JP7052920B2 - 真空ポンプ - Google Patents

真空ポンプ Download PDF

Info

Publication number
JP7052920B2
JP7052920B2 JP2021515426A JP2021515426A JP7052920B2 JP 7052920 B2 JP7052920 B2 JP 7052920B2 JP 2021515426 A JP2021515426 A JP 2021515426A JP 2021515426 A JP2021515426 A JP 2021515426A JP 7052920 B2 JP7052920 B2 JP 7052920B2
Authority
JP
Japan
Prior art keywords
magnetic bearing
unit
rotating shaft
motor
thrust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021515426A
Other languages
English (en)
Other versions
JPWO2020217407A1 (ja
Inventor
隆弘 森
統宏 井上
知男 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of JPWO2020217407A1 publication Critical patent/JPWO2020217407A1/ja
Application granted granted Critical
Publication of JP7052920B2 publication Critical patent/JP7052920B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/048Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps comprising magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0446Determination of the actual position of the moving member, e.g. details of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0489Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0493Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor
    • F16C32/0497Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor generating torque and radial force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

本発明は、真空ポンプに関し、特に、磁気軸受とモータとを備える真空ポンプに関する。
従来、磁気軸受とモータとを備える真空ポンプが知られている。このような真空ポンプは、たとえば、特開2000-283160号公報に開示されている。
上記特開2000-283160号公報では、ロータ翼と、ロータ翼を回転させる高周波モータと、5軸制御型磁気軸受とを備えるターボ分子ポンプ(真空ポンプ)が開示されている。5軸制御型磁気軸受では、2組の半径方向位置制御用電磁石と、1組の軸方向位置制御用電磁石とを使用している。
特開2000-283160号公報では明示的には記載されていないが、特開2000-283160号公報の図面には、上下に延びる回転軸の先端にロータ翼が設けられており、回転軸の軸方向に沿って、ロータ翼側から順番に、1組目の半径方向位置制御用電磁石、高周波モータ、2組目の半径方向位置制御用電磁石、軸方向位置制御用電磁石が、並んで設けられている構成が示されている。
特開2000-283160号公報
上記特開2000-283160号公報のように、従来の真空ポンプでは、ロータ翼および回転軸を含む回転体を回転させるためのモータに加えて、回転体を磁気浮上させるために、2組の半径方向位置制御用電磁石(ラジアル磁気軸受)と、1組の軸方向位置制御用電磁石(スラスト磁気軸受)とを設けて、これらの4つの機構(モータ、2組のラジアル磁気軸受、1組のスラスト磁気軸受)が軸方向に沿って並べて配置されている。
ここで、より小さいスペースにも真空ポンプを設置可能とするため、軸方向における真空ポンプの寸法を抑制することが望まれている。従来の真空ポンプでは、軸方向における真空ポンプの寸法について十分検討されていない。
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、軸方向における寸法を抑制することが可能な真空ポンプを提供することである。
上記目的を達成するために、この発明の一の局面における真空ポンプは、第一端および第二端を有し、軸方向に延びる回転軸と、回転軸の第一端側に接続され、回転軸の軸方向において第一端側から第二端側に向けて内径が拡大するように延びる翼支持部と、翼支持部の外周面に設けられた回転翼と、を含む回転体と、回転体を回転駆動するモータ、回転体を径方向に支持する第1、第2ラジアル磁気軸受、および回転体を軸方向に支持するスラスト軸受を含む回転機構と、を備え、回転機構は、回転軸と翼支持部との間で回転軸の周囲に設けられ、第1外径を有し、第1ラジアル磁気軸受として動作可能な磁気軸受ユニットと、磁気軸受ユニットよりも回転軸の第二端側の位置で回転軸の周囲に設けられ、第1外径よりも大きい第2外径を有し、モータと第2ラジアル磁気軸受との両方として動作可能なモータユニットと含む。
なお、本明細書において「ユニット」は、ある機能を実現するための機械構造のまとまりである。モータと第2ラジアル磁気軸受との両方として動作可能なモータユニットとは、モータの構成要素と、第2ラジアル磁気軸受の構成要素とが、少なくとも一部を共有するように設けられたユニットである。また、「回転軸の軸方向において第一端側から第二端側に向けて内径が拡大する」とは、内径が連続的に拡大する形状のみならず、内径が段階的に拡大する形状を含む広い概念である。「磁気軸受」は、定常動作時において、磁気により回転軸を非接触で支持する軸受である。非接触の支持は、磁気軸受の停止時と、動作開始および動作停止に伴う非定常状態とにおける接触を許容する。
本発明によれば、上記のように、モータと第2ラジアル磁気軸受との両方として動作可能なモータユニットを設けることにより、モータと第2ラジアル磁気軸受とが単一のユニットに統合されるので、モータと第2ラジアル磁気軸受とを別々に軸方向に並べる場合と比べて、ユニットが占有する領域の軸方向寸法を抑制できる。また、モータと第2ラジアル磁気軸受とが単一のユニットに統合されたモータユニットでは、たとえばモータのみのユニットと比べると、軸方向寸法または半径方向寸法が大型化する傾向がある。そこで、モータユニットが磁気軸受ユニットの第1外径よりも大きい第2外径を有するので、半径方向寸法を大型化させた分、モータユニットの軸方向寸法については大型化を抑制できる。さらに、回転体に着目すると、回転軸の第一端側に回転翼が設けられる構造では、回転軸の周囲に確保可能な上記モータおよび軸受の設置スペースは、回転翼から軸方向に離れるほど、半径方向に大きくすることができる。そこで、外径が小さい磁気軸受ユニットを第一端側(回転翼側)に配置し、外径が大きいモータユニットを第二端側に配置することにより、回転体に形成される設置スペースの形状に合わせて、磁気軸受ユニットおよびモータユニットの軸方向位置を極力回転翼に近づけることができる。以上の結果、本発明によれば、軸方向における寸法を抑制することが可能な真空ポンプを提供することができる。
真空ポンプの全体構成を示した模式的な断面図である。 回転体、磁気軸受ユニットおよびモータユニットの配置を示した模式図である。 真空ポンプの制御的な構成を説明するためのブロック図である。 モータユニットを軸方向から見た模式的な断面図である。 モータユニットの動作を説明するための模式図である。 磁気軸受ユニットの第1ラジアル磁気軸受を軸方向から見た模式的な断面図である。 磁気軸受ユニットを半径方向から見た模式的な断面図である。 真空ポンプの変形例を示した模式的な断面図である。 変形例による磁気軸受ユニットを軸方向から見た模式的な断面図である。 変形例による磁気軸受ユニットを半径方向から見た模式的な断面図である。
以下、本発明を具体化した実施形態を図面に基づいて説明する。
図1~図7を参照して、一実施形態による真空ポンプ100について説明する。
(真空ポンプの構成)
図1に示すように、真空ポンプ100は、容器内から気体を排出し、容器内を真空にする(減圧する)ためのポンプである。なお、真空とは、真空ポンプ100の周囲の大気圧より低い圧力の状態とする。
真空ポンプ100は、少なくとも1つの吸気口1と、少なくとも1つの排気口2と、少なくとも1つのポンプ部3と、を備える。真空ポンプ100は、ポンプ部3の動作によって、吸気口1からポンプ部3の内部へ気体を吸い込み、吸い込まれた気体を排気口2から排出する。真空ポンプ100は、ポンプ部3を収容するハウジング4を備える。図1の例では、ハウジング4には、1つの吸気口1が形成され、1つのポンプ部3が収容されている。ハウジング4には、排気口2が形成された排気管2aが接続されている。排気口2は、排気管2a、ポンプ部3を介して吸気口1に連通する。
また、図1の例では、真空ポンプ100には、ポンプ部3の動作を制御するための制御ユニット5が設けられている。制御ユニット5は、ハウジング4の底部に取り付けられている。制御ユニット5は、真空ポンプ100とは別々に設けられ、有線または無線で真空ポンプ100と通信可能に接続される構成であってもよい。
(ポンプ部)
ポンプ部3は、回転体10と回転機構20とを含んでいる。回転体10および回転機構20は、ハウジング4内に収容されている。回転体10が回転機構20により回転駆動されることにより、回転体10とハウジング4との間で気体の吸引力が発生する。
図1の構成例では、ポンプ部3は、第1ポンプ構造3aと第2ポンプ構造3bとを含む。図1の例では、真空ポンプ100は、第1ポンプ構造3aと第2ポンプ構造3bとが直列接続された複合型の真空ポンプである。吸気口1からポンプ部3に取り込まれた気体は、第1ポンプ構造3a、第2ポンプ構造3bを順番に通過して、排気口2から排出される。
回転体10は、回転軸11と、翼支持部12と、回転翼13と、を含む。回転体10は、回転軸11と、翼支持部12と、回転翼13とが一体回転するように設けられている。第1ポンプ構造3aは、回転体10の回転翼13とハウジング4の固定翼71とによりターボ分子ポンプ(turbomolecular pump)を構成する。回転体10は、翼支持部12から回転軸11の第二端11b側に延びて、ハウジング4との間で第2ポンプ構造3bを構成する円筒部14を含む。回転体10には、第1ポンプ構造3aを構成する回転翼13と、第2ポンプ構造3bを構成する円筒部14とが一体で回転するように設けられている。第2ポンプ構造3bは、回転体10の後述する円筒部14と、ハウジング4のポンプステータ73とにより、分子ドラッグポンプ(molecular drag pump)を構成する。
以下、回転軸11の中心軸線が延びる方向を、軸方向またはスラスト方向という。回転軸11の半径方向を、単に半径方向またはラジアル方向という。各図において、軸方向をZ方向とし、Z方向のうちZ1方向を第一端11a側、Z2方向を第二端11b側と呼ぶ。
図1に示すように、回転機構20は、回転体10を回転駆動するモータ30と、回転体10を径方向に支持する第1ラジアル磁気軸受40および第2ラジアル磁気軸受50と、回転体10を軸方向に支持するスラスト軸受とを含む。本実施形態では、スラスト軸受は、回転軸の周囲に設けられたスラスト磁気軸受60である。回転機構20は、回転軸11を中心に回転軸11の周囲を囲むように設けられている。
モータ30は、回転軸11に設けられたモータロータ30b(図4参照)と、回転機構20に設けられたモータステータ30a(図4参照)と、により構成される。
回転機構20は、2組のラジアル磁気軸受と、1組のスラスト磁気軸受とを含む5軸磁気軸受を備える。
すなわち、回転機構20は、それぞれ回転軸11の周囲に設けられた第1ラジアル磁気軸受40と、第2ラジアル磁気軸受50とを含む。回転機構20は、回転軸11の周囲に設けられたスラスト磁気軸受60を含む、磁気軸受は、回転体10を磁気浮上させることにより、回転体10と非接触状態で回転体10を回転可能に支持する。
1組のラジアル磁気軸受により、互いに直交する2つのラジアル方向(X方向、Y方向とする)の位置制御(2軸)が可能である。軸方向に並んで配置された2組のラジアル磁気軸受により、X方向回りおよびY方向回りの傾きの姿勢制御が可能である。スラスト磁気軸受により、スラスト方向(Z方向)の位置制御(1軸)が可能である。磁気軸受は、1番目のラジアル磁気軸受のX1軸およびY1軸と、2番目のラジアル磁気軸受のX2軸およびY2軸と、スラスト磁気軸受のZ軸とにより、5軸制御が可能である。
本実施形態では、回転機構20は、磁気軸受ユニット21と、モータユニット22とを少なくとも含む。磁気軸受ユニット21は、第1ラジアル磁気軸受40として動作可能に構成されている。本実施形態では、図1の構成例では、磁気軸受ユニット21は、さらに、スラスト磁気軸受60として動作可能である。すなわち、磁気軸受ユニット21は、第1ラジアル磁気軸受40とスラスト磁気軸受60とを一体的に含む単一のユニットである。モータユニット22は、モータ30と第2ラジアル磁気軸受50との両方として動作可能に構成されたユニットである。このようにモータ30と第2ラジアル磁気軸受50との両方として動作する構造は、通常モータとは別個に設けられる1組のラジアル磁気軸受が不要になることから、ベアリングレスモータ、またはセルフベアリングモータなどと呼ばれる。磁気軸受ユニット21およびモータユニット22の詳細な構成は後述する。
ハウジング4は、ベース部4aおよびケース部4bを含む。ベース部4aに回転機構20が設けられ、回転体10の回転軸11が挿入されている。ベース部4aに排気管2aが接続されている。ケース部4bは、ベース部4aの上面に取り付けられている。ケース部4bは、ベース部4aに設置された回転体10の周囲を囲むように円筒状に形成されており、上面に吸気口1が形成されている。
また、真空ポンプ100は、複数のメカニカルベアリング6と、複数の変位センサ7と、回転センサ8と、を有する。複数のメカニカルベアリング6は、ベース部4aにおいて、回転軸11の第一端11aの近傍と、第二端11bの近傍とに設けられている。メカニカルベアリング6は、回転軸11と接触して回転軸11をラジアル方向およびスラスト方向に支持することが可能である。メカニカルベアリング6は、磁気軸受が作動していない時(磁気浮上していない時)や、外乱が発生した場合に、磁気軸受の代わりに回転体10を支持するタッチダウンベアリングである。磁気軸受の作動時には、メカニカルベアリング6と回転軸11(回転体10)とは非接触となる。
図3に示すように、変位センサ7は、回転軸11のラジアル方向(X1方向、Y1方向、X2方向、Y2方向)の変位をそれぞれ検出する変位センサ7a~7dと、回転軸11のスラスト方向(Z方向)の変位を検出する変位センサ7eとを含む。回転センサ8は、回転軸11の回転角度を検出する。
制御ユニット5は、制御部81と、電源部82と、ユニット駆動部83と、センサ回路部84とを含む。
電源部82は、外部電源から電力を取得し、制御部81、ユニット駆動部83およびセンサ回路部84への電力供給を行う。電源部82は、外部からの交流電力を直流電力に変換する電力変換を行う。
ユニット駆動部83は、制御部81からの制御信号に基づき、回転機構20への駆動電流の供給を制御する。ユニット駆動部83における電流制御により、回転機構20のモータ30が回転方向の駆動力(トルク)を発生させ、磁気軸受が各方向の支持力をそれぞれ発生させる。ユニット駆動部83は、磁気軸受ユニット21への電流供給を制御するためのインバータ85aおよび85bを含む。ユニット駆動部83は、モータユニット22への電流供給を制御するためのインバータ85cおよび85dを含む。インバータ85a~85dは、それぞれ、複数のスイッチング素子を含んでいる。
センサ回路部84は、変位センサ7a~7eおよび回転センサ8を含み、各センサ信号を制御部81に入力するための変換処理を行う回路などを含んで構成されている。センサ回路部84から、変位センサ7a~7eおよび回転センサ8の各センサ信号が制御部81に入力される。
制御部81は、CPU(Central Processing Unit)またはFPGA(Field Programmable Gate Array)などのプロセッサと、揮発性および/または不揮発性メモリと、を含むコンピュータにより構成されている。
制御部81は、ユニット駆動部83を介して、回転機構20の動作制御を行う。制御部81は、センサ回路部84からの各方向のセンサ信号を取得し、取得したセンサ信号に基づいて、インバータ85a、85bおよび85dに設けられている複数のスイッチング素子をオンオフ制御するための制御信号を出力する。これにより、制御部81は、真空ポンプ100の動作中、回転体10が真空ポンプ100のどの固定要素にも接触しないように、各磁気軸受を制御する。
制御部81は、回転センサ8のセンサ信号に基づいて、インバータ85cに設けられている複数のスイッチング素子をオンオフ制御するための制御信号を出力する。これにより、制御部81は、回転体10の回転位置に基づいてモータ30の制御を行う。
(回転体の構造)
図2に示すように、回転軸11は、第一端11aと第二端11bとを有し、軸方向に延びる円柱状部材である。図1の例では、第一端11aが回転軸11の上端であり、第二端11bが回転軸11の下端である。回転軸11は、回転機構20によって、中心軸線周りに回転可能に軸受支持されている。また、回転軸11は、回転機構20により中心軸線周りに回転駆動される。図1の例では、回転軸11が上下方向(鉛直方向)に沿って延びるように設けられた縦型の真空ポンプ100の例を示しているが、回転軸11の方向は特に限定されない。回転軸11は水平方向または斜め方向に向けて配置されていてもよい。
翼支持部12は、回転体10のうち、回転翼13と回転軸11とを機械的に接続する部分である。翼支持部12は、回転軸11の第一端11a側に接続されている。翼支持部12は、回転軸11の軸方向において第一端11a側から第二端11b側に向けて内径が拡大するように延びている。つまり、翼支持部12は、概略で、回転軸11の第一端11aに向けた円錐状に形成されている。翼支持部12は、回転軸11の第二端11b側から第一端11a側に向かって傾斜したテーパ形状部12aを有している。翼支持部12は、回転軸11の第一端11aから半径方向に延びるフランジ部12bを有している。テーパ形状部12aは、フランジ部12bの外周端部に機械的に接続している。
回転体10は、複数の回転翼13を有している。回転翼13は、翼支持部12の外周面に設けられている。回転翼13は、翼支持部12の外周面からハウジング4の内周面近傍まで半径方向に延びている。
回転翼13は、上記のように、ハウジング4との間で第1ポンプ構造3aを構成する。複数の回転翼13は、軸方向に間隔を隔てて複数段設けられている。複数の回転翼13は、テーパ形状部12aの外周面およびフランジ部12bの外周面に沿って並ぶように設けられている。
また、図1に示したように、ハウジング4の内周面には、複数の固定翼71が設けられている。各固定翼71は、ハウジング4の内周面から、半径方向内側(回転軸11側)に向けて延びている。複数の固定翼71は、複数の回転翼13と1段ずつ軸方向に交互に並ぶように設けられている。各固定翼71は、軸方向に積層されたスペーサリング72を介してベース部4a上に載置されている。積層されたスペーサリング72がベース部4aとケース部4bとの間に挟まれることにより、各固定翼71が位置決めされる。これにより、ポンプ部3は、回転体10の回転翼13(動翼)とハウジング4の固定翼71(静翼)とにより構成された第1ポンプ構造3aを含む。
円筒部14は、回転軸11と同軸の円筒形状を有する。円筒部14は、翼支持部12に接続する第1円筒端部14aと、回転軸11の軸方向における翼支持部12とは反対側の第2円筒端部14bと、を有する。円筒部14は、テーパ形状部12aに接続する第1円筒端部14aから、第2円筒端部14bまで、軸方向に沿って直線状に延びている。
また、ハウジング4の内周面には、円筒状のポンプステータ73が設けられている。ポンプステータ73の内周面は、円筒部14の外周面と小さな間隔を隔てて半径方向に対向する。ポンプステータ73の内周面には、ねじ溝(図示せず)が形成されている。これにより、ポンプ部3は、回転体10の円筒部14とハウジング4のポンプステータ73とにより構成された第2ポンプ構造3bを含む。なお、ねじ溝(図示せず)は、円筒部14の外周面またはポンプステータ73の内周面のいずれかに形成されていればよい。
(回転機構の構造)
図1の例では、回転機構20は、磁気軸受ユニット21と、モータユニット22との2つのユニットにより構成されている。
磁気軸受ユニット21は、回転軸11と翼支持部12との間で回転軸11の周囲に設けられている。モータユニット22は、磁気軸受ユニット21よりも回転軸11の第二端11b側の位置で回転軸11の周囲に設けられている。
〈モータユニット〉
図4に示すように、モータユニット22(モータステータ30a)は、回転軸11の軸方向と直交する面内において、モータ30を構成するモータコイル31と、第2ラジアル磁気軸受50を構成する第2コイル51と、モータコイル31および第2コイル51がそれぞれ巻回されたステータコア32と、を有する。
言い換えると、図4に例示するモータユニット22では、モータコイル31とステータコア32とにより構成されるモータステータ30aに対して、第2ラジアル磁気軸受50の第2コイル51がさらに組み付けられている。
ステータコア32は、複数のティース32aと、ステータヨーク32bとを含む。ステータヨーク32bが回転軸11の周囲を囲むように円環状に形成されている。複数のティース32aがステータヨーク32bの内周面から回転軸11の中心に向けて半径方向に延びている。複数のティース32aは、周方向に等角度間隔で配置され、隣り合うティース32aの間にコイルを収容するスロット32cが形成されている。
モータコイル31および第2コイル51は、それぞれのティース32aに巻回されている。図4では、モータコイル31および第2コイル51は、回転軸11の軸方向と直交する面内において、半径方向に並んで配置されている。つまり、同一のスロット32c内に、モータコイル31および第2コイル51の両方が配置されている。図4の例では、モータコイル31が半径方向内側に配置され、第2コイル51が半径方向外側に配置されている。
モータコイル31および第2コイル51は、互いに別々のコイルであり、電気的に絶縁されている。モータコイル31はインバータ85c(図3参照)に電気的に接続され、第2コイル51はインバータ85d(図3参照)に電気的に接続されている。インバータ85cは、たとえば3相電流(U相、V相、W相)をモータ30へ供給する。モータ30は、U相、V相、W相の3相電流がそれぞれ供給される3組のモータコイル31(Mu、Mv、Mw)を含む。インバータ85dは、たとえば3相電流(U相、V相、W相)を第2ラジアル磁気軸受50へ供給する。第2ラジアル磁気軸受50は、U相、V相、W相の3相電流がそれぞれ供給される3組の第2コイル51(Su、Sv、Sw)を含む。
また、モータロータ30bは、回転軸11と一体で回転するように回転軸11に設けられている。すなわち、回転軸11には、ステータコア32と隙間を隔てて半径方向に対向する位置(軸方向の同一位置)に、永久磁石33が設けられている。図4の例では、回転軸11の周方向の半分に亘ってN極に着磁された永久磁石33が設けられ、回転軸11の周方向の他の半分に亘ってS極に着磁された永久磁石33が設けられている。
図4では、2極、6スロット構造の例を示したが、極数、スロット数は特に限定されない。また、図4において、モータコイル31および第2コイル51の各巻線方式は、集中巻きに限られず、分布巻きなどの他の巻線方式であってもよい。
図5に示すように、制御部81(図3参照)は、インバータ85c(図3参照)を介して各モータコイル31に電流を供給させ、モータコイル31の磁束31aと永久磁石33の磁束33aとを相互作用させる。すなわち、モータ30は、モータコイル31の磁束31aにより永久磁石33の磁極に吸引、反発の作用力を付与する。制御部81は、回転体10の回転角度位置に応じて電流を供給するモータコイル31を切り替えることにより、回転する磁束31aを生成させ、回転体10を所望の回転速度で回転させる。モータ30による回転体10の回転速度は、たとえば1万rpm以上10万rpm以下である。
また、制御部81(図3参照)は、インバータ85d(図3参照)を介して第2コイル51に電流を供給させ、第2コイル51の磁束51aと永久磁石33の磁束33aとの相互作用により、回転軸11(モータロータ30b)とステータコア32(モータステータ30a)との間の隙間に合成磁束の粗密を形成させる。その結果、第2ラジアル磁気軸受50は、第2コイル51の磁束51aと永久磁石33の磁束33aとが互いに強め合う方向に向かう支持力55を回転軸11に付与する。
例えば図5では、2つの第2コイル51(Su)の磁束51aと磁束33aとにより、モータロータ30bのN極側の隙間では磁束が強め合い、S極側の隙間では磁束が弱め合うため、磁束量が多いN極側(図中右側)に向かう支持力55が作用する。図5ではU相の第2コイル51(Su)について例示しているが、各第2コイル51に供給する電流の強さ、向きを制御することにより、任意のラジアル方向に、任意の強さの支持力55を発生させることができる。制御部81は、変位センサ7c、7dおよび回転センサ8(図3参照)のセンサ信号に基づき、それぞれの第2コイル51への電流供給を制御することにより、回転体10が半径方向に非接触状態を維持するように第2ラジアル磁気軸受50の支持力55を制御する。
〈磁気軸受ユニット〉
図6に示すように、磁気軸受ユニット21は、第1ラジアル磁気軸受40を構成する第1コイル41を含む。また、図7に示すように、本実施形態では、磁気軸受ユニット21は、スラスト磁気軸受60を構成するスラストコイル61を含む。また、磁気軸受ユニット21は、第1ラジアル磁気軸受40およびスラスト磁気軸受60の両方と相互作用する磁束を発生する磁石部42と、を有する。
図6に示すように、第1ラジアル磁気軸受40は、第1コイル41が取り付けられる第1軸受コア43を含む。第1軸受コア43は、回転軸11の周囲を囲むように円環状に形成されている。第1軸受コア43には、周方向に間隔を隔てて配置された複数のティース43aの間に、複数のスロット43bが設けられている。図6では、4つのスロット43bのそれぞれに、合計4つの第1コイル41が取り付けられている。第1コイル41は、電流供給により半径方向に磁束41aを発生する。
回転軸11には、シャフト部11cの外周部に、第1コア部44が設けられている。第1コア部44は、円環形状を有し、第1軸受コア43と半径方向に対向している。
図7に示すように、スラスト磁気軸受60は、第1ラジアル磁気軸受40と軸方向に隣接して一体化されている。スラスト磁気軸受60は、スラストコイル61が取り付けられるスラストコア62を含む。スラストコア62は、回転軸11の周囲を囲むように円環状に形成されている。スラストコア62は、軸方向に沿った縦断面(図7に示す断面)において、半径方向内側が開口したC字形状の断面を有する。つまり、スラストコア62は、半径方向内側に、第1端面62aおよび第2端面62bと有する。スラストコイル61は、C字形状のスラストコア62の内部に配置され、軸方向の巻回軸周りに、回転軸11の周囲を囲むように円環状に巻回されている。
磁石部42は、軸方向において、第1ラジアル磁気軸受40とスラスト磁気軸受60との間に配置されている。つまり、磁石部42は、第1軸受コア43とスラストコア62との間に配置されている。磁石部42は、第1軸受コア43とスラストコア62とを連結するように設けられている。磁石部42は、回転軸11の周囲を囲むように円環状に形成されている。磁石部42は、永久磁石であり、軸方向に向けて着磁されている。図7の例では、磁石部42のうち、第1軸受コア43と軸方向に対向する表面がS極に着磁され、スラストコア62と軸方向に対向する面がN極に着磁されている。
回転軸11には、シャフト部11cの外周部に、第2コア部63が設けられている。第2コア部63は、円環形状を有し、スラストコア62と半径方向に対向している。
磁気軸受ユニット21では、磁石部42は、第1軸受コア43およびスラストコア62を通過する磁束を発生する。すなわち、磁石部42は、磁石部42のN極から、スラストコア62、回転軸11とコアとの隙間、第2コア部63、シャフト部11c(回転軸11)、第1コア部44、回転軸11とコアとの隙間、第1軸受コア43、を順番に通過して、磁石部42のS極に戻る経路のバイアス磁束42aを形成する。
そのため、図6に示した第1ラジアル磁気軸受40では、第1軸受コア43の各ティース43aには、半径方向外側に向けてバイアス磁束42aが通過する。制御部81(図3参照)は、インバータ85a(図3参照)を介して第1コイル41に電流を供給させ、第1コイル41の磁束41aと磁石部42のバイアス磁束42aとの相互作用により、回転軸11と第1軸受コア43との間の隙間に合成磁束の粗密を形成する。その結果、第1ラジアル磁気軸受40は、第1コイル41の磁束41aと磁石部42のバイアス磁束42aとが互いに強め合う方向に向かう支持力47を回転軸11に付与する。
例えば図6では、2つの第1コイル41の各磁束41aにより、隙間45では磁束が強め合い、隙間45とは反対側の隙間46では磁束が弱め合うため、磁束量が多い隙間45側(図中右上方向)に向かう支持力47が作用する。各第1コイル41に供給する電流の強さ、向きを制御することにより、任意のラジアル方向に、任意の強さの支持力47を発生させることができる。制御部81は、変位センサ7a、7bおよび回転センサ8(図3参照)のセンサ信号に基づき、各第1コイル41への電流供給を切り替えることにより、回転体10が半径方向に非接触状態を維持するように第1ラジアル磁気軸受40の支持力47を制御する。
一方、図7に示すように、バイアス磁束42aは、スラストコア62の第1端面62aおよび第2端面62bの各々から、隙間を通過して第2コア部63に入り、回転軸11内を軸方向に通過する。制御部81(図3参照)は、インバータ85b(図3参照)を介してスラストコイル61に電流を供給させ、スラストコイル61の磁束61aと磁石部42のバイアス磁束42aとの相互作用により、回転軸11とスラストコア62との間の隙間に合成磁束の粗密を形成する。その結果、スラスト磁気軸受60は、スラストコイル61の磁束61aと磁石部42のバイアス磁束42aとが互いに強め合う方向に向かう支持力64を回転軸11に付与する。
例えば図7では、第1端面62a側の隙間では磁束が強め合い、第2端面62b側の隙間では磁束が弱め合うため、磁束量が多い第1端面62a側(図中上方向)に向かう軸方向の支持力64が作用する。スラストコイル61に逆向きの電流を供給すれば、軸方向の逆側に支持力64が発生する。各スラストコイル61に供給する電流の強さ、向きを制御することにより、スラスト方向に、任意の強さの支持力64を発生させることができる。制御部81は、変位センサ7eのセンサ信号に基づき、スラストコイル61への電流供給を切り替えることにより、回転体10が軸方向に非接触状態を維持するようにスラスト磁気軸受60の支持力64を制御する。縦型の真空ポンプ100では、支持力64によって回転体10の重量67が支持される。
このように、本実施形態では、スラスト磁気軸受60は、回転軸11を軸方向に通過する磁束をそれぞれ発生する磁石部42およびスラストコイル61を含み、磁石部42の磁束42aとスラストコイル61の磁束61aとの相互作用により回転軸11にスラスト方向の支持力64を発生するように構成されている。
(磁気軸受ユニットおよびモータユニットの配置)
次に、図1および図2を参照して、磁気軸受ユニット21およびモータユニット22の配置について説明する。
図2に示すように、磁気軸受ユニット21は、回転軸11の軸方向における第1軸方向位置25に配置されている。磁気軸受ユニット21は、第1外径91を有する。モータユニット22は、軸方向における第2軸方向位置26に配置されている。上記の通り、第2軸方向位置26は、第1軸方向位置25よりも回転軸11の第二端11b側の位置である。モータユニット22は、第1外径91よりも大きい第2外径92を有する。
回転体10は、回転軸11と翼支持部12との間に、回転機構20を配置するための収容空間15を有している。回転体10の収容空間15は、翼支持部12および円筒部14の内周面によって区画された回転体10の凹状空間である。磁気軸受ユニット21は、第1軸方向位置25において収容空間15の第1の部分に配置されている。モータユニット22は、第2軸方向位置26において収容空間15の第2の部分に配置されている。収容空間15の第2の部分は、収容空間15の第1の部分よりも半径方向に広い。
具体的には、収容空間15は、翼支持部12および円筒部14の形状を反映して、第二端11b側から第一端11aに向けて軸方向に円筒状に延びた後、第一端11aに向けてテーパ状に直径が減少する形状を有する。収容空間15は、回転体10の第二端11b側の円筒部14の形成領域で内径93を有し、テーパ形状部12aの形成領域で内径93から内径94までテーパ状に内径が小さくなる。
図2の例では、磁気軸受ユニット21の第1外径91は、内径93および内径94よりも小さい。一方、モータユニット22の第2外径92は、内径93よりも小さく、内径94以上である。このため、2つのユニットの内、モータユニット22が第一端11a側に配置される場合よりも、磁気軸受ユニット21が第一端11a側に配置されることにより、第1外径91が小さい分だけ各ユニットを第一端11a側に近づけて配置できる。
より具体的には、図2の構成例では、磁気軸受ユニット21は、回転軸11の軸方向と直交する面内において、回転軸11とテーパ形状部12aとの間に配置されている。磁気軸受ユニット21は、回転軸11の軸方向において、テーパ形状部12aの第二端11b側(Z2方向側)の端部(円筒部14の第1円筒端部14aとの境界)よりも第一端11a側(Z1方向側)の位置に配置されている。テーパ形状部12aは、軸方向に長さ95の範囲で設けられており、磁気軸受ユニット21は、テーパ形状部12aが設けられた長さ95の範囲内に収容されている。
また、図2の構成例では、モータユニット22の少なくとも一部が、翼支持部12の内周面および円筒部14の内周面により区画される収容空間15内に配置されている。軸方向において、モータユニット22は、円筒部14の第2円筒端部14bよりも第1円筒端部14a側に配置されている。すなわち、モータユニット22は、円筒部14の第2円筒端部14bよりも、距離96だけ第一端11a側に離れた位置に配置されている。また、図2の構成例では、モータユニット22の少なくとも一部が、テーパ形状部12aの第二端11b側(Z2方向側)の端部よりも第一端11a側の位置に配置されている。つまり、モータユニット22の一部は、回転軸11の軸方向と直交する面内において、回転軸11とテーパ形状部12aとの間に配置されている。
このため、図2に示した構成例では、回転機構20を構成する磁気軸受ユニット21およびモータユニット22の両方が、回転体10に形成された収容空間15の端部(円筒部14の第2円筒端部14b)からZ2方向側にはみ出ることなく、収容空間15の内部に収容されている。
また、回転体10は、回転軸11上に重心16を有する。回転体10の重心16と回転機構20の各ユニットとの位置関係に着目すると、回転軸11の軸方向において、磁気軸受ユニット21の第1コイル41の中心25aが、モータユニット22の第2コイル51の中心26aよりも、回転体10の重心16に近い。つまり、軸方向において、重心16が、第1コイル41の中心25aと第2コイル51の中心26aとの中点よりも第一端11a側(Z1方向側)にある。
図2の構成例では、磁気軸受ユニット21の軸方向の形成範囲97と、回転体10の重心16の軸方向の位置とが、互いにオーバラップしている。つまり、磁気軸受ユニット21は、軸方向の両端間の長さ97の範囲に渡って形成されている。回転体10の重心16は、軸方向において、磁気軸受ユニット21の形成範囲97内に配置されている。なお、モータユニット22は、第2軸方向位置26において、軸方向の両端間の長さ98の範囲(形成範囲98)に渡って形成されている。
(本実施形態の効果)
本実施形態では、以下のような効果を得ることができる。
本実施形態では、上記のように、モータ30と第2ラジアル磁気軸受50との両方として動作可能なモータユニット22を設けることにより、モータ30と第2ラジアル磁気軸受50とが単一のユニットに統合されるので、モータ30と第2ラジアル磁気軸受50とを別々に軸方向に並べる場合と比べて、ユニットが占有する領域の軸方向寸法を抑制できる。また、モータ30と第2ラジアル磁気軸受50とが単一のユニットに統合されたモータユニット22では、たとえば第2ラジアル磁気軸受50を設けないモータ30のみのユニットと比べると、軸方向寸法または半径方向寸法が大型化する傾向がある。本実施形態では、モータユニット22が磁気軸受ユニット21の第1外径91よりも大きい第2外径92を有するので、半径方向寸法を大型化させた分、モータユニット22の軸方向寸法(長さ98)については大型化を抑制できる。さらに、回転体10に着目すると、回転軸11の第一端11a側に回転翼13が設けられる構造では、回転軸11の周囲に確保可能な上記モータ30および磁気軸受の設置スペース(収容空間15)は、回転翼13から軸方向(Z2方向)に離れるほど、半径方向に大きくすることができる。そこで、外径が小さい磁気軸受ユニット21を第一端11a側(回転翼13側)に配置し、外径が大きいモータユニット22を第二端11b側にすることにより、回転体10に形成される設置スペース(収容空間15)の形状に合わせて、磁気軸受ユニット21およびモータユニット22の軸方向位置(25、26)を、回転翼13に極力近づけることができる。以上の結果、本実施形態によれば、軸方向における寸法を抑制することが可能な真空ポンプ100を提供することができる。
また、上記実施形態では、以下のように構成したことによって、更なる効果が得られる。
すなわち、上記実施形態では、モータユニット22は、回転軸11の軸方向と直交する面内において、モータ30を構成するモータコイル31と、第2ラジアル磁気軸受50を構成する第2コイル51と、モータコイル31および第2コイル51がそれぞれ巻回されたステータコア32と、を有する。このように構成すれば、モータコイル31と第2コイル51とが共通のステータコア32にそれぞれ設けられるので、モータコイル31と第2コイル51とを別々のコアに設ける場合と比べて、モータユニット22を小型化でき、さらに部品点数を削減できる。モータコイル31と第2コイル51とが回転軸11の軸方向と直交する同一面内に配置されるので、モータユニット22の軸方向寸法が大型化することなく、モータ30と、第2ラジアル磁気軸受50とを単一ユニットに統合できる。
また、本実施形態では、上記のように、スラスト軸受は、回転軸11の周囲に設けられたスラスト磁気軸受60である。スラスト磁気軸受60は、回転軸11を軸方向に通過する磁束をそれぞれ発生する磁石部42およびスラストコイル61を含み、磁石部42の磁束とスラストコイル61の磁束との相互作用により回転軸11にスラスト方向の支持力64を発生するように構成されている。ここで、スラスト方向の磁気軸受では、外周面から半径方向に突出する円盤部を回転軸11に設け、この円盤部を軸方向に挟み込むように配置したコイル対から軸方向に磁力を作用させることにより、スラスト方向の支持力を発生させる構成が知られている。この構成では、円盤部とコイル対とが軸方向に並ぶために軸方向寸法が大型化する。これに対して、上記実施形態のように構成すれば、磁石部42とスラストコイル61とから、回転軸11を通る磁束(42a、61a)をそれぞれ発生させ、それらの磁束の相互作用によって軸方向の支持力64を発生させるので、円盤部を設ける必要も、円盤部を挟むようにコイル対を設ける必要もない。そのため、スラスト磁気軸受60の軸方向寸法を抑制できるので、その分、真空ポンプ100の軸方向寸法を抑制できる。
また、本実施形態では、上記のように、磁気軸受ユニット21は、スラスト磁気軸受として動作可能である。すなわち、磁気軸受ユニット21は、第1ラジアル磁気軸受40とスラスト磁気軸受60とを一体的に含む単一のユニットである。このように構成すれば、モータ30と第2ラジアル磁気軸受50とを単一のモータユニット22に統合するだけでなく、さらに第1ラジアル磁気軸受40とスラスト磁気軸受60と単一のユニットに統合することができる。つまり、従来別々に設けられていた、モータ30と、第1ラジアル磁気軸受40と、第2ラジアル磁気軸受50と、スラスト磁気軸受60との4つのユニットを、磁気軸受ユニット21とモータユニット22との2つのユニットに統合することができる。その結果、軸方向に並ぶユニット数を低減できるので、真空ポンプ100の軸方向寸法を効果的に抑制できる。
また、本実施形態では、上記のように、磁気軸受ユニット21は、第1ラジアル磁気軸受40を構成する第1コイル41と、スラスト磁気軸受60を構成するスラストコイル61と、第1ラジアル磁気軸受40およびスラスト磁気軸受60の両方と相互作用する磁束42aを発生する磁石部42と、を有する。このように構成すれば、共通の磁石部42を用いて、ラジアル方向の支持力47(図6参照)とスラスト方向の支持力64(図7参照)とをそれぞれ発生させることができる。そのため、磁石部42を別々に設ける場合と比べて、磁気軸受ユニット21を小型化することができ、部品点数を削減することができる。
また、本実施形態では、上記のように、回転体10は、回転軸11上に重心16を有し、回転軸11の軸方向において、磁気軸受ユニット21の第1コイル41の中心25aが、モータユニット22の第2コイル51の中心26aよりも、回転体10の重心16に近い。このように構成すれば、磁気軸受ユニット21が、モータユニット22よりも回転体10の重心16に近い位置に配置される。そのため、回転体10のラジアル方向の支持に関して、磁気軸受ユニット21(第1ラジアル磁気軸受40)による支持力の作用が相対的に大きく、モータユニット22(第2ラジアル磁気軸受50)による支持力の作用が相対的に小さくなる。そして、磁気軸受ユニット21では、モータユニット22と異なりモータ30の構造を考慮する必要がなく、軸受性能を優先した構造を採用できる。そのため、軸受性能を容易に確保できる磁気軸受ユニット21をメイン軸受とし、モータユニット22(第2ラジアル磁気軸受50)による支持をサブ軸受とすることができるので、モータ30と第2ラジアル磁気軸受50とを統合した場合でも、高い軸受性能を容易に確保することができる。
また、本実施形態では、上記のように、磁気軸受ユニット21の軸方向の形成範囲97と、回転体10の重心16の軸方向の位置とが、オーバラップしている。このように構成すれば、磁気軸受ユニット21(第1ラジアル磁気軸受40)による支持力47を、回転体10に、より効果的に作用させることができる。そのため、磁気軸受ユニット21(第1ラジアル磁気軸受40)の支持力47が小さくて済むので、磁気軸受ユニット21の小型化を図ることができる。また、モータユニット22(第2ラジアル磁気軸受50)では、回転体10の回転軸11が重心16周りに傾くことを抑制できればよいので、必要な支持力55を小さくできる。そのため、モータユニット22を、よりモータ30性能を優先させた構成にできるので、軸方向寸法の小型化を図りつつ真空ポンプ100の性能を容易に確保できる。
また、本実施形態では、上記のように、翼支持部12は、回転軸11の第二端11b側から第一端11a側に向かって傾斜したテーパ形状部12aを有し、磁気軸受ユニット21は、回転軸11の軸方向と直交する面内において、回転軸11とテーパ形状部12aとの間に配置されている。このように構成すれば、回転体10において回転軸11の周囲に確保される空間に、テーパ形状の領域(収容空間15)を形成できる。この場合、第1外径91を有する磁気軸受ユニット21がテーパ形状部12aと干渉しない範囲で、極力、磁気軸受ユニット21を第一端11a側に近づけることができる。磁気軸受ユニット21を第一端11a側に近づけるほど、モータユニット22も第一端11a側に近づけることができるので、その分、真空ポンプ100の軸方向寸法を抑制できる。
また、本実施形態では、上記のように、磁気軸受ユニット21は、回転軸11の軸方向において、テーパ形状部12aの第二端11b側(Z2方向側)の端部よりも第一端11a側(Z1方向側)の位置に配置されている。このように構成すれば、軸方向において、テーパ形状部12aの形成範囲(長さ95)内に磁気軸受ユニット21を収容することができる。そのため、より一層、真空ポンプ100の軸方向寸法を抑制できる。
また、本実施形態では、上記のように、回転体10および回転機構20を収容するハウジング4をさらに備え、回転翼13は、ハウジング4との間で第1ポンプ構造3aを構成し、回転体10は、翼支持部12から回転軸11の第二端11b側に延びて、ハウジング4との間で第2ポンプ構造3bを構成する円筒部14を含み、モータユニット22の少なくとも一部が、翼支持部12の内周面および円筒部14の内周面により区画される収容空間15内に配置されている。このように構成すれば、回転体10の回転軸11と翼支持部12および円筒部14との間に形成される収容空間15の内部に、モータユニット22の全体を収容するように配置するか、モータユニット22が収容空間15の外部にはみ出すとしても、はみ出す量を抑制することができる。そのため、真空ポンプ100の軸方向寸法を効果的に抑制できる。
また、本実施形態では、上記のように、円筒部14は、翼支持部12に接続する第1円筒端部14aと、回転軸11の軸方向における翼支持部12とは反対側の第2円筒端部14bと、を有し、軸方向において、モータユニット22は、円筒部14の第2円筒端部14bよりも第1円筒端部14a側に配置されている。このように構成すれば、回転体10の回転軸11と翼支持部12および円筒部14との間に形成される収容空間15の内部に、モータユニット22の全体を収容することができる。そのため、真空ポンプ100の軸方向寸法を、より一層効果的に抑制できる。
[変形例]
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく、特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
上記実施形態では、磁気軸受ユニット21を、第1ラジアル磁気軸受40とスラスト磁気軸受60とを一体的に含む単一のユニットとして構成し、磁気軸受ユニット21およびモータユニット22の2つのユニットにより回転機構20を構成した例を示したが、本発明はこれに限られない。図8~図10に示す変形例では、第1ラジアル磁気軸受を含む磁気軸受ユニットと、スラスト磁気軸受とを別個に設けた例を示す。このため、図8~図10では、磁気軸受ユニットと、モータユニットと、スラスト磁気軸受との3つのユニットにより回転機構を構成した例を示す。
図8に示す変形例による真空ポンプ100では、磁気軸受ユニット21(図1参照)に代えて、第1ラジアル磁気軸受40を含む磁気軸受ユニット121を備える。図1の構成例と異なり、磁気軸受ユニット121には、スラスト磁気軸受60が設けられていない。真空ポンプ100は、磁気軸受ユニット121とは別個に設けられたスラスト磁気軸受60を備える。したがって、磁気軸受ユニット121と、モータユニット22と、スラスト磁気軸受60とが、軸方向に並んで配置されている。スラスト磁気軸受60は、磁気軸受ユニット121およびモータユニット22に対して軸方向の第二端11b側に配置されているが、磁気軸受ユニット121とモータユニット22との間に配置されていてもよい。
磁気軸受ユニット121には、公知のラジアル磁気軸受の構造が採用できる。図9の例では、第1ラジアル磁気軸受40は、複数のティース143aが形成された第1軸受コア143と、各ティース143aに取り付けられた複数の第1コイル41と、を含む。第1コイル41は、8本のティース143aのそれぞれに、合計8個設けられている。8個の第1コイル41のうち、隣接する2個の第1コイル41が同一の巻線により直列で接続されており、4つのグループを構成している。各グループの第1コイル41は、電流供給により、一方のティース143a、隙間、第1コア部44(回転軸11)、他方のティース143a、を通過する磁束41a(図9の実線部参照)を発生する。第1ラジアル磁気軸受40は、各グループの第1コイル41に発生させる磁束41aの強さが制御されることにより、ラジアル方向のうち任意の方向の支持力を回転軸11に付与する。
図9に示す変形例によるモータユニット22の構成は、上記実施形態と同様(図4参照)であるので説明を省略する。
図10に示すように、スラスト磁気軸受60は、スラストコイル61と、第1端面62aおよび第2端面62bを有するスラストコア62と、磁石部42と、ヨーク165とを備える。バイアス磁束42aが、磁石部42のN極から、スラストコア62、隙間、第2コア部63、シャフト部11c(回転軸11)、隙間、ヨーク165、を順番に通過して、磁石部42のS極に戻る。スラスト磁気軸受60は、スラストコイル61の磁束61aと、第1端面62aおよび第2端面62bのそれぞれを通過するバイアス磁束42aと、の相互作用により、磁束61aとバイアス磁束42aとが互いに強め合う方向に向かう支持力64を回転軸11に付与する。
このように、変形例による真空ポンプ100は、磁気軸受ユニット21と、モータユニット22と、スラスト磁気軸受60との3つのユニットにより構成された回転機構20を備える。
(他の変形例)
また、上記実施形態では、モータユニット22が、モータコイル31および第2コイル51の2種類のコイルを有する例を示したが、本発明はこれに限られない。モータユニットは、1種類のコイルのみを備えていてもよい。すなわち、図4において、同一のスロット32cに配置した(同一のティース32aに巻回した)モータコイル31および第2コイル51に代えて、単一のコイルを配置してもよい。この場合、たとえばそれぞれのコイルへの電流供給タイミングを時分割して、第1のタイミングでは、モータ30として動作するためのトルクを発生するようにコイルへの電流制御を行う。そして、第2のタイミングでは、第2ラジアル磁気軸受50としての支持力55を発生するようにコイルへの電流制御を行う。第1のタイミングと第2のタイミングとを交互に設けて切り替える事により、1種類のコイルで、モータユニットをモータ30と第2ラジアル磁気軸受50との両方として動作させることが可能である。この他、dq軸制御によりモータユニットの供給電流を制御し、コイルに供給する電流のd軸成分によって第2ラジアル磁気軸受50の支持力55を発生させ、q軸成分によってモータ30のトルクを発生させるようにしてもよい。
また、上記実施形態では、スラスト磁気軸受60を設けた例を示したが、本発明はこれに限られない。本発明では、スラスト磁気軸受60に代えて、磁気軸受以外のスラスト軸受を設けてもよい。スラスト軸受は、たとえば、メカニカルベアリングでもよいし、流体軸受でもよい。スラスト磁気軸受60は、スラスト円盤の軸方向両側に一対のコイルを配置するタイプのスラスト磁気軸受によって構成されてもよい。
また、上記実施形態では、磁気軸受ユニット21の第1コイル41の中心25aを、モータユニット22の第2コイル51の中心26aよりも回転体10の重心16に近い位置に配置した例を示したが、本発明はこれに限られない。本発明では、モータユニット22の第2コイル51の中心26aを、磁気軸受ユニット21の第1コイル41の中心25aよりも回転体10の重心16に近い位置に配置してもよい。この場合、モータユニット22の第2コイル51の中心26aと、回転体10の重心16の軸方向の位置とが、互いにオーバラップするように構成することが好ましい。この場合、モータユニット22の第2ラジアル磁気軸受50をメインに回転体10のラジアル方向の支持を行い、磁気軸受ユニット21では回転軸11の傾斜を防止するための支持力を発生させるだけで済む。そのため、磁気軸受ユニット21を小型化することができ、その分だけ回転軸11の第一端11aに近づけて配置することができる。
また、上記実施形態では、磁気軸受ユニット21の軸方向の形成範囲97と、回転体10の重心16の軸方向の位置とが、互いにオーバラップしている例を示したが、本発明はこれに限られない。回転体10の重心16は、磁気軸受ユニット21の軸方向の形成範囲97よりも第一端11a側の位置または第二端11b側の位置に配置されてもよい。
また、上記実施形態では、翼支持部12にテーパ形状部12aを設けた例を示したが、本発明はこれに限られない。翼支持部12は、たとえば第一端11a側から第二端11b側に向けて、内径が段階的に大きくなるように形成されていてもよい。この場合、翼支持部12にテーパ形状部12aが形成されないので、磁気軸受ユニット21が、回転軸11とテーパ形状部12aとの間に配置されている必要もない。
また、上記実施形態では、磁気軸受ユニット21が、回転軸11の軸方向において、テーパ形状部12aのZ2方向側の端部よりもZ1方向側の位置に配置される例を示したが、本発明はこれに限られない。磁気軸受ユニット21の少なくとも一部が、テーパ形状部12aのZ2方向側の端部よりもZ2方向側の位置に配置されてよい。
また、上記実施形態では、真空ポンプ100が第1ポンプ構造3aと第2ポンプ構造3bとを備える複合型の真空ポンプである例を示したが、本発明はこれに限られない。本発明では、第2ポンプ構造3bを設けなくてもよい。つまり、真空ポンプは、複合型でないターボ分子ポンプであってよい。その場合、第2ポンプ構造3bを構成する円筒部14およびポンプステータ73を真空ポンプ100に設けなくてもよい。
また、上記実施形態では、軸方向において、モータユニット22が、円筒部14の第2円筒端部14bよりも第1円筒端部14a側に配置される例を示したが、本発明はこれに限られない。モータユニット22は、円筒部14の第2円筒端部14bよりも第二端11b側(Z2方向側)にはみ出していてもよい。
また、上記実施形態において示した第1ラジアル磁気軸受40(図6参照)および第2ラジアル磁気軸受50(図4参照)の構造は、あくまでも一例であって、特に限定されない。これらのラジアル磁気軸受のコイル数、コイルの配置、スロット数、スロットの配置(ティースの配置)、コア部の形状などは任意であり変更可能である。
[態様]
上記した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
(項目1)
第一端および第二端を有し、軸方向に延びる回転軸と、前記回転軸の前記第一端に接続され、前記回転軸の軸方向において前記第一端側から前記第二端側に向けて内径が拡大するように延びる翼支持部と、前記翼支持部の外周面に設けられた回転翼と、を含む回転体と、
前記回転体を回転駆動するモータ、前記回転体を径方向に支持する第1、第2ラジアル磁気軸受、および前記回転体を軸方向に支持するスラスト軸受を含む回転機構と、を備え、
前記回転機構は、
前記回転軸と前記翼支持部との間で前記回転軸の周囲に設けられ、第1外径を有し、前記第1ラジアル磁気軸受として動作可能な磁気軸受ユニットと、
前記磁気軸受ユニットよりも前記回転軸の前記第二端側の位置で前記回転軸の周囲に設けられ、前記第1外径よりも大きい第2外径を有し、前記モータと前記第2ラジアル磁気軸受との両方として動作可能なモータユニットと含む、真空ポンプ。
(項目2)
前記磁気軸受ユニットは、前記第1ラジアル磁気軸受を構成する第1コイルを含み、
前記モータユニットは、前記回転軸の軸方向と直交する面内において、前記モータを構成するモータコイルと、前記第2ラジアル磁気軸受を構成する第2コイルと、前記モータコイルおよび前記第2コイルがそれぞれ巻回されたステータコアと、を有する、項目1に記載の真空ポンプ。
(項目3)
前記スラスト軸受は、前記回転軸の周囲に設けられたスラスト磁気軸受であり、
前記スラスト磁気軸受は、前記回転軸を軸方向に通過する磁束をそれぞれ発生する磁石部およびスラストコイルを含み、前記磁石部の磁束と前記スラストコイルの磁束との相互作用により前記回転軸にスラスト方向の支持力を発生するように構成されている、項目1または2に記載の真空ポンプ。
(項目4)
前記磁気軸受ユニットは、さらに、前記スラスト磁気軸受として動作可能である、項目3に記載の真空ポンプ。
(項目5)
前記磁気軸受ユニットは、前記第1ラジアル磁気軸受を構成する第1コイルと、前記スラスト磁気軸受を構成する前記スラストコイルと、前記第1ラジアル磁気軸受および前記スラスト磁気軸受の両方と相互作用する磁束を発生する前記磁石部と、を有する、項目4に記載の真空ポンプ。
(項目6)
前記回転体は、前記回転軸上に重心を有し、
前記回転軸の軸方向において、前記磁気軸受ユニットの前記第1コイルの中心が、前記モータユニットの前記第2コイルの中心よりも、前記回転体の重心に近い、項目2に記載の真空ポンプ。
(項目7)
前記磁気軸受ユニットの前記軸方向の形成範囲と、前記回転体の重心の前記軸方向の位置とが、オーバラップしている、項目6に記載の真空ポンプ。
(項目8)
前記翼支持部は、前記回転軸の前記第二端側から前記第一端側に向かって傾斜したテーパ形状部を有し、
前記磁気軸受ユニットは、前記回転軸の軸方向と直交する面内において、前記回転軸と前記テーパ形状部との間に配置されている、項目1~7のいずれか1項に記載の真空ポンプ。
(項目9)
前記磁気軸受ユニットは、前記回転軸の軸方向において、前記テーパ形状部の前記第二端側の端部よりも前記第一端側の位置に配置されている、項目8に記載の真空ポンプ。
(項目10)
前記回転体および前記回転機構を収容するハウジングをさらに備え、
前記回転翼は、前記ハウジングとの間で第1ポンプ構造を構成し、
前記回転体は、前記翼支持部から前記回転軸の前記第二端側に延びて、前記ハウジングとの間で第2ポンプ構造を構成する円筒部を含み、
前記モータユニットの少なくとも一部が、前記翼支持部の内周面および前記円筒部の内周面により区画される収容空間内に配置されている、項目1~9のいずれか1項に記載の真空ポンプ。
(項目11)
前記円筒部は、前記翼支持部に接続する第1円筒端部と、前記回転軸の軸方向における前記翼支持部とは反対側の第2円筒端部と、を有し、
前記軸方向において、前記モータユニットは、前記円筒部の前記第2円筒端部よりも前記第1円筒端部側に配置されている、項目10に記載の真空ポンプ。
(他の態様)
また、上記した実施形態は、以下の態様の具体例でもあり得る。
(項目12)
中心軸線に沿って延びるシャフトと、
前記シャフトに接続され、前記シャフトの前記中心軸線回りに前記シャフトとともに回転可能な複数の動翼と、
前記複数の動翼と軸方向に交互に並ぶように配置されている複数の静翼と、
前記シャフトの第1の軸方向位置に半径方向に隣接し、前記第1の軸方向位置で前記シャフトの半径方向の位置を調整するための磁力を発生するように構成される第1ラジアル磁気軸受と、
前記シャフトの第2の軸方向位置に固定されたモータロータと、前記モータロータと半径方向に隣接し前記モータロータと前記シャフトと前記複数の動翼とを回転させるモータステータと、を含むモータと、
前記シャフトの前記第2の軸方向位置に半径方向に隣接し、前記第2の軸方向位置で前記シャフトの半径方向の位置を調整するための磁力を発生するように構成される第2ラジアル磁気軸受と、
第3の磁力を発生させて前記シャフトの軸方向の位置を調整するための磁力を発生するように構成されるスラスト磁気軸受と、を備え、
前記第1ラジアル磁気軸受は第1直径を有し、
前記第2ラジアル磁気軸受または前記モータは前記第1直径よりも大きい第2直径を有し、
前記第1の軸方向位置は、前記第2の軸方向位置よりも前記複数の動翼に近い、真空ポンプ。
3a 第1ポンプ構造
3b 第2ポンプ構造
4 ハウジング
10 回転体
11 回転軸
11a 第一端
11b 第二端
12 翼支持部
12a テーパ形状部
13 回転翼
14 円筒部
14a 第1円筒端部
14b 第2円筒端部
15 収容空間
16 重心
20 回転機構
21、121 磁気軸受ユニット
22 モータユニット
25a 第1コイルの中心
26a 第2コイルの中心
30 モータ
31 モータコイル
32 ステータコア
40 第1ラジアル磁気軸受
41 第1コイル
42 磁石部
50 第2ラジアル磁気軸受
51 第2コイル
60 スラスト磁気軸受
61 スラストコイル
91 第1外径
92 第2外径
93、94 内径
100 真空ポンプ

Claims (11)

  1. 第一端および第二端を有し、軸方向に延びる回転軸と、前記回転軸の前記第一端に接続され、前記回転軸の軸方向において前記第一端側から前記第二端側に向けて内径が拡大するように延びる翼支持部と、前記翼支持部の外周面に設けられた回転翼と、を含む回転体と、
    前記回転体を回転駆動するモータ、前記回転体を径方向に支持する第1、第2ラジアル磁気軸受、および前記回転体を軸方向に支持するスラスト軸受を含む回転機構と、を備え、
    前記回転機構は、
    前記回転軸と前記翼支持部との間で前記回転軸の周囲に設けられ、第1外径を有し、前記第1ラジアル磁気軸受として動作可能な磁気軸受ユニットと、
    前記磁気軸受ユニットよりも前記回転軸の前記第二端側の位置で前記回転軸の周囲に設けられ、前記第1外径よりも大きい第2外径を有し、前記モータと前記第2ラジアル磁気軸受との両方として動作可能なモータユニットと含む、真空ポンプ。
  2. 前記磁気軸受ユニットは、前記第1ラジアル磁気軸受を構成する第1コイルを含み、
    前記モータユニットは、前記回転軸の軸方向と直交する面内において、前記モータを構成するモータコイルと、前記第2ラジアル磁気軸受を構成する第2コイルと、前記モータコイルおよび前記第2コイルがそれぞれ巻回されたステータコアと、を有する、請求項1に記載の真空ポンプ。
  3. 前記スラスト軸受は、前記回転軸の周囲に設けられたスラスト磁気軸受であり、
    前記スラスト磁気軸受は、前記回転軸を軸方向に通過する磁束をそれぞれ発生する磁石部およびスラストコイルを含み、前記磁石部の磁束と前記スラストコイルの磁束との相互作用により前記回転軸にスラスト方向の支持力を発生するように構成されている、請求項1に記載の真空ポンプ。
  4. 前記磁気軸受ユニットは、さらに、前記スラスト磁気軸受として動作可能である、請求項3に記載の真空ポンプ。
  5. 前記磁気軸受ユニットは、前記第1ラジアル磁気軸受を構成する第1コイルと、前記スラスト磁気軸受を構成する前記スラストコイルと、前記第1ラジアル磁気軸受および前記スラスト磁気軸受の両方と相互作用する磁束を発生する前記磁石部と、を有する、請求項4に記載の真空ポンプ。
  6. 前記回転体は、前記回転軸上に重心を有し、
    前記回転軸の軸方向において、前記磁気軸受ユニットの前記第1コイルの中心が、前記モータユニットの前記第2コイルの中心よりも、前記回転体の重心に近い、請求項2に記載の真空ポンプ。
  7. 前記磁気軸受ユニットの前記軸方向の形成範囲と、前記回転体の重心の前記軸方向の位置とが、オーバラップしている、請求項6に記載の真空ポンプ。
  8. 前記翼支持部は、前記回転軸の前記第二端側から前記第一端側に向かって傾斜したテーパ形状部を有し、
    前記磁気軸受ユニットは、前記回転軸の軸方向と直交する面内において、前記回転軸と前記テーパ形状部との間に配置されている、請求項1に記載の真空ポンプ。
  9. 前記磁気軸受ユニットは、前記回転軸の軸方向において、前記テーパ形状部の前記第二端側の端部よりも前記第一端側の位置に配置されている、請求項8に記載の真空ポンプ。
  10. 前記回転体および前記回転機構を収容するハウジングをさらに備え、
    前記回転翼は、前記ハウジングとの間で第1ポンプ構造を構成し、
    前記回転体は、前記翼支持部から前記回転軸の前記第二端側に延びて、前記ハウジングとの間で第2ポンプ構造を構成する円筒部を含み、
    前記モータユニットの少なくとも一部が、前記翼支持部の内周面および前記円筒部の内周面により区画される収容空間内に配置されている、請求項1に記載の真空ポンプ。
  11. 前記円筒部は、前記翼支持部に接続する第1円筒端部と、前記回転軸の軸方向における前記翼支持部とは反対側の第2円筒端部と、を有し、
    前記軸方向において、前記モータユニットは、前記円筒部の前記第2円筒端部よりも前記第1円筒端部側に配置されている、請求項10に記載の真空ポンプ。
JP2021515426A 2019-04-25 2019-04-25 真空ポンプ Active JP7052920B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017724 WO2020217407A1 (ja) 2019-04-25 2019-04-25 真空ポンプ

Publications (2)

Publication Number Publication Date
JPWO2020217407A1 JPWO2020217407A1 (ja) 2021-10-28
JP7052920B2 true JP7052920B2 (ja) 2022-04-12

Family

ID=72941144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021515426A Active JP7052920B2 (ja) 2019-04-25 2019-04-25 真空ポンプ

Country Status (5)

Country Link
US (1) US12117009B2 (ja)
JP (1) JP7052920B2 (ja)
CN (1) CN113544386B (ja)
TW (1) TW202044727A (ja)
WO (1) WO2020217407A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2621345B (en) * 2022-08-09 2024-10-23 Leybold Gmbh Method of assembling a vacuum pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148151A (ja) 2014-02-04 2015-08-20 エドワーズ株式会社 真空ポンプ
JP5879695B2 (ja) 2011-02-24 2016-03-08 セイコーエプソン株式会社 焦電型検出器、焦電型検出装置及び電子機器

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879695A (ja) * 1981-11-06 1983-05-13 Seiko Instr & Electronics Ltd 磁気軸受を応用した軸流分子ポンプ
JPS5879695U (ja) 1981-11-26 1983-05-30 ト−ソ−株式会社 連結ブラインド
US5355042A (en) * 1988-09-09 1994-10-11 University Of Virginia Patent Foundation Magnetic bearings for pumps, compressors and other rotating machinery
DE3931661A1 (de) * 1989-08-25 1991-04-04 Leybold Ag Magnetgelagerte vakuumpumpe
JPH04209996A (ja) * 1990-11-30 1992-07-31 Daikin Ind Ltd 高速度回転真空ポンプの磁気軸受
JPH04339195A (ja) * 1991-05-15 1992-11-26 Ebara Corp ターボ分子ポンプ
JP3550584B2 (ja) * 1995-04-21 2004-08-04 正 深尾 電磁回転機械
JPH0968190A (ja) * 1995-08-30 1997-03-11 Seiko Seiki Co Ltd ターボ分子ポンプ
JPH1162878A (ja) * 1997-08-27 1999-03-05 Ebara Corp ターボ分子ポンプ
JP3399800B2 (ja) * 1997-09-24 2003-04-21 イビデン株式会社 モータ及びターボ分子ポンプ
EP0989656B1 (de) 1998-09-24 2009-03-11 Levitronix LLC Permanentmagnetisch erregter elektrischer Drehantrieb
JP3215842B2 (ja) 1999-03-29 2001-10-09 セイコーインスツルメンツ株式会社 磁気軸受保護装置及びターボ分子ポンプ
EP1063753B1 (de) * 1999-06-22 2009-07-22 Levitronix LLC Elektrischer Drehantrieb mit einem magnetisch gelagerten Rotor
JP2001241393A (ja) * 1999-12-21 2001-09-07 Seiko Seiki Co Ltd 真空ポンプ
DE10062753A1 (de) * 1999-12-23 2001-10-04 Wolfgang Amrhein Elektrischer Reluktanzbetrieb mit Permanent-Magneterregung zur leistungsarmen Erzeugung von Drehmomenten und gegebenenfalls Tragkräften
JP2002242876A (ja) * 2001-02-19 2002-08-28 Stmp Kk 磁気軸受式ポンプ
JP4250353B2 (ja) * 2001-06-22 2009-04-08 エドワーズ株式会社 真空ポンプ
DE10338167A1 (de) * 2003-08-20 2005-04-07 Lust Antriebstechnik Gmbh Hermetisch dichte Prozeßkammer
EP1517042A1 (en) * 2003-09-17 2005-03-23 Mecos Traxler AG Magnetic bearing device and vacuum pump
EP2107668A1 (en) * 2007-01-22 2009-10-07 Tokyo University Of Science Educational Foundation Administrative Organization Rotating electric machine
JP5319069B2 (ja) * 2007-01-25 2013-10-16 エドワーズ株式会社 電磁アクチュエータ、及び真空ポンプ
CN101207309A (zh) * 2007-12-07 2008-06-25 沈阳工业大学 高速磁悬浮无轴承永磁电机
JP4616405B2 (ja) 2008-01-24 2011-01-19 学校法人東京理科大学 ベアリングレスモータ
JP5732695B2 (ja) 2010-03-15 2015-06-10 学校法人東京理科大学 ベアリングレスモータ
TWI402436B (zh) * 2010-12-30 2013-07-21 私立中原大學 混合式軸向磁浮軸承及其工作方法與其轉動體結構
JP5768670B2 (ja) * 2011-11-09 2015-08-26 株式会社島津製作所 ターボ分子ポンプ装置
CN102425557B (zh) * 2011-12-08 2014-09-03 北京中科科仪股份有限公司 一种获取磁悬浮分子泵转子悬浮中心的控制方法
JP6261507B2 (ja) * 2012-09-26 2018-01-17 株式会社島津製作所 真空ポンプ用保護ネット、その製造方法および真空ポンプ
CN103199660A (zh) * 2013-04-08 2013-07-10 东南大学 一种e形齿定子永磁型磁通切换无轴承电机
JP6144527B2 (ja) * 2013-04-16 2017-06-07 エドワーズ株式会社 磁気軸受装置、及び該磁気軸受装置を備えた真空ポンプ
JP6793445B2 (ja) * 2015-07-07 2020-12-02 エドワーズ株式会社 電磁石ユニット、磁気軸受装置及び真空ポンプ
US10177627B2 (en) * 2015-08-06 2019-01-08 Massachusetts Institute Of Technology Homopolar, flux-biased hysteresis bearingless motor
CN106594072B (zh) * 2016-11-29 2017-11-14 北京航空航天大学 一种无推力盘径轴向一体化永磁偏置磁轴承
JP7003418B2 (ja) * 2017-02-17 2022-01-20 株式会社島津製作所 磁気軸受装置および真空ポンプ
CN106958531B (zh) * 2017-04-20 2018-04-06 北京航空航天大学 一种低损耗磁悬浮涡轮分子泵
CN107989896A (zh) * 2017-12-13 2018-05-04 中国人民解放军海军工程大学 轴径向一体化磁悬浮轴承系统
CN111102234B (zh) * 2019-12-30 2021-09-03 北京航空航天大学 一种永磁偏置磁悬浮轴承

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5879695B2 (ja) 2011-02-24 2016-03-08 セイコーエプソン株式会社 焦電型検出器、焦電型検出装置及び電子機器
JP2015148151A (ja) 2014-02-04 2015-08-20 エドワーズ株式会社 真空ポンプ

Also Published As

Publication number Publication date
CN113544386A (zh) 2021-10-22
US12117009B2 (en) 2024-10-15
TW202044727A (zh) 2020-12-01
CN113544386B (zh) 2024-03-26
WO2020217407A1 (ja) 2020-10-29
US20220205449A1 (en) 2022-06-30
JPWO2020217407A1 (ja) 2021-10-28

Similar Documents

Publication Publication Date Title
JP4616405B2 (ja) ベアリングレスモータ
KR100352022B1 (ko) 자기 부상형 전동기
JP2009273214A (ja) ベアリングレスモータ及び該ベアリングレスモータを搭載した人工心臓、血液ポンプ、人工心肺、ポンプ、ファン、ブロワ、コンプレッサ、アクチュエータ、リアクションホイール、フライホイール、揺動ステージ
JP2004504795A (ja) 経済的な非摩耗電気駆動装置
US7847453B2 (en) Bearingless step motor
JP2010279230A (ja) アキシャル型磁気浮上モータおよびアキシャル型磁気浮上モータを備えたアキシャル型磁気浮上遠心ポンプ
JP7052920B2 (ja) 真空ポンプ
JP2006136062A (ja) ベアリングレス電磁回転装置
CN115654011A (zh) 磁悬浮主动式三自由度轴承、电机和压缩机
Sugimoto et al. Design of SPM and IPM rotors in novel one-axis actively positioned single-drive bearingless motor
JP2001190045A (ja) 磁気浮上モータ
JP6078874B2 (ja) ベアリングレスモータ、回転機および非接触磁気力支持ポンプ
JP6628388B2 (ja) ベアリングレスモータ
JP7147976B2 (ja) 真空ポンプおよび磁気軸受一体型モータ
JP2541371B2 (ja) 高速度回転真空ポンプの磁気軸受構造
JP2018021572A (ja) 磁気軸受
JP2001041237A (ja) 磁気軸受装置
JPH0216390A (ja) ターボ分子ポンプ
Wu et al. Design and analysis of a novel axial actively regulated slotless skew winding bearingless motor
JP3903407B2 (ja) 磁気浮上モータ
JPH1080113A (ja) ディスク型無軸受モータ
Kurita et al. Magnetically levitated motor with five actively controlled degrees of freedom
TW202337113A (zh) 磁浮式電動機及磁浮式泵
JPH03284139A (ja) 回転体の駆動支持機構
CN116317325A (zh) 自然电磁磁悬浮径向磁路姿态控制飞轮电机

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R151 Written notification of patent or utility model registration

Ref document number: 7052920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151