パターン部6dをX1-X2方向に沿って高精度にパターン形成できる。よって各パターン部6a~6dへの通電により生じた各外部磁場を90度ずつ異なる方向へ高精度に制御でき、各素子形成領域A~Dでの磁化固定方向を90度ずつ異なる方向に高精度に制御することが可能である。
 このように本実施形態では、Ms・tがほぼ同等の積層フェリ構造を備え、且つ磁化固定方向が異なる複数の磁気検出素子を同一基板上に弱磁場の磁場中熱処理を用いて高精度に形成でき、耐熱、耐外部磁場性に優れ、リニアリティ精度の高い1チップ構成の磁気センサを製造できる。1チップ構成にできることで、磁気センサの小型化を促進できる。
 また図1ないし図3の磁気センサの製造方法では、各素子形成領域A~Dに対して、一度に、磁化固定制御を行うことが出来る。また図1(b)に示す固定磁性層13までの成膜、図1(d)に示す保護層16までの成膜、あるいは、図2(b)に示すCr層13dまでの成膜、図2(d)に示す保護層16までの成膜、又は、図3(b)に示す非磁性中間層13bまでの成膜、図3(d)に示す保護層16までの成膜を、各素子形成領域A~Dに同時に行なうことができ、図1(d),図2(d)、図3(d)の各工程の次に、各素子形成領域A~Dに対して、磁気検出素子のパターンニング工程を同時に行なうことが出来る。よって製造工程を簡単にでき、更に、各磁気検出素子の磁気、電気、温度の各特性を高精度に合わせ込むことができ、検出精度に優れた磁気センサを製造することができる。
 図1ないし図3に示す実施形態では、積層膜20,22,23の上方に、磁場印加装置8を対向配置し、磁場印加後は磁場印加装置8を外部へ排出している(磁気センサ内に磁場印加装置8は組み込まれない)。これにより磁場印加装置8を、磁気センサの製造のたびに繰り返し使用可能である。
 ただし図7に示すように、基板10上に導電部6をフォトリソグラフィ技術を用いて所定パターンに形成し、前記導電部6上にシード層11から保護層16までの積層膜21を成膜することも出来る。かかる場合、例えば図1(b)や図2(b)と同様に、最初、第1磁性層13aと第2磁性層13cとのMs・tをアンバランスな状態に調整しておき、あるいは図3(b)に示すように非磁性中間層13bまでを成膜した状態で、前記導電部6に通電して、各素子形成領域A~Dに対して90度ずつ異なる方向への磁化固定制御を行う。その後は、図1(c)→図1(d)→磁気検出素子へのパターンニング、図2(c)→図2(d)→磁気検出素子へのパターンニング、あるいは、図3(c)→図3(d)→磁気検出素子へのパターンニングを行う。
 図7に示す実施形態では、導電部6を磁気検出素子と同様に基板10上に形成し、前記導電部6の基板10に対する形成位置を、フォトリソグラフィ技術を用いて高精度に制御できるから、各磁気検出素子の磁化固定方向をより高精度に調整できる。
 なお図7に示す実施形態では、基板10上に導電部6が残されるので、磁気センサは導電部6を有して構成される。
 図4及び図5は、第4実施形態における磁気センサの製造工程を模式的に示したものである。各工程図は、膜厚方向に沿って切断した縦断面の模式図である。なお図1と同じ層には同じ符号を付した。
 図4及び図5に示す磁気センサの製造方法は製造工程中における膜構成が図2と同じとなっている。
 図4(a)の工程では、基板10上の全面に下からシード層11、反強磁性層12、第1磁性層13a、非磁性中間層13b、下側第2磁性層13c1及びCr層13dの順に連続成膜する。
 図4(b)の工程では、シード層11からCr層13dまでの積層膜23に対して磁場中熱処理を施す。この工程での磁場中熱処理は、前記積層膜23の全体に施される。本実施形態では弱磁場の外部磁場を印加し、このとき、Ms・tが大きい第1磁性層13aが外部磁場の磁場印加方向に磁化される。また、第1磁性層13aと第2磁性層13cとの間で生じるRKKY結合磁界により下側第2磁性層13c1は第1磁性層13aの磁化方向に対して反平行に磁化される。図4(b)の工程では磁場中熱処理により反強磁性層12と第1磁性層13aとの間に生じる交換結合磁界、及びRKKY結合磁界により、外部磁場の印加を停止しても、第1磁性層13aと下側第2磁性層13c1とを反平行状態に安定して磁化固定できる。
 次に図4(c)の工程では、Cr層13d上に上側第2磁性層13c2をスパッタ法等の薄膜技術を用いて成膜する。このとき、下側第2磁性層13c1と上側第2磁性層13c2とを合わせたMs・tが第1磁性層13aのMs・tとほぼ同等となるように、上側第2磁性層13c2の膜厚を調整する。
 また、図4(a)で形成されるCr層13dを、下側第2磁性層13c1と上側第2磁性層13c2とがCr層13dを介して磁気的に結合し同一方向に磁化固定される程度の薄い膜厚で形成する。
 さらに図4(c)の工程では、固定磁性層13上の全面に下から非磁性材料層14、フリー磁性層15及び保護層16の順に、連続して同一真空中で、スパッタ法等の薄膜技術を用いて成膜する。
 続いて、図4(d)の工程では、シード層11から保護層16までの積層膜21の上面にレジスト等からなるマスク層25を形成し、図4(e)の工程では、前記マスク層25に覆われていない積層膜21をエッチング等で除去する。これにより例えば、第2磁性層13c(下側第2磁性層13c1と上側第2磁性層13c2)の磁化固定方向が紙面左方向で、第1磁性層13aの磁化固定方向が紙面右方向に制御された第1磁気検出素子2をパターン形成できる。例えば磁気検出素子2の平面形状をミアンダ形状にてパターン形成できる。
 次に図5(a)の工程では、第1磁気検出素子2の上面から側面にかけてAl23やSiO2からなる絶縁性の分離層26を形成する。そして分離層26上から基板10上にかけて、下からシード層11、反強磁性層12、第1磁性層27a、非磁性中間層27b、下側第2磁性層27c1(Ms・tは第1磁性層27aより小さい)及びCr層27dの順に連続成膜する。
 続いて、磁場中熱処理を施すが、このとき磁場印加方向を図4(b)での磁場印加方向と異なる方向とする。図5(a)では、磁場印加方向を紙面左方向とした。この結果、第1磁気検出素子2の側部に位置する積層膜28のうち、Ms・tの大きい第1磁性層27aが紙面左方向に磁化され、一方、下側第2磁性層27c1がRKKY結合磁界により第1磁性層27aの磁化方向に対して反平行に磁化される。図5(a)の工程では磁場中熱処理により反強磁性層12と第1磁性層27aとの間に生じる交換結合磁界、及びRKKY結合磁界により、外部磁場の印加を停止しても、第1磁性層27aと下側第2磁性層27c1とを反平行状態に安定して磁化固定できる。
 本実施形態では、外部磁場を弱磁場にできる。具体的には外部磁場をRKKY結合磁界よりも小さい値に設定する。したがって、図5(a)に示す既に完成した第1磁気検出素子2の第1磁性層13a及び第2磁性層13c(下側第2磁性層13c1と上側第2磁性層13c2)の磁化固定方向が、図5(a)工程で印加される外部磁場によって揺らぐことなく、第1磁気検出素子2の第1磁性層13a及び第2磁性層13c磁化固定方向を安定して反平行状態に維持することが出来る。
 図5(a)示すように、積層膜28の第1磁性層27aの磁化固定方向は、紙面左方向であり、下側第2磁性層27c1の磁化固定方向は紙面右方向であり、第1磁気検出素子2の第1磁性層13a及び第2磁性層13cに対して180度異なる方向を向いている。
 次に図5(b)の工程では、Cr層27d上に上側第2磁性層27c2をスパッタ法等の薄膜技術を用いて成膜する。このとき、下側第2磁性層27c1と上側第2磁性層27c2とを合わせたMs・tが第1磁性層27aのMs・tとほぼ同等となるように、上側第2磁性層27c2の膜厚を調整する。
 また、図5(a)で形成されるCr層27dを、下側第2磁性層27c1と上側第2磁性層27c2とがCr層27dを介して磁気的に結合し同一方向に磁化固定される程度の薄い膜厚で形成する。
 さらに図5(b)の工程では、固定磁性層13上の全面に、下から非磁性材料層14、フリー磁性層15及び保護層16の順に、連続して同一真空中で、スパッタ法等の薄膜技術を用いて成膜する。
 続いて、シード層11から保護層16までの積層膜29の上面にレジスト等からなるマスク層(図示しない)を第1磁気検出素子2の形成位置と異なる領域に形成し、図5(e)の工程では、前記マスク層に覆われていない積層膜29をエッチング等で除去する。これにより磁化固定方向が第1磁気検出素子2と異なる第2磁気検出素子3を第1磁気検出素子2と同一の基板10上にパターン形成できる。
 上記した図5(a)(b)の工程を繰り返すことで、図5(d)に示すように、磁化固定方向が90度ずつ異なる方向の4個の磁気検出素子2~5を同一の基板10上に形成することができる。
 図4,図5では、第2磁性層より第1磁性層のMs・tを大きくした状態で、磁場中熱処理していたが、図1と同様に、Ms・tを第1磁性層13aより第2磁性層13cを大きくした状態で、磁場中熱処理する、あるいは図3と同様に、非磁性中間層13bまでを成膜した状態で、磁場中熱処理することも当然、可能である。
 図4及び図5に示す製造方法においても、図1ないし図3に示す製造方法と同様に、強磁場を用いずとも、Ms・tがほぼ同等の第1磁性層と第2磁性層を、反平行に安定して磁化固定することができる。
 そして本実施形態では、弱磁場により磁化固定できるから、図5(a)に示すように、磁場印加方向を調整して、同一基板10上に、磁化固定方向が異なる複数の磁気検出素子2~5を容易に且つ高精度に形成することができる。
 このように本実施形態では、Ms・tがほぼ同等の積層フェリ構造を備え、且つ磁化固定方向が異なる複数の磁気検出素子を同一基板上に弱磁場の磁場中熱処理を用いて高精度に形成でき、耐熱、耐外部磁場性に優れ、リニアリティ精度の高い1チップ構成の磁気センサを製造できる。
 図4及び図5に示す実施形態では、シード層11から保護層16までの積層構造を備える1つの磁気検出素子を完成させた後、磁化固定方向が異なる別の磁気検出素子を形成するが、各磁気検出素子2~5の非磁性材料層から保護層までの成膜は後に回すことも出来る。
 すなわち、例えば図4(b)の工程後、図4(c)の工程に移行せず、積層膜23を第1磁気検出素子2の素子形成領域に残し(最終的な磁気検出素子の形状にパターン形成せず、ある程度、大きい面積を有する状態で残しておくことがよい)、続いて、図5(a)に移行して第2磁気検出素子3に対する積層膜28の形成及び磁場中熱処理を行う。そして積層膜28を第2磁気検出素子3の素子形成領域に残す。第3磁気検出素子4及び第4磁気検出素子5を構成する積層膜を同様に形成する。
 各素子形成領域に形成された積層膜上の全面に下から非磁性材料層14、フリー磁性層15及び保護層16の順に連続して成膜する。そして各素子形成領域ごとに各磁気検出素子2~5をパターン形成する。
 これにより、製造工程を容易化でき、また非磁性材料層14から保護層16までの成膜を各磁気検出素子2~5において共通にできるから、各磁気検出素子2~5の磁気、電気、温度の各特性を合わせ込むことが出来る。
 また図8に示すように、本実施形態ではウエハ状の大基板30上の全面に、例えば図1(a)の第2磁性層13cまでを成膜し、シード層11から第2磁性層13cまでの積層膜20の上方に磁場印加装置32を対向配置する。
 図8に示す磁場印加装置32に形成された導電部31は図8では、X1-X2方向に直線状となっているが、実際には図6のように屈曲したパターン形状が大基板30の点線で区切られた各領域30aに対向して形成されている。
 そして、導電部6に電流を流すことで、大基板30上の全面に形成された積層膜20に対して一度に、磁化固定制御を行うことが出来る。その後、図1(c)(d)に準じた製造工程を行い、各磁気検出素子にパターンニングを行った後、図8に示す各領域をダイシングして多数の磁気センサを製造する。このように多数の磁気センサを同時に製造でき、また従来のようにマウント角度の調整やダイボンディング工程等が必要なく、簡単な製造方法を実現できる。
 本実施形態における磁気センサは、例えばポテンショメータに使用される。図1ないし図5に示す製造方法にて形成された磁気センサでは、各磁気検出素子2~5の磁化固定方向が90度ずつ異なっている。そして各磁気検出素子2~5がフルブリッジ回路あるいは分圧回路に配線されている。
 磁気センサには非接触の磁石(磁界発生手段)が対向配置されており、前記磁石が回転することで前記磁気センサに検出磁界が作用する。この検出磁界が各磁気検出素子2~5に作用し、各磁気検出素子2~5の抵抗変化に基づく出力値により磁石の回転角度を検知することが可能になっている。
 本実施形態における磁気センサ1は、ポテンショメータに限らず、磁気エンコーダ、磁気スイッチ等として使用することも出来る。本実施形態は、同一の基板10上に成膜される各磁気検出素子の磁化固定方向が少なくとも2方向で異なるように制御される全ての磁気センサの製造方法に適用される。
2~5 磁気検出素子
6、31 導電部
6a~6d 各パターン部
8、32 磁場印加装置
10 基板
12 反強磁性層
13 固定磁性層
13a、27a 第1磁性層
13b、27b 非磁性中間層
13c 第2磁性層
13c1、27c1 下側第2磁性層
13c2、27c2 上側第2磁性層
13d、27d Cr層
14 非磁性材料層
15 フリー磁性層
20、21、22、23、28、29 積層膜
25 マスク層
30 大基板
I 電流

Claims (12)

  1.  検出磁界を生じる磁界発生手段と非接触に設けられ、前記検出磁界を検知する複数の磁気検出素子を備えた磁気センサの製造方法において、
     同一基板上に、各磁気検出素子を、下から反強磁性層、固定磁性層、非磁性材料層及びフリー磁性層の順に積層し、前記固定磁性層を下から第1磁性層、非磁性中間層及び第2磁性層の積層フェリ構造で形成するとき、
     (a) 前記第1磁性層と前記第2磁性層とを、異なるMs・t(Msは飽和磁化、tは膜厚)で形成して、磁場中熱処理を施す工程、
     (b) 前記第1磁性層と前記第2磁性層のMs・tをほぼ同等に調整する工程、
     を有し、
     前記(a)工程での磁場印加方向を調整して、2以上の各磁気検出素子の磁化固定方向を異なる方向に制御することを特徴とする磁気センサの製造方法。
  2.  前記(a)工程にて、前記第2磁性層のMs・tを前記第1磁性層のMs・tよりも大きく形成し、
     前記(b)工程にて、前記第2磁性層を一部削って、前記第1磁性層と前記第2磁性層のMs・tをほぼ同等に合わせる請求項1記載の磁気センサの製造方法。
  3.  前記(a)工程にて、Ms・tが前記第1磁性層のMs・tよりも小さくなるように前記第2磁性層の一部を形成し、
     前記(b)工程にて、残りの前記第2磁性層を形成して、前記第1磁性層と前記第2磁性層のMs・tをほぼ同等に合わせる請求項1記載の磁気センサの製造方法。
  4.  前記(a)工程にて、Ms・tが前記第1磁性層よりも小さい下側第2磁性層を形成し、前記下側第2磁性層の上に保護層を形成し、前記(b)工程にて、前記保護層の上に上側第2磁性層を形成する工程を有し、
     前記保護層を、前記下側第2磁性層と、前記上側第2磁性層とが同一方向に磁化固定される膜厚で形成し、
     前記下側第2磁性層と前記上側第2磁性層とを足したMs・tを、前記第1磁性層のMs・tとほぼ同等に合わせる請求項3記載の磁気センサの製造方法。
  5.  前記保護層をCr層で形成する請求項4記載の磁気センサの製造方法。
  6.  前記第1磁性層と前記第2磁性層を同じ磁性材料で形成し、前記(a)工程では、前記第1磁性層と前記第2磁性層を異なる膜厚で形成し、前記(b)工程では、前記第1磁性層と前記第2磁性層をほぼ同等の膜厚に調整する請求項1ないし5のいずれか1項に記載の磁気センサの製造方法。
  7.  検出磁界を生じる磁界発生手段と非接触に設けられ、前記検出磁界を検知する複数の磁気検出素子を備えた磁気センサの製造方法において、
     同一基板上に、各磁気検出素子を、下から反強磁性層、固定磁性層、非磁性材料層及びフリー磁性層の順に積層し、前記固定磁性層を下から第1磁性層、非磁性中間層及び第2磁性層の積層フェリ構造で形成するとき、
     (c) 前記第1磁性層及び前記非磁性中間層を成膜して、磁場中熱処理を施す工程、
     (d) 前記非磁性中間層上に前記第1磁性層とほぼ同等のMs・tを有する第2磁性層を形成する工程、
     を有し、
     前記(c)工程での磁場印加方向を調整して、2以上の各磁気検出素子の磁化固定方向を異なる方向に制御することを特徴とする磁気センサの製造方法。
  8.  前記(c)工程と前記(d)工程の間に、前記非磁性中間層の表面層を削る工程を備える請求項7記載の磁気センサの製造方法。
  9.  前記(a)工程、あるいは前記(c)工程までに形成された積層膜に対して、通電方向が異なる導電部を対向配置し、前記導電部への通電により生じる、異なる方向の外部磁場を夫々、前記積層膜の異なる素子形成領域に印加して、前記磁場中熱処理を行う請求項1ないし8のいずれか1項に記載の磁気センサの製造方法。
  10.  前記(a)工程、あるいは前記(c)工程までに形成された積層膜を異なる素子形成領域に形成するごとに、磁場印加方向が異なる磁場中熱処理を施す請求項1ないし8のいずれか1項に記載の磁気センサの製造方法。
  11.  前記(a)工程、あるいは前記(c)工程までに形成された積層膜の異なる素子形成領域に対して、磁場印加方向が異なる磁場中熱処理を施した後、各素子形成領域上に同時に、前記非磁性材料層、前記フリー磁性層及び前記保護層を成膜し、各素子形成領域ごとに各磁気検出素子をパターン形成する請求項1ないし10のいずれか1項に記載の磁気センサの製造方法。
  12.  同一基板上に、複数の磁気検出素子を、磁化固定方向が90度ずつ異なる方向を向くように形成する請求項1ないし11のいずれか1項に記載の磁気センサの製造方法。
PCT/JP2010/065477 2009-09-17 2010-09-09 磁気センサの製造方法 WO2011033981A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112010003703T DE112010003703T5 (de) 2009-09-17 2010-09-09 Magnetsensor-Herstellungsverfahren
JP2011531902A JPWO2011033981A1 (ja) 2009-09-17 2010-09-09 磁気センサの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009215672 2009-09-17
JP2009-215672 2009-09-17

Publications (1)

Publication Number Publication Date
WO2011033981A1 true WO2011033981A1 (ja) 2011-03-24

Family

ID=43758589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065477 WO2011033981A1 (ja) 2009-09-17 2010-09-09 磁気センサの製造方法

Country Status (3)

Country Link
JP (1) JPWO2011033981A1 (ja)
DE (1) DE112010003703T5 (ja)
WO (1) WO2011033981A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9322726B2 (en) 2014-01-20 2016-04-26 Kabushiki Kaisha Toshiba Pressure sensor, acceleration sensor, and method for manufacturing pressure sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113418A (ja) * 1998-10-01 2000-04-21 Hitachi Ltd スピンバルブ効果に基づく磁気抵抗効果型ヘッド及びそれを用いた磁気記録再生装置
JP2002303536A (ja) * 2001-04-03 2002-10-18 Alps Electric Co Ltd 回転角検出センサ
WO2005098953A1 (ja) * 2004-03-31 2005-10-20 Nec Corporation 磁化方向制御方法、及びそれを応用したmram

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19520172A1 (de) 1995-06-01 1996-12-05 Siemens Ag Magnetisierungseinrichtung für ein magnetoresistives Dünnschicht-Sensorelement mit einem Biasschichtteil
JP3498737B2 (ja) 2001-01-24 2004-02-16 ヤマハ株式会社 磁気センサの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113418A (ja) * 1998-10-01 2000-04-21 Hitachi Ltd スピンバルブ効果に基づく磁気抵抗効果型ヘッド及びそれを用いた磁気記録再生装置
JP2002303536A (ja) * 2001-04-03 2002-10-18 Alps Electric Co Ltd 回転角検出センサ
WO2005098953A1 (ja) * 2004-03-31 2005-10-20 Nec Corporation 磁化方向制御方法、及びそれを応用したmram

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9322726B2 (en) 2014-01-20 2016-04-26 Kabushiki Kaisha Toshiba Pressure sensor, acceleration sensor, and method for manufacturing pressure sensor

Also Published As

Publication number Publication date
JPWO2011033981A1 (ja) 2013-02-14
DE112010003703T5 (de) 2012-09-27

Similar Documents

Publication Publication Date Title
WO2009096093A1 (ja) 角度センサ、その製造方法及びそれを用いた角度検知装置
KR101389487B1 (ko) 복합 자기 실드를 갖는 자기 센서
US20130255069A1 (en) Method for manufacturing pressure sensing device
JP2008197089A (ja) 磁気センサ素子及びその製造方法
JP5686635B2 (ja) 磁気センサ及びその製造方法
WO2011007767A1 (ja) 磁気抵抗効果素子の製造方法、磁気センサ、回転角度検出装置
KR20030018065A (ko) 제 2 자기 소자에 대해 제 1 자기 소자의 자화축을배향하는 방법, 센서를 획득하기 위한 반제품, 자기장측정용 센서
JP2008134181A (ja) 磁気検出装置及びその製造方法
JP2008286739A (ja) 磁界検出器及び回転角度検出装置
JP6969752B2 (ja) トンネル磁気抵抗素子の製造方法
JP2010286236A (ja) 原点検出装置
CN111615636A (zh) 磁检测装置及其制造方法
TW201530109A (zh) 壓力感測器、加速度感測器及壓力感測器之製造方法
EP4022332A1 (en) High sensitivity tmr magnetic sensor
JP5447616B2 (ja) 磁気センサの製造方法
JP5348080B2 (ja) 磁気センサおよびその製造方法
JP2007064695A (ja) 巨大磁気抵抗効果素子を用いた磁気センサ及び同磁気センサの製造方法
JP2011027633A (ja) 磁気センサおよびその製造方法
EP4022330A1 (en) Magnetic sensor with dual tmr films and the method of making the same
JP6923881B2 (ja) トンネル磁気抵抗素子及びその製造方法
WO2011033981A1 (ja) 磁気センサの製造方法
JP4890401B2 (ja) 原点検出装置
JP5015966B2 (ja) 磁気検出装置及びその製造方法
JP4283169B2 (ja) 磁気抵抗ヘッド
JP4079271B2 (ja) 磁気抵抗センサの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817094

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011531902

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120100037035

Country of ref document: DE

Ref document number: 112010003703

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10817094

Country of ref document: EP

Kind code of ref document: A1