WO2006062150A1 - 磁気ランダムアクセスメモリ - Google Patents

磁気ランダムアクセスメモリ Download PDF

Info

Publication number
WO2006062150A1
WO2006062150A1 PCT/JP2005/022527 JP2005022527W WO2006062150A1 WO 2006062150 A1 WO2006062150 A1 WO 2006062150A1 JP 2005022527 W JP2005022527 W JP 2005022527W WO 2006062150 A1 WO2006062150 A1 WO 2006062150A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
layer
random access
film
access memory
Prior art date
Application number
PCT/JP2005/022527
Other languages
English (en)
French (fr)
Inventor
Sadahiko Miura
Tetsuhiro Suzuki
Kaoru Mori
Yoshiyuki Fukumoto
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2006546749A priority Critical patent/JPWO2006062150A1/ja
Publication of WO2006062150A1 publication Critical patent/WO2006062150A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]

Definitions

  • the present invention relates to a magnetic random access memory (MRAM), and more particularly to a “random toggle access type” magnetic random access memory.
  • MRAM magnetic random access memory
  • Magnetic random access memory is a promising nonvolatile memory from the viewpoint of high integration and high-speed operation.
  • magnetoresistive elements exhibiting magnetoresistance effects such as an AMR (Anisotropic MagnetoResistance) effect, a GMR (Giant MagnetoResistance) effect, and a TMR (Tunnel MagnetoResistance) effect are used.
  • FIG. 1 is a plan view showing the configuration of the MRAM disclosed in US Pat. No. 5,640,343 (first conventional example).
  • the MRAM 100 includes a write side line 101 and a write bit line 102 formed so as to be orthogonal to each other.
  • a memory cell 103 is disposed at the intersection of the write word line 101 and the write bit line 102, and the memory cell 103 includes a magnetoresistive element.
  • FIG. 2 is a conceptual diagram showing the structure of a conventional magnetoresistive element.
  • the magnetoresistive element 110 includes a lower electrode layer 111, an antiferromagnetic layer 112, a pinned magnetic layer (pinned layer) 113, a barrier layer 114, a free magnetic layer (free layer) 115, and an upper electrode layer 116.
  • the noria layer 114 is a nonmagnetic layer including an insulating film or a metal film, and is sandwiched between the pinned magnetic layer 113 and the free magnetic layer 115.
  • Both the fixed magnetic layer 113 and the free magnetic layer 115 include a ferromagnetic layer having spontaneous magnetization.
  • the direction of spontaneous magnetization of the pinned magnetic layer 113 is fixed in a predetermined direction.
  • the direction of the spontaneous magnetization of the free magnetic layer 115 can be reversed, and the direction of the spontaneous magnetization of the pinned magnetic layer 113 is allowed to be parallel or antiparallel.
  • the resistance element 110 is used as the memory cell 103, and data is stored in a nonvolatile manner by utilizing the change in resistance value.
  • the data in the memory cell 103 is rewritten by reversing the direction of the spontaneous magnetic field of the free magnetic layer 115.
  • the memory cell 103 is arranged so that the magnetic axis easy axis of the free magnetic layer 115 is parallel to the write word line 101 or the write bit line 102.
  • Write currents I and I are supplied to the write word line 101 and the write bit line 102, respectively. Write currents I and I are
  • the direction of the spontaneous magnetization of the free magnetic layer 115 is reversed by the external magnetic field generated by the write current.
  • FIG. 3A is a diagram showing the predetermined condition (threshold value).
  • the curve shown in FIG. 3A is called an asteroid curve, and shows the minimum write currents I and I necessary for reversing the spontaneous magnetization of the free magnetic layer 115. In other words, in the reversal area outside this steroid curve
  • the external magnetic field generated by WL BL is H and H.
  • H the uniaxial anisotropic magnetic field.
  • FIG. 3B shows the distribution of asteroid curves for a plurality of memory cells.
  • the asteroid curve group (curve group) for a plurality of memory cells is distributed between the curve Cmax and the curve Cmin as shown in FIG. 3B.
  • the write current I In order to write, the write current I
  • WL BL also affects memory cells other than the target memory cell (hereinafter referred to as “disturb”).
  • disurb memory cells other than the target memory cell
  • the current I flowing through the write word line 101 is smaller than I and
  • Stream I, 1 must correspond to the hatched area (write margin) in Figure 3B.
  • toggle writing method As a technique for suppressing such deterioration of memory characteristics and erroneous writing (disturbance), a “toggle writing method” has been proposed.
  • US Pat. No. 6,545,906 (second conventional example) discloses a toggle-writing MRAM.
  • toggle write MRAM “antiferromagnetic coupling force” is used. Certain materials have a force (antiferromagnetic coupling force) that causes adjacent magnets to work in opposite directions, which is called an antiferromagnetic material. It is known that a similar antiferromagnetic coupling force can be exerted by sandwiching an extremely thin conductive film between ferromagnetic films.
  • the magnetoresistive element 120 includes a lower electrode layer 121, an antiferromagnetic layer 122, a pinned magnetic layer (pinned layer) 123, a barrier layer 124, a free magnetic layer (free layer) 125, and an upper electrode layer 126.
  • N an antiferromagnetically
  • the directions of the spontaneous magnetic fluxes of the first magnetic film 131 and the second magnetic film 132 are antiparallel in the stable state. Become.
  • the direction of the spontaneous magnetization of the first magnetic film 131 and the second magnetic film 132 in the free magnetic layer (free layer) 125 can be reversed.
  • the other spontaneous magnetization is also reversed so as to keep the antiparallel state.
  • FIG. 4A shows a “first state” in which the direction of the spontaneous magnetic field of the first magnetic film 131 and the direction force of the spontaneous magnetic field of the pinned magnetic layer 123 are “antiparallel”, and FIG. 4B shows the first magnetic film. It shows the “second state” where the direction of 131's spontaneous magnetization and the direction of the spontaneous magnetization of fixed magnetic layer 123 are “parallel”. ing. Due to the magnetoresistive effect, the resistance value (R + ⁇ R) of the magnetoresistive element 120 in the first state is larger than the resistance value (R) in the second state.
  • the toggle-write type MRAM uses the magnetoresistive element 120 as the memory cell 103 and stores data in a nonvolatile manner by utilizing the change in resistance value. For example, the first state shown in FIG. 4A is associated with data “1”, and the second state shown in FIG. 4B is associated with data “0”.
  • FIG. 5 is a plan view showing the direction of spontaneous magnetization in a toggle-write MRAM.
  • a write word line 101 and a write bit line 102 are formed along the S direction and the T direction, respectively, orthogonal to each other.
  • the memory cell (the magnetoresistive element 120) is disposed between the write word line 101 and the write bit line 102.
  • the “magnetic easy axis direction” in the free magnetic layer 125 of the magnetoresistive element 120 is defined as the X direction
  • the “magnetic difficult axis direction” is defined as the Y direction.
  • toggle-write MRAM as shown in Fig.
  • the memory cells are arranged so that the easy axis direction (X direction) forms a 45 degree angle with the S direction or T direction.
  • the spontaneous magnetization of the first magnetic film 131 and the spontaneous magnetization of the second magnetic film 132 are antiparallel to each other and form an angle of 45 degrees with the S direction or the T direction.
  • FIGS. 6A and 6B are timing charts showing a write operation in a toggle write MRAM.
  • the write current I is supplied to the write word line 101,
  • the write current I is supplied to the write bit line 102.
  • the write current I is supplied to the write bit line 102.
  • FIG. 7 is a graph showing threshold characteristics in toggle write MRAM.
  • the vertical and horizontal axes represent the write current I and 1
  • a write current I 1, 1 corresponding to an area indicated by “TOGGLE” in the drawing is supplied to the write word line 101 and the write bit line 102 corresponding to the “selected cell” into which data is written.
  • the toggle operation is performed in the selected cell.
  • this threshold characteristic has no X-intercept and Y-intercept. Therefore, only the magnetic field generated by one of the write currents is applied to the “half-selected cell” in which one of the write word line 101 and the write bit line 102 is common to the selected cell. Therefore, no toggle operation occurs in the half-selected cell.
  • the toggle write method MRAM erroneous writing is significantly reduced compared to the conventional MRAM shown in FIG. 3B.
  • the write margin is drastically improved.
  • FIG. 8A is a graph showing the threshold characteristics of this MRAM in detail.
  • the vertical axis and the horizontal axis indicate the magnetic fields H 1 and H generated by the write currents I 1 and I, respectively.
  • Figure 8B shows
  • FIG. 7 is a graph showing the magnetoresistance characteristics of a free magnetic layer 125 in a dull write type MRAM.
  • the horizontal axis indicates the magnetic field H in the easy axis (X axis) direction
  • the vertical axis indicates
  • the magnetic field in the X-axis (magnetic easy axis) direction that is the minimum magnetic field required for the toggle operation is defined as "Spin Flop Field H". That is, the magnitude of the flop magnetic field H is sf sf
  • the flop magnetic field H is expressed as “uniaxial anisotropic magnetic field H” and “antiferromagnetic sf K”.
  • the upper limit and the lower limit of the toggle operation region are defined by the flop magnetic field H and the saturation sf magnetic field H, respectively.
  • the magnetic field H in the easy axis direction applied during the write operation must be within the range from the flop magnetic field H to the saturation magnetic field H as shown in FIG. 8B.
  • toggle write MRAM a technology that can further expand the toggle operation area is desired. Therefore, a technique that can increase the ratio of the saturation magnetic field H and the flop magnetic field H is desired.
  • toggle-writing MRAM a technology capable of reducing power consumption is desired in a toggle-writing MRAM. This is because the write current of toggle write MRAM tends to be larger than the write current of general MRAM shown in Fig.2.
  • a writing magnetic field that is, a writing current that is approximately 5 1/2 times that of a general asteroid characteristic is required. Therefore, a technology that can reduce the write current in toggle write MRAM is desired. For this purpose, it is desirable that the flop magnetic field H is small. In order to ensure thermal disturbance resistance, sf
  • the uniaxial anisotropic magnetic field H cannot be reduced excessively.
  • toggle writing method is not! /, And the following is known as a general MRAM technology! / ⁇ The
  • An object of the technique disclosed in Japanese Patent Laid-Open No. 2002-151758 is to provide a ferromagnetic tunnel magnetoresistive element that is stable against thermal fluctuation.
  • this ferromagnetic tunnel magnetoresistive element In the free layer of this ferromagnetic tunnel magnetoresistive element, at least five or more ferromagnetic layers and intermediate layers are stacked. Magnetic fields of two ferromagnetic layers adjacent to each other through the intermediate layer are arranged antiferromagnetically.
  • a magnetic memory disclosed in Japanese Unexamined Patent Publication No. 2003-298023 includes two magnetoresistive elements and a common wiring interposed therebetween.
  • the first magnetoresistive element has a first pinned layer and a first free layer.
  • the first pinned layer includes an even number of ferromagnetic layers stacked via a nonmagnetic layer.
  • the first free layer includes a single ferromagnetic layer or a plurality of ferromagnetic layers stacked via a nonmagnetic layer.
  • the second magnetoresistive element has a second pinned layer and a second free layer.
  • the second pinned layer includes a single ferromagnetic layer or three or more ferromagnetic layers stacked via a nonmagnetic layer.
  • the second free layer includes a single ferromagnetic layer or a plurality of ferromagnetic layers stacked via a nonmagnetic layer.
  • Japanese Patent Laid-Open No. 2003-331574 discloses a method of writing to MRAM.
  • a first magnetic field parallel to the hard axis is applied to a magnetoresistive element having an easy axis and a hard axis, and then a second magnetic field weaker than the first magnetic field and parallel to the hard axis is provided.
  • the pinned layer has a function as a magnetic field applying member for applying a static magnetic field to the free layer. is doing.
  • the strength force of the leakage magnetic field from the pinned layer is set to be a predetermined value or more.
  • Japanese Patent Laid-Open No. 5-266651 (Seventh Conventional Example) discloses a magnetic thin film memory element.
  • This magnetic thin film memory element stores information according to the direction of the magnetic layer of the magnetic thin film.
  • This magnetic thin film has a laminated structure. Specifically, in this magnetic thin film, a magnetic layer a having a large coercive force and a magnetic layer b having a small coercive force are transferred to a / c / b / c / a / c / b / c via a nonmagnetic layer c. - ⁇ ⁇ ⁇ Is laminated. Disclosure of the invention
  • An object of the present invention is to provide a toggle write type MRAM capable of suppressing disturbance and capable of expanding an operation area.
  • Another object of the present invention is to provide a toggle write type MRAM capable of suppressing disturbance and capable of reducing a write current.
  • the magnetic random access memory according to the present invention is a “toggle write system”.
  • This magnetic random access memory includes a free magnetic layer, a pinned magnetic layer, and a nonmagnetic layer sandwiched between the free magnetic layer and the pinned magnetic layer.
  • the free magnetic layer has 2n layers (n is an integer of 2 or more) magnetic films antiferromagnetically coupled to each other.
  • the free magnetic layer further has a (2n ⁇ 1) nonmagnetic film, and the 2n magnetic film and the (2n ⁇ 1) nonmagnetic film are alternately laminated.
  • the non-magnetic films of the (2n-1) layer have the same film thickness and are the same.
  • the materials of the magnetic films of the 2n layer are substantially the same and the materials thereof are the same.
  • the inventors of the present application have discovered and demonstrated that the operation region of the magnetic random access memory is expanded by such a configuration. Furthermore, the present inventors have discovered and demonstrated that such a configuration reduces the write current of the magnetic random access memory.
  • FIG. 1 is a plan view showing a configuration of a conventional MRAM.
  • FIG. 2 is a conceptual diagram showing the structure of a magnetoresistive element used in a conventional MRAM.
  • FIG. 3A is a graph showing a threshold characteristic (asteroid curve) for a certain memory cell in a conventional MRAM.
  • FIG. 3B is a graph showing a distribution of threshold characteristics for a plurality of memory cells in a conventional MRAM.
  • FIG. 4A is a conceptual diagram showing the structure of a magnetoresistive element used in a conventional toggle write MRAM.
  • FIG. 4B is a conceptual diagram showing the structure of a magnetoresistive element used in a conventional toggle write MRAM.
  • FIG. 5 is a plan view showing the direction of spontaneous magnetization in a conventional toggle write MRAM.
  • FIGS. 6A and 6B are timing charts showing a write operation in a conventional toggle write MRAM.
  • FIG. 7 is a graph showing threshold characteristics in a conventional toggle write MRAM.
  • FIG. 8A is a graph showing details of threshold characteristics in a conventional toggle write MRAM.
  • FIG. 8B is a graph showing the magnetic resistance characteristics of the free magnetic layer in the conventional toggle write MRAM.
  • FIG. 9 is a plan view showing the configuration of the MRAM according to the present invention.
  • FIG. 10 is a schematic diagram showing the structure of a magnetoresistive element used in the MRAM according to the present invention.
  • FIG. 11 is a graph showing magnetization characteristics of memory cells in the MRAM according to the present invention.
  • FIG. 12A is a graph showing the relationship between the saturation magnetic field and the uniaxial anisotropic magnetic field in the MRAM according to the present invention.
  • FIG. 12B is a graph showing the relationship between the saturation magnetic field and the number of laminated magnetic films N in the MRAM according to the present invention.
  • FIG. 13A is a graph showing a relationship between a flop magnetic field and a uniaxial anisotropic magnetic field in the MRAM according to the present invention.
  • FIG. 13B is a graph showing the relationship between the flop magnetic field and the number N of stacked magnetic films in the MRAM according to the present invention.
  • FIG. 14 is a conceptual diagram showing an example of the structure of a magnetoresistive element used in the MRAM according to the present invention.
  • FIG. 15 is a conceptual diagram showing another example of the structure of the magnetoresistive element used in the MRAM according to the present invention.
  • FIG. 16 is a graph showing the magnetization characteristics of the magnetoresistive element shown in FIGS. 14 and 15. It is.
  • FIG. 17 is a conceptual diagram showing still another example of the structure of the magnetoresistive element used in the MRAM according to the present invention.
  • MRAM magnetic random access memory
  • FIG. 9 is a plan view showing the configuration of the MRAM according to the present invention.
  • the MRAM 1 according to the present invention includes a write word line 2 formed along the S direction and a write bit line 3 formed along the T direction.
  • the S direction and the T direction are substantially perpendicular to each other. That is, the write mode line 2 and the write bit line 3 are provided so as to cross each other.
  • the write current I is supplied to the write word line 2 and this write current I
  • Direction write magnetic field H is generated. During write operation, write to write bit line 3
  • a memory cell 4 is provided at the intersection of the write word line 2 and the write bit line 3.
  • the memory cell 4 is arranged so as to be sandwiched between the write word line 2 and the write bit line 3, and acts on the memory cells 4 with the write magnetic fields H and H 1S.
  • Memory cell 4 has
  • a magnetoresistive element 10 exhibiting a magnetoresistive effect is included.
  • the easy axis direction of the free magnetic layer (free layer) included in the magnetoresistive element 10 is defined as the X direction, and the hard axis direction is defined as the Y direction.
  • the X direction forms an angle of approximately 45 degrees with respect to the S direction or the T direction. That is, the magnetoresistive element 10 is arranged so that the angle formed between the easy magnetization axis and the write word line 2 or the write bit line 3 is about 45 degrees.
  • FIG. 10 is a conceptual diagram showing the structure of the magnetoresistive element 10 according to the present invention.
  • the magnetoresistive element 10 includes a lower electrode layer 11, an antiferromagnetic layer 12, a pinned magnetic layer (pinned layer) 13, a barrier layer 14, a free magnetic layer (free layer) 15, and an upper electrode layer 16.
  • Each of the fixed magnetic layer 13 and the free magnetic layer 15 includes a ferromagnetic layer having a spontaneous magnetization.
  • the orientation of the spontaneous magnetism of the fixed magnetic layer 13 is fixed in a predetermined direction.
  • free magnetism The direction of the spontaneous magnetization of the magnetic layer 15 can be reversed.
  • the noria layer 14 is a nonmagnetic layer including an insulating film or a metal film, and is sandwiched between the pinned magnetic layer 13 and the free magnetic layer 15.
  • the noria layer 14 is, for example, a tunnel insulating film.
  • MTJ magnetic tunnel junction
  • the free magnetic layer 15 includes magnetic films 20-1 to 20-2n of 2n layers (n is an integer of 2 or more) that are antiferromagnetically coupled to each other. That is, the free magnetic layer 15 has four or more even-numbered magnetic films 20, and the plurality of magnetic films 20-1 to 20-2n are antiferromagnetically coupled to each other.
  • a nonmagnetic film (antiferromagnetic coupling film) 30 for realizing antiferromagnetic coupling is formed between adjacent magnetic films 20. That is, the free magnetic layer 15 also includes (2n-1) non-magnetic films 30-1 to 30- (2n-1). As shown in FIG. 10, 2n magnetic films 20 and (2n-1) nonmagnetic films 30 are alternately stacked.
  • the 2n magnetic films 20 are equivalent to each other. That is, it is preferable that the materials and film thicknesses of the 2n magnetic film 20 are the same.
  • the material of the magnetic film 20 include at least one selected from the group consisting of Ni, Fe, Co, Mn, and compounds thereof.
  • the film thickness of the magnetic film 20 is 1.5 ⁇ ! ⁇ 10 nm is exemplified.
  • the (2n ⁇ l) non-magnetic films 30 are equivalent to each other. That is, it is preferable that the nonmagnetic film 30 of the (2n-1) layer has the same material and film thickness.
  • Examples of the material of the nonmagnetic film 30 include at least one selected from the group consisting of Ru, Os, Re, Ti, Cr, Rh, Cu, Pt, and Pd. Further, the film thickness of the nonmagnetic film 30 is exemplified by 0.4 nm to 3 nm.
  • This magnetoresistive element 10 has two stable states. In the “first state”, the direction of the spontaneous magnetization in the magnetic film 20-1 adjacent to the barrier layer 14 is indicated by the arrow in FIG. The direction is “antiparallel” to the direction of the spontaneous magnetization in the pinned magnetic layer 13. In the “second state”, the direction of the spontaneous magnetization in the 2n-layer magnetic film 20 is totally reversed. In other words, the direction of the spontaneous magnetization in the magnetic film 20-1 is “parallel” to the direction of the spontaneous magnetization in the pinned magnetic layer 13. Due to the magnetoresistive effect, the resistance value (R + AR) of the magnetoresistive element 10 in the first state is larger than the resistance value (R) in the second state.
  • the MRAM 1 stores data in a nonvolatile manner by utilizing the change in resistance value. For example, the first state shown in FIG. 10 is associated with data “1”, and the second state is associated with data “0”.
  • the data stored in a certain memory cell 4 is read by detecting the magnitude of the resistance value of the magnetoresistive element 10. Specifically, the magnitude of the resistance value is detected by applying a predetermined voltage between the lower electrode layer 11 and the upper electrode layer 16 and detecting the magnitude of the current flowing through the magnetoresistive element 10. Is done. The data stored in the target memory cell 4 is determined by the magnitude of the detected resistance value.
  • data writing is performed by reversing the direction of the spontaneous magnetization in the 2n magnetic film 20 included in the free magnetic layer 15.
  • the toggle writing method the data (stored data) stored in the target memory cell is read before the data is written.
  • the write operation is executed only when the stored data and the write data are different.
  • the write operation is performed in the following order. That is, the write current I is supplied to the write word line 2 at time tl, and the write current I is supplied to the write bit line 3 at time t2.
  • the magnetic state of the free magnetic layer 15 changes like a toggle switch between the “first state” and the “second state” at every write operation.
  • the free magnetic layer 15 has the magnetic film 20 of 2n layers (n is an integer of 2 or more) mutually “antiferromagnetically coupled”.
  • n is an integer of 2 or more
  • the inventors of the present application have discovered and demonstrated that such a configuration expands the operation area of MRAM1. Furthermore, the present inventors have discovered and demonstrated that such a configuration reduces the write current of MRAM1.
  • the data that serves as the basis will be described in detail.
  • FIG. 11 shows the magnetic properties of the free magnetic layer 15 having the equivalent 2n magnetic film 20.
  • the horizontal axis represents the magnetic field H in the easy axis direction (X direction), and the vertical axis represents the saturation magnetization M.
  • anisotropy energy
  • J antiferromagnetic coupling energy
  • magnetization
  • 0 the angle between the first magnetic film and the magnetic axis
  • the second magnetic film and the magnetic field.
  • Fig. 12A shows the relationship between the saturation magnetic field H and the uniaxial anisotropic magnetic field H.
  • the vertical axis and the horizontal axis represent the antiferromagnetic coupling magnetic field H.
  • the standardized saturation magnetic field H / H increases.
  • the normalized saturation magnetic field H / H increases as the number N of stacked magnetic films 20 increases.
  • the saturation magnetic field H increases as the number N of stacked layers increases. This is dynamic sat
  • FIG. 13A shows the relationship between the flop magnetic field H and the uniaxial anisotropic magnetic field H, and the number of stacks N is a parameter.
  • the standardized flop magnetic field H and uniaxial anisotropic magnetic field H are respectively shown.
  • the number of stacks is F for all H compared to the case where the number N is an even number.
  • the operating area does not expand so much.
  • the number of layers N must be an even number and 4 or more.
  • the increase in operating margin is greatest when the number of stacks N changes from 2 to 4.
  • the actual number of stacked layers N is the increase in operating margin and manufacturing variations (uniaxial anisotropic magnetic field H variation, magnetic film thickness variation, antiferromagnetic
  • the saturation magnetic field H is set equally for each number N of layers (the antiferromagnetic coupling magnetic field H changes for each number N of layers). In other words, this
  • the magnetic field H (norm) of the above means the standardized flop magnetic field H sf sat sf when the saturation magnetic field H is constant. For example, if the number N is 4, the standardized flop magnetic field H (norm) is sf
  • FIG. 14 is a conceptual diagram showing a first magnetoresistive element having structure A.
  • the magnetoresistive element includes a seed layer 41, an antiferromagnetic layer 42, a pinned magnetic layer 43, a noria layer 44, a free magnetic layer 45, and a cap layer 46, which are sequentially stacked on a substrate.
  • the seed layer 41 is a Ta film having a thickness of 20 ⁇ m.
  • the antiferromagnetic layer 42 is a PtMn film having a thickness of 20 nm.
  • the pinned magnetic layer 43 is composed of a CoFe film having a thickness of 2.5 nm, a Ru film having a thickness of 0.88 nm, and a CoFe film having a thickness of 2.5 nm.
  • the noria layer 44 is a film obtained by oxidizing an A1 film having a thickness of 1 nm.
  • Each nonmagnetic film (antiferromagnetic coupling film) is a Ru film having a thickness of 2. lnm.
  • Cap layer 46 is composed of a Ta film having a A1 film and lOOnm in thickness, which is oxidized with a thickness of 0. 7 n m.
  • FIG. 15 is a conceptual diagram showing a second magnetoresistance element having the structure B.
  • the magnetoresistive element includes a seed layer 51, an antiferromagnetic layer 52, a pinned magnetic layer 53, a noria layer 54, a free magnetic layer 55, and a cap layer 56, which are sequentially stacked on a substrate.
  • Each of the seed layer 51, the antiferromagnetic layer 52, the pinned magnetic layer 53, the barrier layer 54, and the cap layer 56 has the following composition: the seed layer 41, the antiferromagnetic layer 42, the pinned magnetic layer 43, Each of the barrier layer 44 and the cap layer 46 is the same.
  • Each magnetic film is composed of a NiFe film having a thickness of 4 nm and a CoFe film having a thickness of 0.5 nm, like the first magnetoresistive element.
  • Each nonmagnetic film is a Ru film having a film thickness of 2. lnm, like the first magnetoresistive element.
  • the horizontal axis shows the magnetic field H in the easy axis direction (X direction), and the vertical axis
  • the axis indicates the magnetization MX normalized by the saturation magnetization Ms.
  • Example 2 By adjusting the film thickness of the magnetic film and nonmagnetic film (antiferromagnetic coupling film) in the free ferromagnetic layer, the saturation magnetic field is almost the same as in the case of the first magnetoresistive element. 3rd sat with H
  • FIG. 17 is a conceptual diagram showing a third magnetoresistive element having the structure C.
  • the magnetoresistive element includes a seed layer 61, an antiferromagnetic layer 62, a pinned magnetic layer 63, a noria layer 64, a free magnetic layer 65, and a cap layer 66 that are sequentially stacked on a substrate.
  • the thickness of each of the seed layer 61, the antiferromagnetic layer 62, the pinned magnetic layer 63, the barrier layer 64, and the cap layer 66 is determined by the seed layer 41, the antiferromagnetic layer 42, the pinned magnetic layer 43, Each of the barrier layer 44 and the cap layer 46 is the same.
  • Each magnetic layer is composed of a CoFe film with a thickness of the NiFe film with 0. 3 n m having a thickness of 2nm to Ru.
  • Each nonmagnetic film (antiferromagnetic coupling film) is a Ru film having a thickness of 3.6 nm.
  • the flop magnetic field H decreases when the saturation magnetic field H is constant.
  • the toggle-writing MRAM 1 has the magnetic film 20 of the 2n layers (n is an integer of 2 or more) in which the free magnetic layers 15 are antiferromagnetically coupled to each other. It is configured as follows. As a result, the operation area is expanded. In addition, write current is reduced and power consumption is reduced.
  • the operation area is expanded.
  • the write current is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

 トグル書込み方式の磁気ランダムアクセスメモリは、自由磁性層と、固定磁性層と、自由磁性層と固定磁性層に挟まれた非磁性層とを具備する。自由磁性層は、互いに反強磁性結合した2n層(nは2以上の整数)の磁性膜を有する。

Description

明 細 書
磁気ランダムアクセスメモリ
技術分野
[0001] 本発明は、磁気ランダムアクセスメモリ(MRAM : Magnetic Random Access Memory)に関し、特に、「トグル書込み方式」の磁気ランダムアクセスメモリに関する 背景技術
[0002] 磁気ランダムアクセスメモリ(MRAM)は、高集積と高速動作の観点から有望な不 揮発性メモリである。 MRAMにおいては、 AMR (Anisotropic MagnetoResistance) 効果、 GMR (Giant MagnetoResistance)効果、及び TMR (Tunnel MagnetoResistanc e)効果といった磁気抵抗効果を示す磁気抵抗素子が利用される。
[0003] 図 1は、米国特許 US5640343号(第 1従来例)に開示された MRAMの構成を示 す平面図である。この MRAM100は、互いに直交するように形成された書込みヮー ド線 101と書込みビット線 102を備えている。書込みワード線 101と書込みビット線 10 2の交点にはメモリセル 103が配置されており、このメモリセル 103が磁気抵抗素子を 含んでいる。
[0004] 図 2は、従来の磁気抵抗素子の構造を示す概念図である。この磁気抵抗素子 110 は、下部電極層 111、反強磁性層 112、固定磁性層(ピン層) 113、バリア層 114、自 由磁性層(フリー層) 115及び上部電極層 116を含んでいる。ノリア層 114は、絶縁 膜あるいは金属膜を含む非磁性層であり、固定磁性層 113と自由磁性層 115に挟ま れている。固定磁性層 113と自由磁性層 115とは、いずれも、自発磁化を有する強 磁性層を含んで 、る。固定磁性層 113の自発磁化の向き(orientation)は所定の方 向に固定されている。一方、自由磁性層 115の自発磁ィ匕の向きは反転可能であり、 固定磁性層 113の自発磁化の向きと平行、又は反平行になることが許されて ヽる。
[0005] 固定磁性層 113と自由磁性層 115の自発磁ィ匕の向き力 '反平行"である場合の磁 気抵抗素子 110の抵抗値 (R+ A R)は、磁気抵抗効果により、それらが"平行"であ る場合の抵抗値 (R)よりも大きくなることが知られている。 MRAM100は、この磁気 抵抗素子 110をメモリセル 103として用い、この抵抗値の変化を利用することによって データを不揮発的に記憶する。メモリセル 103のデータの書き換えは、自由磁性層 1 15の自発磁ィ匕の向きを反転させることによって行われる。具体的には、自由磁性層 1 15の磁ィ匕容易軸が書込みワード線 101あるいは書込みビット線 102と平行になるよう に、メモリセル 103は配置されている。これら書込みワード線 101と書込みビット線 10 2に、それぞれ書込み電流 I 及び I が供給される。書込み電流 I , I が所定の条
WL BL WL BL
件を満たす場合、その書込み電流により発生する外部磁界によって、自由磁性層 11 5の自発磁化の向きが反転される。
[0006] 図 3Aは、その所定の条件(閾値)を示す図である。図 3Aに示される曲線はァステロ イドカーブと呼ばれており、自由磁性層 115の自発磁ィ匕の反転に必要な最低限の書 込み電流 I 、 I を示す。つまり、このァステロイドカーブの外側の Reversal領域に
WL BL
対応する書込み電流 I 、1
WL BLが供給された場合、データの書き換えが行われる。一 方、供給される書込み電流 I 、 I 1S ァステロイドカーブの内側の Retention領域
WL BL
に落ちる場合、データの書き換えは行われない。その閾値の書込み電流 I 、1
WL BLによ つて発生する外部磁界を H , Hとし、
X Y 一軸異方性磁界を Hとする。この時、磁界 h (
K X
=H /H ), h (=H /H )に対して以下の関係が成立する。
X K Y Y K
[0007] [数 1] l = hx 2/3 +hY 2/3 -- ' (1)
[0008] 図 3Bは、複数のメモリセルに対するァステロイドカーブの分布を示す。各メモリセル が有する磁気抵抗素子 110の特性にはバラツキが存在する。そのため、複数のメモリ セルに対するァステロイドカーブ群(曲線群)は、図 3Bに示されるように、曲線 Cmax と曲線 Cminの間に分布することになる。書込みが行われるためには、書込み電流 I
W
、 I は、少なくとも、曲線 Cmaxの外側の Reversal領域に存在する必要がある。ここ し BL
で、その書込み電流 I 、 I
WL BLは、対象となるメモリセル以外のメモリセルにも影響を与 える(以下、「ディスターブ」と参照される)。書込み電流 I と I のい
WL BL ずれか一方により 発生する磁界によって、対象ではな 、メモリセルに書込みが行われな 、ようにする必 要がある。そのため、書込みワード線 101を流れる電流 I は I より小さぐ且つ、
WL X(min) 書込みビット線 102を流れる電流 I は I より小さい必要がある。よって、書込み電
BL Y(min)
流 I 、1 は、図 3B中のハッチング領域(書込みマージン)に対応していなければな
WL BL
らない。磁気抵抗素子 110の特性のバラツキが大きくなるにつれ、この書込みマージ ンは小さくなる。
[0009] このようなメモリ特性の劣化や誤書込み (ディスターブ)を抑制するための技術として 、「トグル書込み方式」が提案されている。例えば、米国特許 US6545906号 (第 2従 来例)には、トグル書込み方式の MRAMが開示されている。トグル書込み方式の M RAMにおいては、「反強磁性結合力」が用いられる。ある種の材料は、隣り合う磁ィ匕 を逆向きに働かせる力 (反強磁性結合力)を持っており、これは反強磁性材料と呼ば れる。極めて薄い導電膜を強磁性膜の間に挟み込むことでも、同様の反強磁性結合 力を働かせることができることが知られている。トグル書込み方式の MRAMにおいて は、互いに反強磁性的に結合した N層(Nは 2以上の整数)の磁性膜が用いられる。 第 2従来例にお 、ては、 N = 2と N = 3の場合が示されて 、る。
[0010] 図 4A及び図 4Bは、トグル書込み方式の MRAMにおいて用いられる磁気抵抗素 子 120の構造を示す概念図である。この磁気抵抗素子 120は、下部電極層 121、反 強磁性層 122、固定磁性層(ピン層) 123、バリア層 124、自由磁性層(フリー層) 12 5及び上部電極層 126を含んでいる。ここで、この自由磁性層 125は、「反強磁性的」 に結合した第 1磁性膜 131と第 2磁性膜 132を含んでいる (N = 2)。具体的には、第 1磁性膜 131と第 2磁性膜 132との間には、薄い非磁性膜 133が挟まれている。この 反強磁性結合により、図 4A及び図 4B中の矢印で示されているように、第 1磁性膜 13 1と第 2磁性膜 132の自発磁ィ匕の方向は、安定状態において反平行となる。自由磁 性層(フリー層) 125中の第 1磁性膜 131と第 2磁性膜 132の自発磁ィ匕の向きは反転 可能である。一方の自発磁化が反転した場合、反平行状態を保つように、他方の自 発磁化も反転する。
[0011] 自由磁性層 125中の第 1磁性膜 131は、ノリア層 124を介して固定磁性層 123上 に積層されている。図 4Aは、第 1磁性膜 131の自発磁ィ匕の向きと固定磁性層 123の 自発磁ィ匕の向き力 反平行"である「第 1状態」を示し、図 4Bは、第 1磁性膜 131の自 発磁ィ匕の向きと固定磁性層 123の自発磁ィ匕の向きが"平行"である「第 2状態」を示し ている。磁気抵抗効果により、第 1状態における磁気抵抗素子 120の抵抗値 (R+ Δ R)は、第 2状態における抵抗値 (R)よりも大きくなる。トグル書込み方式の MRAMは 、この磁気抵抗素子 120をメモリセル 103として用い、抵抗値の変化を利用すること によってデータを不揮発的に記憶する。例えば、図 4Aに示される第 1状態は、デー タ「1」に対応付けられ、図 4Bに示される第 2状態は、データ「0」に対応付けられる。
[0012] 図 5は、トグル書込み方式の MRAMにおける自発磁化の方向を示す平面図である 。図 5において、書込みワード線 101及び書込みビット線 102は、互いに直交する S 方向及び T方向に沿ってそれぞれ形成されて 、る。メモリセル (磁気抵抗素子 120) は、書込みワード線 101と書込みビット線 102に挟まれて配置されている。ここで、磁 気抵抗素子 120の自由磁性層 125における「磁ィ匕容易軸方向」を X方向とし、「磁ィ匕 困難軸方向」を Y方向とする。トグル書込み方式の MRAMにおいては、図 5に示さ れるように、磁ィ匕容易軸方向(X方向)が S方向あるいは T方向と 45度の角をなすよう に、メモリセルが配置される。安定状態において、第 1磁性膜 131の自発磁化と第 2 磁性膜 132の自発磁ィ匕は、互いに反平行であり、且つ、 S方向あるいは T方向と 45 度の角度をなしている。
[0013] このような MRAMにおいて、データの書込みは、第 1磁性膜 131と第 2磁性膜 132 における自発磁ィ匕の方向を反転させることによって行われる。トグル書込み方式によ れば、データの書込みの前に、対象メモリセルに格納されているデータ(格納データ )の読み出しが行われる。格納データと書込みデータが異なっている場合にのみ、書 込み動作が実行される。
[0014] 図 6Aと 6Bは、トグル書込み方式の MRAMにおける書込み動作を示すタイミング チャートである。まず、時刻 tlで、書込みワード線 101に書込み電流 I が供給され、
WL
時刻 t2で、書込みビット線 102に書込み電流 I が供給される。続いて、時刻 t3で、
Bし
書込み電流 I の供給が停止し、時刻 t4で、書込み電流 I の供給が停止する。この
WL BL
ような電流制御を行うことによって、第 1磁性膜 131と第 2磁性膜 132における自発磁 化の方向が反転する(第 2従来例参照)。つまり、トグル書込み方式によれば、自由磁 性層 125の磁ィ匕状態は、書込み動作の度に、「第 1状態」と「第 2状態」の間でトグル スィッチのように変化する。 [0015] 図 7は、トグル書込み方式の MRAMにおける閾値特性を示すグラフ図である。図 7 において、縦軸と横軸は、それぞれ書込み電流 I 、1
WL BLを示す。データが書き込まれ る"選択セル"に対応する書込みワード線 101及び書込みビット線 102には、図中の「 TOGGLE」と示された領域に対応する書込み電流 I , 1 が供給される。これにより
WL BL
、その選択セルにおいてトグル動作が行われる。ここで、図 7に示されるように、この 閾値特性は X切片、 Y切片を持たない。よって、書込みワード線 101及び書込みビッ ト線 102のいずれか一方が選択セルと共通である"半選択セル"には、いずれかの書 込み電流による磁界しか印加されない。従って、その半選択セルにおいてトグル動作 は起こらない。このように、トグル書込み方式の MRAMによれば、図 3Bに示された 従来の MRAMと比較して、誤書込みが大幅に低減される。また、書込み電流の値を 厳密に制御する必要がないので、書込みマージンは飛躍的に向上する。
[0016] トグル書込み方式の MRAMの動作領域は、次のように規定される。図 8Aは、この MRAMの閾値特性を詳細に示すグラフ図である。図 8Aにおいて、縦軸と横軸は、 それぞれ書込み電流 I , I によって生成される磁界 H , H を示す。図 8Bは、ト
WL BL WL BL
ダル書込み方式の MRAMにおける自由磁性層 125の磁気抵抗特性を示すグラフ 図である。図 8Bにおいて、横軸は、磁化容易軸 (X軸)方向の磁界 Hを示し、縦軸は
X
、抵抗値を示す。
[0017] トグル動作に必要な最小の磁界であって、 X軸 (磁ィ匕容易軸)方向の磁界が、「フロ ップ磁界(Spin Flop Field) H」と定義される。すなわち、フロップ磁界 H の大きさは、 sf sf
図 8Aにおいて原点から点 aまでの距離で定義される。自由磁性層 125が 2層の等価 な磁性膜から構成される場合、フロップ磁界 H は、「一軸異方性磁界 H」と「反強磁 sf K
性結合磁界 H」を用いて、次の式で表される。
I
[0018] [数 2]
Figure imgf000007_0001
[0019] また、書込み動作時の磁界がある値よりも大きくなつた場合、自由磁性層 125に含 まれる各磁性膜の自発磁ィ匕は完全に同じ方向を向いてしまう。この時、動作が不安 定になってしまう。不安定にならない限界の磁界は、図 8Aにおいて曲線 Cで示され ている。その限界の磁界であって、 X軸 (磁ィ匕容易軸)方向の磁界力 「飽和磁界 (Sa turation Field) H 」と定義される。すなわち、飽和磁界 H の大きさは、図 8Aにおい sat sat
て原点力 曲線 Cまでの距離で定義される。
[0020] このように、トグル動作領域の上限及び下限は、それぞれフロップ磁界 H及び飽和 sf 磁界 H で規定される。書込み動作時に印加される磁化容易軸方向の磁界 Hは、 sat X 図 8Bに示されるように、フロップ磁界 Hから飽和磁界 H までの範囲に入る必要が sf sat
ある。トグル書込み方式の MRAMにおいて、このトグル動作領域を更に拡大すること ができる技術が望まれている。そのために、飽和磁界 H とフロップ磁界 Hの比を増 sat sr カロさせることができる技術が望まれて 、る。
[0021] また、トグル書込み方式の MRAMにおいて、消費電力を低減することができる技 術が望まれている。それは、トグル書込み方式の MRAMによる書込み電流は、図 2 に示される一般的な MRAMによる書込み電流よりも大きくなる傾向があるからである 。一例として、図 4Aに示された 2層の磁性膜から構成された自由磁性層 125に対す るフロップ磁界 Hと、図 2に示された単層の自由磁性層 115に対する書込み磁界と sf
の比較を行う。両自由磁性層において、一軸異方性磁界 H
Kは同じと仮定する。図 2 に示された自由磁性層 115に対する書込み磁界は、約 Hである。一方、反強磁性
K
結合磁界 Hが H =4Hで与えられる時、上記数式(2)により、フロップ磁界 H は次
I I K sf 式で与えられる。
[0022] [数 3]
HSF = ^J5HK - (3)
[0023] このように、トグル書込み方式によれば、一般的なァステロイド特性と比較して、約 5 1/2倍の書込み磁界、すなわち書込み電流が必要となる。従って、トグル書込み方式 の MRAMにおいて、書込み電流を低減することができる技術が望まれている。その ためには、フロップ磁界 H が小さいことが望ましい。尚、熱擾乱耐性を確保するため sf
に、一軸異方性磁界 Hをむやみに小さくすることはできない。
K
[0024] 尚、トグル書込み方式ではな!/、一般的な MRAMの技術として、以下が知られて!/ヽ る。
[0025] 特開 2002— 151758号公報 (第 3従来例)に開示された技術の目的は、熱揺らぎ に対して安定な強磁性トンネル磁気抵抗素子を提供することである。この強磁性トン ネル磁気抵抗素子のフリー層にお 、て、強磁性層と中間層が少なくとも 5層以上積 層されている。中間層を介して隣接する 2層の強磁性層の磁ィ匕は、反強磁性的に配 列されている。
[0026] 特開 2003— 298023号公報 (第 4従来例)に開示された磁気メモリは、 2つの磁気 抵抗素子と、それらの間に介在した共通配線を備える。第 1の磁気抵抗素子は、第 1 のピン層と第 1のフリー層を有する。第 1のピン層は、非磁性層を介して積層された偶 数層の強磁性層を含む。第 1のフリー層は、単層の強磁性層、あるいは非磁性層を 介して積層された複数の強磁性層を含む。第 2の磁気抵抗素子は、第 2のピン層と 第 2のフリー層を有する。第 2のピン層は、単層の強磁性層、あるいは非磁性層を介 して積層された 3層以上の強磁性層を含む。第 2のフリー層は、単層の強磁性層、あ るいは非磁性層を介して積層された複数の強磁性層を含む。
[0027] 特開 2003— 331574号公報(第 5従来例)には、 MRAMの書込み方法が開示さ れている。この書込み方法は、容易軸及び困難軸を有する磁気抵抗効果素子に、困 難軸に平行な第 1磁界を作用させるステップと、その後、第 1磁界より弱く困難軸に平 行な第 2磁界と、容易軸に平行な第 3磁界とを、同時に磁気抵抗効果素子に作用さ せるステップとを有する。
[0028] 特開 2004— 87870号公報 (第 6従来例)に開示された磁気抵抗効果素子によれ ば、ピン層が、フリー層に静磁界を印加するための磁界印加部材としての機能を有し ている。その静磁界を印加するために、ピン層からの漏洩磁界の強さ力 所定の値以 上になるように設定されて 、る。
[0029] 特開平 5— 266651号公報 (第 7従来例)には、磁性薄膜メモリ素子が開示されて いる。この磁性薄膜メモリ素子は、磁性薄膜の磁ィ匕の向きによって情報を記憶する。 この磁性薄膜は、積層構造を有している。具体的には、この磁性薄膜において、保 磁力の大きな磁性層 aと保磁力の小さな磁性層 bが、非磁性層 cを介して、 a/c/b /c/a/c/b/c - · ·というように積層されている。 発明の開示
[0030] 本発明の目的は、ディスターブを抑制することができるトグル書込み方式の MRA Mであって、動作領域を拡大することができる MRAMを提供することにある。
本発明の他の目的は、ディスターブを抑制することができるトグル書込み方式の M RAMであって、書込み電流を低減することができる MRAMを提供することにある。
[0031] 本発明に係る磁気ランダムアクセスメモリは、「トグル書込み方式」である。この磁気 ランダムアクセスメモリは、自由磁性層と、固定磁性層と、自由磁性層と固定磁性層 に挟まれた非磁性層とを備える。
[0032] 自由磁性層は、互いに反強磁性結合した 2n層(nは 2以上の整数)の磁性膜を有 する。自由磁性層は(2n—l)層の非磁性膜を更に有し、上記 2n層の磁性膜と、その (2n— 1)層の非磁性膜は、交互に積層される。上記 (2n— 1)層の非磁性膜の膜厚 はほぼ等しぐそれらの材料は同じであると好ましい。また、上記 2n層の磁性膜のそ れぞれの膜厚はほぼ等しぐそれらの材料は同じであると好ましい。
[0033] 本願発明者らは、このような構成によって磁気ランダムアクセスメモリの動作領域が 拡大することを発見し、実証した。更に、本願発明者らは、このような構成によって磁 気ランダムアクセスメモリの書込み電流が低減されることを発見し、実証した。
図面の簡単な説明
[0034] [図 1]図 1は、従来の MRAMの構成を示す平面図である。
[図 2]図 2は、従来の MRAMに用いられる磁気抵抗素子の構造を示す概念図である
[図 3A]図 3Aは、従来の MRAMにおける、あるメモリセルに対する閾値特性(ァステ ロイドカーブ)を示すグラフ図である。
[図 3B]図 3Bは、従来の MRAMにおける、複数のメモリセルに対する閾値特性の分 布を示すグラフ図である。
[図 4A]図 4Aは、従来のトグル書込み方式の MRAMに用いられる磁気抵抗素子の 構造を示す概念図である。
[図 4B]図 4Bは、従来のトグル書込み方式の MRAMに用いられる磁気抵抗素子の 構造を示す概念図である。 [図 5]図 5は、従来のトグル書込み方式の MRAMにおける自発磁化の方向を示す平 面図である。
[図 6]図 6Aと 6Bは、従来のトグル書込み方式の MRAMにおける書込み動作を示す タイミングチャートである。
[図 7]図 7は、従来のトグル書込み方式の MRAMにおける閾値特性を示すグラフ図 である。
[図 8A]図 8Aは、従来のトグル書込み方式の MRAMにおける閾値特性の詳細を示 すグラフ図である。
[図 8B]図 8Bは、従来のトグル書込み方式の MRAMにおける自由磁性層の磁気抵 抗特性を示すグラフ図である。
[図 9]図 9は、本発明に係る MRAMの構成を示す平面図である。
[図 10]図 10は、本発明に係る MRAMに用いられる磁気抵抗素子の構造を示す概 念図である。
[図 11]図 11は、本発明に係る MRAMにおけるメモリセルの磁化特性を示すグラフ図 である。
[図 12A]図 12Aは、本発明に係る MRAMにおける飽和磁界と一軸異方性磁界との 関係を示すグラフ図である。
[図 12B]図 12Bは、本発明に係る MRAMにおける飽和磁界と磁性膜の積層枚数 N との関係を示すグラフ図である。
[図 13A]図 13Aは、本発明に係る MRAMにおけるフロップ磁界と一軸異方性磁界と の関係を示すグラフ図である。
[図 13B]図 13Bは、本発明に係る MRAMにおけるフロップ磁界と磁性膜の積層枚数 Nとの関係を示すグラフ図である。
[図 14]図 14は、本発明に係る MRAMに用いられる磁気抵抗素子の構造の一例を 示す概念図である。
[図 15]図 15は、本発明に係る MRAMに用いられる磁気抵抗素子の構造の他の例を 示す概念図である。
[図 16]図 16は、図 14及び図 15に示された磁気抵抗素子の磁化特性を示すグラフ図 である。
[図 17]図 17は、本発明に係る MRAMに用いられる磁気抵抗素子の構造の更に他 の例を示す概念図である。
発明を実施するための最良の形態
[0035] 添付図面を参照して、本発明による磁気ランダムアクセスメモリ(MRAM)を説明す る。本発明に係る MRAMは、「トグル書込み方式」の MRAMである。
[0036] 図 9は、本発明に係る MRAMの構成を示す平面図である。本発明に係る MRAM 1は、 S方向に沿って形成された書込みワード線 2と、 T方向に沿って形成された書込 みビット線 3を備えている。 S方向と T方向は、互いに略直角である。つまり、書込みヮ ード線 2と書込みビット線 3は、互いに交差するように設けられている。書込み動作時 、書込みワード線 2には書込み電流 I が供給され、この書込み電流 I によって T方
WL WL
向の書込み磁界 H が生成される。また、書込み動作時、書込みビット線 3には書込
WL
み電流 I が供給され、この書込み電流 I によって S方向の書込み磁界 H が生成さ
BL BL BL
れる。
[0037] 書込みワード線 2と書込みビット線 3の交点には、メモリセル 4が設けられている。メ モリセル 4は、書込みワード線 2と書込みビット線 3に挟まれるように配置されており、 上記書込み磁界 H 及び H 1S このメモリセル 4に作用する。また、メモリセル 4は、
WL BL
磁気抵抗効果を示す磁気抵抗素子 10を有している。磁気抵抗素子 10に含まれる自 由磁性層(フリー層)の磁化容易軸方向は X方向と定義され、その磁化困難軸方向 は Y方向と定義される。図 9に示されるように、本発明において、 X方向は、上記 S方 向あるいは T方向に対して略 45度の角をなす。つまり、磁化容易軸と書込みワード線 2あるいは書込みビット線 3とのなす角が略 45度になるように、磁気抵抗素子 10は配 置されている。
[0038] 図 10は、本発明に係る磁気抵抗素子 10の構造を示す概念図である。この磁気抵 抗素子 10は、下部電極層 11、反強磁性層 12、固定磁性層(ピン層) 13、バリア層 1 4、自由磁性層(フリー層) 15及び上部電極層 16を含んでいる。固定磁性層 13と自 由磁性層 15とは、いずれも、自発磁ィ匕を有する強磁性層を含んでいる。固定磁性層 13の自発磁ィ匕の向き(orientation)は所定の方向に固定されている。一方、自由磁 性層 15の自発磁ィ匕の向きは反転可能である。ノリア層 14は、絶縁膜あるいは金属 膜を含む非磁性層であり、固定磁性層 13と自由磁性層 15に挟まれている。ノリア層 14は、例えば、トンネル絶縁膜である。この時、固定磁性層 13、 バリア層 14、及び自 由磁性層 15によって、磁気トンネル接合(MTJ; Magnetic Tunnel Junction)が形成さ れる。
[0039] 本発明によれば、自由磁性層 15は、互いに反強磁性結合した 2n層(nは 2以上の 整数)の磁性膜 20— 1〜20— 2nを備えている。つまり、自由磁性層 15は、 4以上の 偶数層の磁性膜 20を有しており、それら複数の磁性膜 20— 1〜20— 2nは、互いに 反強磁性結合している。隣接する磁性膜 20の間には、反強磁性結合を実現するた めの非磁性膜 (反強磁性結合膜) 30が形成されている。つまり、自由磁性層 15は、 ( 2n— 1)層の非磁性膜 30— 1〜30— (2n— 1)をも備えている。そして、図 10に示さ れるように、 2n層の磁性膜 20と(2n— 1)層の非磁性膜 30は、交互に積層されている
[0040] 好適には、 2n層の磁性膜 20は互いに等価である。つまり、 2n層の磁性膜 20の材 料や膜厚は、それぞれ同じであることが好ましい。磁性膜 20の材料として、 Ni, Fe, Co, Mn及びそれらの化合物から構成されるグループから選択される少なくとも一種 類が例示される。また、磁性膜 20の膜厚として、 1. 5ηπ!〜 10nmが例示される。また 、好適には、(2n—l)層の非磁性膜 30は互いに等価である。つまり、(2n— 1)層の 非磁性膜 30の材料や膜厚は、それぞれ同じであると好ましい。非磁性膜 30の材料と して、 Ru, Os, Re, Ti, Cr, Rh, Cu, Pt, Pdから構成されるグループから選択され る少なくとも一種類が例示される。また、非磁性膜 30の膜厚として、 0. 4nm〜3nm が例示される。
[0041] このような積層構造によって、互いに反強磁性結合した 2n層の磁性膜 20— 1〜20
—2nが実現される。これにより、隣接する 2層の磁性膜 20における自発磁ィ匕の方向 は、安定状態において"反平行"となる。つまり、図 10に示されるように、 2n層の磁性 膜 20— l〜20— 2nにおける自発磁ィ匕の方向は交互になる。
[0042] この磁気抵抗素子 10は、 2つの安定状態を有する。「第 1の状態」では、図 10中の 矢印で示されるように、バリア層 14に隣接する磁性膜 20 - 1における自発磁化の方 向は、固定磁性層 13における自発磁ィ匕の方向に"反平行"である。「第 2の状態」で は、 2n層の磁性膜 20における自発磁ィ匕の方向が全体的に反転している。つまり、磁 性膜 20 - 1における自発磁ィ匕の方向は、固定磁性層 13における自発磁ィ匕の方向に "平行"である。磁気抵抗効果により、第 1状態における磁気抵抗素子 10の抵抗値( R+ AR)は、第 2状態における抵抗値 (R)よりも大きくなる。 MRAM1は、この抵抗 値の変化を利用することによってデータを不揮発的に記憶する。例えば、図 10に示 される第 1状態は、データ「1」に対応付けられ、第 2状態は、データ「0」に対応付けら れる。
[0043] あるメモリセル 4に格納されたデータの読み出しは、この磁気抵抗素子 10の抵抗値 の大きさを検出することによって行われる。具体的には、下部電極層 11と上部電極 層 16の間に所定の電圧を印加し、磁気抵抗素子 10を流れる電流の大きさを検出す ること〖こよって、抵抗値の大きさが検出される。検出された抵抗値の大きさによって、 対象メモリセル 4に格納されているデータが判定される。
[0044] また、データの書込みは、自由磁性層 15に含まれる 2n層の磁性膜 20における自 発磁ィヒの方向を反転させることによって行われる。トグル書込み方式によれば、デー タの書込みの前に、対象メモリセルに格納されて 、るデータ (格納データ)の読み出 しが行われる。格納データと書込みデータが異なっている場合にのみ、書込み動作 が実行される。
[0045] 書込み動作は、次の順番で行われる。すなわち、時刻 tlで、書込みワード線 2に書 込み電流 I が供給され、時刻 t2で、書込みビット線 3に書込み電流 I が供給される
WL BL
。続いて、時刻 t3で、書込み電流 I の供給が停止し、時刻 t4で、書込み電流 I の
WL BL
供給が停止する。つまり、書込みワード線 2には、時刻 tlから時刻 t3までパルスが印 カロされ、書込みビット線 3には、時刻 t2から時刻 t4までパルスが印加される。ここで、 時刻 tl <時刻 t2<時刻 t3<時刻 t4である(図 6Aと 6B参照)。このような電流制御を 行うことによって、すなわち、書込み電流 I と I を供給するタイミングをずらすことに
WL BL
よって、複数の磁性膜 20における自発磁化が反転する。トグル書込み方式によれば 、自由磁性層 15の磁ィ匕状態は、書込み動作の度に、「第 1状態」と「第 2状態」の間で トグルスイッチのように変化する。 [0046] このように、本発明に係る MRAM1によれば、自由磁性層 15は、互いに「反強磁性 結合」した 2n層(nは 2以上の整数)の磁性膜 20を有している。本願発明者らは、この ような構成によって MRAM1の動作領域が拡大することを発見し、実証した。更に、 本願発明者らは、このような構成によって MRAM1の書込み電流が低減されることを 発見し、実証した。以下、その根拠となるデータを詳細に説明する。
[0047] 図 11は、等価な 2n層の磁性膜 20を有する自由磁性層 15の磁ィ匕特性を示してい る。横軸は、磁化容易軸方向(X方向)の磁界 Hを示し、縦軸は、飽和磁化 Mによつ
X s て規格化された磁化 Mを示している。また、磁性膜 20の積層数を N ( = 2n)とする。
X
図 11においては、 N = 2 N=4 N=6 N=8 N= 10の 5種類のメモリセルに対す る磁ィ匕特性が示されている。尚、この磁ィ匕特性は、 Landau-Lifshitz方程式を数値的 に解くこと〖こよって得られる。図 11に示されるように、積層数 Nが増加するにつれて、 「飽和磁界 H 」が増加することが分力つた。このような多層膜においては、両端では sat
ない磁性膜 20に対して、上層と下層から複数の反強磁性結合磁界が作用し、その 結果として飽和磁界 H が増加したものと考えられる。
sat
[0048] また、一般的に、磁化容易軸方向(X方向)に磁界 Hを印加した際の、 "2層"の等価 な磁性膜からなる系のエネルギー Etは、次式で表される。
[0049] [数 4]
Et = Ku sin2 θχ + Ku sin2 θ2 - HM (cos θχ + cos02 ) + J cos (θ^ - θ2 ) —=—— sin"" ΘΛ +—— sin2 ウ - // (cos +cos^ ) +― cos (ft - θ^ )
=丄 (HK sin2 θλ + HK sin2 Θ2 ) - Η (cos θ、 + cos »2 ) +丄 ^ cos (θχ一 θ2 )
2
- (4)
[0050] ここで、 Κは異方性エネルギー、 Jは反強磁性結合エネルギー、 Μは磁化、 0 は 第 1磁性膜と磁ィ匕容易軸とのなす角、 Θ は第 2磁性膜と磁ィ匕容易軸とのなす角、 Η
2 Κ は一軸異方性磁界( = 2Ku/M) Hは反強磁性結合磁界( = 2J/M)をそれぞれ
I
示す。 "多層"の等価な磁性膜からなる系のエネルギーは、これらのヤコビアンを計算 することによって導出される。 [0051] 図 12Aは、飽和磁界 H と一軸異方性磁界 H との関係を、積層数 Nをパラメータと sat K
して示している。図 12Aにおいて、縦軸及び横軸は、反強磁性結合磁界 Hによって
I
規格化された飽和磁界 H 及び一軸異方性磁界 Hをそれぞれ示している。尚、これ sat K
らの導出は、上記数式 (4)のヤコビアンを計算することによって行われる。図 12Aに 示されるように、ある積層数 Nに関しては、規格化された一軸異方性磁界 H /Hが小
K I
さいほど、規格化された飽和磁界 H /Hは大きくなる。
sat I
[0052] 図 12Bは、 H =0の場合における、規格化された飽和磁界 H /Hの積層数 Nに
K sat I
対する依存性を示している。図 12Bに示されるように、磁性膜 20の積層数 Nが増加 するにつれて、規格化された飽和磁界 H /Hは大きくなる。つまり、フロップ磁界 H sat I sr が一定の場合、積層数 Nが増加するにつれて飽和磁界 H は大きくなる。これは、動 sat
作領域 (H — H )が拡がることを意味する。
sat sf
[0053] 図 13Aは、フロップ磁界 H と一軸異方性磁界 H との関係を、積層数 Nをパラメ
K 一 タとして示している。図 13Aにおいて、縦軸及び横軸は、反強磁性結合磁界 Hによ
I
つて規格ィ匕されたフロップ磁界 H及び一軸異方性磁界 Hをそれぞれ示している。
K
尚、これらの導出は、上記数式 (4)のヤコビアンを計算することによって行われる。図 13Aに示されるように、積層数 Nが偶数の場合 (N = 2n)、数の多少に関わらず、規 格化されたフロップ磁界 H /Hには同じ依存性'傾向が見られた。また、積層数 Nが sf I
奇数の場合 (N = 2n— 1)、積層数 Nが偶数の場合と比較して、全ての H に対してフ
K
ロップ磁界 Hが大きくなる傾向が見られた。
[0054] 図 13Bは、 H =0の場合における、規格ィ匕されたフロップ磁界 H /Hの積層数 N
K sf I
に対する依存性を示している。図 13Bに示されるように、積層数 Nが偶数の場合 (N = 2n)、フロップ磁界 H は 0である。一方、積層数 Nが奇数の場合、フロップ磁界 H sf sf は有限の値を持ち、積層数 Nが増加するに従って減少する。
[0055] これらの結果力も次のことが導き出せる。積層数 Nが偶数の場合 (N = 2n)、フロッ プ磁界 H は一定であり、積層数 Nが増加するにつれて飽和磁界 H は増加する。こ sf sat
れは、積層数 Nが増加するに従って、動作領域が拡がることを意味する。一方、積層 数 Nが奇数の場合、積層数 Nが増加するにつれて飽和磁界 H は増加する力 フロ sat
ップ磁界 Hも N = 2の場合に比べて増加してしまう。すなわち、 N = 2の場合と比較し ても、動作領域はそれほど拡がらない。つまり、動作マージンを拡げるためには、積 層数 Nが偶数で、且つ 4以上である必要がある。動作マージンの増加幅は、積層数 Nが 2から 4に変わる場合に最も大きい。積層数 Nが大きくなつてくると、動作マージン の増加幅も少なくなつてくる。実際の積層数 Nは、その動作マージンの増加幅と製造 上のばらつき(一軸異方性磁界 Hのばらつき、磁性膜 20の膜厚のばらつき、反強磁
K
性結合膜 30の膜厚のばらつき、形状のばらつき等)を考慮して決定される。
[0056] 表 1は、 H /H =0. 2の場合の、規格ィ匕されたフロップ磁界 H /H、規格化された
K I sf I
飽和磁界 H /H、及び飽和磁界 H で規格ィ匕されたフロップ磁界 H (norm) (=H sat I sat sf
/H = (H /H ) / (H /H ) )を示している。ここで、磁性膜 20や反強磁性結合膜 3 sf sat sf I sat I
0の膜厚 ·材料を調整することによって、各積層数 Nに対して飽和磁界 H は等しく設 sat 定されている(反強磁性結合磁界 Hが各積層数 Nに対して変わっている)。つまり、こ
I
の磁界 H (norm)は、飽和磁界 H が一定の場合の規格ィ匕されたフロップ磁界 H sf sat sf を意味する。例えば、積層数 Nが 4の場合、規格ィ匕されたフロップ磁界 H (norm)は sf
、積層数 Nが 2の場合の約半分である。積層数 Nが更に増加すると、規格化されたフ ロップ磁界 H (norm)は、徐々に減少していく。つまり、一軸異方性磁界 Hと飽和 sf K 磁界 H が一定という条件下では、積層数 N力 以上に設定されることによって、書 sat
込み電流の値が、 N = 2の場合の半分以下に減少するということが分かる。すなわち 、消費電力が低減される。
[0057] [表 1]
Figure imgf000017_0001
[0058] 以下、更に具体的な例を用いて説明が行われる。
[0059] 例 1:積層数 Nが異なる 2種類の磁気抵抗素子が作製され、それらに対するフロップ 磁界 H と飽和磁界 H の評価がなされた。 [0060] 図 14は、構造 Aを有する第 1の磁気抵抗素子を示す概念図である。この磁気抵抗 素子は、基板上に順番に積層されたシード層 41、反強磁性層 42、固定磁性層 43、 ノリア層 44、自由磁性層 45、及びキャップ層 46を備えている。シード層 41は、 20η mの膜厚を有する Ta膜である。反強磁性層 42は、 20nmの膜厚を有する PtMn膜で ある。固定磁性層 43は、 2. 5nmの膜厚を有する CoFe膜、 0. 88nmの膜厚を有す る Ru膜、及び 2. 5nmの膜厚を有する CoFe膜から構成されている。ノ リア層 44は、 lnmの膜厚を有する A1膜が酸化された膜である。自由磁性層 45は、交互に積層さ れた 2層の磁性膜と 1層の非磁性膜を有する (N= 2)。各磁性膜は、 4nmの膜厚を 有する NiFe膜と 0. 5nmの膜厚を有する CoFe膜とから構成されている。各非磁性膜 (反強磁性結合膜)は、 2. lnmの膜厚を有する Ru膜である。キャップ層 46は、 0. 7 nmの膜厚を有する酸化された A1膜と lOOnmの膜厚を有する Ta膜から構成されて いる。
[0061] 図 15は、構造 Bを有する第 2の磁気抵抗素子を示す概念図である。この磁気抵抗 素子は、基板上に順番に積層されたシード層 51、反強磁性層 52、固定磁性層 53、 ノリア層 54、自由磁性層 55、及びキャップ層 56を備えている。シード層 51、反強磁 性層 52、固定磁性層 53、 バリア層 54、及びキャップ層 56のそれぞれの膜厚'組成 は、上述のシード層 41、反強磁性層 42、固定磁性層 43、 バリア層 44、及びキャップ 層 46のそれぞれと同じである。自由磁性層 55は、交互に積層された 4層の磁性膜と 3層の非磁性膜を有する (N=4)。各磁性膜は、第 1の磁気抵抗素子と同様に、 4n mの膜厚を有する NiFe膜と 0. 5nmの膜厚を有する CoFe膜とから構成されて 、る。 各非磁性膜 (反強磁性結合膜)は、第 1の磁気抵抗素子と同様に、 2. lnmの膜厚を 有する Ru膜である。
[0062] 図 16は、構造 A (N= 2)及び構造 B (N=4)における自由磁性層 45、 55の磁ィ匕特 性を示す。図 16において、横軸は、磁化容易軸方向(X方向)の磁界 Hを示し、縦
X
軸は、飽和磁化 Msで規格化された磁化 MXを示す。また、表 2は、構造 A(N = 2)及 び構造 B (N = 4)に対応するフロップ磁界 Hと飽和磁界 H を示す。
sf sat
[0063] [表 2] フロップ磁界
層 飽雄界
構造 積 数 N
(0e) (0e)
A 2 62 298
B 4 63 1 1 80
[0064] 図 16及び表 2に示されているように、構造 A及び構造 Bに対するフロップ磁界 H は sf ほとんど同じであった (62〜630e)。一方、飽和磁界 H に関しては、構造 Aと構造 sat
Bで大きく変化した。具体的には、構造 A (N = 2)の場合、飽和磁界 H は 298 [Oe] sat
であったのに対し、構造 B (N = 4)の場合、飽和磁界 H は 1180 [Oe]であった。つ sat
まり、積層数 Nが増加することによって、フロップ磁界 H はあまり変化しないが、飽和 磁界 H が大きく増加することがわ力つた。すなわち、動作領域が拡大したことがわか sat
つた o
[0065] 例 2 :自由強磁性層中の磁性膜及び非磁性膜 (反強磁性結合膜)の膜厚を調整す ること〖こよって、第 1の磁気抵抗素子の場合とほぼ同じ飽和磁界 H を有する第 3の sat
磁気抵抗素子が作製された。そして、それらに対するフロップ磁界 H の評価がなさ sf
れた。
[0066] 図 17は、構造 Cを有する第 3の磁気抵抗素子を示す概念図である。この磁気抵抗 素子は、基板上に順番に積層されたシード層 61、反強磁性層 62、固定磁性層 63、 ノリア層 64、自由磁性層 65、及びキャップ層 66を備えている。シード層 61、反強磁 性層 62、固定磁性層 63、バリア層 64、及びキャップ層 66のそれぞれの膜厚'組成 は、上述のシード層 41、反強磁性層 42、固定磁性層 43、バリア層 44、及びキャップ 層 46のそれぞれと同じである。自由磁性層 65は、交互に積層された 4層の磁性膜と 3層の非磁性膜を有する (N=4)。各磁性膜は、 2nmの膜厚を有する NiFe膜と 0. 3 nmの膜厚を有する CoFe膜とから構成されて ヽる。各非磁性膜 (反強磁性結合膜) は、 3. 6nmの膜厚を有する Ru膜である。このように自由磁性層 65を調整すること〖こ よって、 H /Hが一定に保たれたまま、一軸異方性磁界 Hが減少した。
K I K
[0067] 表 3は、構造 A (N= 2)及び構造 C (N=4)に対応するフロップ磁界 Hと飽和磁界 sf
H を示す。構造 Cの場合、飽和磁界 H は 350[Oe]、フロップ磁界 H は 27[Oe1 であった。つまり、構造 Aと構造 Cでは、飽和磁界 H はほぼ同じである。一方、積層
sat
数 Nが増加することによって、飽和磁界 H が一定の場合にフロップ磁界 H が減少
sat sf することがわ力 た。すなわち、積層数 Nを増加させることによって、動作領域を拡大 させることが可能となるだけでなぐ書込み電流を低減することも可能となる。すなわ ち、消費電力が削減される。
[0068] [表 3]
Figure imgf000020_0001
[0069] 以上に説明されたように、本発明に係るトグル書込み方式の MRAM1は、自由磁 性層 15が互いに反強磁性結合した 2n層(nは 2以上の整数)の磁性膜 20を有するよ うに構成される。これにより、動作領域が拡大する。また、書込み電流が削減され、消 費電力が低減される。
[0070] 本発明に係るトグル書込み方式の MRAMによれば、動作領域が拡大する。また、 本発明に係るトグル書込み方式の MRAMによれば、書込み電流が低減される。

Claims

請求の範囲
[1] トグル書込み方式の磁気ランダムアクセスメモリであって、
自由磁性層と、
固定磁性層と、
前記自由磁性層と前記固定磁性層に挟まれた非磁性層と
を具備し、
前記自由磁性層は、互いに反強磁性結合した 2n層(nは 2以上の整数)の磁性膜 を有する
磁気ランダムアクセスメモリ。
[2] 請求の範囲 1に記載の磁気ランダムアクセスメモリであって、
前記自由磁性層は、(2n— 1)層の非磁性膜を更に有し、
前記 2n層の磁性膜と前記(2n— 1)層の非磁性膜は、交互に積層されている 磁気ランダムアクセスメモリ。
[3] 請求の範囲 2に記載の磁気ランダムアクセスメモリであって、
前記(2n— 1)層の非磁性膜の膜厚は略等 、
磁気ランダムアクセスメモリ。
[4] 請求の範囲 2又は 3に記載の磁気ランダムアクセスメモリであって、
前記(2n— 1)層の非磁性膜の材料は同じである
磁気ランダムアクセスメモリ。
[5] 請求の範囲 1乃至 4のいずれかに記載の磁気ランダムアクセスメモリであって、 前記 2n層の磁性膜の膜厚は略等 ヽ
磁気ランダムアクセスメモリ。
[6] 請求の範囲 1乃至 5のいずれかに記載の磁気ランダムアクセスメモリであって、 前記 2n層の磁性膜の材料は同じである
磁気ランダムアクセスメモリ。
[7] ワード線と、
前記ワード線に略直交するビット線と、
前記ワード線と前記ビット線との交点に設けられたメモリセルと を具備し、
前記メモリセルは、
自由磁性層と、
固定磁性層と、
前記自由磁性層と前記固定磁性層に挟まれた非磁性層と
を具備し、
前記自由磁性層は、互いに反強磁性結合した 2n層(nは 2以上の整数)の磁性膜 を有し、
前記 2n層の磁性膜の各々における磁ィ匕容易軸が前記ワード線あるいは前記ビット 線となす角度は略 45度である
磁気ランダムアクセスメモリ。
[8] 請求の範囲 7に記載の磁気ランダムアクセスメモリであって、
前記メモリセルへの書込データの書込み動作時、前記メモリセルに格納されて 、る 格納データと前記書込データとの比較が行われ、前記格納データと前記書込データ が異なる場合のみ、前記書込み動作が実行される
磁気ランダムアクセスメモリ。
[9] 請求の範囲 8に記載の磁気ランダムアクセスメモリであって、
前記メモリセルに対して前記書込み動作が行われる場合、前記ワード線と前記ビッ ト線の一方に、時刻 tlから時刻 t3までパルスが印加され、
前記ワード線と前記ビット線の他方に、時刻 t2から時刻 t4までパルスが印加され、 前記時刻 tl <前記時刻 t2<前記時刻 t3<前記時刻 t4である
磁気ランダムアクセスメモリ。
[10] 自由磁性層と、
固定磁性層と、
前記自由磁性層と前記固定磁性層に挟まれた非磁性層と
を具備し、
前記自由磁性層は、
互いに反強磁性結合した 2n層(nは 2以上の整数)の磁性膜と、 前記 2n層の磁性膜と交互に積層された (2n- 1)層の非磁性膜と を有する
磁気抵抗素子。
PCT/JP2005/022527 2004-12-10 2005-12-08 磁気ランダムアクセスメモリ WO2006062150A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006546749A JPWO2006062150A1 (ja) 2004-12-10 2005-12-08 磁気ランダムアクセスメモリ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004358995 2004-12-10
JP2004-358995 2004-12-10

Publications (1)

Publication Number Publication Date
WO2006062150A1 true WO2006062150A1 (ja) 2006-06-15

Family

ID=36577973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022527 WO2006062150A1 (ja) 2004-12-10 2005-12-08 磁気ランダムアクセスメモリ

Country Status (2)

Country Link
JP (1) JPWO2006062150A1 (ja)
WO (1) WO2006062150A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063718A1 (ja) * 2005-11-30 2007-06-07 Renesas Technology Corp. 不揮発性記憶装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545906B1 (en) * 2001-10-16 2003-04-08 Motorola, Inc. Method of writing to scalable magnetoresistance random access memory element
JP2003298023A (ja) * 2002-03-29 2003-10-17 Toshiba Corp 磁気メモリ及び磁気メモリ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545906B1 (en) * 2001-10-16 2003-04-08 Motorola, Inc. Method of writing to scalable magnetoresistance random access memory element
JP2003298023A (ja) * 2002-03-29 2003-10-17 Toshiba Corp 磁気メモリ及び磁気メモリ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063718A1 (ja) * 2005-11-30 2007-06-07 Renesas Technology Corp. 不揮発性記憶装置
US7773408B2 (en) 2005-11-30 2010-08-10 Renesas Technology Corp. Nonvolatile memory device
US7983075B2 (en) 2005-11-30 2011-07-19 Renesas Electronics Corporation Nonvolatile memory device

Also Published As

Publication number Publication date
JPWO2006062150A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
JP5181672B2 (ja) 磁気ランダムアクセスメモリ
US9837602B2 (en) Spin-orbit torque bit design for improved switching efficiency
JP5441881B2 (ja) 磁気トンネル接合を備えた磁気メモリ
US7961509B2 (en) Spin-transfer torque memory self-reference read and write assist methods
JP5623507B2 (ja) スピントルクの切換を補助する層を有する、スピントルクの切換を持つ磁気積層体
JP5009622B2 (ja) 磁気エレクトロニクス情報デバイス及び磁気エレクトロニクスランダムアクセスメモリ素子
JP3863536B2 (ja) 磁気ランダムアクセスメモリ及びその磁気ランダムアクセスメモリのデータ書き込み方法
KR20210084624A (ko) 전압 제어 층간 교환 결합 자기저항 메모리 디바이스 및 그의 동작 방법
US8198660B2 (en) Multi-bit STRAM memory cells
US7773408B2 (en) Nonvolatile memory device
US20090039450A1 (en) Structure of magnetic memory cell and magnetic memory device
JP2006140468A (ja) マグネチックram
WO2007047311A2 (en) Spin transfer based magnetic storage cells utilizing granular free layers and magnetic memories using such cells
JP4460965B2 (ja) 磁気ランダムアクセスメモリ
WO2020167460A1 (en) Skyrmion stack memory device
JP7267623B2 (ja) 磁気抵抗効果素子及び磁気メモリ
US8482970B2 (en) Multi-bit STRAM memory cells
US7205596B2 (en) Adiabatic rotational switching memory element including a ferromagnetic decoupling layer
JP2008171862A (ja) 磁気抵抗効果素子及びmram
JP2010219156A (ja) 磁壁移動素子、及び、磁気ランダムアクセスメモリ
US20090040663A1 (en) Magnetic memory
WO2006062150A1 (ja) 磁気ランダムアクセスメモリ
KR20170113717A (ko) 수직자기이방성을 갖는 mtj 구조 및 이를 포함하는 자성소자
JP2002353418A (ja) 磁気抵抗効果素子および磁気メモリ装置
JP5051538B2 (ja) Mram

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006546749

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05814701

Country of ref document: EP

Kind code of ref document: A1