WO2005098953A1 - 磁化方向制御方法、及びそれを応用したmram - Google Patents

磁化方向制御方法、及びそれを応用したmram Download PDF

Info

Publication number
WO2005098953A1
WO2005098953A1 PCT/JP2005/005325 JP2005005325W WO2005098953A1 WO 2005098953 A1 WO2005098953 A1 WO 2005098953A1 JP 2005005325 W JP2005005325 W JP 2005005325W WO 2005098953 A1 WO2005098953 A1 WO 2005098953A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
ferromagnetic
ferromagnetic layer
layers
magnetic
Prior art date
Application number
PCT/JP2005/005325
Other languages
English (en)
French (fr)
Inventor
Tadahiko Sugibayashi
Takeshi Honda
Noboru Sakimura
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2006512003A priority Critical patent/JP4877506B2/ja
Priority to US11/547,123 priority patent/US7414881B2/en
Publication of WO2005098953A1 publication Critical patent/WO2005098953A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/303Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices with exchange coupling adjustment of magnetic film pairs, e.g. interface modifications by reduction, oxidation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising

Definitions

  • the present invention relates to a magnetic random access memory (MRAM), and more particularly, to an improvement in an MRAM memory cell employing a stacked ferri structure for a fixed layer and a Z or free layer.
  • MRAM magnetic random access memory
  • the laminated ferrimagnetic structure is a structure including a plurality of ferromagnetic layers and an intermediate nonmagnetic layer interposed between the layers.
  • the stacked ferrimagnetic structure is configured so that adjacent ferromagnetic layers are antiferromagnetically coupled.
  • each intermediate nonmagnetic layer is formed so as to have a material and a film thickness so that adjacent ferromagnetic layers are antiferromagnetically coupled. It is well known to those skilled in the art of MRAM that adjacent ferromagnetic layers can be antiferromagnetically coupled by appropriately determining the material and thickness of the intermediate nonmagnetic layer.
  • a laminated ferri-structure is often used as a fixed layer (pin layer) of a memory cell of an MRAM.
  • a stacked ferri-magnetic structure as the fixed layer of an MRAM memory cell.
  • the laminated ferrimagnetic structure can reduce the total magnetic moment, ideally, to zero. Since the magnetic field generated by the laminated ferrimagnetic structure is proportional to the magnitude of the magnetic moment, the magnetic field applied by the fixed layer to the free layer can be reduced by employing the laminated ferrimagnetic structure as the fixed ferromagnetic layer.
  • Patent Document 2 discloses a technique for improving selectivity of a memory cell, improving data retention characteristics, and suppressing shape dependence of a switching magnetic field by applying a laminated ferri structure to a free layer. Tepuru.
  • FIG. 1 is a cross-sectional view showing a typical structure of an MRAM memory cell using a laminated ferri-magnetic structure as a fixed layer.
  • the MRAM memory cell 1000 includes a fixed layer 1100, a free layer 1200, and a tunnel barrier layer 1300 interposed therebetween.
  • the fixed layer 1100 is formed of a laminated ferrimagnetic structure; specifically, the fixed layer 1100 is composed of ferromagnetic layers 1101 to 1103 and nonmagnetic layers 1111 and 1112 interposed therebetween. Is done.
  • the antiferromagnetic layer 1400 is joined to the fixed layer 1100, thereby fixing the magnetic layers of the ferromagnetic layers 1101-1103.
  • the direction of the magnetization of the ferromagnetic layers 1101-1103 is controlled by performing annealing while applying a strong external magnetic field. Specifically, first, a strong external magnetic field is applied to the MRAM memory cell 1000 such that the magnetization of the ferromagnetic layers 1101-1103 is aligned in the same direction. When the external magnetic field is removed, the magnetization of a part of the ferromagnetic layers 1101 to 1103 is reversed, whereby the magnetization of the ferromagnetic layers 1101 to 1103 causes the laminated ferrimagnetic structure to become energy-saving. It is reconstructed in such a way as to stabilize it.
  • the magnetization of the ferromagnetic layer 1103 is not inverted because the exchange interaction from the anti-ferromagnetic layer 1400 prevents the inversion; that is, the magnetization of the ferromagnetic layer 1103 does not move in the direction of the external magnetic field.
  • the antiferromagnetic layer 1400 is joined to the laminated ferrimagnetic structure, so that the magnetic field of the ferromagnetic layers 1101-1103 is finally oriented.
  • the direction is determined.
  • the antiferromagnetic layer 1400 plays an important role in controlling the direction of magnetization.
  • US Pat. No. 6,545,906 discloses that a laminated free structure is used as a free layer.
  • a method of reversing the direction of magnetization of a ferromagnetic layer included in a laminated ferrimagnetic structure to a desired direction, that is, a method of writing data to a laminated ferrimagnetic structure is disclosed.
  • FIG. 2 is a cross-sectional view showing a configuration of an MRAM memory array disclosed in US Pat. No. 6,545,906, and FIG. 3 is a plan view showing a configuration of the MRAM memory array.
  • the MRAM memory array includes a word line 2400, a bit line 2500, and a memory cell 2000 interposed therebetween.
  • the memory cell 2000 also includes a fixed layer 2100, a free layer 2200, and a tunnel barrier layer 2300 interposed therebetween.
  • Each of the fixed layer 2100 and the free layer 2200 is composed of a laminated ferrimagnetic structure; the fixed layer 2100 is composed of ferromagnetic layers 2101 and 2102, and a nonmagnetic layer 2103 interposed therebetween.
  • the free layer 2200 includes ferromagnetic layers 2201 and 2202, and a nonmagnetic layer 2203 interposed therebetween.
  • the easy axis direction of the ferromagnetic layers 2201 and 2202 is oriented at a 45 ° angle to both the word line 2400 and the bit line 2500.
  • the magnetism M of the ferromagnetic layer 2201 and the magnetism M of the ferromagnetic layer 2202 are parallel to the easy axis direction and opposite to each other.
  • FIG. 4 and FIG. 5 are diagrams showing the procedure of the toggle writing method disclosed in US Pat. No. 6,545,906.
  • FIG. 5 it should be noted that, in the following, an X-y coordinate system is introduced for ease of explanation.
  • the X axis is defined in a direction parallel to the word line 2400
  • the y axis is defined in a direction parallel to the bit line 2500.
  • a current I in the + x direction is applied to the word line 2400 (time t). As shown in Fig. 5, the current I
  • a magnetic field H is generated in the + y direction, and this magnetic field H causes the magnetic field H of the ferromagnetic layer 2201 to move.
  • the degree is the angle at which the resultant magnetization M is parallel to the + y direction.
  • the direction of the magnetic field H forms an acute angle with the direction of the composite magnetic layer M when no magnetic field is applied.
  • the above-mentioned known techniques have room for improvement in the following points.
  • the technology that uses the antiferromagnetic layer to control the magnetization of the ferromagnetic layer of the laminated ferrimagnetic structure is based on the diffusion of the material contained in the antiferromagnetic layer! / ⁇ ⁇ Having a problem! / Puru.
  • Antiferromagnets used in MRAM generally include Mn.
  • the antiferromagnetic Mn diffuses by high-temperature heat treatment. Mn diffusion is not preferable because it degrades the characteristics of MRAM memory cells!
  • the toggle write disclosed in US Pat. No. 6,545,906 has a disadvantage that a read operation needs to be performed before a write operation.
  • the toggle write reverses the magnetization of the ferromagnetic layer of the laminated ferri-structure regardless of the original state. Therefore, in order to direct the magnetic field in a desired direction, before writing data to the laminated ferrimagnetic structure, the direction of the magnetic field of the ferromagnetic layer of the laminated ferrimagnetic structure is checked, that is, the reading operation is performed. Need to be executed. Therefore, the toggle writing is essentially not suitable for controlling the magnetization of the ferromagnetic layer of the laminated ferri structure used as the fixed layer. Even when used as a free layer, it is not preferable that a read operation be performed before a write operation because the write cycle time is increased.
  • the direct writing method disclosed in US Patent No. 6,545,906 is essentially that the magnetization of the laminated ferri-structure is not balanced, that is, the composite magnetization is initially present. It has the disadvantage of requiring The presence of the synthetic magnetization means that the stacked ferrimagnetic structure has a magnetic moment, and thus the stacked ferrimagnetic structure generates a magnetic field. This causes magnetic interference between adjacent MRAM memory cells. This undesirably loses the advantage of the laminated free structure in a sense.
  • JP-A-2003-8100 and JP-A-2003-309305 disclose other techniques using a laminated ferri-structure as a free layer. However, these techniques are aimed at improving the reproduction output of the magnetic head; these documents mention nothing about the writing of data in the MRAM or the control of the direction of the magnetization of the fixed layer. What,
  • JP-A-2003-16624 discloses a magnetic recording medium having a laminated ferrimagnetic structure. However, this document mentions nothing about MRAM data writing and control of the magnetization direction of the fixed layer.
  • An object of the present invention is to roughly provide a new technique for controlling a direction of magnetization of a ferromagnetic layer of a laminated ferrimagnetic structure.
  • one object of the present invention is to change the direction of magnetization of the ferromagnetic layer of the laminated ferrimagnetic structure.
  • An object of the present invention is to provide a technique for controlling without using an antiferromagnetic material.
  • Another object of the present invention is to be able to direct the direction of magnetization of the ferromagnetic layer of the laminated ferrimagnetic structure in a desired direction without depending on the original state of magnetization of the ferromagnetic layer of the laminated ferrimagnetic structure.
  • Still another object of the present invention is to provide a technique capable of turning the direction of magnetization of a ferromagnetic layer of a laminated ferrimagnetic structure in a desired direction while keeping the overall magnetic moment of the laminated ferrimagnetic structure at zero. To provide.
  • Still another object of the present invention is to realize a high selectivity of a memory cell in a write operation by using a new technique for controlling a direction of magnetization of a ferromagnetic layer of a laminated ferrimagnetic structure. Is to do.
  • the basic principle of the present invention is to control the ease of reversal of the magnetization of each ferromagnetic layer in a state where the ferromagnetic layers of the laminated ferrimagnetic structure are aligned in the same direction.
  • the magnetic layer of the ferromagnetic layer is oriented in a desired direction.
  • the magnetization of the ferromagnetic layer having the laminated ferri structure is aligned in the same direction by applying an external magnetic field, and thereafter, the external magnetic field is reduced.
  • the external magnetic field is reduced, the magnetization of some of the ferromagnetic layers in the stacked ferrimagnetic structure is reversed by antiferromagnetic coupling acting between adjacent ferromagnetic layers.
  • the present invention directs the magnetization of a desired ferromagnetic layer in a desired direction by controlling the ease of reversal of the magnetization of each ferromagnetic layer while the external magnetic field is reduced. Controlling the direction of magnetization of the ferromagnetic layer of the laminated ferri-structure according to this principle does not essentially require the presence of an antiferromagnetic layer.
  • the present invention employs the following technology in order to achieve the above-mentioned object:
  • the method for controlling the direction of magnetization includes an N-layer ferromagnetic layer ( N is an integer of 3 or more), and the direction of magnetization of the N ferromagnetic layers of the laminated ferrimagnetic structure including the N-1 nonmagnetic layer interposed therebetween is defined as an antiferromagnetic
  • N is an integer of 3 or more
  • the magnetization direction control method includes:
  • the magnetic layer of one ferromagnetic layer of the N ferromagnetic layers is configured to be more easily inverted than the magnetic layer.
  • the magnetism direction control method it is determined that the magnetism of one ferromagnetic layer is reversed first in the process of reducing external magnetism (step (b)). Therefore, the direction of the magnetization of the one ferromagnetic layer is determined in the direction opposite to the external magnetization. If the direction of magnetization of the one ferromagnetic layer is determined, at least the direction of magnetization of the ferromagnetic layer adjacent thereto is determined. In an ideal case, the direction of magnetization of all ferromagnetic layers is determined. Is determined.
  • the number of ferromagnetic layers included in the laminated ferrimagnetic structure is three or more. If the number of ferromagnetic layers is two when the film thickness and the size of the magnetic layer are optimized, the magnetic moment of the entire laminated ferristructure cannot be reduced to zero; To configure the laminated ferrimagnetic structure having two magnetic layers such that the product of the thickness of one ferromagnetic layer and the magnitude of the magnetization is smaller than that of the other ferromagnetic layers as a whole It means that the magnetic moment of is not zero.
  • optimizing the strength of the antiferromagnetic coupling essentially requires three or more ferromagnetic layers; This is because the optimization of the strength does not affect the order in which the ferromagnetic layers are inverted.
  • the N ferromagnetic layers have the same ferromagnetic layer. May be formed by the body.
  • the one ferromagnetic layer is formed such that its thickness is smaller than that of the other ferromagnetic layer.
  • the product of the thickness of the odd-numbered ferromagnetic layer and the size of the magnetic layer is It is preferable that the thickness be smaller than the product of the film thickness of the even-numbered ferromagnetic layer and the size of the magnetic layer.
  • the thickness of the even-numbered ferromagnetic layer and the size of the magnetic layer are different. Is preferably smaller than the product of the thickness of the odd-numbered ferromagnetic layer and the size of the magnetic layer.
  • the number of ferromagnetic layers in the laminated ferrimagnetic structure is three, and the one ferromagnetic layer is formed such that its thickness is smaller than that of the other ferromagnetic layers.
  • the one ferromagnetic layer is a ferromagnetic layer at an end of the laminated ferrimagnetic structure.
  • Such a structure is important to reduce the overall magnetic moment of the laminated ferrimagnetic structure to zero; if the one ferromagnetic layer is an intermediate ferromagnetic layer, the overall magnetic moment will never be greater. It does not become 0.
  • the laminated ferri-structure has an antiferromagnetic coupling via one of the N-1 nonmagnetic layers. Is different from the coupling coefficient of the antiferromagnetic coupling via the other non-magnetic layer, the magnetization of the one ferromagnetic layer is inverted more than the magnetization of the other ferromagnetic layer. It is preferable that it is configured to be easy.
  • the N-1 nonmagnetic layer has an antiferromagnetic coupling strength between the one ferromagnetic layer and an adjacent ferromagnetic layer that is different from that of the other ferromagnetic layer. It is configured to be stronger than the antiferromagnetic coupling between the layer and the adjacent ferromagnetic layer.
  • the one ferromagnetic layer is selected from two intermediate ferromagnetic layers of the laminated ferristructure. It is suitable.
  • the direction of the remaining ferromagnetic layer is determined by inverting the one ferromagnetic layer first. This is because the ferromagnetic layers of each ferromagnetic layer are oriented in a desired direction. This is suitable for
  • the one ferromagnetic layer is the third ferromagnetic layer of the laminated ferrimagnetic structure. is there.
  • an MRAM manufacturing method includes:
  • N is an integer of 3 or more
  • the N-type ferromagnetic layer When the N ferromagnetic layers are oriented in the same direction, the N-type ferromagnetic layer
  • the magnetic field of one of the ferromagnetic layers is configured to be more easily reversed than the magnetic field of the other ferromagnetic layer.
  • the MRAM manufacturing method adopts the above-described magnetic direction control method, and thereby uses the magnetic direction of the ferromagnetic layer of the laminated ferrimagnetic structure used as the fixed layer without using the antiferromagnetic layer.
  • Direction can be directed to a desired direction.
  • the MRAM of the present invention includes a plurality of first wirings extending in a first direction and a plurality of second wirings extending in a second direction perpendicular to the first direction. Supplying a first write current to a memory cell provided at each position where the first wiring and the second wiring intersect, and a first selection wiring selected from the plurality of first wirings; And a write circuit for supplying a second write current to a second selection wiring selected from the two wirings.
  • Memory cell Each is composed of a fixed layer, an N-layer ferromagnetic layer (N is an integer of 3 or more), a free layer formed of a laminated ferristructure including a nonmagnetic layer interposed therebetween, and a free layer.
  • the easy axis of the N ferromagnetic layers is obliquely oriented with respect to both the first direction and the second direction.
  • the magnetic ferromagnetic layer of one of the N ferromagnetic layers has another magnetic layer.
  • the ferromagnetic layer is configured to be more easily inverted than the magnetic layer.
  • the first write current and the second write current are magnetic fields of the N ferromagnetic layers constituting the stacked ferri structure of the memory cell at which both the first selection wiring and the second selection wiring intersect.
  • a synthetic magnetic field having such a strength as to align the daggers in substantially the same direction is generated so as to be generated in a direction parallel to the easy axis.
  • the MRAM uses the above-described magnetization direction control direction to write data independent of the initial state of magnetization of the ferromagnetic layer while reducing the magnetic moment of the free layer as a whole to zero. Can be realized. In short, the MRAM can improve the selectivity of the memory cell by adopting the laminated ferristructure as a free layer.
  • the direction of the easy axis forms an angle of 45 ° with both the first direction and the second direction. Such a structure maximizes the selectivity of the memory cell.
  • the supply of the first write current and the second write current is started substantially simultaneously; unlike the above-mentioned known MRAM, after the supply of the first current is started, It is not necessary to start supplying the second current. This is effective in reducing the write access time.
  • the MRAM operating method includes a plurality of first wirings extending in a first direction and a plurality of second wirings extending in a second direction perpendicular to the first direction.
  • a wiring, and a memory cell provided at each position where the first wiring and the second wiring intersect, wherein the memory cell is composed of a fixed layer and N ferromagnetic layers (N is an integer of 3 or more)
  • N is an integer of 3 or more
  • the laminated ferrimagnetic structure is one of the N ferromagnetic layers when the N ferromagnetic layers are oriented in the same direction. Is configured to be more easily inverted than the other ferromagnetic layers. This is how MRAM works.
  • the MRAM operation method is
  • the first write current and the second write current correspond to the N ferromagnetic layers constituting the stacked ferri structure of the memory cell at which both the first selection wiring and the second selection wiring intersect.
  • the magnetic field is generated so as to generate a composite magnetic field having such a strength that the magnetic fields are aligned in substantially the same direction.
  • the MRAM can improve the selectivity of the memory cell by employing the laminated ferri-structure as a free layer.
  • the present invention it is possible to direct the direction of magnetization of the ferromagnetic layer of the laminated ferrimagnetic structure in a desired direction without depending on the original state of magnetization of the ferromagnetic layer of the laminated ferrimagnetic structure. Further, according to the present invention, it is possible to direct the direction of magnetization of the ferromagnetic layer of the laminated ferrimagnetic structure in a desired direction while keeping the magnetic moment of the entire laminated ferrimagnetic structure at zero. Further, according to the present invention, it is possible to realize an MRAM having high selectivity of a memory cell in a write operation.
  • FIG. 1 shows a structure of a conventional MRAM memory cell employing a laminated ferri structure as a fixed layer.
  • FIG. 2 is a cross-sectional view showing a configuration of a known MRAM memory array.
  • FIG. 3 is a plan view showing a configuration of a known MRAM memory array.
  • FIG. 4 is a timing chart illustrating known toggle writing.
  • FIG. 5 is a diagram illustrating a change in direction of magnetization of a ferromagnetic layer in a known toggle writing.
  • FIG. 6 is a diagram showing a change in the direction of magnetization of a ferromagnetic layer in known direct writing.
  • FIG. 7 is a diagram showing a change in the direction of magnetization of a ferromagnetic layer in known direct writing.
  • FIG. 8A is a cross-sectional view of a laminated free structure to which the first embodiment of the magnetizing direction control method of the present invention is applied.
  • FIG. 8B is a cross-sectional view of another laminated free structure to which the first embodiment of the magnetizing direction control method of the present invention is applied.
  • FIG. 8C is a cross-sectional view of still another laminated ferri structure to which the first embodiment of the magnetizing direction control method of the present invention is applied.
  • FIG. 8D is a cross-sectional view of yet another laminated ferri structure to which the first embodiment of the magnetizing direction control method of the present invention is applied.
  • FIG. 9A shows that the direction of the external magnetic field H in the first embodiment is different from that of the ferromagnetic layers in the first embodiment.
  • 3 is a diagram showing a process of aligning the data.
  • FIG. 9B shows that the magnetization direction of each ferromagnetic layer in the first embodiment is changed in the direction of the external magnetic field H.
  • 3 is a diagram showing a process of aligning the data.
  • FIG. 9C shows that the magnetic properties of some of the ferromagnetic layers in the first embodiment are different from the external magnetic field H.
  • FIG. 10A shows the relationship between the external magnetic field H and each strength when the external magnetic field H is parallel to the easy axis.
  • FIG. 4 is a diagram showing a relationship between magnetizations M, M, and M of a magnetic layer.
  • FIG. 10B shows the relationship between the external magnetic field H and each strength when the external magnetic field H is not parallel to the easy axis.
  • FIG. 4 is a diagram showing a relationship between magnetizations M, M, and M of a magnetic layer.
  • FIG. 11A is a cross-sectional view of a laminated ferri structure to which the second embodiment of the magnetizing direction control method of the present invention is applied.
  • FIG. 11B is a cross-sectional view of another laminated ferri structure to which the second embodiment of the magnetizing direction control method of the present invention is applied.
  • FIG. 11C is a sectional view of still another laminated ferri structure to which the second embodiment of the magnetizing direction control method of the present invention is applied.
  • FIG. 12 is a graph showing a change in a coupling coefficient of antiferromagnetic coupling depending on a film thickness of a nonmagnetic layer.
  • FIG. 13 is a cross-sectional view of an MRAM memory cell including, as a fixed layer, a laminated ferri structure to which the magnetization direction control method of the present invention is applied.
  • FIG. 14 is a cross-sectional view of another MRAM memory cell including, as a fixed layer, a laminated ferrimagnetic structure to which the magnetization direction control method of the present invention is applied.
  • FIG. 15 is a sectional view of still another MRAM memory cell including, as a fixed layer, a laminated ferrimagnetic structure to which the magnetization direction control method of the present invention is applied.
  • FIG. 16 is a cross-sectional view of still another MRAM memory cell including, as a fixed layer, a laminated ferrimagnetic structure to which the magnetization direction control method of the present invention is applied.
  • FIG. 17 is a cross-sectional view of an MRAM memory cell including, as a free layer, a laminated ferrimagnetic structure to which the magnetization direction control method of the present invention is applied.
  • FIG. 18 is a plan view of an MRAM memory cell including a laminated ferristructure as a free layer to which the magnetization direction control method of the present invention is applied.
  • FIG. 19 is a timing chart showing a write operation to a selected cell.
  • FIG. 20 is a timing chart showing an operation of a non-selected cell.
  • FIG. 21 is a cross-sectional view of another MRAM memory cell including, as a free layer, a laminated ferrimagnetic structure to which the magnetization direction control method of the present invention is applied.
  • FIG. 22 is a cross-sectional view of still another MRAM memory cell including, as a free layer, a laminated ferrimagnetic structure to which the magnetization direction control method of the present invention is applied.
  • FIG. 23 is a cross-sectional view of still another MRAM memory cell including, as a free layer, a laminated ferri structure to which the magnetization direction control method of the present invention is applied.
  • the laminated ferri structure 10A for MRAM includes the first and third ferromagnetic layers 11 and 13 and the first and second non-magnetic layers. Magnetic layer 21, 2 And two.
  • the first to third ferromagnetic layers 11 to 13 are formed of a ferromagnetic material, typically, Co, Fe, Ni, or an alloy thereof.
  • the first to third ferromagnetic layers 11 to 13 are formed so as to have a long shape in the + X direction, so that their easy axes are oriented parallel to the + X direction.
  • the first nonmagnetic layer 21 is interposed between the first ferromagnetic layer 11 and the second ferromagnetic layer 12, and the second nonmagnetic layer 22 is formed between the second ferromagnetic layer 12 and the third ferromagnetic layer 13. It is interposed between and.
  • the first and second nonmagnetic layers 21 and 22 are formed of a conductive nonmagnetic material, typically, Ru.
  • the first and second nonmagnetic layers 21 and 22 each have a film thickness so as to ferromagnetically couple adjacent ferromagnetic layers.
  • the first ferromagnetic layer 11 is formed such that the product of the thickness and the size of the magnetic layer is smaller than the other ferromagnetic layers: the second ferromagnetic layer 12 and the third ferromagnetic layer 13. Is formed. That is, the laminated ferristructure 10A has the following formulas (la) and (lb):
  • M is the first, second and third ferromagnetic layers 1 3
  • the film thicknesses are 3, 12, and 13.
  • the first to third ferromagnetic layers 11 to 13 are odd-numbered ferromagnetic layers: the product of the product of the thickness of the first ferromagnetic layer 11 and the third ferromagnetic layer 13 and the size of the magnetic layer. The sum is formed so as to match the product of the thickness of the even-numbered ferromagnetic layer: the second ferromagnetic layer 12 and the size of the magnetic layer. That is, in the laminated ferrimagnetic structure 10A, the thickness of each ferromagnetic layer and the size of the magnetic layer are expressed by the following formula (2):
  • the magnetic moment of the entire laminated ferrimagnetic structure 10A becomes zero.
  • the fact that the magnetic moment as a whole is 0 prevents the laminated ferristructure 10A from applying a magnetic field to other elements, and integrates the laminated ferristructure 1OA into the MRAM memory cell. Important above.
  • the first to third ferromagnetic layers 11 to 13 are formed of the same material.
  • the first to third ferromagnetic layers 11 to 13 are represented by the following formulas (1 ′) and (2 ′): t ⁇ t, t (1 ')
  • the first to third ferromagnetic layers 11 to 13 are formed of the same material, and are formed such that the thickness ratio thereof is 0.5: 2.0: 1.5. It has been.
  • the ease of reversing the magnetization of each ferromagnetic layer in a state where the magnetization of the ferromagnetic layers of the laminated ferrimagnetic structure is aligned in the same direction by the application of an external magnetic field is strong. It is controlled by the product of the thickness of the magnetic layer and the size of the magnetic layer. Thereby, the direction of the magnetization of the first to third ferromagnetic layers 11 to 13 after the external magnetic field is removed is controlled. Specifically, the first ferromagnetic layer 11 is formed such that the product of the film thickness and the size of the magnetic layer is the smallest of the first to third ferromagnetic layers 11 to 13.
  • the direction of magnetization of each ferromagnetic layer after the removal of the external magnetic field is controlled.
  • a procedure for turning the ferromagnetic layers of the laminated ferristructure 10A in a desired direction will be specifically described with reference to FIGS. 9A and 9B.
  • the direction in which the first ferromagnetic layer 11 and the third ferromagnetic layer 13 should be directed is the X direction, and the direction in which the second ferromagnetic layer 12 should be directed. , + X direction.
  • a large external magnetic field H is applied so as to direct the magnetic field of the first to third ferromagnetic layers 11 to 13 in the + X direction. Is done. It should be noted that the direction of the external magnetic field H is opposite to the direction in which the magnetic field of the first ferromagnetic layer 11 in which the product of the film thickness and the magnetic field size is smallest is to be directed.
  • the magnetization directions of the first to third ferromagnetic layers 11 and 13 can be in two states; FIG. 9A shows the magnetization directions of the first and third ferromagnetic layers 11 and 13. But
  • FIG. 9B shows that the orientation of the first to third ferromagnetic layers 11 to 13 is The opposite case is shown.
  • the process in which the magnetization of the first to third ferromagnetic layers 11 to 13 is directed in the + X direction differs depending on the state of the first to third ferromagnetic layers 11 to 13. In the case of FIG.
  • the magnetization of the first to third ferromagnetic layers 11 to 13 is aligned in the + X direction.
  • the smallest first ferromagnetic layer 11 is inverted first. This is because the first ferromagnetic layer 11 has the smallest magnetic moment. When the external magnetic field H decreases, the first
  • the magnetostatic energy of the E-first third ferromagnetic layer 11-13 decreases.
  • the magnetostatic energy of the first ferromagnetic layer 11 having the smallest magnetic moment has a maximum at a certain external magnetic field H (that is, at the flop magnetic field H).
  • the second ferromagnetic layer 12 and the third ferromagnetic layer 13 have a coercive force in the direction of the external magnetic field H.
  • the third ferromagnetic layer 13 not adjacent to the first ferromagnetic layer 11 is inverted in the ⁇ X direction. This is because the direction of the magnetization of the second ferromagnetic layer 12 adjacent to the first ferromagnetic layer 11 is changed by the anti-ferromagnetic coupling with the magnetization of the first ferromagnetic layer 11 due to the reversal of the magnetization of the first ferromagnetic layer 11. It is because it is stabilized.
  • the third ferromagnetic layer 13 has an external magnetic field H
  • the magnetic direction of each ferromagnetic layer can be directed in a desired direction without using the antiferromagnetic layer. It is possible.
  • the final magnetization direction of each ferromagnetic layer is It does not depend on the actual magnetization direction. This eliminates the need to perform a read operation before a write operation.
  • FIGS. 10A and 10B are conceptual diagrams illustrating the reason. As shown in Figure 10A, as long as the external magnetic field H is in the easy axis direction (+ X direction),
  • the angle ⁇ formed by the magnetic field M of the first ferromagnetic layer 11 with the direction of the external magnetic field H is
  • the angle 0 between the magnetization M of the second ferromagnetic layer 12 and the easy axis is the largest among the first, third and third ferromagnetic layers 11-13.
  • the magnetization M of the second ferromagnetic layer 12 is reversed first. This is the first
  • the magnetism of 113 is not oriented in the desired direction.
  • the external magnetic field H is reduced.
  • the ferromagnetic layer having the smallest product of the film thickness and the size of the magnetic layer is formed by laminated ferrimagnetic structure 10A. Note that it is important to be in the odd numbers of It is preferable that the laminated ferrimagnetic structure 10A is configured to minimize the product of the thickness of the second ferromagnetic layer 12 and the size of the magnetic layer. Absent. Certainly, even if the second ferromagnetic layer 12 is selected as the ferromagnetic layer having the smallest product of the film thickness and the size of the magnetic field, it is not possible to direct the magnetic field of each ferromagnetic layer in a desired direction.
  • the second ferromagnetic layer 12 as the ferromagnetic layer having the smallest product of the film thickness and the magnitude of the magnetic field makes it impossible to reduce the total magnetic moment of the laminated ferrimagnetic structure 10A to zero.
  • the concept of the present embodiment is applicable to a laminated ferrimagnetic structure including four or more ferromagnetic layers. Even for a laminated ferri-structure including four or more ferromagnetic layers, the product of the thickness of the ferromagnetic layer and the size of the magnetic layer is controlled so that the ferromagnetic layers are inverted in a desired order, It is possible to orient the ferromagnetic layer in the direction of.
  • the ferromagnetic layer having the smallest product of the film thickness and the size of the magnetic layer is located in the middle of the laminated ferrimagnetic structure, that is, at the second or third position. Is preferred. This is because the ferromagnetic layer having the smallest product of the film thickness and the size of the magnetic film is located in the middle of the stacked ferrimagnetic structure, and the direction of the magnetic film of all the ferromagnetic layers is changed by the first inversion. It is the determined power.
  • the effect of the first reversal of the magnetization of the ferromagnetic layer affects the two ferromagnetic layers adjacent to the ferromagnetic layer whose magnetization is first reversed.
  • the product of the thickness of the ferromagnetic layer located at the upper end (first) and the size of the magnetic layer is minimum, the direction of the magnetic field of the third and fourth ferromagnetic layers is Not fixed.
  • the laminated ferrimagnetic structure 10B includes a first ferromagnetic layer 11 to a fourth ferromagnetic layer 14, and first to third nonmagnetic layers 21 to 23 interposed therebetween.
  • the first to fourth ferromagnetic layers 11 to 14 are made of the same material, and the sizes of the magnetic layers are substantially the same.
  • the laminated ferristructure 10B is configured such that the thickness ratio of the first to fourth ferromagnetic layers 11 to 14 is 1.5: 1.0: 0.5: 1.0.
  • the product of the thickness of the third ferromagnetic layer 13 and the size of the magnetic layer is the smallest of the first to fourth ferromagnetic layers 11 to 14, and the magnetic moment of the entire laminated ferrimagnetic structure 10B is Is 0.
  • the magnetization of the first ferromagnetic layer 11 and the third ferromagnetic layer 13 is inverted by first inverting the magnetization of the third ferromagnetic layer 13.
  • the magnetic layer of the magnetic layer can be directed in a desired direction. Since the product of the thickness of the third ferromagnetic layer 13 and the size of the magnetic layer is the smallest of the first to fourth ferromagnetic layers 11 to 14, the external magnetic field H is reduced.
  • the magnetization of the third ferromagnetic layer 13 is first reversed.
  • the direction of the magnetization of the third ferromagnetic layer 13 is also determined by inverting the magnetization of the third ferromagnetic layer 13 first;
  • the directions of the second ferromagnetic layer 12 and the fourth ferromagnetic layer 14 adjacent to the third ferromagnetic layer 13 are stabilized by antiferromagnetic coupling. Therefore, when the external magnetic field H is further reduced, the next inversion is the first ferromagnetic layer 11.
  • the first ferromagnetic layer 11 and the third ferromagnetic layer 13 are opposite to the external magnetic field H.
  • the magnetizations of the second and fourth ferromagnetic layers 12 and 14 are oriented in the same direction as the external magnetic field H.
  • the laminated ferrimagnetic structure 10C includes the first to fifth ferromagnetic layers 11 to 15 and the first to fourth nonmagnetic layers 21 to 24 interposed therebetween.
  • the laminated ferrimagnetic structure 10C is configured so that the product of the thickness of the third ferromagnetic layer 13 and the size of the magnetic layer is the smallest of the first to fifth ferromagnetic layers 11 to 15.
  • the magnetization switches first. It will be easily understood that if the magnetization of the third ferromagnetic layer 13 is inverted first, the direction of the magnetization of the remaining ferromagnetic layers is determined.
  • the direction of magnetization of all ferromagnetic layers is not determined even by the first reversal of magnetization in the ferromagnetic layers. In the following three cases:
  • the product of the thickness of each ferromagnetic layer and the size of the ferromagnetic layer is set so that only the odd-numbered ferromagnetic layers are inverted or the even-numbered ferromagnetic layers are inverted. It is necessary to determine appropriately so that only the magnetism is inverted. In the step of decreasing the external magnetic field H, only the odd-numbered ferromagnetic layers were inverted.
  • the laminated ferri structure is
  • the ferromagnetic layer having the smallest product of the film thickness and the size of the magnetic layer is selected from the odd-numbered ferromagnetic layers
  • the laminated ferri-structure having a strong structure can reverse only the magnetization of the odd-numbered ferromagnetic layers in the process of reducing the external magnetic field, and can direct the magnetization of each ferromagnetic layer in a desired direction.
  • the laminated ferrimagnetic structure 10D shown in FIG. 8D the laminated ferrimagnetic structure 10D includes the first ferromagnetic layer 11 and the fifth ferromagnetic layer 15, and the first to fourth nonmagnetic layers 21 to 24 interposed therebetween. Is done.
  • the first to fifth ferromagnetic layers 11 and 15 are made of the same material, and have substantially the same magnitude of magnetization.
  • the laminated ferrimagnetic structure 10D is configured so that the it force of the thickness of the first to fifth ferromagnetic layers 11 to 15 is 0.75: 1.5: 1.25: 1.5: 1.0. Being done!
  • the film thickness is minimum, that is, since the first ferromagnetic body 11 that is first inverted is located at the upper end, the magnetization direction of the remaining ferromagnetic layers depends on the first inversion. Not determined.
  • the laminated ferrimagnetic structure 10D satisfies the above conditions (a) and (b), only the magnetization of the odd-numbered ferromagnetic layers is selectively reversed, and the magnetization of each ferromagnetic layer is reduced. It can be oriented in a desired direction.
  • the number of ferromagnetic layers is preferably an odd number.
  • Such a structure makes it possible to selectively reverse the magnetization of the odd-numbered ferromagnetic material while reducing the magnetic moment of the laminated ferrimagnetic structure as a whole to zero. If the number of ferromagnetic layers is odd, the number of odd-numbered ferromagnetic materials is one more than the number of even-numbered ferromagnetic layers. This is because the product of the thickness of the arbitrary odd-numbered ferromagnetic layer and the size of the magnetic layer is arbitrary.
  • the magnetic moment of the multilayer ferri structure as a whole can be made zero even if it is smaller than the product of the thickness of the even-numbered ferromagnetic layer and the size of the magnetic layer.
  • the structure shown in FIG. 8D satisfies the above conditions (a) and (b) and has an odd number of ferromagnetic layers.
  • One of the structures that is a number.
  • the number of ferromagnetic layers is odd, and the ratio of the thicknesses of the first to fifth ferromagnetic layers 11 to 15 is 0.75: 1.5: 1.25: 1.
  • the sum of the thicknesses of the odd-numbered ferromagnetic layers: the first, third, and fifth ferromagnetic layers 11, 13, and 15 is equal to the even-numbered ferromagnetic layers: And the same as the sum of the thicknesses of the fourth ferromagnetic layers 12 and 14, and the total magnetic moment of the laminated ferrimagnetic structure 10D is zero.
  • a ferromagnetic layer having the smallest product of the film thickness and the size of the magnetic layer is selected from the even-numbered ferromagnetic layers
  • FIG. 11A is a cross-sectional view illustrating a configuration of a laminated ferrimagnetic structure for MRAM 30A according to the second embodiment of the present invention.
  • the order in which the magnetizations of the ferromagnetic layers are reversed while the external magnetic field is reduced is controlled using the strength of the antiferromagnetic coupling between two adjacent ferromagnetic layers.
  • the strength of the antiferromagnetic coupling is controlled by the thickness of the nonmagnetic layer interposed therebetween.
  • FIG. 12 it is well known to those skilled in the art that the strength of antiferromagnetic coupling acting between adjacent ferromagnetic layers depends on the thickness of the nonmagnetic layer interposed therebetween. It is.
  • the laminated ferrimagnetic structure 30A of the present embodiment includes first to third ferromagnetic layers 31 to 33 and first and second nonmagnetic layers.
  • the layers 41 and 42 are provided.
  • the first to third ferromagnetic layers 31 to 33 are formed of a ferromagnetic material, typically, Co, Fe, Ni, or an alloy thereof, and further, its easy axis is It is oriented parallel to the + X direction.
  • the first nonmagnetic layer 41 and the second nonmagnetic layer 42 are formed of a nonmagnetic material, typically, Ru.
  • the first nonmagnetic layer 41 is provided between the first ferromagnetic layer 31 and the second ferromagnetic layer 32.
  • the second nonmagnetic layer 42 is interposed between the second ferromagnetic layer 32 and the third ferromagnetic layer 33.
  • the laminated ferrimagnetic structure 30 A is formed such that the product of the thickness of the first and third ferromagnetic layers 31 and 33 and the size of the magnetic layer is smaller than that of the second ferromagnetic layer 32. ing. This makes the magnetization of the first and third ferromagnetic layers 31 and 33 more easily reversed than the magnetization of the second ferromagnetic layer 32 when the external magnetic field is reduced.
  • the sum of the product of the thicknesses of the first and third ferromagnetic layers 31 and 33 and the size of the magnetic layer is equal to the thickness of the second ferromagnetic layer 32. It is formed so as to be the same as the product of the size of the magnetic sill. This reduces the magnetic moment of the laminated ferristructure 30A as a whole.
  • the first to third ferromagnetic layers 31 to 33 are formed of the same material, and the first and third ferromagnetic layers 31 and 33 are Thickness t, t is the second ferromagnetic layer 32
  • the thickness of the first and third ferromagnetic layers 31, 33 is
  • the sum of t and t is formed to be the same as the thickness t of the second ferromagnetic layer 32.
  • the first ferromagnetic layer 31 and the third ferromagnetic layer 33 have the same film thickness; that is, the film of the first ferromagnetic layer 31
  • the product of the thickness and the size of the magnetic layer is the same as that of the third ferromagnetic layer 33. That is, the product of the film thickness and the size of the magnetic layer is the first ferromagnetic layer 31 and the third ferromagnetic layer.
  • the deviation from 33 is easy to flip!
  • the strength of the antiferromagnetic coupling between second ferromagnetic layer 32 and third ferromagnetic layer 33 is equal to that of first ferromagnetic layer 31 and the second ferromagnetic layer.
  • the laminated ferrimagnetic structure 30A is configured to be stronger than the antiferromagnetic coupling between the magnetic layer 32 and the second ferromagnetic layer 32 via the second nonmagnetic layer 42 and the third ferromagnetic layer.
  • the coupling constant of the antiferromagnetic coupling with the layer 33 is smaller than the coupling constant of the antiferromagnetic coupling between the first ferromagnetic layer 31 and the second ferromagnetic layer 32 via the first nonmagnetic layer 41. Is also big. More specifically, the thickness T of the second nonmagnetic layer 42 is
  • the coefficient is determined to be the minimum film thickness among the film thicknesses having the maximum values, and the film thickness T of the first nonmagnetic layer 41 is determined to be the second smallest film thickness (see FIG. 12).
  • the magnetization of the third ferromagnetic layer 33 is more easily inverted than the magnetization of the first ferromagnetic layer 31 when the external magnetic field decreases.
  • the first ferromagnetic layer 31 and the third ferromagnetic layer 33 are suitable. It should be noted that the direction to be deviated is the X direction, and the direction in which the magnetization of the second ferromagnetic layer 32 is to be directed is assumed to be the + X direction.
  • a large external magnetic field H is applied so as to align the first and third ferromagnetic layers 11 and 13 in the + X direction.
  • the direction of the external magnetic field H is directed to the magnetic field of the third ferromagnetic layer 33.
  • the external magnetic field H is reduced.
  • its orientation is easy axis
  • the magnitude of the product of the film thickness and the magnitude of the magnetic field ie, the magnetic field
  • the magnitude of the magnetic moment) and the strength of the antiferromagnetic coupling received from the adjacent ferromagnetic layer determine the ferromagnetic layer whose magnetization is first reversed.
  • the product of the film thickness and the magnitude of the magnetic field is smaller than the second ferromagnetic layer 32 and stronger than the first ferromagnetic layer 31.
  • the magnetization of the ferromagnetic layer 33 is inverted first.
  • the third ferromagnetic layer 33 that is not adjacent to the first ferromagnetic layer 31 becomes
  • the magnetization of first ferromagnetic layer 11 and third ferromagnetic layer 13 is oriented in the ⁇ X direction and second ferromagnetic layer 12 Magnetization is directed in the + X direction.
  • FIG. 11B discloses a laminated ferrimagnetic structure 30B including four ferromagnetic layers.
  • the laminated ferrimagnetic structure 10B includes a first ferromagnetic layer 31 to a fourth ferromagnetic layer 34, and first to third nonmagnetic layers 41 to 43 interposed therebetween.
  • the first ferromagnetic layer 31 to the fourth ferromagnetic layer 34 are formed to have the same material and the same thickness. This is because the sum of the product of the thickness of the odd-numbered ferromagnetic layer and the size of the magnetic field is made equal to the sum of the product of the thickness of the even-numbered ferromagnetic layer and the size of the magnetic field.
  • the magnetic moment of the entire layered ferristructure 10B is set to zero.
  • the laminated ferri-structure 30 B has a coupling constant of the antiferromagnetic coupling via the first nonmagnetic layer 41 and the antiferromagnetic coupling via the second and third nonmagnetic layers 42 and 43. It is configured to be smaller than the coupling constant. More specifically, the second non-magnetic layer 42 and the third non-magnetic layer 43 have the same film thickness T, and the film thickness T is the film thickness at which the coupling coefficient has a maximum value.
  • the thickness T of the first nonmagnetic layer 41 is determined to be the second smallest thickness.
  • the third ferromagnetic layer 33 first reacts
  • the ferromagnetic layer turns. More specifically, due to the structure of the laminated ferrimagnetic structure 30B, the strength of the antiferromagnetic coupling that the third ferromagnetic layer 33 receives from the adjacent ferromagnetic layer is reduced by the ferromagnetic layer adjacent to the other ferromagnetic layer. The third ferromagnetic layer 33 receives from the second ferromagnetic layer 32 and the fourth ferromagnetic layer 34 the strength of the antiferromagnetic coupling.
  • the fourth ferromagnetic layer 34 is stronger than any of the antiferromagnetic coupling strengths received from the third ferromagnetic layer 33. As a result, the magnetization of the third ferromagnetic layer 33 is reduced by the decrease in the external magnetic field H.
  • the magnetization is more easily reversed than the magnetization of the other ferromagnetic layers.
  • the magnetization directions of the remaining ferromagnetic layers are automatically determined.
  • the importance of the first inversion of the intermediate ferromagnetic layer in the process of reducing the external magnetic field H when the force of the ferromagnetic layer is
  • the direction of the magnetization of the remaining ferromagnetic layers is also determined by reversing the magnetization of the third ferromagnetic layer 33 first.
  • the directions of the second ferromagnetic layer 32 and the fourth ferromagnetic layer 34 adjacent to the third ferromagnetic layer 33 are stabilized by antiferromagnetic coupling. Be josuled. Therefore, when the external magnetic field H is further reduced, the next inversion is the first ferromagnetic layer 31.
  • the first ferromagnetic layer 31 and the third ferromagnetic layer 33 have the second ferromagnetic
  • the magnetizations of the active layer 32 and the fourth ferromagnetic layer 34 are oriented in the same direction as the external magnetic field H.
  • the laminated ferrimagnetic structure 30B applies a sufficiently large external magnetic field H to the first ferromagnetic layer 31B.
  • the magnetization of each ferromagnetic layer can be directed in a desired direction.
  • FIG. 11C shows a laminated ferri-structure 30C including five ferromagnetic layers.
  • the laminated ferrimagnetic structure 30C includes a first ferromagnetic layer 31 to a fifth ferromagnetic layer 35, and first to fourth nonmagnetic layers 41 to 44 interposed therebetween.
  • the first ferromagnetic layer 31—the fifth ferromagnetic layer 35 are made of the same material and have a thickness specific force of 1.0: 1.5: 1.0: 1.5: 1.0. It is formed.
  • the order in which the magnetic layers of the magnetic layers are reversed is not determined by the product of the film thickness and the size of the magnetic layer; because the first ferromagnetic layer 31, the third ferromagnetic layer 33, and the fifth ferromagnetic layer 35 Is the force where the product of the film thickness and the magnitude of the magnetization is the same.
  • the laminated ferrimagnetic structure 30 B has the antiferromagnetic coupling coupling constant of the second and third nonmagnetic layers 42 and 43 via the first nonmagnetic layer 41 and the fourth nonmagnetic layer 44. It is configured to be smaller than the coupling constant of the intervening antiferromagnetic coupling. More specifically, the second non-magnetic layer 41 and the third non-magnetic layer 42 have the same thickness T, and the thickness T is such that the coupling coefficient has a maximum value.
  • the first nonmagnetic layer 41 and the fourth nonmagnetic layer 44 have the same thickness T, and the thickness T is the coupling coefficient. Is determined to be the second smallest film thickness among the film thicknesses that take the maximum value.
  • the third ferromagnetic layer 33 is most likely to be magnetized.
  • FIG. 13 shows a memory cell 70 for applying the magnetic direction control method according to the present invention to a fixed layer.
  • the memory cell 700A includes a fixed layer 110, a free layer 200, and a tunnel barrier layer 300 interposed therebetween.
  • the fixed layer 110 has the same structure as the laminated fuel cell structure 10A in FIG. 8A.
  • the first to third ferromagnetic layers 11 to 13 included in the fixed layer 110 are subjected to annealing in a state where an external magnetic field H is applied in a MRAM manufacturing process, so that a desired orientation is obtained.
  • E is set parallel to the easy axis of the first and third ferromagnetic layers 11 and 13 and opposite to the direction in which the first and third ferromagnetic layers 11 and 13 should be oriented. Furthermore, the strength of the external magnetic field H
  • the first and third ferromagnetic layers 11 and 13 are controlled so as to be sufficiently strong so that the magnetizations thereof are aligned in the same direction. After applying such an external magnetic field H,
  • the first ferromagnetic layer 11 and the third ferromagnetic layer 13 are selectively magnetized.
  • the magnetization of the first to third ferromagnetic layers 11 to 13 can be directed in a desired direction.
  • FIG. 14 shows a structure of a memory cell 700B including the laminated ferrimagnetic structure 10B of FIG. 8B as the fixed layer 120.
  • FIG. 15 shows a structure of a memory cell 700C including the laminated ferrimagnetic structure 30A of FIG. 11A as the fixed layer 130.
  • FIG. 16 shows the structure of a memory cell 700D including the stacked layer structure 30B of FIG. 11B as the fixed layer 140.
  • FIG. 17 is a cross-sectional view showing the structure of an MRAM memory array for applying the magnetic direction control method according to the present invention to a free layer.
  • the MRAM memory array includes a word line 400, a bit line 500, and a memory cell 800A.
  • the memory sensor 800A is interposed between the word line 400 and the bit line 500.
  • the word lines 400 and the bit lines 500 are orthogonal.
  • word line 400 and bit line 500 intersect Position. Note that in the following description, the X-axis force is parallel to the word line 400 and the y-axis is parallel to the bit line 500.
  • a write Z read circuit (not shown) for writing and reading data is connected to the word line 400 and the bit line 500.
  • the write Z read circuit usually includes a word line decoder, a bit line decoder, a sense amplifier, a write amplifier, and a read amplifier.
  • a memory cell 800A includes a fixed layer 100, a free layer 210, and a tunnel barrier layer 300 interposed therebetween.
  • the fixed layer 100 has the same structure as the conventional laminated ferrimagnetic structure; that is, the fixed layer 100 includes the ferromagnetic layers 101 and 102 and the nonmagnetic layer 103 interposed therebetween.
  • the ferromagnetic layer 102 is joined to the antiferromagnetic layer 104.
  • the free layer 210 has the same structure as the laminated ferrimagnetic structure 10A of FIG. 8A. Note that, as the fixed layer 100, the above-described laminated ferri structure of the present invention can also be used.
  • the application of the laminated ferri-structure of the present invention to the fixed layer enables the elimination of the antiferromagnetic layer from the MRAM memory array, and is suitable for improving the characteristics of the memory cell 800A.
  • the memory cell 800A has a length and a shape in a direction forming 45 ° in both the word line 400 and the bit line 500; Due to the shape of the memory cell 800A, the easy axis of the first to third ferromagnetic layers 11 to 13 forming the free layer 210 is oriented in a direction at an angle of 45 ° to both the X axis and the y axis.
  • an X-axis force is defined in parallel with the easy axis of the first to third ferromagnetic layers 11 to 13, and a Y-axis is defined perpendicular thereto.
  • the X axis makes a 45 ° angle with the X axis
  • the Y axis makes a 45 ° angle with the y axis.
  • the xy coordinate system and the xy coordinate system are separate coordinate systems.
  • FIG. 19 is a timing chart showing a write operation to memory cell 800A.
  • Data writing to the memory cell 800A is performed as follows. Initially, the first and third ferromagnetic layers 11 of the memory cell 800A to be written (hereinafter referred to as “selected cell”) 13 magnetization M
  • M is oriented in the + X direction, and the magnetization M of the second ferromagnetic layer 12 is
  • the word line 400 and the bit line 500 corresponding to the selected cell are selected.
  • the selected word line 400 will be described as a selected word line
  • the selected bit line 500 will be described as a selected bit line.
  • the write Z read circuit applies the write current I to the selected bit line and the selected word line, respectively.
  • the directions of WL and BL are the + ⁇ direction and the + y direction, respectively.
  • the start of supply of WL and I is substantially BL
  • the magnetization M--M of the first ferromagnetic layer 11-13 is aligned in the direction parallel to the easy axis, that is, in the + X direction.
  • the magnetic field is not applied to the first to third ferromagnetic layers 11 to 13 constituting the laminated ferrimagnetic structure.
  • the first ferromagnetic layer 11 and the third ferromagnetic layer 13 are selected by the above-described process. Inverted. As a result, the first ferromagnetic layer 11 and the third ferromagnetic layer 13 are inverted in the magnetic X direction as desired.
  • the magnetic field M of the second ferromagnetic layer 12 is inverted in the + X direction.
  • Such a write operation can direct the magnetic field in a desired direction irrespective of the original magnetic field direction of the ferromagnetic layer of the free layer 210; that is, without performing the read operation.
  • a write operation can be performed.
  • FIG. 20 is a diagram showing an operation of a non-selected memory cell among the memory cells 800A connected to the selected bit line. By applying the current I, + x is applied to the unselected memory cells.
  • a magnetic field H is applied in the direction, ie, at a direction of 45 ° from the easy axis. Therefore, the sign of the magnetic field H
  • the composite magnetization M of 13 rotates in the direction of the magnetic field H. But in this state
  • V ⁇ write operation can be realized.
  • FIG. 21 shows a structure of a memory cell 800B including the laminated ferristructure 10B of FIG. 8B as a free layer 220.
  • FIG. 22 shows a structure of a memory cell 800C including the laminated ferrimagnetic structure 30A of FIG. 11A as a free layer 230.
  • FIG. 23 shows a structure of a memory cell 800D including the stacked layer structure 30B of FIG. 11B as the free layer 240.
  • the structure of the magnetoresistive element corresponding to the cross-point cell array that is, the magnetoresistive element 800A to 800D is electrically connected to the word line 400 and the bit line 500. Forces whose structure is shown The present invention should not be construed as applying only to cross-point cell arrays.
  • the word line 400 is also electrically insulated from the magnetoresistive elements 80 OA-800D. Even in this case, the word line 400 must be understood to be close enough to apply a magnetic field to the magnetoresistive elements 800A-800D!

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)

Abstract

 本発明による磁化方向制御方法は、第1~第3強磁性層11~13と、その間に介設された第1、第2非磁性層21、22とを備えた積層フェリ構造体10Aの第1~第3強磁性層11~13の磁化の方向を、反強磁性体を接合させずに制御するための磁化方向制御方法である。当該磁化方向制御方法は、(a)積層フェリ構造体10Aに外部磁場HEを印加して、第1~第3強磁性層11~13の磁化を実質的に同一方向に向ける工程と、(b)外部磁化を減少させて、第1~第3強磁性層11~13の一部の強磁性層の磁化を反転させる工程とを備えている。積層フェリ構造体10Aは、第1~第3強磁性層11~13の磁化が同一方向に向いた状態にされているときに第1強磁性層11の磁化が他の強磁性層の磁化よりも反転しやすくなるように構成されている。

Description

明 細 書
磁化方向制御方法、及びそれを応用した MRAM
技術分野
[0001] 本発明は、磁気ランダムアクセスメモリ(MRAM)に関し、特に、積層フェリ構造を固 定層及び Z又は自由層に採用する MRAMメモリセルの改良に関する。
背景技術
[0002] 積層フェリ構造とは、複数の強磁性体層と、それらの間に介設された中間非磁性層 とからなる構造体である。積層フェリ構造では、隣接する強磁性体層が反強磁性的に 結合されるように構成される。具体的には、各中間非磁性層は、隣接する強磁性体 層が反強磁性的に結合されるような材料及び膜厚を有するように形成される。中間非 磁性層の材料及び膜厚を適切に決定することにより、隣接する強磁性体層を反強磁 性的に結合させることができることは、 MRAMの当業者に周知である。
[0003] 例えば、特表 2003— 536267号に開示されているように、積層フェリ構造は、しばし ば、 MRAMのメモリセルの固定層(ピン層)として用いられる。 MRAMメモリセルの 固定層として積層フェリ構造を採用することの一つの利点は、当該 MRAMメモリセル の自由層に印加される不所望なバイアス磁場を小さくすることができることである。こ れは、積層フェリ構造は、そのトータルの磁気モーメントを小さくする、理想的には 0に することができることに起因している。積層フェリ構造が発生する磁場は、磁気モーメ ントの大きさに比例するから、固定強磁性層として積層フェリ構造を採用することによ り、固定層が自由層に印加する磁場を小さくできる。
[0004] 近年では、積層フェリ構造を、 MRAMメモリセルの自由層(フリー層)として使用す る技術も検討されている。特許文献 2は、積層フェリ構造を自由層に適用することによ り、メモリセルの選択性を向上し、データリテンション特性を向上し、更に、反転磁場 の形状依存性を抑制する技術を開示して ヽる。
[0005] 積層フェリ構造を MRAMメモリセルに採用するためには、積層フェリ構造に含まれ る強磁性体層の磁ィ匕を所望の方向に向ける技術が必要である。固定層については、 積層フェリ構造の磁化を、 MRAMの製造工程において所定の方向に向ける必要が ある。一方、自由層であれば、 MRAMメモリセルに書き込まれるべきデータに応じた 方向に、積層フェリ構造の磁ィ匕を向ける必要がある。
[0006] 積層フェリ構造が固定層として用いられる場合、積層フェリ構造に含まれる強磁性 層の磁化の向きは、最も典型的には、反強磁性層を使用することによって制御される 。図 1は、積層フェリ構造を固定層として用いる MRAMメモリセルの、典型的な構造 を示す断面図である。 MRAMメモリセル 1000は、固定層 1100と自由層 1200と、そ の間に介設されたトンネルバリア層 1300とを備えている。固定層 1100は、積層フエ リ構造体で形成される;具体的には、固定層 1100は、強磁性層 1101— 1103と、そ の間に介設された非磁性層 1111、 1112とで構成される。固定層 1100には、反強 磁性体層 1400が接合され、これにより、強磁性層 1101— 1103の磁ィ匕が固定され る。
[0007] 強磁性層 1101— 1103の磁ィ匕の方向の制御は、強い外部磁場を印加しながらァ ニールを行うことによって行われる。具体的には、まず、強磁性層 1101— 1103の磁 化を同一方向に揃えるような強い外部磁場が MRAMメモリセル 1000に印加される 。その外部磁場が取り除かれると、強磁性層 1101— 1103の一部の強磁性層の磁 化が反転し、これにより、強磁性層 1101— 1103の磁ィ匕は、積層フェリ構造をェネル ギー的に安定化させるような向きに再構築される。この再構築の際、強磁性層 1103 の磁ィ匕は反強磁性層 1400からの交換相互作用によって反転が妨げられるから反転 しない;即ち、強磁性層 1103の磁ィ匕は外部磁場の方向に固定される。従って、積層 フェリ構造をエネルギー的に安定ィ匕するためには、強磁性層 1102は外部磁場と反 対方向に反転し、強磁性層 1101は反転せずに外部磁場と同一方向に向くことにな る。これは、強磁性層 1101、 1103の磁ィ匕が向けられるべき方向に外部磁場を印加 することにより、強磁性層 1101— 1103の磁ィ匕を所望の向きに向けることができること を意味している。
[0008] このような磁ィ匕の方向の制御では、反強磁性層 1400が積層フェリ構造体に接合さ れて 、ることによって、最終的に強磁性層 1101— 1103の磁ィ匕が向く方向が確定す る。反強磁性層 1400は、磁ィ匕の方向の制御において重要な役割を果たしている。
[0009] 一方、米国特許 6、 545、 906号は、積層フヱリ構造が自由層として用いられる場合 に、積層フェリ構造に含まれる強磁性層の磁ィ匕の向きを所望の向きに反転させる方 法、即ち、積層フェリ構造へのデータ書き込み方法を開示している。この特許公報は
、 2つの積層フェリ構造へのデータ書き込み方式:トグル書き込み方式 (toggle writing method)及び直接書き込み方法(direct writing method)を開示して!/ヽる。
[0010] 図 2は、米国特許 6、 545、 906号に開示された MRAMメモリアレイの構成を示す 断面図であり、図 3は、当該 MRAMメモリアレイの構成を示す平面図である。図 2に 示されているように、当該 MRAMメモリアレイは、ワード線 2400と、ビット線 2500と、 その間に介設されたメモリセル 2000とを備えている。メモリセル 2000は、固定層 210 0と、自由層 2200と、その間に介設されたトンネルバリア層 2300と力も構成される。 固定層 2100と自由層 2200は、いずれも、積層フェリ構造体で構成される;固定層 2 100は、強磁性層 2101、 2102と、その間に介設された非磁性層 2103とで構成され 、自由層 2200は、強磁性層 2201、 2202と、その間に介設された非磁性層 2203と で構成される。
[0011] 図 3に示されているように、強磁性層 2201、 2202の容易軸方向は、ワード線 2400 とビット線 2500の両方に 45° の角をなす方向に向けられている。強磁性層 2201の 磁ィ匕 Mと強磁性層 2202の磁ィ匕 Mとは、容易軸方向に平行に、且つ、互いに反対
1 2
の方向に向いている。
[0012] 図 4、図 5は、米国特許 6、 545、 906号に開示された、トグル書き込み方式の手順 を示す図である。図 5を参照して、以下では、説明を容易にするために X— y座標系が 導入されることに留意されたい。当該 x-y座標系では、 X軸は、ワード線 2400と平行 な方向に、 y軸は、ビット線 2500と平行な方向に規定されている。
[0013] 図 4に示されているように、トグル書き込み方式では、まず、ワード線 2400に +x方 向の電流 I が印加される(時刻 t )。図 5に示されているように、電流 I の印加によ
WL 1 WL
つて +y方向に磁場 H が発生し、この磁場 H により、強磁性層 2201の磁ィ匕 Mと
WL WL 1 強磁性層 2202の磁ィ匕 Mとが +y方向に少し回転する。磁ィ匕 M、 Mが回転する角
2 1 2
度は、その合成磁化(resultant magnetization) Mが +y方向に平行になるような角
R
度である。
[0014] 続いて、ビット線 2500に +x方向の電流 I が印加される(時刻 t )。電流 I の印カロ により、 x軸、 y軸の両方に 45° の角をなす合成磁場 H +H が発生する。この合
WL BL
成磁場 H +H により、磁化 Mと磁化 Mとは、その合成磁化 Mが合成磁場 H
WL BL 1 2 R WL
+ H に平行になるように時計回り方向に回転する。
Bし
[0015] 続 、て、ワード線 2400に印加されて 、る電流 I が遮断される(時刻 t )。電流 I
WL 3 WL の遮断により、強磁性層 2201、 2202には、 +x方向の磁場 H のみが印加されるよ
BL
うになる。この磁場 H により、磁ィ匕 Mと磁化 Mとは、その合成磁化 Mが磁場 H に
BL 1 2 R BL 平行になるように更に時計回り方向に回転する。
[0016] 最後に、ビット線 2500に印加されている電流 I が遮断される(時刻 t )。電流 I の
BL 4 BL 遮断により、磁ィヒ M、 Mには磁場が印加されなくなり、磁ィヒ M、 Mは最も近い容易
1 2 1 2
軸方向に戻る。この結果、磁化 M、 Mは、元の方向と反対の方向に反転される。
1 2
[0017] このトグル書き込み方式の一つの特徴は、元の磁化 M、 Mの方向に依存せず、
1 2
磁ィ匕 M、 M 1S トグル書き込みを行う毎に反転することにある。
1 2
[0018] 一方、直接書き込み方法は、図 6、図 7に示されているように、磁ィ匕 M、 Mが反転
1 2 するか否かが、磁化 M、 Mの元の方向に依存する方式である。直接書き込み方法
1 2
は、磁ィ匕 M、 Mが平衡していないことによって初期的に積層フェリ構造に存在する
1 2
合成磁化 Mを利用して、磁ィ匕 M、 Mの反転の発生を制御する。具体的には、図 6
R 1 2
に示されているように、電流 I の印加によって発生する磁場 H の方向が、磁場が
WL WL
印加されていないときの合成磁ィ匕 Mとの方向と鈍角をなす場合には、磁場 H の印
R WL
加によって磁ィ匕 M、 Mが大きく時計回りに回転する。この場合には、それに続く磁
1 2
場 H の印加によって磁ィ匕 M、 Mは、反転する。一方、図 7に示されているように、
BL 1 2
磁場 H の方向が、磁場が印加されていないときの合成磁ィ匕 Mとの方向と鋭角をな
WL R
す場合には、磁化 M、 Mの反転は発生しない。直接書き込み方法では、初期的な
1 2
合成磁化 Mの存在が重要であることに留意されたい。
R
[0019] 上述された公知の技術には、以下の点において改善の余地が残されている。反強 磁性層を使用して積層フェリ構造の強磁性層の磁化を制御する技術は、反強磁性 層に含まれる材料の拡散と!/ヽぅ問題を抱えて!/ヽる。 MRAMで使用される反強磁性体 は、一般に、 Mnを含む。しかし、反強磁性体の Mnは、高温の熱処理で拡散する。 Mnの拡散は、 MRAMのメモリセルの特性を劣化させるため好ましくな!/、。 [0020] 一方、米国特許 6、 545、 906号に開示されているトグル書き込みは、書き込み動 作の前に、読み出し動作の実行を必要とするという欠点を有している。トグル書き込 みを実行すると、元の状態に関わらず、積層フェリ構造の強磁性層の磁化は反転す る。したがって、所望の方向に磁ィ匕を向けるためには、積層フェリ構造にデータを書 き込む前に、その積層フェリ構造の強磁性層の磁ィ匕の向きを確認する、即ち、読み 出し動作の実行が必要である。従って、トグル書き込みは、本質的に、固定層として 使用される積層フェリ構造の強磁性層の磁ィ匕を制御するためには適しない。 自由層 として使用される場合でも、書き込み動作の前に読み出し動作の実行が必要である ことは、ライトサイクルタイムを増大させるため好ましくな 、。
[0021] カロえて、米国特許 6、 545、 906号に開示された直接書き込み方式は、本質的に、 積層フェリ構造の磁ィ匕が平衡していない、即ち、合成磁化が初期的に存在することを 必要とするという欠点がある。合成磁化の存在は、積層フェリ構造が磁気モーメントを 有し、従って、積層フェリ構造が磁場を発生することを意味している。これは、隣接す る MRAMメモリセルの間に磁気的な干渉を発生させる。これは、積層フヱリ構造の利 点をある意味で失わせ、好ましくない。
[0022] 特開 2003— 8100号公報、及び特開 2003— 309305号公報は、積層フェリ構造を フリー層として利用する他の技術を開示している。しかし、これらの技術は、磁気へッ ドの再生出力の向上を目的としている;これらの文献は、 MRAMのデータ書き込み や固定層の磁ィ匕の方向の制御にっ 、て何ら言及して ヽな 、。
[0023] 力!]えて、特開 2003-16624号公報は、積層フェリ構造を備えた磁気記録媒体を開 示している。し力し、この文献は、 MRAMのデータ書き込みや固定層の磁化の方向 の制御につ 、て何ら言及して 、な 、。
[0024] このような背景から、積層フェリ構造の強磁性体の磁ィ匕の方向を制御するための新 たな技術の提供が望まれて 、る。
発明の開示
[0025] 本発明は、概略的には、積層フェリ構造体の強磁性層の磁ィ匕の方向を制御するた めの新たな技術を提供することを、その目的としている。
具体的には、本発明の一の目的は、積層フェリ構造体の強磁性層の磁化の方向を 反強磁性体を使用せずに制御する技術を提供することにある。
本発明の他の目的は、積層フェリ構造の強磁性層の磁化の元の状態に依存せず に、積層フェリ構造体の強磁性層の磁ィ匕の方向を所望の方向に向けることができる 技術を提供することにある。
本発明の更に他の目的は、積層フェリ構造体の全体の磁気モーメントを 0に保ちつ つ、積層フェリ構造体の強磁性層の磁ィ匕の方向を所望の方向に向けることができる 技術を提供することにある。
本発明の更に他の目的は、積層フェリ構造体の強磁性層の磁ィ匕の方向を制御する ための新たな技術を用いて、書き込み動作におけるメモリセルの選択性が高 ヽ MRA Mを実現することにある。
[0026] 本発明の基本的原理は、積層フェリ構造の強磁性層の磁ィ匕が同一方向に揃えられ た状態における各強磁性層の磁化の反転のし易さを制御することにより、所望の強 磁性層の磁ィ匕を所望の方向に向ける、というものである。本発明では、積層フェリ構 造の強磁性層の磁ィ匕は、ー且、外部磁場の印加によって同一方向に揃えられ、その 後、外部磁場が減少される。外部磁場が減少されるときに、積層フェリ構造の強磁性 層の一部の強磁性層の磁化は、隣接する強磁性層の間に働く反強磁性的結合によ つて反転する。本発明は、外部磁場が減少される間の各強磁性層の磁化の反転し易 さを制御することによって所望の強磁性層の磁ィ匕を所望の方向に向ける。この原理 による積層フェリ構造の強磁性層の磁ィ匕の方向の制御は、本質的に、反強磁性層の 存在を必要としない。
[0027] 具体的には、本発明は、上記の目的を達成するために下記の技術を採用する:本 発明の一の観点において、磁ィ匕方向制御方法は、 N層の強磁性層(Nは 3以上の整 数)と、その間に介設された N— 1層の非磁性層とを備えた積層フェリ構造体の N層の 強磁性層の磁ィ匕の方向を、反強磁性体を接合させずに制御するための磁ィ匕方向制 御方法である。当該磁化方向制御方法は、
(a)積層フェリ構造体に外部磁場を印力!]して、前記 N層の強磁性層の磁化を実質 的に同一方向に向ける工程と、
(b)外部磁ィ匕を減少させて、 N層の強磁性層の一部の強磁性層の磁ィ匕を反転させ る工程
とを備えている。積層フェリ構造体は、 N層の強磁性層の磁ィ匕が同一方向に向いた 状態にされているときに N層の強磁性層のうちの一の強磁性層の磁ィ匕が他の強磁性 層の磁ィ匕よりも反転しやすくなるように構成されて 、る。
[0028] 当該磁ィ匕方向制御方法では、外部磁ィ匕を減少させる過程( (b)工程)にお 、て、一 の強磁性層の磁ィ匕が最初に反転すると決定されている。したがって、該一の強磁性 層の磁化の方向は、外部磁化と反対方向に定まる。該一の強磁性層の磁化の方向 が定まれば、少なくともそれに隣接する強磁性層の磁ィ匕の方向が定まり、理想的な場 合には、全ての強磁性層の磁ィ匕の方向が定まる。このように、ある一の強磁性層が、 外部磁ィヒを減少させる過程にぉ ヽて最初に反転すると決定されて ヽることは、積層 フェリ構造体の強磁性層の磁ィ匕の方向を所望の方向に向けるために有効である。
[0029] ある一の強磁性層を最初に反転するように積層フェリ構造体を形成するためには、 2つの手法がある:一つは、各強磁性層の膜厚と磁ィ匕の大きさの最適化であり、もう一 つは、各強磁性層の間に働く反強磁性的結合の強さの最適化である。前者が採用さ れる場合、積層フェリ構造体は、該一の強磁性層の膜厚と磁化の大きさとの積が、他 の強磁性層よりも小さくなるように構成される。一方、後者が採用される場合、各非磁 性層の材料及び膜厚
の最適化が行われる。これらの 2つの手法の両方が使用されることも可能である。
[0030] いずれの場合でも、積層フェリ構造体に含まれる強磁性層の数が 3以上であること は重要である。膜厚と磁ィ匕の大きさの最適化がなされる場合に強磁性層の数が 2で あると、積層フェリ構造体の全体としての磁気モーメントを 0にすることができなくなる; なぜなら、強磁性層の数が 2である積層フェリ構造体を、該一の強磁性層の膜厚と磁 化の大きさとの積が他の強磁性層よりも小さくなるように構成することは、全体としての 磁気モーメントが 0でないことを意味するからである。一方、反強磁性的結合の強さの 最適化は、本質的に 3以上の強磁性層を必要とする;なぜなら、強磁性層が 2層の積 層フェリ構造体における反強磁性的結合の強さの最適化は、強磁性層が反転される 順序に影響しな 、からである。
[0031] 膜厚と磁ィ匕の大きさの最適化がなされる場合、 N層の強磁性層は、同一の強磁性 体で形成されることがある。この場合には、該一の強磁性層は、その膜厚が該他の強 磁性層の膜厚よりも薄くなるように形成される。このような構造は、製造コストの低減に 有効である。
[0032] 該一の強磁性層が N層の強磁性層の奇数番目の強磁性層から選択される場合に は、奇数番目の強磁性層の膜厚と磁ィ匕の大きさとの積は、偶数番目の強磁性層の膜 厚と磁ィ匕の大きさとの積よりも小さいことが好適である。これにより、外部磁場を減少さ せる工程において奇数番目の強磁性層のみを選択的に反転させることができる。
[0033] 同様に、該一の強磁性層が前記 N層の強磁性層の偶数番目の強磁性層から選択 される場合には、偶数番目の強磁性層の膜厚と磁ィ匕の大きさとの積は、奇数番目の 強磁性層の膜厚と磁ィ匕の大きさとの積よりも小さいことが好適である。
[0034] 積層フェリ構造体の強磁性層の数が 3であり、且つ、該一の強磁性層は、その膜厚 が該他の強磁性層の膜厚よりも薄くなるように形成される場合には、該一の強磁性層 は、積層フェリ構造体の端の強磁性層であることが好適である。このような構造は、積 層フェリ構造体の全体としての磁気モーメントを 0にするために重要である;該一の強 磁性層が中間の強磁性層であると、全体としての磁気モーメントは決して 0にならな い。
[0035] 反強磁性的結合の強さの最適化が行われる場合には、積層フェリ構造体は、 N— 1 層の非磁性層のうちの一の非磁性層を介する反強磁性的結合の結合係数が、他の 非磁性層を介する反強磁性的結合の結合係数と異なることにより、前記一の強磁性 層の磁ィ匕が前記他の強磁性層の磁ィ匕よりも反転しやすくなるように構成されることが 好適である。
[0036] 好適な実施例では、 N— 1層の非磁性層は、該一の強磁性層と隣接する強磁性層 との間の反強磁性的結合の強さが、該他の強磁性層と隣接する強磁性層との間の 反強磁性的結合の強さよりも強くなるように構成される。
[0037] 積層フェリ構造体に含まれる強磁性層の数力 である場合、該一の強磁性層は、積 層フェリ構造体の中間の 2つの強磁性層のうちから選択されていることが好適である 。このような構成を採用することにより、該一の強磁性層が最初に反転することにより、 残りの強磁性層の方向が確定する。これは、各強磁性層の磁ィ匕を所望の方向に向け る上で好適である。
[0038] 同様に、積層フェリ構造体に含まれる強磁性層の数が 5である場合、前記一の強磁 性層は、積層フェリ構造体の 3番目の強磁性層であることが好適である。かかる構成 を採用することにより、該一の強磁性層が最初に反転することによって残りの強磁性 層の方向が確定する。
[0039] 他の観点において、本発明による MRAM製造方法は、
(c) N層の強磁性層(Nは 3以上の整数)と、その間に
介設された非磁性層とを備えた積層フェリ構造体を固定層として含み、且つ、反強磁 性体が前記積層フェリ構造体に接触して 、な 、構成を有するメモリセルを形成する 工程と、
(d)積層フェリ構造体に外部磁場を印力!]して、 N層の強磁性層の磁化を実質的に 同一方向に向ける
工程と、
(e)外部磁ィ匕を減少させて、 N層の強磁性層の一部の強磁性層の磁ィ匕を反転させ る工程
とを備えている。
積層フェリ構造体は、 N層の強磁性層の磁ィ匕が同一方向に向いた状態にされてい るときに前記 N層の強磁性層
のうちの一の強磁性層の磁ィ匕が他の強磁性層の磁ィ匕よりも反転しやすくなるように構 成されている。
[0040] 当該 MRAM製造方法は、上記の磁ィヒ方向制御方法を採用することにより、反強磁 性層を使用せずに固定層として用いられる積層フェリ構造体の強磁性層の磁ィ匕の方 向を所望の方向に向けることができる。
[0041] 更に他の観点において、本発明の MRAMは、第 1方向に延設された複数の第 1配 線と、第 1方向と垂直な第 2方向に延設された複数の第 2配線と、第 1配線と第 2配線 とが交差する位置のそれぞれに設けられたメモリセルと、複数の第 1配線から選択さ れた第 1選択配線に第 1書き込み電流を供給し、複数の第 2配線から選択された第 2 選択配線に第 2書き込み電流を供給する書き込み回路とを備えて 、る。メモリセルの それぞれは、固定層と、 N層の強磁性層)(Nは 3以上の整数)と、その間に介設され た非磁性層とを具備する積層フェリ構造体で形成された自由層と、自由層と固定層と の間に介設されたスぺーサ層とを含む。 N層の強磁性層の容易軸は、第 1方向及び 第 2方向の両方に対して斜めに向けられている。積層フェリ構造体は、 N層の強磁性 層の磁ィ匕が同一方向に向いた状態にされているときに、 N層の強磁性層のうちの一 の強磁性層の磁ィ匕が他の強磁性層の磁ィ匕よりも反転しやすくなるように構成されて いる。第 1書き込み電流と第 2書き込み電流とは、第 1選択配線と第 2選択配線との両 方が交差する前記メモリセルの前記積層フェリ構造体を構成する前記 N層の強磁性 層の磁ィ匕を実質的に同一方向に揃えるような強さを有する合成磁場が、容易軸に平 行な方向に発生するように生成される。
[0042] 当該 MRAMは、上記の磁ィ匕方向制御方向を使用することにより、強磁性層の磁ィ匕 の初期状態に依存しないデータ書き込みを、自由層の全体としての磁気モーメントを 0にしながら実現することができる。カロえて、当該 MRAMは、積層フェリ構造体を自 由層として採用することにより、メモリセルの選択性を向上することができる。
[0043] 容易軸の方向は、第 1方向及び第 2方向の両方に対して 45° の角をなすことが好 適である。このような構造は、メモリセルの選択性を最も高くする。
[0044] 好適な実施形態では、第 1書き込み電流と第 2書き込み電流との供給は、実質的に 同時に開始される;上述の公知の MRAMとは異なり、第 1の電流の供給を開始した 後、第 2の電流の供給を開始する必要はない。これは、ライトアクセスタイムの低減に 有効である。
[0045] 更に他の観点において、本発明による MRAM動作方法は、第 1方向に延設された 複数の第 1配線と、第 1方向と垂直な第 2方向に延設された複数の第 2配線と、第 1配 線と第 2配線とが交差する位置のそれぞれに設けられたメモリセルとを含み、メモリセ ルが、固定層と、 N層の強磁性層(Nは 3以上の整数)と、その間に介設された N— 1 層の非磁性層とを具備する積層フェリ構造体で形成された自由層と、自由層と固定 層との間に介設されたスぺーサ層とを具備し、積層フェリ構造体が、前記 N層の強磁 性層の磁ィ匕が同一方向に向いた状態にされているときに前記 N層の強磁性層のうち の一の強磁性層の磁ィ匕が他の強磁性層の磁ィ匕よりも反転しやすくなるように構成さ れて!ヽる MRAMの動作方法である。当該 MRAM動作方法は、
複数の第 1配線から選択された第 1選択配線に第 1書き込み電流を供給するステツ プと、
複数の第 2配線から選択された第 2選択配線に第 2書き込み電流を供給するステツ プ
とを備えている。第 1書き込み電流と第 2書き込み電流とは、前記第 1選択配線と前記 第 2選択配線との両方が交差する前記メモリセルの前記積層フェリ構造体を構成す る前記 N層の強磁性層の磁ィ匕を実質的に同一方向に揃えるような強さの合成磁場が 発生するように生成される。このような MRAM動作方法は、上記の磁化方向制御方 向を使用することにより、強磁性層の磁ィ匕の初期状態に依存しないデータ書き込み を、自由層の全体としての磁気モーメントを 0にしながら実現することができる。加えて 、当該 MRAMは、積層フェリ構造体を自由層として採用することにより、メモリセルの 選択性を向上することができる。
[0046] 以上に述べられているように、本発明により、積層フェリ構造体の強磁性層の磁ィ匕 の方向を反強磁性体を使用せずに制御することが可能になる。
また、本発明により、積層フェリ構造の強磁性層の磁化の元の状態に依存せずに、 積層フェリ構造体の強磁性層の磁ィ匕の方向を所望の方向に向けることが可能になる また、本発明により、積層フェリ構造体の全体の磁気モーメントを 0に保ちつつ、積 層フェリ構造体の強磁性層の磁ィ匕の方向を所望の方向に向けることが可能になる。 また、本発明により、書き込み動作におけるメモリセルの選択性が高い MRAMを実 現することができる。
図面の簡単な説明
[0047] [図 1]図 1は、積層フェリ構造を固定層として採用する従来の MRAMメモリセルの構 造を示す。
[図 2]図 2は、公知の MRAMメモリアレイの構成を示す断面図である。
[図 3]図 3は、公知の MRAMメモリアレイの構成を示す平面図である。
[図 4]図 4は、公知のトグル書き込みを図示するタイミングチャートである。 [図 5]図 5は、公知のトグル書き込みにおける強磁性層の磁ィ匕の方向の変化を図示 するダイアグラムである。
[図 6]図 6は、公知の直接書き込みにおける強磁性層の磁ィ匕の方向の変化を図示す るダイアグラムである。
[図 7]図 7は、公知の直接書き込みにおける強磁性層の磁ィ匕の方向の変化を図示す るダイアグラムである。
圆 8A]図 8Aは、本発明の磁ィ匕方向制御方法の実施の第 1形態が適用される積層フ リ構造体の断面図である。
圆 8B]図 8Bは、本発明の磁ィ匕方向制御方法の実施の第 1形態が適用される他の積 層フ リ構造体の断面図である。
圆 8C]図 8Cは、本発明の磁ィ匕方向制御方法の実施の第 1形態が適用される更に他 の積層フェリ構造体の断面図である。
[図 8D]図 8Dは、本発明の磁ィ匕方向制御方法の実施の第 1形態が適用される更に他 の積層フェリ構造体の断面図である。
[図 9A]図 9Aは、実施の第 1形態において各強磁性層の磁ィ匕が外部磁場 Hの方向
E
に揃えられる過程を示すダイアグラムである。
圆 9B]図 9Bは、実施の第 1形態において各強磁性層の磁ィ匕が外部磁場 Hの方向
E
に揃えられる過程を示すダイアグラムである。
圆 9C]図 9Cは、実施の第 1形態において一部の強磁性層の磁ィ匕が外部磁場 Hと
E
反対方向に反転する過程を示すダイアグラムである。
[図 10A]図 10Aは、外部磁場 Hが容易軸と平行である場合の、外部磁場 Hと各強
E E
磁性層の磁化 M、 M、 Mとの関係を示す図である。
1 2 3
[図 10B]図 10Bは、外部磁場 Hが容易軸と平行でない場合の、外部磁場 Hと各強
E E
磁性層の磁化 M、 M、 Mとの関係を示す図である。
1 2 3
圆 11A]図 11Aは、本発明の磁ィ匕方向制御方法の実施の第 2形態が適用される積層 フェリ構造体の断面図である。
圆 11B]図 11Bは、本発明の磁ィ匕方向制御方法の実施の第 2形態が適用される他の 積層フェリ構造体の断面図である。 [図 11C]図 11Cは、本発明の磁ィ匕方向制御方法の実施の第 2形態が適用される更に 他の積層フェリ構造体の断面図である。
[図 12]図 12は、非磁性層の膜厚に依存する反強磁性的結合の結合係数の変化を 示すグラフである。
[図 13]図 13は、本発明の磁化方向制御方法が適用される積層フェリ構造体を固定 層として含む MRAMメモリセルの断面図である。
[図 14]図 14は、本発明の磁化方向制御方法が適用される積層フェリ構造体を固定 層として含む他の MRAMメモリセルの断面図である。
[図 15]図 15は、本発明の磁化方向制御方法が適用される積層フェリ構造体を固定 層として含む更に他の MRAMメモリセルの断面図である。
[図 16]図 16は、本発明の磁化方向制御方法が適用される積層フェリ構造体を固定 層として含む更に他の MRAMメモリセルの断面図である。
[図 17]図 17は、本発明の磁化方向制御方法が適用される積層フェリ構造体を自由 層として含む MRAMメモリセルの断面図である。
[図 18]図 18は、本発明の磁化方向制御方法が適用される積層フェリ構造体を自由 層として含む MRAMメモリセルの平面図である。
[図 19]図 19は、選択セルへの書き込み動作を示すタイミングチャートである。
[図 20]図 20は、非選択セルの動作を示すタイミングチャートである。
[図 21]図 21は、本発明の磁化方向制御方法が適用される積層フェリ構造体を自由 層として含む他の MRAMメモリセルの断面図である。
[図 22]図 22は、本発明の磁化方向制御方法が適用される積層フェリ構造体を自由 層として含む更に他の MRAMメモリセルの断面図である。
[図 23]図 23は、本発明の磁化方向制御方法が適用される積層フェリ構造体を自由 層として含む更に他の MRAMメモリセルの断面図である。
発明を実施するための最良の形態
実施の第 1形態:
図 8Aを参照して、本発明の磁化方向制御方法の実施の第 1形態では、 MRAM用 積層フェリ構造体 10Aが、第 1一第 3強磁性層 11一 13と、第 1、第 2非磁性層 21、 2 2とを備えている。第 1一第 3強磁性層 11一 13は、強磁性体、典型的には、 Co、 Fe、 Ni及びその合金で形成される。第 1一第 3強磁性層 11一 13は、 +X方向に長い形 状を有するように形成され、これにより、その容易軸は、 +X方向に平行に向けられて いる。第 1非磁性層 21は、第 1強磁性層 11と第 2強磁性層 12との間に介設され、第 2 非磁性層 22は、第 2強磁性層 12と第 3強磁性層 13との間に介設されている。第 1、 第 2非磁性層 21、 22は、導電性の非磁性体、典型的には、 Ruで形成されている。第 1、第 2非磁性層 21、 22は、それぞれが隣接する強磁性層を強磁性的に結合するよ うな膜厚を有している。
[0049] 第 1強磁性層 11は、その膜厚と磁ィ匕の大きさの積が、他の強磁性層:第 2強磁性層 12及び第 3強磁性層 13よりも小さくなるように形成されている。即ち、積層フェリ構造 体 10Aは、下記式(la)、 (lb):
M -t < M -t
1 1 2 2、 · · · (la)
M -t < M -t、 …(lb)
1 1 3 3
が成立するように形成されている;ここで M 1
1、 M
2、 Mは、第 1、第 2、第 3強磁性層 1 3
、 12、 13の磁ィ匕の大きさであり、 t 第 1、第 2、第 3強磁性層 11
1、 t
2、 tは、
3 、 12、 13の 膜厚である。
[0050] 第 1一第 3強磁性層 11一 13は、奇数番目の強磁性層:第 1強磁性層 11、第 3強磁 性層 13の膜厚と磁ィ匕の大きさの積の和が、偶数番目の強磁性層:第 2強磁性層 12 の膜厚と磁ィ匕の大きさの積に一致するように形成されている。即ち、積層フェリ構造 体 10Aは、各強磁性層の膜厚及び磁ィ匕の大きさが、下記式 (2):
M -t +M -t =M 't
1 1 3 3 2 2、 · · ·(2)
を満足するように形成されている。これにより、積層フェリ構造体 10Aの全体としての 磁気モーメントは 0になる。既述のとおり、全体としての磁気モーメントが 0であることは 、積層フェリ構造体 10Aが他の素子に磁場を作用することを防止し、積層フェリ構造 体 1 OAを MRAMメモリセルに集積化する上で重要である。
[0051] 製造コストを低減させるためには、第 1一第 3強磁性層 11一 13は、同一の材料で形 成されることが好適である。この場合、第 1一第 3強磁性層 11一 13は、下記式(1 ' )、 (2' ): t <t、t · · · (1 ' )
t +t =t、 …(2,)
を満足するように形成される。本実施の形態では、第 1一第 3強磁性層 11一 13は同 一の材料で形成され、且つ、その膜厚の比が 0. 5 : 2. 0 : 1. 5であるように形成され ている。
[0052] 本実施の形態では、積層フェリ構造の強磁性層の磁ィ匕が外部磁場の印加によって 同一方向に揃えられた状態における各強磁性層の磁化の反転のし易さが、各強磁 性層の膜厚と磁ィ匕の大きさとの積によって制御される。これにより、外部磁場が除去さ れた後の第 1一第 3強磁性層 11一 13の磁ィ匕の方向の制御が行われる。具体的には 、第 1強磁性層 11は、その膜厚と磁ィ匕の大きさとの積が第 1一第 3強磁性層 11一 13 のうちで最小になるように形成され、これにより、外部磁場が除去された後の各強磁 性層の磁ィ匕の方向が制御される。以下、図 9A、図 9Bを参照しながら、積層フェリ構 造体 10Aの各強磁性層の磁ィ匕を所望の方向に向ける手順が具体的に説明される。 以下の説明では、第 1強磁性層 11、第 3強磁性層 13の磁ィ匕が向けられるべき方向 は、 X方向であり、第 2強磁性層 12の磁ィ匕が向けられるべき方向は、 +X方向であ ると仮定されることに留意されたい。
[0053] まず、図 9A、図 9Bに示されているように、第 1一第 3強磁性層 11一 13の磁ィ匕をい ずれも +X方向に向けるような大きな外部磁場 Hが印加される。この外部磁場 Hの 向きは、膜厚と磁ィ匕の大きさとの積が最も小さい第 1強磁性層 11の磁ィ匕が向けられる べき方向と逆であることに留意されたい。初期的には、第 1一第 3強磁'性層 11一 13 の磁化の向きは、 2つの状態があり得る;図 9Aは、第 1、第 3強磁性層 11、 13の磁ィ匕 が
初期的に X方向に、第 2強磁性層 12の磁ィ匕が +X方向に向 ヽて ヽる場合を示し、 図 9Bは、第 1一第 3強磁性層 11一 13の向きが、その逆である場合を示している。第 1一第 3強磁性層 11一 13の磁化が +X方向に向けられる過程は、第 1一第 3強磁性 層 11一 13の状態によって異なる。図 9Aの場合、外部磁場 Hがフロップ磁場 H ま で増加されると、第 3強磁性層 13の磁化が +X方向に反転され、外部磁場 Hがフロ ップ磁場 H まで増加されると、第 1強磁性層 13の磁化も +X方向に反転される。こ れにより、第 1一第 3強磁性層 11一 13の磁化が +X方向に揃う。図 9Bの場合、外部 磁場がフロップ磁場 H まで増加されると、第 2強磁性層 12の磁化が +X方向に反転 f5
され、第 1一第 3強磁性層 11一 13の磁化が +X方向に揃う。
[0054] 外部磁場 Hは、フロップ磁場 H
E Ϊ4、 H をはるかに超える程度にまで増加される。こ f5
れは、第 1一第 3強磁性層 11一 13の磁ィ匕を同一方向に揃えるために重要である。図 9A、 9Bに示されているように、第 1一第 3強磁性層 11一 13の間の反強磁性的結合 のために、フロップ磁場 H
Ϊ4、H を少し超えた程度の外部磁場では、磁化が完全に f5
飽和しない、即ち、磁化が、完全には容易軸方向(+X方向)に向かない(図 10A参 照)。
[0055] 第 1一第 3強磁性層 11一 13の磁ィ匕の向きが +X方向に揃えられた後、その向きが 容易軸の方向(+X方向)に保たれたまま外部磁場 Hが減少される。外部磁場 Hが
E E
フロップ磁場 H まで減少されると、図 9Cに示されているように、膜厚と磁化との積が f3
最も小さい第 1強磁性層 11が最初に反転する。これは、第 1強磁性層 11が有する磁 気モーメントが最も小さいからである。外部磁場 Hが減少すると、第 1
E 一第 3強磁性 層 11一 13が有する静磁的エネルギー(magnetostatic energy)は減少していく。静磁 的エネルギーの減少の際、磁気モーメントが最も小さい第 1強磁性層 11が有する静 磁的エネルギーは、ある外部磁場 Hにおいて(即ち、フロップ磁場 H において)、最
E f3
初に、反強磁性結合エネルギーとつりあうようになる。この外部磁場 H
Eでは、第 2強 磁性層 12及び第 3強磁性層 13は、外部磁場 Hの方向に向いている方力 エネルギ
E
一的に安定である。このため、第 1強磁性層 11のみが反転する。
[0056] 更に、外部磁場が減少されつづけると、第 1強磁性層 11と隣接しない第 3強磁性層 13がー X方向に反転する。これは、第 1強磁性層 11の磁ィ匕の反転により、それに隣 接する第 2強磁性層 12の磁ィ匕の方向は、第 1強磁性層 11との磁化との反強磁性結 合によって安定ィ匕されるからである。第 3強磁性層 13は、外部磁場 Hカ^ロップ磁
E
場 H よりも小さいフロップ磁場 H まで減少されたときに反転する。
f3 fl
[0057] 以上に述べられているように、本実施の形態の磁ィ匕方向制御方法は、反強磁性層 を使用せずに各強磁性層の磁ィ匕を所望の方向に向けることが可能である。加えて、 本実施の形態の磁ィ匕方向制御方法は、最終的な各強磁性層の磁化の向きが、初期 的な磁化の方向に依存しない。これは、書き込み動作の前に読み出し動作を行う必 要性をなくす。更に、本実施の形態の磁ィ匕方向制御方法は、全体としての磁気モー メントを実質的に 0であるような構造の積層フェリ構造体を使用可能である。
[0058] 外部磁場 Hを減少させる間、外部磁場 Hを磁化容易軸の方向に維持することは
E E
重要である。図 10A、 10Bは、その理由を説明する概念図である。図 10Aに示され ているように、外部磁場 Hが容易軸の方向(+X方向)を向いている限り、外部磁場
E
Hの減少の際に第 1強磁性層 11の磁ィ匕 Mが所望のとおりに最初に反転する。第 1
E 1
強磁性層 11は最も小さ ヽ磁気モーメントを有するため、隣接する強磁性層に働く反 強磁性的結合が磁ィ匕の向きに及ぼす影響は、相対的に、第 1強磁性層 11が最も大 きい。このため、第 1強磁性層 11の磁ィ匕 Mが外部磁場 Hの方向となす角度 Θ は、
1 E 1 第 2強磁性層 12の磁化 Mが外部磁場 Hの方向となす角度 0 、及び第 3強磁性層
2 E 2
12の磁ィ匕 Mが外部磁場 Hの方向となす角度 0 よりも大きくなる。外部磁場 Hの方
3 E 3 E 向が磁ィ匕容易軸の方向と一致している場合には、これは、第 1強磁性層 11の磁ィ匕 M が磁化容易軸の方向となす角度 0 力 S最も大きくなることと同義である。したがって、 第 1強磁性層 11の磁ィ匕 Mは、最初に反転する。
[0059] 一方、図 10Bに示されているように外部磁場 Hが斜めに向いている場合には、そう
E
はならない可能性がある。外部磁場 Hが斜め方向に向いていると、図 10Bに示され
E
ているように、第 2強磁性層 12の磁ィ匕 Mが容易軸となす角度 Θ 力 第 1
2 2 一第 3強磁 性層 11一 13のうちで最も大きくなる可能性が発生するからである。第 2強磁性層 12 の磁化 Mが容易軸となす角度 0 が第 1一第 3強磁性層 11一 13のうちで最も大きく
2 2
なると、第 2強磁性層 12の磁ィ匕 Mが最先に反転する。これは、第 1
2 一第 3強磁性層 1
1一 13の磁ィ匕が所望の向きに向力ないという結果を招く。このように、第 1一第 3強磁 性層 11一 13の磁ィ匕を所望の向きに向けるためには、外部磁場 Hを減少させる間に
E
外部磁場 Hを磁ィ匕容易軸の方向に維持することは重要である。
E
[0060] 積層フェリ構造体 10Aに含まれる強磁性体の数が 3である本実施の形態では、膜 厚と磁ィ匕の大きさの積が最も小さい強磁性層が、積層フェリ構造体 10Aの奇数番目 に位置することは重要であることに留意されたい。積層フェリ構造体 10Aが、第 2強 磁性層 12の膜厚と磁ィ匕の大きさの積を最も小さくするように構成されることは好適で ない。確かに、第 2強磁性層 12を膜厚と磁ィ匕の大きさの積が最も小さい強磁性層とし て選択しても、各強磁性層の磁ィ匕を所望の方向に向けることは可能である。しかし、 膜厚と磁ィ匕の大きさの積が最も小さい強磁性層として第 2強磁性層 12を選択すること は、積層フェリ構造体 10Aのトータルの磁気モーメントを 0にすることを不可能にする
[0061] 本実施の形態の概念は、 4以上の強磁性層を含む積層フェリ構造体に適用可能で ある。 4以上の強磁性層を含む積層フェリ構造体に対しても、強磁性層の膜厚と磁ィ匕 の大きさの積を制御することにより、所望の順序で強磁性層を反転させ、所望の方向 に強磁性層の向きを向けることが可能である。
[0062] 強磁性層の数力 である場合には、膜厚と磁ィ匕の大きさの積が最も小さい強磁性層 力 積層フェリ構造体の中間、即ち、 2番目又は 3番目に位置することが好適である。 これは、膜厚と磁ィ匕の大きさの積が最も小さい強磁性層が、積層フェリ構造体の中間 に位置することにより、最初の反転によって全ての強磁性層の磁ィ匕の方向が決定さ れる力 である。強磁性層の磁ィ匕の最初の反転の影響は、最初に磁化が反転する強 磁性層に隣接する 2つの強磁性層に及ぶことに留意された ヽ。上端(1番目)に位置 する強磁性層の膜厚と磁ィ匕の大きさの積が最小である場合には、 3番目、 4番目に位 置する強磁性層の磁ィ匕の方向は確定しない。同様に、膜厚と磁ィ匕の大きさの積が最 小である強磁性層が下端に位置する場合も同様である。
[0063] 例えば、図 8Bに図示された、 4の強磁性層を含む積層フェリ構造体 10Bについて 考察する。積層フェリ構造体 10Bは、第 1強磁性層 11一第 4強磁性層 14と、それら の間に介設された第 1一第 3非磁性層 21— 23とから構成される。第 1一第 4強磁性 層 11一 14は、同一の材料で構成され、その磁ィ匕の大きさは実質的に同一である。 更に、積層フェリ構造体 10Bは、第 1一第 4強磁性層 11一 14の膜厚の比が 1. 5 : 1. 0 : 0. 5 : 1. 0となるように構成されている。第 3強磁性層 13の膜厚と磁ィ匕の大きさの 積は、第 1一第 4強磁性層 11一 14のうちで最小であり、積層フェリ構造体 10Bの全 体としての磁気モーメントは 0である。
[0064] このような積層フェリ構造体 10Bは、第 3強磁性層 13の磁ィ匕を最初に反転させるこ とによって、第 1強磁性層 11及び第 3強磁性層 13の磁ィ匕を選択的に反転させ、各強 磁性層の磁ィ匕を所望の方向に向けることができる。第 3強磁性層 13の膜厚と磁ィ匕の 大きさの積は第 1一第 4強磁性層 11一 14のうちで最も小さいから、外部磁場 Hを減
E
少させる工程では、第 3強磁性層 13の磁ィ匕が最初に反転する。第 3強磁性層 13の 磁ィ匕が最初に反転することによって残りの全ての強磁性層の磁ィ匕の方向も決定され る;第 3強磁性層 13の磁ィ匕が反転すると、その第 3強磁性層 13に隣接する第 2強磁 性層 12、第 4強磁性層 14の磁ィ匕の方向は反強磁性的結合によって安定ィ匕される。 従って、更に外部磁場 Hを減少させると次に反転するのは第 1強磁性層 11である。
E
このように、所望のとおり、第 1強磁性層 11、第 3強磁性層 13は外部磁場 Hと反対
E
方向に、第 2強磁性層 12、第 4強磁性層 14の磁化は外部磁場 Hと同一方向に向く
E
[0065] 同様に、図 8Cに示されているように、強磁性層の数が 5である場合には、 3番目の 強磁性層の膜厚と磁ィ匕の大きさの積が最小であることが好適である。図 8Cの例では 、積層フェリ構造体 10Cは、第 1一第 5強磁性層 11一 15と、その間に介設される第 1 一第 4非磁性層 21— 24とで構成される。積層フェリ構造体 10Cは、第 3強磁性層 13 の膜厚と磁ィ匕の大きさの積が第 1一第 5強磁性層 11一 15のうちで最小であるように 構成される。これにより、外部磁場 Hを減少させる工程において、第 3強磁性層 13の
E
磁化が最初に反転する。第 3強磁性層 13の磁化が最初に反転すれば、残りの強磁 性層の磁ィ匕の方向が確定することは、容易に理解されよう。
[0066] 強磁性層の磁ィ匕の最初の反転によっても、全強磁性層の磁ィ匕の方向が決定されな い場合も存在する。下記の 3つの場合:
(a)強磁性層の数が 6以上である場合、
(b)強磁性層の数力 であり、最初に反転する強磁性層が上端又は下端である場合
(c)強磁性層の数が 5であり、最初に反転する強磁性層が 3番目の強磁性層でない
¾口
力 Sこれに該当する。このような場合には、各強磁性層の膜厚と磁ィ匕の大きさの積を、 奇数番目の強磁性層の磁ィ匕のみが反転するように、又は、偶数番目の強磁性層の 磁ィ匕のみが反転するように適切に決定される必要がある。 [0067] 外部磁場 Hを減少させる工程で奇数番目の強磁性層の磁ィ匕のみを反転させるた
E
めには、積層フェリ構造体が、
(a)膜厚と磁ィ匕の大きさの積が最も小さい強磁性層が、奇数番目の強磁性層のうち から選択され、且つ、
(b)任意の奇数番目の強磁性層の膜厚と磁ィ匕の大きさの積が、全ての偶数番目の 強磁性層の膜厚と磁ィ匕の大きさとの積よりも小さい
ように構成されていればよい。力かる構造の積層フェリ構造体は、外部磁場を減少さ せる工程において奇数番目の強磁性層の磁ィ匕のみを反転させ、各強磁性層の磁化 の向きを所望の方向に向けることができる。例えば、図 8Dに示されている積層フェリ 構造体 10Dを考える。図 8Dの例では、積層フェリ構造体 10Dは、第 1強磁性層 11 一第 5強磁性層 15と、それらの間に介設された第 1一第 4非磁性層 21— 24とから構 成される。第 1一第 5強磁性層 11一 15は、同一の材料で構成され、その磁化の大き さは実質的に同一である。更に、積層フェリ構造体 10Dは、第 1一第 5強磁性層 11 一 15の膜厚の it力 0. 75 : 1. 5 : 1. 25 : 1. 5 : 1. 0となるように構成されて!ヽる。この 積層フェリ構造体 10Dでは、膜厚が最小である、即ち、最初に反転する第 1強磁性 体 11が上端に位置するから、最初の反転によっては、残りの強磁性層の磁化の向き は決定されない。しかし、積層フェリ構造体 10Dは、上記の条件 (a)、(b)を満足して いるから、奇数番目の強磁性層の磁化のみを選択的に反転させ、各強磁性層の磁 化を所望の方向に向けることができる。
[0068] 積層フェリ構造体が上記の条件 (a) (b)を満足するように構成される場合には、強 磁性層の数が奇数であることが好適である。かかる構造は、全体としての積層フェリ 構造体の磁気モーメントを 0にしつつ、奇数番目の強磁性体の磁化を選択的に反転 可能にする。強磁性層の数が奇数であれば、奇数番目の強磁性体の数は、偶数番 目の強磁性層の数よりも 1だけ多い。これは、任意の奇数番目の強磁性層の膜厚と 磁ィ匕の大きさの積が、任意
の偶数番目の強磁性層の膜厚と磁ィ匕の大きさの積よりも小さくても、全体としての積 層フェリ構造体の磁気モーメントを 0にできることを意味している。
[0069] 図 8Dに示された構造は、上記の条件 (a) (b)を満足し、且つ、強磁性層の数が奇 数である構造の一つである。図 8Dに示された構造では、強磁性層の数は奇数であり 、第 1一第 5強磁性層 11一 15の膜厚の比が 0. 75 : 1. 5 : 1. 25 : 1. 5 : 1. 0である; 即ち、奇数番目の強磁性層:第 1、第 3、第 5強磁性層 11、 13、 15の膜厚の和は、偶 数番目の強磁性層:第 2、第 4強磁性層 12、 14の膜厚の和と同一であり、積層フェリ 構造体 10Dの全体の磁気モーメントは 0である。
[0070] 一方、外部磁場 Hを減少させる工程で奇数番目の強磁性層の磁ィ匕のみを反転さ
E
せるためには、積層フェリ構造体が、
(a' )膜厚と磁ィ匕の大きさの積が最も小さい強磁性層が、偶数番目の強磁性層のうち から選択され、且つ、
(b' )任意の偶数番目の強磁性層の膜厚と磁ィ匕の大きさの積が、全ての奇数番目の 強磁性層の膜厚と磁ィ匕の大きさとの積よりも小さい
ように構成されていればよい。これにより、外部磁場を減少させる工程において偶数 番目の強磁性層の磁化のみを選択的に反転させ、各強磁性層の磁化の向きを所望 の方向に向けることができる。
[0071] 実施の第 2形態:
図 11Aは、本発明の実施の第 2形態における MRAM用積層フェリ構造体 30Aの 構成を示す断面図である。本実施の形態では、外部磁場を減少させる間に強磁性 層の磁化が反転する順序が、隣接する 2つの強磁性層の間の反強磁性的結合の強 さを用いて制御される。反強磁性的結合の強さは、その間に介設される非磁性層の 膜厚によって制御される。図 12に示されているように、隣接する強磁性層の間に働く 反強磁性的結合の強さが、その間に介設される非磁性層の膜厚に依存することは当 業者に周知である。
[0072] 具体的には、図 11Aに示されているように、本実施の形態の積層フェリ構造体 30A は、第 1一第 3強磁性層 31— 33と、第 1、第 2非磁性層 41、 42とを備えている。実施 の第 1形態と同様に、第 1一第 3強磁性層 31— 33は、強磁性体、典型的には、 Co、 Fe、 Ni及びその合金で形成され、更に、その容易軸は、 +X方向に平行に向けられ ている。第 1非磁性層 41、第 2非磁性層 42は、非磁性体、典型的には、 Ruで形成さ れている。第 1非磁性層 41は、第 1強磁性層 31と第 2強磁性層 32との間に介設され 、第 2非磁性層 42は、第 2強磁性層 32と第 3強磁性層 33との間に介設されている。
[0073] 積層フェリ構造体 30Aは、第 1、第 3強磁性層 31、 33の膜厚と磁ィ匕の大きさの積が 第 2強磁性層 32のそれよりも小さくなるように形成されている。これは、外部磁場の減 少のとき、第 1、第 3強磁性層 31、 33の磁ィ匕を、第 2強磁性層 32の磁ィ匕よりも反転し やすくする。
[0074] カロえて、積層フェリ構造体 30Aは、第 1、第 3強磁性層 31、 33の膜厚と磁ィ匕の大き さの積の和が、第 2強磁性層 32の膜厚と磁ィ匕の大きさの積と同一になるように形成さ れている。これは、積層フェリ構造体 30Aの全体としての磁気モーメントを 0にする。
[0075] より具体的には、本実施の形態では、第 1一第 3強磁性層 31— 33が同一の材料で 形成され、第 1強磁性層 31、第 3強磁性層 33は、その膜厚 t、 tが第 2強磁性層 32
1 3
の膜厚 tよりも薄く形成されている。カロえて、第 1、第 3強磁性層 31、 33は、その膜厚
2
t、 tの和が、第 2強磁性層 32の膜厚 tと同一になるように形成されてい
1 3 2
る。
[0076] 実施の第 1形態とは異なり、本実施の形態では、第 1強磁性層 31と第 3強磁性層 3 3の膜厚が同一である;即ち、第 1強磁性層 31の膜厚と磁ィ匕の大きさの積は、第 3強 磁性層 33と同一であり、即ち、膜厚と磁ィ匕の大きさの積では、第 1強磁性層 31と第 3 強磁性層 33との 、ずれが反転しやす!/、かは決定されな!、。
[0077] その代りに、本実施の形態では、第 2強磁性層 32と第 3強磁性層 33との間の反強 磁性的結合の強さが、第 1強磁性層 31と第 2強磁性層 32との間の反強磁性的結合 よりも強くなるように積層フェリ構造体 30Aが構成されている;即ち、第 2非磁性層 42 を介する第 2強磁性層 32と第 3強磁性層 33との間の反強磁性的結合の結合定数は 、第 1非磁性層 41を介する第 1強磁性層 31と第 2強磁性層 32との間の反強磁性的 結合の結合定数よりも大きい。より具体的には、第 2非磁性層 42の膜厚 Tは、結合
2 係数が極大値をとる膜厚のうちで最小の膜厚に定められ、第 1非磁性層 41の膜厚 T は、 2番目に小さい膜厚に定められている(図 12参照)。この結果、第 3強磁性層 33 の磁ィ匕は、外部磁場の減少の際、第 1強磁性層 31の磁ィ匕よりも反転しやすくなる。
[0078] 以下、積層フェリ構造体 30Aの各強磁性層の磁ィ匕を所望の方向に向ける手順が具 体的に説明される。以下の説明では、第 1強磁性層 31、第 3強磁性層 33の磁ィ匕が向 けられるべき方向は、 X方向であり、第 2強磁性層 32の磁ィ匕が向けられるべき方向 は、 +X方向であると仮定されることに留意されたい。
[0079] まず、第 1一第 3強磁性層 11一 13の磁ィ匕を +X方向に揃えるような大きな外部磁 場 Hが印加される。この外部磁場 Hの向きは、第 3強磁性層 33の磁ィ匕が向けられ
E E
るべき方向と逆であることに留意された 、。
[0080] 続いて、外部磁場 Hが減少される。外部磁場 Hの減少の間、その向きは容易軸
E E
の方向(+X方向)に保たれる。
[0081] 外部磁場 Hが減少される工程では、膜厚と磁ィ匕の大きさとの積の大きさ(即ち、磁
E
気モーメントの大きさ)、及び、隣接する強磁性層から受ける反強磁性的結合の強さ により、最初に磁化が反転する強磁性層が決定される。本実施の形態では、膜厚と 磁ィ匕の大きさとの積が第 2強磁性層 32よりも小さぐ且つ、第 1強磁性層 31よりも強く 反強磁性的結合の作用を受ける第 3強磁性層 33の磁ィ匕が最初に反転する。
[0082] 更に外部磁場 Hが減少されると、第 1強磁性層 31と隣接しない第 3強磁性層 33が
E
-X方向に反転する。これは、第 1強磁性層 31の磁ィ匕の反転により、それに隣接する 第 2強磁性層 32の磁ィ匕の方向は、第 1強磁性層 31との反強磁性結合によって安定 化されている力 である。
[0083] 以上に述べられた方法により、本実施の形態では、所望のとおり、第 1強磁性層 11 と第 3強磁性層 13の磁ィ匕が- X方向に、第 2強磁性層 12の磁化が +X方向に向けら れる。
[0084] 本実施の形態の概念は、 4以上の強磁性層を含む積層フェリ構造体に適用可能で ある。例えば、図 11Bには、 4の強磁性層を含む積層フェリ構造体 30Bが開示されて いる。積層フェリ構造体 10Bは、第 1強磁性層 31—第 4強磁性層 34と、それらの間に 介設された第 1一第 3非磁性層 41一 43とから構成される。
[0085] 積層フェリ構造体 30Bでは、第 1強磁性層 31—第 4強磁性層 34は、その材料も膜 厚も同一であるように形成される。これは、奇数番目の強磁性層の膜厚と磁ィ匕の大き さの積の和を、偶数番目の強磁性層の膜厚と磁ィ匕の大きさの積の和と一致させ、積 層フェリ構造体 10Bの全体としての磁気モーメントを 0にする。
[0086] しかし、このような積層フェリ構造体 30Bでは、外部磁場 Hが減少されるときに各強 磁性層の磁ィ匕が反転される順序が、膜厚と磁ィ匕の大きさの積によって決定されない。
[0087] その代りに、積層フェリ構造体 30Bは、第 1非磁性層 41を介する反強磁性的結合 の結合定数が第 2及び第 3非磁性層 42、 43を介する反強磁性的結合の結合定数よ りも小さくなるように構成されている。より具体的には、第 2非磁性層 42、第 3非磁性 層 43が同一の膜厚 Tを有し、且つ、膜厚 Tは、結合係数が極大値をとる膜厚のうち
2 2
で最小の膜厚に定められている;一方、第 1非磁性層 41の膜厚 Tは、 2番目に小さ い膜厚に定められている。
[0088] これにより、外部磁場 Hを減少させる工程において、第 3強磁性層 33が最初に反
E
転する強磁性層になる。詳細に説明すれば、積層フェリ構造体 30Bの構造により、第 3強磁性層 33が隣接する強磁性層から受ける反強磁性的結合の強さは、他の強磁 性層が隣接する強磁性層から受ける反強磁性的結合の強さよりも強くなる;即ち、第 3強磁性層 33が第 2強磁性層 32、第 4強磁性層 34から受ける反強磁性的結合の強 さは、
(1)第 1強磁性層 31が第 2強磁性層 32から受ける反強磁性的結合の強さ;
(2)第 2強磁性層 32が第 1強磁性層 31及び第 3強磁性層 33から受ける反強磁性的 結合の強さ;及び
(3)第 4強磁性層 34が第 3強磁性層 33から受ける反強磁性的結合の強さ のいずれよりも強くなる。この結果、第 3強磁性層 33の磁ィ匕は、外部磁場 Hの減少
E
の際、他の強磁性層の磁化よりも反転しやすくなる。
[0089] 中間の強磁性層である第 3強磁性層 33の磁ィ匕が最初に反転することにより、残りの 強磁性層の磁ィ匕の方向も自動的に決定される。強磁性層の数力 である場合に、中 間の強磁性層が、外部磁場 Hの減少の工程において最初に反転することの重要性
E
は、実施の第 1形態で説明したとおりである。即ち、第 3強磁性層 33の磁ィ匕が最初に 反転することによって残りの全ての強磁性層の磁ィ匕の方向も決定される。第 3強磁性 層 13の磁化が反転すると、その第 3強磁性層 33に隣接する第 2強磁性層 32、第 4強 磁性層 34の磁ィ匕の方向は反強磁性的結合によって安定ィ匕される。従って、更に外 部磁場 Hを減少させると次に反転するのは第 1強磁性層 31である。このように、所望
E
のとおり、第 1強磁性層 31、第 3強磁性層 33は外部磁場 Hと反対方向に、第 2強磁 性層 32、第 4強磁性層 34の磁化は外部磁場 Hと同一方向に向く。
E
[0090] このように、積層フェリ構造体 30Bは、充分に大きな外部磁場 Hを第 1強磁性層 31
E
及び第 3強磁性層 33の磁ィ匕が向けられるべき方向と逆の方向に印加することにより、 各強磁性層の磁ィ匕を所望の方向に向けることができる。
[0091] 更に図 11Cには、 5の強磁性層を含む積層フェリ構造体 30Cが図示されている。積 層フェリ構造体 30Cは、第 1強磁性層 31—第 5強磁性層 35と、それらの間に介設さ れた第 1一第 4非磁性層 41一 44とから構成される。第 1強磁性層 31—第 5強磁性層 35は、その材料が同一であり、その膜厚比力 1. 0 : 1. 5 : 1. 0 : 1. 5 : 1. 0となるよう に形成される。これは、奇数番目の強磁性層の膜厚と磁ィ匕の大きさの積の和を、偶 数番目の強磁性層の膜厚と磁ィ匕の大きさの積の和と一致させ、積層フェリ構造体 10 Bの全体としての磁気モーメントを 0にする。
[0092] しかし、このような積層フェリ構造体 30Cでは、外部磁場 Hが減少されるときに各強
E
磁性層の磁ィ匕が反転される順序は、膜厚と磁ィ匕の大きさの積によって決定されない; なぜなら、第 1強磁性層 31、第 3強磁性層 33、第 5強磁性層 35は、膜厚と磁化の大 きさの積が同一である力 である。
[0093] その代りに、積層フェリ構造体 30Bは、第 1非磁性層 41、第 4非磁性層 44を介する 反強磁性的結合の結合定数が第 2及び第 3非磁性層 42、 43を介する反強磁性的結 合の結合定数よりも小さくなるように構成されている。より具体的には、第 2非磁性層 4 1、第 3非磁性層 42が同一の膜厚 Tを有し、且つ、膜厚 Tは、結合係数が極大値を
2 2
とる膜厚のうちで最小の膜厚に定められている;一方、第 1非磁性層 41、第 4非磁性 層 44が同一の膜厚 Tを有し、且つ、膜厚 Tは、結合係数が極大値をとる膜厚のうち で 2番目に小さい膜厚に定められている。
[0094] これにより、外部磁場 Hを減少させる工程において、第 3強磁性層 33の磁ィ匕が最
E
初に反転する。第 3強磁性層 33の磁化が最初に反転すれば、残りの強磁性層の磁 化の方向が確定することは、容易に理解されよう。
[0095] 上述された磁化方向制御方法は、 MRAMメモリセルの固定層及び自由層のいず れにも適用可能である。以下では、積層フ リ構造体の固定層及び自由層への応用 について説明される。 [0096] 本発明による磁ィ匕方向制御方法の固定層への適用:
図 13は、本発明による磁ィ匕方向制御方法を固定層に適用するためのメモリセル 70
OAの構造を示す断面図である。メモリセル 700Aは、固定層 110と自由層 200とその 間に介設されたトンネルバリア層 300とを備えている。固定層 110は、図 8Aの積層フ エリ構造体 10Aと同一の構造を有している。
[0097] 固定層 110に含まれる第 1一第 3強磁性層 11一 13の磁ィ匕は、 MRAM製造工程に おいて外部磁場 Hが印加された状態でァニールされることにより、所望の向きに向
E
けられる。この外部磁場 Hの向きは、第 1
E 一第 3強磁性層 11一 13の容易軸と平行で あり、且つ、第 1、第 3強磁性層 11、 13が向けられるべき方向と反対に定められる。更 に、外部磁場 H の強さは、第 1
E 一第 3強磁性層 11一 13の磁ィ匕を同一方向に揃える 程度に充分に強くなるように制御される。このような外部磁場 Hを印加した後、外部
E
磁場 Hを除去することにより、第 1強磁性層 11と第 3強磁性層 13の磁ィ匕が選択的に
E
反転される。このような過程により、第 1一第 3強磁性層 11一 13の磁化を所望の方向 に向けることができる。
[0098] 本発明による磁ィ匕方向制御方法を固定層に適用することは、 MRAMメモリセルか ら反強磁性層を排除することを可能にし、 MRAMメモリセルの特性向上に好適であ る。
[0099] 上述の他の積層フェリ構造体も同様に、 MRAMメモリセルの固定層として使用され 得る。例えば、図 14は、図 8Bの積層フェリ構造体 10Bを固定層 120として含む、メモ リセル 700Bの構造を示している。図 15は、図 11Aの積層フェリ構造体 30Aを固定 層 130として含む、メモリセル 700Cの構造を示している。図 16は、図 11Bの積層フ エリ構造体 30Bを固定層 140として含む、メモリセル 700Dの構造を示して 、る。
[0100] 本発明による磁化方向制御方法の自由層への適用:
図 17は、本発明による磁ィ匕方向制御方法を自由層に適用するための MRAMメモ リアレイの構造を示す断面図である。当該 MRAMメモリアレイは、ワード線 400と、ビ ッ卜線 500と、メモリセノレ 800Aを備えて!/ヽる。メモリセノレ 800Aは、ワード線 400とビッ ト線 500との間に介設されている。図 18に示されているように、ワード線 400とビット線 500とは直交している。メモリセル 800Aは、ワード線 400とビット線 500とが交差する 位置に設けられている。以下の説明では、ワード線 400に平行に X軸力 ビット線 500 に平行に y軸が規定されることに留意されたい。図 17、図 18には、ワード線 400、ビッ ト線 500、及びメモリセル 800Aは、一つずつしか図示されていないが、通常の MRA Mがそうであるように、複数のワード線 400、ビット線 500、メモリセル 800Aがメモリア レイをなすように配置されていると理解されなくてはならない。ワード線 400、ビット線 500には、データの書き込み及び読み出しを行うための書き込み Z読み出し回路( 図示されない)が接続される。書き込み Z読み出し回路は、通常、ワード線デコーダ 、ビット線デコーダ、センスアンプ、ライトアンプ、リードアンプで構成される。
[0101] 図 17に示されているように、メモリセル 800Aは、固定層 100と、自由層 210と、そ れらの間に介設されたトンネルバリア層 300とを備えている。固定層 100は、従来の 積層フェリ構造と同一の構成を有している;即ち、固定層 100は、強磁性層 101、 10 2と、その間に介設された非磁性層 103とを備えており、強磁性層 102は、反強磁性 層 104に接合されている。自由層 210は、図 8Aの積層フェリ構造体 10Aと同一の構 造を有している。なお、固定層 100としては、上述された、本発明の積層フェリ構造体 も使用され得る。本発明の積層フェリ構造体の固定層への適用は、 MRAMメモリア レイカゝら反強磁性層を排除することを可能にし、メモリセル 800Aの特性向上に好適 である。この場合には、自由層のフロップ磁場は、固定層のフロップ磁場よりも充分に /J、さくされることが好ましい。
[0102] 図 18に示されているように、メモリセル 800Aは、ワード線 400、ビット線 500のいず れにも 45° をなす方向に長 、形状を有して 、る;このようなメモリセル 800Aの形状 により、自由層 210を構成する第 1一第 3強磁性層 11一 13の容易軸は、 X軸と y軸と のいずれにも 45° の角度をなす方向に向く。以下の説明では、第 1一第 3強磁性層 11一 13の容易軸と平行に X軸力 それに垂直に Y軸が規定される。 X軸は X軸と 45 ° の角をなし、 Y軸は y軸と 45° の角をなしている。 X— y座標系と X— Y座標系とは別 の座標系であることに留意されたい。
[0103] 図 19は、メモリセル 800Aへの書き込み動作を示すタイミングチャートである。メモリ セル 800Aへのデータ書き込みは、以下のようにして行われる。初期的には、書き込 みが行われるメモリセル 800A (以下、「選択セル」という。)の第 1、第 3強磁性層 11、 13の磁化 M
1、 Mは +X方向に向いており、第 2強磁性層 12の磁化 Mは、 X方向
3 2
に向いている。以下に述べられるデータ書き込みにより、これらの磁化の方向が反転 される。
[0104] まず、選択セルに対応するワード線 400、ビット線 500が選択される。以下では、選 択されたワード線 400は、選択ワード線と記載され、選択されたビット線 500は、選択 ビット線と記載される。
[0105] 続いて、書き込み Z読み出し回路により、選択ビット線及び選択ワード線に、それぞ れ、書き込み電流 I
WL、1 が印加される。電流 I
BL WL、1 の向きは、選択セルに書き込ま
BL
れるべきデータに応じて決定される。本実施の形態では、電流 I I
WL、 BLの向きは、そ れぞれ、 +χ方向、 +y方向である。書き込み電流 I
WL、 I の供給の開始は、実質的 BL
に同時である。
[0106] 電流 I 、 I により、それぞれ、 +y方向の磁場 H と、 +x方向の磁場 H が発生
WL BL WL BL
する。電流 I 、1 の大きさは、磁場 H と磁場 H との合成磁場 H +H の方向
WL BL WL BL WL BL
が、第 1一第 3強磁性層 11一 13の容易軸と平行になり、且つ、合成磁場 H +H
WL BL
が第 1一第 3強磁'性層 11一 13の磁ィ匕を同一方向に向けるのに充
分な大きさに調整される。合成磁場 H +H の印加により、第 1
WL BL 一第 3強磁性層 11 一 13の磁化 M— Mは、いずれも、容易軸に平行な方向、即ち、 +X方向に揃えら
3
れる。
[0107] 続いて、電流 I
WL、1 の
BL 供給が遮断される。電流 I
WL、1 の
BL 供給が遮断されると、積 層フェリ構造体を構成する第 1一第 3強磁性層 11一 13に磁場が印加されなくなる。 第 1一第 3強磁性層 11一 13への磁場の印加が停止されると、上述されて 、る過程に より、第 1強磁性層 11、第 3強磁性層 13の磁ィ匕が選択的に反転する。これにより、所 望のとおり、第 1強磁性層 11、第 3強磁性層 13の磁ィ匕 M X方向に反転され
1、 Mは
3
、第 2強磁性層 12の磁ィ匕 Mは +X方向に反転される。
2
[0108] このような書き込み動作は、自由層 210の強磁性層の元の磁ィ匕の方向に無関係に 、所望の方向に磁ィ匕を向けることができる;即ち、読み出し動作を行うことなぐ書き込 み動作を実行することができる。
[0109] カロえて、かかる書き込み動作は、メモリセルの選択性が良いという利点を有している 。図 20は、選択ビット線に接続されたメモリセル 800Aのうち非選択のメモリセルの動 作を示す図である。電流 I が印加されることにより、該非選択のメモリセルには、 +x
Bし
方向に、即ち、容易軸と 45° の方向に磁場 H が印加される。従って、磁場 H の印
BL BL
加により、非選択のメモリセルの第 1一第 3強磁性層 11一 13の磁ィ匕 M— Mは、そ
1 3 の合成磁化 Mが磁場 H の方向に向くような方向に回転する。しかし、この状態で
R BL
は、磁化 M (熱擾乱の影響を無視すれば)磁化 Mの方向と、磁化 M、 Mの方向と
2 2 1 3 が入れ替わることはあり得ない。従って、非選択のメモリセルでは、磁化の反転は発 生しない。これは、メモリセルの選択性が良いことを意味している。
[0110] このように、本発明による磁ィ匕方向制御方法を自由層に適用することにより、読み 出し動作が不要で、自由層の磁気モーメントが 0で、且つ、メモリセルの選択性が高 Vヽ書き込み動作を実現することができる。
[0111] 上述の他の積層フェリ構造体も同様に、 MRAMメモリセルの自由層として使用され 得る。例えば、図 21は、図 8Bの積層フェリ構造体 10Bを自由層 220として含む、メモ リセル 800Bの構造を示している。図 22は、図 11Aの積層フェリ構造体 30Aを自由 層 230として含む、メモリセル 800Cの構造を示している。図 23は、図 11Bの積層フ エリ構造体 30Bを自由層 240として含む、メモリセル 800Dの構造を示している。
[0112] なお、図 17、図 21— 23では、クロスポイントセルアレイに対応した磁気抵抗素子の 構造、即ち、磁気抵抗素子 800A— 800D力 ワード線 400、ビット線 500に電気的 に接続されている構造が示されている力 本発明は、クロスポイントセルアレイにのみ に適用されると解釈されてはならない。トランジスタによってメモリセルが選択される M RAMメモリアレイに本発明が適用される場合には、ワード線 400が磁気抵抗素子 80 OA— 800D力も電気的に絶縁される。この場合でも、ワード線 400は、磁気抵抗素 子 800A— 800Dに磁場を印加させるように近接されると理解されなくてはならな!、。

Claims

請求の範囲
[1] N層の強磁性層(Nは 3以上の整数)と、その間に介設された N— 1層の非磁性層と を備えた積層フェリ構造体の前記 N層の強磁性層の磁ィ匕の方向を、前記積層フェリ 構造体に反強磁性体を接合させずに制御するための磁化方向制御方法であって、
(a)前記積層フェリ構造体に外部磁場を印カロして、前記 N層の強磁性層の磁ィ匕を 実質的に同一方向に向ける工程と、
(b)前記外部磁ィ匕を減少させて、前記 N層の強磁性層の一部の強磁性層の磁ィ匕を 反転させる工程
とを備え、
前記積層フェリ構造体は、前記 N層の強磁性層の磁ィ匕が同一方向に向いた状態 にされているときに前記 N層の強磁性層のうちの一の強磁性層の磁ィ匕が他の強磁性 層の磁ィ匕よりも反転しやすくなるように構成されて 、る
磁化方向制御方法。
[2] 請求項 1に記載の磁ィ匕方向制御方法であって、
前記 N層の強磁性層の奇数番目の強磁性層の膜厚と磁ィ匕の大きさとの積の和は、 実質的に、偶数番目の強磁性層の膜厚と磁ィ匕の大きさとの積の和と同一である 磁化方向制御方法。
[3] 請求項 1に記載の磁ィ匕方向制御方法であって、
前記積層フェリ構造体は、前記一の強磁性層の膜厚と磁ィ匕の大きさとの積が、前記 他の強磁性層よりも小さくなるように構成されて 、る
磁化方向制御方法。
[4] 請求項 1に記載の磁ィ匕方向制御方法であって、
前記 N層の強磁性層は、同一の強磁性体で形成され、
前記一の強磁性層の膜厚は、前記他の強磁性層の膜厚よりも薄い
磁化方向制御方法。
[5] 請求項 1に記載の磁ィ匕方向制御方法であって、
前記一の強磁性層は、前記 N層の強磁性層の奇数番目の強磁性層から選択され 前記奇数番目の強磁性層の膜厚と磁ィ匕の大きさとの積は、前記 N層の強磁性層の 偶数番目の強磁性層の膜厚と磁ィ匕の大きさとの積よりも小さい
磁化方向制御方法。
[6] 請求項 1に記載の磁ィ匕方向制御方法であって、
前記一の強磁性層は、前記 N層の強磁性層の偶数番目の強磁性層から選択され 前記偶数番目の強磁性層の膜厚と磁ィ匕の大きさとの積は、前記 N層の強磁性層の 奇数番目の強磁性層の膜厚と磁ィ匕の大きさとの積よりも小さい
磁化方向制御方法。
[7] 請求項 1に記載の磁ィ匕方向制御方法であって、
前記積層フェリ構造体は、前記 N— 1層の非磁性層のうちの一の非磁性層を介する 反強磁性的結合の結合係数が、他の非磁性層を介する反強磁性的結合の結合係 数と異なることにより、前記一の強磁性層の磁ィ匕が前記他の強磁性層の磁ィ匕よりも反 転しやすくなるように構成されている
磁化方向制御方法。
[8] 請求項 7に記載の磁ィ匕方向制御方法であって、
前記 N— 1層の非磁性層は、前記一の強磁性層と隣接する強磁性層との間の反強 磁性的結合の強さが、前記他の強磁性層と隣接する強磁性層との間の反強磁性的 結合の強さよりも強くなるように構成されて 、る
磁化方向制御方法。
[9] 請求項 1に記載の磁ィ匕方向制御方法であって、
Nは 3であり、
前記一の強磁性層は、前記積層フェリ構造体の端の強磁性層である
磁化方向制御方法。
[10] 請求項 1に記載の磁ィヒ方向制御方法であって、
Nは 4であり、
前記一の強磁性層は、前記積層フェリ構造体の中間の 2つの強磁性層のうちから 選択されている 磁化方向制御方法。
[11] 請求項 1に記載の磁ィヒ方向制御方法であって、
Nは 5であり、
前記一の強磁性層は、前記積層フェリ構造体の 3番目の強磁性層である 磁化方向制御方法。
[12] (c) N層の強磁性層 (Nは 3以上の整数)と、その間に介設された非磁性層とを備え た積層フェリ構造体を固定層として含み、且つ、反強磁性体が前記積層フェリ構造体 に接触して 、な 、構成を有する MRAMメモリセルを形成する工程と、
(d)前記積層フェリ構造体に外部磁場を印加して、前記 N層の強磁性層の磁ィ匕を 実質的に同一方向に向ける工程と、
(e)前記外部磁ィ匕を減少させて、前記 N層の強磁性層の一部の強磁性層の磁ィ匕を 反転させる工程
とを備え、
前記積層フェリ構造体は、前記 N層の強磁性層の磁ィ匕が同一方向に向いた状態 にされているときに前記 N層の強磁性層のうちの一の強磁性層の磁ィ匕が他の強磁性 層の磁ィ匕よりも反転しやすくなるように構成されて 、る
MRAM製造方法。
[13] 請求項 12に記載の MRAM製造方法であって、
前記 N層の強磁性層の奇数番目の強磁性層の膜厚と磁ィ匕の大きさとの積の和は、 実質的に、偶数番目の強磁性層の膜厚と磁ィ匕の大きさとの積の和と同一である
MRAM製造方法。
[14] 請求項 13に記載の MRAM製造方法であって、
前記積層フェリ構造体は、前記一の強磁性層の膜厚と磁ィ匕の大きさとの積が、前記 他の強磁性層よりも小さくなるように構成されて 、る
MRAM製造方法。
[15] 請求項 13に記載の MRAM製造方法であって、
前記積層フェリ構造体は、前記 N— 1層の非磁性層のうちの一の非磁性層を介する 反強磁性的結合の結合係数が、他の非磁性層を介する反強磁性的結合の結合係 数と異なることにより、前記一の強磁性層の磁ィ匕が前記他の強磁性層の磁ィ匕よりも反 転しやすくなるように構成されている
MRAM製造方法。
[16] 第 1方向に延設された複数の第 1配線と、
前記第 1方向と垂直な第 2方向に延設された複数の第 2配線と、
前記第 1配線と前記第 2配線とが交差する位置のそれぞれに設けられたメモリセル と、
前記複数の第 1配線から選択された第 1選択配線に第 1書き込み電流を供給し、前 記複数の第 2配線から選択された第 2選択配線に第 2書き込み電流を供給する書き 込み回路
とを備え、
前記メモリセルのそれぞれは、
固定層と、
N層の強磁性層 (Nは 3以上の整数)と、その間に介設された非磁性層とを具備す る積層フェリ構造体で形成された自由層と、
前記自由層と前記固定層との間に介設されたスぺーサ層
とを含み、
前記 N層の強磁性層の容易軸は、前記第 1方向及び前記第 2方向の両方に対して 斜めであり、
前記積層フェリ構造体は、前記 N層の強磁性層の磁ィ匕が同一方向に向いた状態 にされているときに、前記 N層の強磁性層のうちの一の強磁性層の磁ィ匕が他の強磁 性層の磁ィ匕よりも反転しやすくなるように構成され、
前記第 1書き込み電流と前記第 2書き込み電流とは、前記第 1選択配線と前記第 2 選択配線との両方が交差する前記メモリセルの前記積層フェリ構造体を構成する前 記 N層の強磁性層の磁ィ匕を実質的に同一方向に揃えるような強さを有する合成磁場 力 前記容易軸に平行な方向に発生するように生成される
MRAM。
[17] 請求項 16に記載の MRAMであって、 前記容易軸の方向は、前記第 1方向及び前記第 2方向の両方に対して 45° の角 をなす
MRAM。
[18] 請求項 16に記載の MRAMであって、
前記第 1書き込み電流と前記第 2書き込み電流との供給は、実質的に同時に開始 される
MRAM。
[19] 請求項 16に記載の MRAMであって、
前記 N層の強磁性層の奇数番目の強磁性層の膜厚と磁ィ匕の大きさとの積の和は、 実質的に、偶数番目の強磁性層の膜厚と磁ィ匕の大きさとの積の和と同一である MRAM。
[20] 請求項 16に記載の MRAMであって、
前記積層フェリ構造体は、前記一の強磁性層の膜厚と磁ィ匕の大きさとの積が、前記 他の強磁性層よりも小さくなるように構成されて 、る
MRAM。
[21] 請求項 20に記載の MRAMであって、
前記 N層の強磁性層は、同一の強磁性体で形成され、
前記一の強磁性層の膜厚は、前記他の強磁性層の膜厚よりも薄い
MRAM。
[22] 請求項 16に記載の MRAMであって、
前記一の強磁性層は、前記 N層の強磁性層の奇数番目の強磁性層から選択され 前記奇数番目の強磁性層の膜厚と磁ィ匕の大きさとの積は、前記 N層の強磁性層の 偶数番目の強磁性層の膜厚と磁ィ匕の大きさとの積よりも小さい
MRAM。
[23] 請求項 16に記載の MRAMであって、
前記一の強磁性層は、前記 N層の強磁性層の偶数番目の強磁性層から選択され 前記偶数番目の強磁性層の膜厚と磁ィ匕の大きさとの積は、前記 N層の強磁性層の 奇数番目の強磁性層の膜厚と磁ィ匕の大きさとの積よりも小さい
MRAM。
[24] 請求項 16に記載の MRAMであって、
前記積層フェリ構造体は、前記 N— 1層の非磁性層のうちの一の非磁性層を介する 反強磁性的結合の結合係数が、他の非磁性層を介する反強磁性的結合の結合係 数と異なることにより、前記一の強磁性層の磁ィ匕が前記他の強磁性層の磁ィ匕よりも反 転しやすくなるよう
に構成されている
MRAM。
[25] 請求項 24に記載の MRAMであって、
前記 N— 1層の非磁性層は、前記一の強磁性層と隣接する強磁性層との間の反強 磁性的結合の強さが、前記他の強磁性層と隣接する強磁性層との間の反強磁性的 結合の強さよりも強くなるように構成されて 、る
MRAM。
[26] 第 1方向に延設された複数の第 1配線と、
前記第 1方向と垂直な第 2方向に延設された複数の第 2配線と、
前記第 1配線と前記第 2配線とが交差する位置のそれぞれに設けられたメモリセル とを含み、
前記メモリセルが、
固定層と、
N層の強磁性層(Nは 3以上の整数)と、その間に介設された N— 1層の非磁性層と を具備する積層フェリ構造体で形成された自由層と、
前記自由層と前記固定層との間に介設されたスぺーサ層
とを具備し、且つ、
前記積層フェリ構造体が、前記 N層の強磁性層の磁ィ匕が同一方向に向いた状態 にされているときに前記 N層の強磁性層のうちの一の強磁性層の磁ィ匕が他の強磁性 層の磁ィ匕よりも反転しやすくなるように構成されて 、る MRAMの動作方法であって、 前記複数の第 1配線から選択された第 1選択配線に第 1書き込み電流を供給する ステップと、
複数の第 2配線から選択された第 2選択配線に第 2書き込み電流を供給するステツ プ
とを備え、
前記第 1書き込み電流と前記第 2書き込み電流とは、前記第 1選択配線と前記第 2 選択配線との両方が交差する前記メモリセルの前記積層フェリ構造体を構成する前 記 N層の強磁性層の磁ィ匕を実質的に同一方向に揃えるような強さの合成磁場が発 生するように生成される
MRAM動作方法。
請求項 26に記載の MRAM動作方法であって、
前記第 1書き込み電流と前記第 2書き込み電流との供給は、実質的に同時に開始 される
MRAM動作方法。
PCT/JP2005/005325 2004-03-31 2005-03-24 磁化方向制御方法、及びそれを応用したmram WO2005098953A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006512003A JP4877506B2 (ja) 2004-03-31 2005-03-24 磁化方向制御方法、及びそれを応用したmram
US11/547,123 US7414881B2 (en) 2004-03-31 2005-03-24 Magnetization direction control method and application thereof to MRAM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004104683 2004-03-31
JP2004-104683 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005098953A1 true WO2005098953A1 (ja) 2005-10-20

Family

ID=35125365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005325 WO2005098953A1 (ja) 2004-03-31 2005-03-24 磁化方向制御方法、及びそれを応用したmram

Country Status (3)

Country Link
US (1) US7414881B2 (ja)
JP (1) JP4877506B2 (ja)
WO (1) WO2005098953A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022367A1 (ja) * 2004-08-26 2006-03-02 Nec Corporation 磁気抵抗素子及び磁気ランダムアクセスメモリ
WO2008102498A1 (ja) * 2007-02-23 2008-08-28 Nec Corporation 磁性体装置及び磁気記憶装置
JP2009514211A (ja) * 2005-10-28 2009-04-02 インターナショナル・ビジネス・マシーンズ・コーポレーション マルチコンポーネント自由層を有する磁気トンネル・ジャンクションのための調整されたピン留め層
WO2009057428A1 (ja) * 2007-10-29 2009-05-07 Nec Corporation 磁気抵抗効果記憶装置
WO2011033981A1 (ja) * 2009-09-17 2011-03-24 アルプス電気株式会社 磁気センサの製造方法
US8599605B2 (en) 2007-05-28 2013-12-03 Nec Corporation Magnetic storage device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605437B2 (en) * 2007-04-18 2009-10-20 Everspin Technologies, Inc. Spin-transfer MRAM structure and methods
FR2929041B1 (fr) * 2008-03-18 2012-11-30 Crocus Technology Element magnetique a ecriture assistee thermiquement
US9653138B1 (en) * 2016-03-02 2017-05-16 Kabushiki Kaisha Toshiba Magnetic memory and method of writing data

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113418A (ja) * 1998-10-01 2000-04-21 Hitachi Ltd スピンバルブ効果に基づく磁気抵抗効果型ヘッド及びそれを用いた磁気記録再生装置
JP2003001624A (ja) * 2001-05-10 2003-01-08 Wacker Siltronic Ag 被加工物から基板を切り離す方法
JP2003008100A (ja) * 2001-06-19 2003-01-10 Alps Electric Co Ltd 磁気検出素子及び前記磁気検出素子を用いた薄膜磁気ヘッド
JP2003197872A (ja) * 2001-12-26 2003-07-11 Canon Inc 磁気抵抗効果膜を用いたメモリ
JP2003309305A (ja) * 2002-04-17 2003-10-31 Alps Electric Co Ltd 磁気検出素子
JP2003536267A (ja) * 2000-06-21 2003-12-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 改善された磁場範囲を有する磁気多層構造

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6567246B1 (en) * 1999-03-02 2003-05-20 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect element and method for producing the same, and magnetoresistance effect type head, magnetic recording apparatus, and magnetoresistance effect memory element
US6436526B1 (en) * 1999-06-17 2002-08-20 Matsushita Electric Industrial Co., Ltd. Magneto-resistance effect element, magneto-resistance effect memory cell, MRAM and method for performing information write to or read from the magneto-resistance effect memory cell
US6233172B1 (en) * 1999-12-17 2001-05-15 Motorola, Inc. Magnetic element with dual magnetic states and fabrication method thereof
JP2002151758A (ja) * 2000-11-09 2002-05-24 Hitachi Ltd 強磁性トンネル磁気抵抗効果素子、磁気メモリ及び磁気抵抗効果型ヘッド
JP4746778B2 (ja) 2001-06-28 2011-08-10 株式会社日立グローバルストレージテクノロジーズ 磁気記録媒体及びそれを用いた磁気記憶装置
US6777730B2 (en) * 2001-08-31 2004-08-17 Nve Corporation Antiparallel magnetoresistive memory cells
US6545906B1 (en) 2001-10-16 2003-04-08 Motorola, Inc. Method of writing to scalable magnetoresistance random access memory element
DE10155424B4 (de) * 2001-11-12 2010-04-29 Qimonda Ag Verfahren zur homogenen Magnetisierung eines austauschgekoppelten Schichtsystems einer digitalen magnetischen Speicherzelleneinrichtung
US7190611B2 (en) * 2003-01-07 2007-03-13 Grandis, Inc. Spin-transfer multilayer stack containing magnetic layers with resettable magnetization
JP2005093488A (ja) * 2003-09-12 2005-04-07 Sony Corp 磁気抵抗効果素子とその製造方法、および磁気メモリ装置とその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113418A (ja) * 1998-10-01 2000-04-21 Hitachi Ltd スピンバルブ効果に基づく磁気抵抗効果型ヘッド及びそれを用いた磁気記録再生装置
JP2003536267A (ja) * 2000-06-21 2003-12-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 改善された磁場範囲を有する磁気多層構造
JP2003001624A (ja) * 2001-05-10 2003-01-08 Wacker Siltronic Ag 被加工物から基板を切り離す方法
JP2003008100A (ja) * 2001-06-19 2003-01-10 Alps Electric Co Ltd 磁気検出素子及び前記磁気検出素子を用いた薄膜磁気ヘッド
JP2003197872A (ja) * 2001-12-26 2003-07-11 Canon Inc 磁気抵抗効果膜を用いたメモリ
JP2003309305A (ja) * 2002-04-17 2003-10-31 Alps Electric Co Ltd 磁気検出素子

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022367A1 (ja) * 2004-08-26 2006-03-02 Nec Corporation 磁気抵抗素子及び磁気ランダムアクセスメモリ
JPWO2006022367A1 (ja) * 2004-08-26 2008-05-08 日本電気株式会社 磁気抵抗素子及び磁気ランダムアクセスメモリ
US7813164B2 (en) 2004-08-26 2010-10-12 Nec Corporation Magneto resistance element and magnetic random access memory
JP4822126B2 (ja) * 2004-08-26 2011-11-24 日本電気株式会社 磁気抵抗素子及び磁気ランダムアクセスメモリ
JP2009514211A (ja) * 2005-10-28 2009-04-02 インターナショナル・ビジネス・マシーンズ・コーポレーション マルチコンポーネント自由層を有する磁気トンネル・ジャンクションのための調整されたピン留め層
WO2008102498A1 (ja) * 2007-02-23 2008-08-28 Nec Corporation 磁性体装置及び磁気記憶装置
JPWO2008102498A1 (ja) * 2007-02-23 2010-05-27 日本電気株式会社 磁性体装置及び磁気記憶装置
US8675399B2 (en) 2007-02-23 2014-03-18 Nec Corporation Magnetic unit and magnetic storage device
US8599605B2 (en) 2007-05-28 2013-12-03 Nec Corporation Magnetic storage device
WO2009057428A1 (ja) * 2007-10-29 2009-05-07 Nec Corporation 磁気抵抗効果記憶装置
WO2011033981A1 (ja) * 2009-09-17 2011-03-24 アルプス電気株式会社 磁気センサの製造方法
JPWO2011033981A1 (ja) * 2009-09-17 2013-02-14 アルプス電気株式会社 磁気センサの製造方法

Also Published As

Publication number Publication date
JP4877506B2 (ja) 2012-02-15
US7414881B2 (en) 2008-08-19
US20070201168A1 (en) 2007-08-30
JPWO2005098953A1 (ja) 2008-03-06

Similar Documents

Publication Publication Date Title
US7184300B2 (en) Magneto resistance random access memory element
US8508004B2 (en) Magnetic element having reduced current density
US7099186B1 (en) Double-decker MRAM cells with scissor-state angled reference layer magnetic anisotropy and method for fabricating
US7453720B2 (en) Magnetic random access memory with stacked toggle memory cells having oppositely-directed easy-axis biasing
WO2005098953A1 (ja) 磁化方向制御方法、及びそれを応用したmram
KR100548997B1 (ko) 다층박막구조의 자유층을 갖는 자기터널 접합 구조체들 및이를 채택하는 자기 램 셀들
US7330371B2 (en) Method and structure for generating offset fields for use in MRAM devices
US20050153063A1 (en) Synthetic antiferromagnetic structure for magnetoelectronic devices
EP1653475A1 (en) Multi-bit magnetic random access memory device and method for writing the same
US7336528B2 (en) Advanced multi-bit magnetic random access memory device
WO2007020823A1 (ja) 磁気メモリセル、磁気ランダムアクセスメモリ、及び磁気ランダムアクセスメモリへのデータ読み書き方法
JP2006165327A (ja) 磁気ランダムアクセスメモリ
JP7251811B2 (ja) 磁気抵抗効果素子、磁気メモリ装置並びに磁気メモリ装置の書き込み及び読み出し方法
TW200414497A (en) Magnetic memory device having yoke layer and its manufacturing method
EP1518246B1 (en) Circuit and method of writing a toggle memory
US7826254B2 (en) Magnetic storage device and method for producing the same
JP2007052902A (ja) 低電流を有する磁気抵抗ランダムアクセスにおける磁気モーメントの切換え方法
JP2002353417A (ja) 磁気抵抗効果素子および磁気メモリ装置
US20080002462A1 (en) MRAM Memory Cell Having a Weak Intrinsic Anisotropic Storage Layer and Method of Producing the Same
JP3738165B2 (ja) 磁気メモリセル
JP2001267522A (ja) 磁気メモリ素子及び磁気メモリ
JP2002353418A (ja) 磁気抵抗効果素子および磁気メモリ装置
US20050285093A1 (en) Magnetic storage device using ferromagnetic tunnel junction element
WO2006062150A1 (ja) 磁気ランダムアクセスメモリ
Ju A Novel dual-bit MRAM cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512003

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11547123

Country of ref document: US

Ref document number: 2007201168

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11547123

Country of ref document: US