JP7016712B2 - 撮像装置、撮像装置の制御方法、およびプログラム - Google Patents

撮像装置、撮像装置の制御方法、およびプログラム Download PDF

Info

Publication number
JP7016712B2
JP7016712B2 JP2018017494A JP2018017494A JP7016712B2 JP 7016712 B2 JP7016712 B2 JP 7016712B2 JP 2018017494 A JP2018017494 A JP 2018017494A JP 2018017494 A JP2018017494 A JP 2018017494A JP 7016712 B2 JP7016712 B2 JP 7016712B2
Authority
JP
Japan
Prior art keywords
sensitivity
image
control unit
signal
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018017494A
Other languages
English (en)
Other versions
JP2019133099A5 (ja
JP2019133099A (ja
Inventor
敏文 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018017494A priority Critical patent/JP7016712B2/ja
Priority to US16/259,813 priority patent/US10999523B2/en
Publication of JP2019133099A publication Critical patent/JP2019133099A/ja
Publication of JP2019133099A5 publication Critical patent/JP2019133099A5/ja
Application granted granted Critical
Publication of JP7016712B2 publication Critical patent/JP7016712B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • G03B7/16Control of exposure by setting shutters, diaphragms or filters, separately or conjointly in accordance with both the intensity of the flash source and the distance of the flash source from the object, e.g. in accordance with the "guide number" of the flash bulb and the focusing of the camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • G03B15/05Combinations of cameras with electronic flash apparatus; Electronic flash units
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B19/00Cameras
    • G03B19/02Still-picture cameras
    • G03B19/12Reflex cameras with single objective and a movable reflector or a partly-transmitting mirror
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B19/00Cameras
    • G03B19/18Motion-picture cameras
    • G03B19/20Reflex cameras
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • G03B7/08Control effected solely on the basis of the response, to the intensity of the light received by the camera, of a built-in light-sensitive device
    • G03B7/099Arrangement of photoelectric elements in or on the camera
    • G03B7/0993Arrangement of photoelectric elements in or on the camera in the camera
    • G03B7/0997Through the lens [TTL] measuring
    • G03B7/09971Through the lens [TTL] measuring in mirror-reflex cameras
    • G03B7/09972Through the lens [TTL] measuring in mirror-reflex cameras using the mirror as sensor light reflecting or transmitting member
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • G03B7/08Control effected solely on the basis of the response, to the intensity of the light received by the camera, of a built-in light-sensitive device
    • G03B7/099Arrangement of photoelectric elements in or on the camera
    • G03B7/0993Arrangement of photoelectric elements in or on the camera in the camera
    • G03B7/0997Through the lens [TTL] measuring
    • G03B7/09979Multi-zone light measuring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/41Extracting pixel data from a plurality of image sensors simultaneously picking up an image, e.g. for increasing the field of view by combining the outputs of a plurality of sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • H04N25/585Control of the dynamic range involving two or more exposures acquired simultaneously with pixels having different sensitivities within the sensor, e.g. fast or slow pixels or pixels having different sizes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)
  • Stroboscope Apparatuses (AREA)
  • Exposure Control For Cameras (AREA)

Description

本発明は、静止画像等を撮影する際のフラッシュ撮影制御の技術に関する。
従来、フラッシュ撮影を行う場合において、本撮影時に先立ってフラッシュの予備発光(プリ発光)を行い、その予備発光時に被写体から反射されてきた光の測光値に基づき本撮影時のフラッシュ発光量を決定する制御方法が知られている。
特許文献1にはフラッシュ予備発光時の被写体からの反射光を測光する際に測光用センサーの垂直方向の電荷加算数を複数種類設定することで測光輝度範囲を拡大する技術が開示されている。
特許文献2にはフラッシュ予備発光時の被写体からの反射光を測光した画像情報から人物の顔検出を行い、その顔検出結果を用いて本撮影時のフラッシュ発光量を決定することで人物撮影時の撮影露出精度を向上させる技術が開示されている。
特開2005-117192号公報 特開2005-184508号公報
フラッシュの予備発光は、通常はある決められた発光量により行われるため、近距離に存在する被写体部分からは大きな測光値が得られ、遠距離に存在する被写体部分からは小さな測光値が得られる。一方、測光用センサーの測光輝度範囲には限りがあるが、特許文献1に記載された技術によれば、それをより近距離から遠距離までの広い距離範囲の被写体からの反射光量を測光できるように拡大できる。しかし、特許文献1に記載された技術で測光輝度範囲を拡大した場合、測光用センサー内における垂直解像度及び受光感度の不均一性が発生して画像品質が低下することがある。このため、特許文献2に記載されたような、フラッシュ予備発光時の被写体からの反射光を測光した画像情報から、例えば人物の顔画像のような撮影対象の被写体領域を検出するようなことが困難になることがある。
そこで、本発明は、フラッシュ予備発光時の被写体等からの反射光の測光輝度範囲を拡大するとともに、その反射光に基づく画像情報から被写体領域を検出可能にすることを目的とする。
本発明に係る撮像装置は、複数配列された画素を有し、フラッシュの予備発光時に、前記複数配列の行または画素ごとに少なくとも二つの異なる感度が設定され、前記設定された感度ごとの信号を出力するセンサと、前記設定された感度ごとに出力された前記信号に対して前記設定された感度の差に対応した補正を行い、前記補正を行った信号を基に画像を生成する生成手段と、前記生成手段が生成した画像から被写体領域を検知し、検知した前記被写体領域に応じて前記フラッシュの本発光時の発光量を決定する決定手段と、を有し、前記生成手段は、前記感度の差に対応した前記補正として、低感度領域の画像に感度が合うように高感度領域の画像の感度を下げる処理と、高感度領域の画像を低感度領域の画像情報にて補間処理する処理と、高感度領域の画像に感度が合うように低感度領域の画像の感度を上げる処理と、低感度領域の画像を高感度領域の画像情報にて補間処理する処理との、いずれかの処理で前記感度の差を均一にする補正を行うことを特徴とする。
また、本発明に係る撮像装置は、複数配列された画素を有し、フラッシュの予備発光時に、前記複数配列の行または画素ごとに少なくとも二つの異なる感度が設定され、前記設定された感度ごとの信号を出力するセンサと、前記設定された感度ごとに出力された前記信号に対して前記設定された感度の差に対応した補正を行い、前記補正を行った信号を基に画像を生成する生成手段と、前記生成手段が生成した画像から被写体領域を検知し、検知した前記被写体領域に応じて前記フラッシュの本発光時の発光量を決定する決定手段と、を有し、前記センサは、前記複数配列の画素から読み出された画素信号をAD変換する際のゲインが、前記フラッシュの予備発光時に前記複数配列の行または画素ごとに少なくとも二つの異なるゲインに設定されて、前記設定されたゲインに基づくAD変換を行ってデジタル信号を出力し、前記生成手段は、前記デジタル信号の度数分布情報に基づきビットシフト量を決定し、前記設定された感度に基づきビット長を拡大した前記デジタル信号に対して前記ビットシフト量によるビットシフトを行い、さらにビット長の短縮を行った後のデジタル信号を基に前記被写体領域の画像を生成することを特徴とする。
本発明によれば、フラッシュ予備発光時の被写体等からの反射光の測光輝度範囲を拡大するとともに、その反射光に基づく画像情報から被写体領域を検出可能となる。
カメラと交換レンズ、フラッシュ装置の概略断面図である。 焦点検出用センサーの構成例を示す図である。 測光用センサーの構成例を示す図である。 カメラと交換レンズ、フラッシュ装置の電気回路の構成例を示す図である。 カメラの制御部の動作フローチャートである。 測光信号処理及び露出演算のフローチャートである。 フラッシュの予備発光及び本発光量演算のフローチャートである。 第1実施形態における測光用センサーのゲイン設定例を示す図である。 顔検知画像生成のフローチャートである。 予備発光時の測光信号の度数分布例を示す図である。 第1実施形態における予備発光量演算のフローチャートである。 本発光量演算のフローチャートである。 第2実施形態における測光用センサーの画素構成例を示す図である。 第3実施形における測光用センサーのゲイン設定例を示す図である。 第3実施形態における感度差補正の例を示す図である。 第3実施形態における予備発光量演算のフローチャートである。 第3実施形態における顔検知用画像生成のフローチャートである。 撮影構図の一例を示す図である。 第3実施形態における顔検知用画像生成方法の説明に用いる図である。
以下に、本発明の好ましい実施形態を、添付の図面に基づいて詳細に説明する。
<第1実施形態>
図1は、本発明実施形態に係るカメラと交換レンズ及びフラッシュ装置において、主に光学部材やセンサー等の配置を表した概略的な断面図である。図1には、レンズ交換可能ないわゆる一眼レフタイプのカメラの概略構成を示しており、カメラ本体(以下、カメラ1とする。)と、カメラ1に着脱可能な交換レンズ2と、カメラ1に着脱可能なフラッシュ装置3とを示している。
カメラ1は、メカニカルシャッター10、光学ロウパスフィルター11、例えばCMOSやCCDといった蓄積型光電変換素子が複数配列された撮像素子12、半透過性の主ミラー13、第1反射ミラー14を備えている。主ミラー13と第1反射ミラー14はともに撮影時には上部に跳ね上がる。また、カメラ1は、第2反射ミラー16、赤外カットフィルター17、絞り18、2次結像レンズ19、焦点検出用センサー20をも備えている。絞り18は、2つの開口部を有している。さらに、カメラ1は、光拡散性を有するピント板21、ペンタプリズム22、接眼レンズ23、第3反射ミラー24、集光レンズ25、被写体等の輝度に関する情報を取得するための測光用センサー26も備えている。ピント板21、ペンタプリズム22、接眼レンズ23は、ファインダー光学系を構成している。測光用センサー26には、主ミラー13によって反射されてピント板21によって拡散された光線のうち光軸外の一部が入射する。
焦点検出用センサー20は、AFセンサーである。焦点検出用センサー20は、例えばCMOSやCCDといった蓄積型光電変換素子が複数配列されて構成されている。また焦点検出用センサー20は、図2に示すように、絞り18の2つの開口部に対応した受光センサー部20Aと20Bとの2対のエリアに分けた構成となされている。また焦点検出用センサー20は、受光センサー部20Aと20Bに加えて、不図示の信号蓄積部や信号処理用の周辺回路などが同一チップ上に集積回路として作り込まれている。なお、図1には、第1反射ミラー14による、撮像素子12の撮像面と共役な近軸的結像面15も図示している。第1反射ミラー14から焦点検出用センサー20までの構成は、例えば特開平9-184965号公報に詳細に記載されているように、撮影画面内の任意の位置での像ずれ方式による焦点検出を可能とするものである。
測光用センサー26は、AEセンサーである。測光用センサー26は、フラッシュの予備発光(プリ発光)時やフラッシュを発光していない定常光時などにおいて被写体等からの光を受光し、それら受光信号から後述する被写体等の測光信号を取得する。図3(a)は、測光用センサー26の概略的な内部構成例を示すブロック図である。測光用センサー26は、機能設定回路26A、クロック生成回路26B、画素アレイ26C、蓄積制御及び画素走査回路26D、読出し回路26E、AD変換回路26F、AD変換ゲイン制御回路26G、出力回路26Hを有して構成されている。
機能設定回路26Aは、後述する制御部41から送信されるデータに従って、センサー内部の動作クロックや蓄積制御、AD変換制御等の機能設定を行う。クロック生成回路26Bは、センサー内部の動作クロックを生成する。
画素アレイ26Cは、光電変換用の受光素子(以下、画素とする。)、例えばCMOSやCCDといった蓄積型光電変換素子が、例えば数万~数十万画素のように多数配列されて構成されている。また画素アレイ26Cは、図3(b)に示すように、青色透過フィルター(B)と緑色透過フィルター(G1,G2)と赤色透過フィルター(R)とが1ベイヤーとなされた、いわゆるベイヤー配列のカラーフィルターを備えている。したがって画素アレイ26Cでは、入射画像の輝度と合わせて色の情報をも取得することができる。
蓄積制御及び画素走査回路26Dは、画素アレイ26Cの各画素(受光素子)における電荷の蓄積制御や各画素からの受光信号(以下、画素信号とする。)の読出し時の走査の制御を行う。
読出し回路26Eは、画素アレイ26Cの各画素に蓄積された電荷をアナログの画素信号(受光信号)として順次読み出すための読出し制御回路である。読出し回路26Eによって画素アレイ26Cから読み出されたアナログの画素信号は、AD変換回路26Fに送られる。
AD変換回路26Fは、入力されたアナログ画素信号をデジタル変換する。
AD変換ゲイン制御回路26Gは、AD変換回路26Fの変換ゲインを調節する。
詳細は後述するが、AD変換ゲイン制御回路26Gは、画素アレイ26Cから読み出された画素信号をAD変換回路26FでAD変換する際のアナログゲインを、複数画素の行又は画素ごとに、少なくとも二つの異なるゲインに設定可能となされている。したがって、AD変換回路26Fでは、AD変換ゲイン制御回路26Gによって複数画素の行又は画素ごとに設定されたゲインに従った画素信号のAD変換が行われる。すなわち、本実施形態の測光用センサー26では、画素アレイ26Cの複数画素の行又は画素ごとに異なる感度が設定されて、その設定された感度に従った画素信号のAD変換が行われる。そして、AD変換回路26Fによりデジタル変換された画素信号は、出力回路26Hに送られる。
出力回路26Hは、AD変換回路26Fから供給された画素信号に対し、必要に応じてパラレル-シリアル変換や差動信号への変換などを行う。そして、出力回路26Hによる変換後の信号は、本実施形態の測光用センサー26における測光信号として、後述する信号処理回路42へ出力される。
図1の説明に戻る。マウント部27は、カメラ1に交換レンズ2を着脱可能に取り付けるための構成である。接点部28は、交換レンズ2と情報通信を行うための接点端子である。接続部29は、フラッシュ装置3を着脱可能に取り付けるための構成であり、不図示の接点端子を有する。
交換レンズ2は、撮影レンズを構成する各光学レンズ30a~30e、絞り31、接点部32、マウント部33を有する。マウント部33は、交換レンズ2をカメラ1に取り付けるための構成である。接点部32は、カメラ1と情報通信を行うための接点端子である。
フラッシュ装置3は、キセノン管等の発光部34、反射笠35、集光用のフレネルレンズ36、発光モニター部37、取り付け部38を有する。発光モニター部37は、発光部34のキセノン管等による発光量をモニターするためのモニターセンサーである。取り付け部38は、カメラ1にフラッシュ装置3を取り付けるための構成である。取り付け部38には不図示の接点端子が設けられており、カメラ1の接続部29に設けられている接点端子と電気的に接続可能となされている。
図4は、本実施形態のカメラ1と交換レンズ2及びフラッシュ装置3におけるそれぞれの電気回路構成を示したブロック図である。
カメラ1は、電気回路構成として、制御部41、信号処理回路42、メモリ43、表示器44、記憶部45、第1モータードライバ46、第1モーター47、レリーズスイッチ48、シャッター駆動部49を有する。撮像素子12、焦点検出用センサー20(AFセンサー)、測光用センサー26(AEセンサー)、接点部28、接続部29は、図1で説明したものと同一のものである。
制御部41は、カメラ機構等の全体制御を行う。制御部41は、例えば内部にALU(算術論理演算回路)、ROM、RAMやADコンバータ、タイマー、シリアル通信ポート(SPI)等を内蔵したワンチップマイクロコンピュータを有する。制御部41における具体的な制御フローについては後述する。焦点検出用センサー20の出力信号は、ADコンバータ入力端子を介して制御部41に入力する。
信号処理回路42は、制御部41からの指示に従って撮像素子12を制御し、撮像素子12から出力された撮像信号をAD変換した後に信号処理を行って画像データを生成する。また、信号処理回路42は、生成した画像データを後述する記憶部45に記憶する際には、圧縮等の必要な画像処理を行う。また、信号処理回路42には、入力画像から人物の顔領域を検出する機能も有している。
また、信号処理回路42は、測光用センサー26の信号も入力され、それに対する信号処理も行う。詳細は後述するが、信号処理回路42では、前述のように測光用センサー26の画素アレイ26Cの複数画素の行又は画素ごとに設定された感度に従った画素信号がAD変換された測光信号に対し、当該設定された感度の差に対応した感度差補正を行う。また詳細は後述するが、信号処理回路42は、感度差に応じた補正がなされた信号をフラッシュ予備発光時の輝度情報とし、その予備発光時の輝度情報から、例えば人の顔などの撮影対象となる被写体領域の画像を生成する。そして、信号処理回路42は、当該顔などの被写体領域の輝度情報から生成された画像情報を制御部41に送り、制御部41は被写体領域の輝度情報から生成された画像情報に基づいてフラッシュ装置2における本発光時の発光量を決定する。これにより、制御部41はその発光量を基にフラッシュ装置2の発光を制御する。なお、フラッシュ装置2の本発光とは、カメラ1において本撮影が行われる際のフラッシュ発光のことである。
メモリ43は、DRAM等からなり、信号処理回路42が種々の信号処理を行う際のワーク用メモリとして使われたり、後述する表示器44に画像を表示する際のVRAMとして使われたりする。
表示器44は、液晶パネルや有機ELパネル等で構成され、制御部41からの指示により点灯制御され、各種撮影情報や撮像画像等を表示する。
記憶部45は、フラッシュメモリ又は光ディスク等の記憶媒体を有し、撮像されて信号処理回路42により処理された画像データを記憶する。
第1モータードライバ46は、制御部41による制御の下、主ミラー13及び第1反射ミラー14のアップ・ダウン動作やメカニカルシャッター10のチャージを行うための第1モーター47を駆動する。
レリーズスイッチ48は、ユーザが撮影開始の指示を行う際に操作されるスイッチである。
接点部28は、図1にも示したように、交換レンズ2との接点であり、制御部41のシリアル通信ポートと接続され、交換レンズ2との間で信号の入出力が行われる。
接続部29は、図1に示したフラッシュ装置3との接点であり、制御部41のシリアル通信ポートと接続され、フラッシュ装置3との間で信号の入出力が行われる。
シャッター駆動部49は、制御部41による制御の下、図1に示したメカニカルシャッター10を駆動する。
交換レンズ2は、電気回路構成として、レンズ制御部51、第2モータードライバ52、第2モーター53、第3モータードライバ54、第3モーター55、距離エンコーダー56、ズームエンコーダー57を有する。接点部32は、図1で説明したものと同一のものである。
レンズ制御部51は、例えば内部にALU、ROM、RAMやタイマー、シリアル通信ポート(SPI)等を内蔵したワンチップマイクロコンピュータを有し、交換レンズ2内の機構等の全体制御を行う。
第2モータードライバ52は、レンズ制御部51による制御の下、焦点調節を行うための焦点調節レンズを移動させる第2モーター53を駆動する。
第3モータードライバ54は、レンズ制御部51による制御の下、図1に示された絞り31を動かすための第3モーター55を駆動する。
距離エンコーダー56は、焦点調節レンズの移動量(繰り出し量)から被写体までの距離に関する情報(以下、被写体距離情報DTとする。)を取得し、その取得した被写体距離情報DTをレンズ制御部51に送る。
ズームエンコーダー57は、交換レンズ2がズームレンズを有する場合に、ズームレンズのズーム位置から撮影時の焦点距離情報を取得し、その取得した情報をレンズ制御部51に送る。
接点部32は、図1にも示したように、カメラ1との間で信号の送受を行う接点であり、レンズ制御部51のシリアル通信ポートに接続されている。
交換レンズ2がカメラ1に装着されると、カメラ1の接点部28と交換レンズ2の接点部32とが電気的に接続され、レンズ制御部51は、カメラ1の制御部41とのデータ通信が可能となる。レンズ制御部51は、カメラ1の制御部41が焦点検出や露出演算を行うために必要な情報を、データ通信によって制御部41へ送出する。カメラ1の制御部41が焦点検出や露出演算を行うために必要な情報には、例えば、レンズ固有の光学的な特性を表す情報や、距離エンコーダー56にて取得された被写体距離情報DT、ズームエンコーダー57にて取得された焦点距離情報が含まれる。また、カメラ1の制御部41は、焦点検出や露出演算を行った結果を基に生成した焦点調節情報や絞り情報を、データ通信によってレンズ制御部51へ送出する。そして、レンズ制御部51は、焦点調節情報に基づいて第2モータードライバ52を制御し、また、絞り情報に基づいて第3モータードライバ54を制御する。
フラッシュ装置3は、電気回路構成として、フラッシュ制御部61、昇圧部62、発光部34、発光モニター部37、取り付け部38を有する。発光部34、発光モニター部37、取り付け部38は、図1で説明したものと同一のものである。
フラッシュ制御部61は、例えば内部にALU、ROM、RAM、ADコンバータ、タイマー、シリアル通信ポート(SPI)等を内蔵したワンチップマイクロコンピュータを有する。
昇圧部62は、発光部34のキセノン管の発光に必要な例えば300V(ボルト)程度の高圧電圧を作り、その高圧電圧を充電する機能を有する。
フラッシュ装置3がカメラ1に装着されると、カメラ1の接続部29の接点端子とフラッシュ装置3の取り付け部38の接点端子とが電気的に接続され、フラッシュ制御部61は、カメラ1の制御部41とのデータ通信が可能となる。フラッシュ制御部61は、カメラ1の制御部41から送られてくる通信内容に従って昇圧部62を制御し、発光部34のキセノン管の発光開始や発光停止を行う。また、フラッシュ制御部61は、発光モニター部37がモニターして検出した発光量を表す情報を、カメラ1の制御部41に送出する。また、フラッシュ制御部61は、発光部34の発光に際して、発光光量或いは発光時充電電圧といった発光条件に依存して変化する発光光の発光色情報をカメラ1の制御部41に対して送信可能である。
次に、図5のフローチャートを参照して、カメラ1の制御部41における本実施形態に関わる具体的な制御シーケンスについて説明する。なお、図5のフローチャートの説明では、各処理のステップS101~S115をそれぞれS101~S115と略記する。また図5のフローチャートの処理は、ハードウェア構成により実行されてもよいし、CPU等がプログラムを実行することにより実現されてもよい。これらのことは後述する他のフローチャートにおいても同様とする。この図5のフローチャートの処理は、不図示の電源スイッチがオンされて制御部41が動作可能となされ、さらにカメラ1が例えば静止画の撮影モードになっていることでスタートする。
図5のフローチャートの処理がスタートすると、制御部41は、先ずS101において、測光用センサー26に対し、所定の蓄積制御及び信号読出し制御を行うように指示する。これにより、測光用センサー26では、所定の蓄積制御に従って所定時間の電荷蓄積が行われ、また信号読出し制御に従って複数画素の画素信号が読み出される。そして、測光用センサー26は、信号読出し制御に従って読み出した複数画素の画素信号をAD変換して、順次、信号処理回路42に送出する。信号処理回路42は、測光用センサー26から入力された信号をブロック積分などすることにより、被写体における予備測光値を取得する。この予備測光値は、フラッシュ発光がなされていない定常光時における現在の被写体の概略の明るさ情報として、次回の蓄積制御における蓄積時間の設定等に用いられる。
次にS102において、制御部41は、フラッシュ制御部61に対し、昇圧部62を動作させてフラッシュ発光に十分となるよう高圧電圧を充電するように指示する。
また、S103において、制御部41は、レンズ制御部51と通信を行い、前述した焦点検出や露出演算を行うために必要な情報(測距や測光に必要な各種の情報)を取得する。
さらにS104において、制御部41は、焦点検出用センサー20に対して制御信号を出力して信号蓄積を行わせ、蓄積が終了すると、焦点検出用センサー20に蓄積された信号を読み出し、AD変換してデジタルデータを取得する。またこのときの制御部41は、読み込んだ各デジタルデータに対してシェーディング等の必要な各種のデータ補正をも行う。
次にS105において、制御部41は、S103でレンズ制御部51から取得した情報と、S104で焦点検出用センサー20から取得したデジタルデータとを基に、撮影画面内各部の焦点状態を演算する。そして、制御部41は、撮影画面内で焦点を合わせるべき領域を決定する。ここで、カメラ1に備えられている不図示の操作部材などへの操作を通じて、焦点を合わせるべき領域が予め指定されている場合には、制御部41は、その指定された領域を、撮影画面内で焦点を合わせるべき領域として決定する。そして、制御部41は、撮影画面内で決定された領域における焦点状態に従った合焦となるためのレンズ移動量を算出し、当該算出したレンズ移動量を示す情報をレンズ制御部51に送る。
制御部41からレンズ移動量の情報を受け取ったレンズ制御部51は、焦点調節用レンズを駆動するように第2モータードライバ52に信号を出力して、第2モーター53を駆動する。これにより、撮影レンズは、被写体に対して合焦した状態となる。またこの場合、焦点調節用レンズが駆動されることによって距離エンコーダー56の出力情報(DT)が変化することになるので、レンズ制御部51は、カメラ1の制御部41へ送出する情報の更新も行う。
また、焦点調節が完了した状態で撮影画面内各部の焦点状態の情報が必要となる場合、制御部41は、再度、焦点検出用センサー20に対して制御信号を出力し、信号蓄積を行わせる。また、制御部41は、焦点検出用センサー20の信号蓄積が終了すると、その蓄積された信号を焦点検出用センサー20から読出しながらAD変換を行う。さらに、制御部41は、AD変換した各デジタルデータに対してシェーディング等の必要な各種のデータ補正を行う。そして、制御部41は、レンズ制御部51から取得した情報と、焦点検出用センサー20から取得したデジタルデータとを基に、再度、撮影画面内各部における焦点状態を演算する。
次にS106において、制御部41は、測光用センサー26に対し、所定の蓄積制御及び信号読出し制御を行うように指示する。このときの制御部41は、S101で定常光時に取得した予備測光値、もしくはS102からS108までの処理による前回の蓄積時に取得した測光値に基づいて、蓄積制御における蓄積時間を決定する。これにより、測光用センサー26では、制御部41による蓄積制御に従って所定時間の電荷蓄積が行われ、さらに信号読出し制御に従って複数画素の信号の読出しが行われる。また測光用センサー26では、信号読出し制御に従って読み出した複数画素の信号をAD変換して、順次、信号処理回路42に送出する処理が行われる。
次にS107において、制御部41は、信号処理回路42に対し、測光用センサー26から入力された測光信号に基づき被写体輝度を得るための演算処理を行うように設定する。これにより、信号処理回路42では、測光用センサー26からの測光信号に基づく被写体輝度の演算処理が行われる。
以下、S107において信号処理回路42で行われる測光信号処理及び被写体輝度演算処理の具体的な内容を、図6のフローチャートを参照しながら説明する。
図6のS201において、信号処理回路42は、測光用センサー26から読み出された測光信号を用いて、撮影対象の被写体領域の検知用の画像を生成する。本実施形態では、撮影対象の被写体領域の画像の一例として人物の顔の画像を挙げ、当該顔を検知するための顔検知用の画像を生成する。画像情報から顔を検知する方法は各種存在するが、本実施形態では、一例として輝度画像に基づきパターンマッチングにより顔を検知する方法を用いるとする。
信号処理回路42は、先ず図3(b)で示した、測光用センサー26のベクター配列に対応した画素アレイの各画素に対し、周知の方法にてR,G,Bの色毎に補間処理を行って、画素毎に色情報R(i),G(i),B(i)を持たせる。続けて信号処理回路42は、式(1)のように、画素毎の色情報R(i),G(i),B(i)に対し、所定の係数(M11~M33)によるマトリクス演算を施し、全ての画素毎に輝度情報Yr(i)及び色情報Cx(i),Cy(i)を算出する。式(1)のiは測光用センサー26の全画素の中の個々の画素(ピクセル)を表す。この式(1)により画素毎に算出された輝度情報Yr(i)をそれぞれの画素位置に対応して配列した画像が、測光用センサー26での測光に基づく輝度画像である。S201では、この輝度画像が、顔検知に用いられる画像として生成される。
Figure 0007016712000001
次にS202において、信号処理回路42は、S201で算出した輝度情報Yr(i)による輝度画像から顔検知を行う。本実施形態の信号処理回路42は、当該顔検知を行うために所定のテンプレートを多数有している。信号処理回路42は、これらのテンプレートと輝度画像の各領域とを比較することで、当該輝度画像に顔画像が存在するか否か(顔画像の有無)の情報や、顔画像が検出された場合には当該検出された顔画像の位置及び大きさなどの情報を取得する。
次にS203において、信号処理回路42は、撮影露出を決める測光値を取得するために、測光用センサー26が有する数万~数十万の各画素を数百程度のブロック毎に分け、ブロック毎にR,G,Bの色毎の積分値R(j),G(j),B(j)を演算する。以下、数百程度の画素数毎に分けられた各ブロックを測光ブロックと呼ぶ。なお、R(j),G(j),B(j)のjは、測光用センサー26における個々の測光ブロックを表している。
次にS204において、信号処理回路42は、S203で求めた測光ブロック毎の積分値R(j),G(j),B(j)に対し、式(2)のように所定の輝度算出用係数n1,n2,n3を掛けて足し合わすことで、測光ブロック毎の輝度値Y(j)を演算する。式(2)において、jは個々の測光ブロックを表し、所定の輝度算出用係数n1,n2,n3はn1+n2+n3=1の関係を有する。なお本実施形態において、輝度値に対しては蓄積時間や読み出しゲイン等の設定に基づく換算を行うものとする。
Y(j)=n1×R(j)+n2×G(j)+n3×B(j) 式(2)
次にS205において、信号処理回路42は、S202で実行した顔検知の結果をチェックする。そして、信号処理回路42は、顔画像が検知されたと判定した場合(顔検知有りと判定した場合)にはS206に処理を進め、顔画像が検知されていないと判定した場合にはS207に処理を進める。
S206に進んだ場合、信号処理回路42は、測光用センサー26の全測光ブロックのうち、検知された顔の位置及び大きさに対応した測光ブロックの輝度値Y(j)に対して重み付けを高く(大きく)した加重平均処理を行って撮影露出算出用の測光値とする。すなわちS206では、顔領域重視の重み付け測光値演算が行われる。そして信号処理回路42は、算出した測光値に基づいて、本撮影で最適な撮像素子12の蓄積時間(つまりシャッター速度)と絞り値とを、所定のプログラム線図及び所定の撮像感度を基に決定し、それらシャッター速度と絞り値の情報を制御部41に送る。またこの時、信号処理回路42は、その決定したシャッター速度と絞り値を例えば表示器44の画面上に表示させることも行う。なお、シャッター速度又は絞り値の一方が予めプリセットされている場合、信号処理回路42は、そのプリセット値と組み合わせて最適な露出となる他方の因子を決定する。本実施形態では、決定されたシャッター速度と絞り値とのアペックス値に基づく露出値をEVTと呼ぶこととする。アペックス値に基づく露出値EVTは、式(3)のように表される。式(3)のTvはシャッター速度のアペックス値、Avは絞り値のアペックス値である。
EVT=Tv+Av 式(3)
またS207に進んだ場合、信号処理回路42は、測光用センサー26の全測光ブロックのうち、図5のS105で焦点を合わせる領域と決定した位置の測光ブロックの輝度値Y(j)に重み付けを高くした加重平均処理を行って撮影露出算出用の測光値とする。すなわちS207では、合焦領域重視の重み付け測光値演算が行われる。そして信号処理回路42は、当該算出した測光値に基づいて、本撮影において最適な撮像素子12の蓄積時間(シャッター速度)と絞り値とを、所定のプログラム線図及び所定の撮像感度より決定し、それらシャッター速度と絞り値の情報を制御部41に送る。またこの時もS206の際と同様に、信号処理回路42は、当該決定したシャッター速度と絞り値を表示器44の画面上に表示させることも行う。なお、S207においてもS206の場合と同様に、シャッター速度又は絞り値の一方が予めプリセットされている場合には、そのプリセット値と組み合わせて最適な露出となる他方の因子が決定される。
S206又はS207の処理が終了すると、制御部41は、図5のフローチャートに戻り、S108に処理を進める。
図5のS108に進むと、制御部41は、レリーズスイッチ48がオンされるのを待つ。制御部41は、レリーズスイッチ48がオンされていない場合にはS102に処理を戻し、一方、レリーズスイッチ48がオンされたと判断した場合にはS109に処理を進める。
S109に進むと、制御部41は、フラッシュの予備発光量及び本発光量を求める演算を行う。
以下、S109において制御部41で行われるフラッシュの予備発光量及び本発光量演算処理の内容及び制御を、図7のフローチャートを参照しながら説明する。
図7のS301において、制御部41は、フラッシュ装置3を予備発光(プリ発光)させる以前に、定常光のみで図6のS205において顔が検知されていたかどうかを確認する。制御部41は、顔が検知されていたと判定した場合にはS306に処理を進め、一方、顔が検知されていないと判定した場合にはS302に処理を進める。
S302に進んだ場合、制御部41は、図5のS103或いはS105で取得されている、交換レンズ2のズームエンコーダー57の焦点距離情報及び距離エンコーダー56の被写体距離情報DTを基に、撮影倍率βを計算する。撮影倍率βは、撮影レンズの焦点距離を被写体撮影距離で除算することにより計算できる。そして、制御部41は、計算した撮影倍率βが1/20以上1/100以内の範囲かどうかをチェックする。制御部41は、撮影倍率βが1/20以上1/100以内の範囲から外れていると判定した場合にはS306に処理を進め、一方、1/20以上1/100以内の範囲内であると判定した場合にはS303に処理を進める。ここで、撮像素子12のセンサーサイズがいわゆる35mm(mmはミリメートル)版相当のサイズである場合において、例えば人物の顔がセンサー面内で大きく写る距離にて撮影を行ったとすると、その時の撮影倍率は1/20程度になると考えられる。一方、例えばセンサー面内に人物の全身が写るような距離にて撮影を行ったとすると、その時の撮影倍率は1/100程度になると考えられる。したがって、撮影倍率βが1/20以上1/100以内の範囲である場合には、人物が主被写体となされた撮影である可能性が高いと考えられるので、制御部41は、S303に処理を進める。
S303に進むと、制御部41は、図5のS105で取得された、交換レンズ2の距離エンコーダー56の情報(DT)から、主被写体までの撮影距離が3m(mはメートル)未満の近距離撮影かどうかを判定する。そして、制御部41は、撮影距離が3m未満でないと判定した場合にはS305に処理を進め、一方、3m未満であると判定した場合にはS304に処理を進める。
S304に進むと、制御部41は、フラッシュの予備発光時の測光を行うために、測光用センサー26に設定するゲインを「ゲイン設定1」とするように制御する。
一方、S305に進んだ場合、制御部41は、フラッシュの予備発光時の測光を行うために測光用センサー26に設定するゲインを「ゲイン設定2」とするように制御する。
また、S306に進んだ場合、制御部41は、フラッシュの予備発光時の測光を行うために測光用センサー26に設定するゲインを「ゲイン設定3」とするように制御する。
以下、これらS304,S305,S306におけるゲイン設定の具体例について、図8(a)と図8(b)を参照しながら説明する。
ここで、フラッシュ予備発光時の測光を行う場合には測光輝度範囲を拡大することが望ましい。このため、制御部41は、図3のAD変換ゲイン制御回路26Gに対し、画素アレイ26Cからの画素信号をAD変換回路26FでAD変換する際のアナログゲインを、複数画素の行又は画素ごとに少なくとも二つの異なるゲインに設定するように制御する。本実施形態の場合、制御部41は、図8(a)に例示するように、測光用センサー26に対し、画素アレイ26Cの画素信号がAD変換される際のアナログゲインを2行毎で交互に高ゲイン/低ゲインとなるように、AD変換ゲイン制御回路26Gに指示する。
本実施形態の場合、例えば、設定し得る最も低いゲインを1倍(×1)として、ゲイン設定1では、図8(b)に例示するように高ゲインが4倍(×4)、低ゲインが1倍(×1)に設定される。また、ゲイン設定2では、図8(b)に例示するように高ゲインが16倍(×16)、低ゲインが4倍(×4)に設定され、ゲイン設定3では、図8(b)に例示するように高ゲインが16倍(×16)、低ゲインが1倍(×1)に設定される。
本実施形態の場合、図7のフローチャートに示すように、S301で顔が検知されず、S302で撮影倍率βが1/20以上1/100以内の範囲であり、S303で撮影距離が3m未満であると判定された場合に、S304でゲイン設定1への設定がなされる。すなわちこの場合、制御部41は、測光用センサー26に対し、ゲイン設定1として、図8(b)に例示するように高ゲインを4倍(×4)、低ゲインを1倍(×1)とするように設定する。
また本実施形態において、S301で顔が検知されず、S302で撮影倍率βが1/20以上1/100以内の範囲であり、S303で撮影距離が3m未満でないと判定された場合、S305においてゲイン設定2への設定がなされる。すなわちこの場合、制御部41は、測光用センサー26に対し、ゲイン設定2として、図8(b)に例示するように高ゲインを16倍(×16)、低ゲインを4倍(×4)とするように設定する。
また本実施形態において、S301で顔が検知された場合、又は、S302で撮影倍率βが1/20以上1/100以内の範囲でないと判定された場合には、S306においてゲイン設定3への設定がなされる。すなわちこの場合、制御部41は、測光用センサー26に対し、ゲイン設定3として、図8(b)に例示するように高ゲインを16倍(×16)、低ゲインを1倍(×1)とするように設定する。
以下、前述したように、顔検知の有無、撮影倍率、撮影距離の各条件によって、ゲイン設定をゲイン設定1~ゲイン設定3の3種類で切替える点の考え方について説明する。
フラッシュを所定の光量だけ予備発光させて被写体からの反射光を測光する場合、取得される測光値は、被写体の反射率や色の影響を無視したとして、被写体までの距離の二乗に反比例した値になる。ここで、仮に、測光用センサー26からの各画素信号のAD変換後のデジタルデータのビット数を10ビットとすると、当該デジタルデータは0から1023までの値を取り得る。ただし、量子化誤差等を考慮して精度が確保できる有効なデジタルデータ範囲は、そのうちの10から1000程度の範囲である。また仮に、ゲインを1倍(×1)に設定した時に80lx(lxはルクス)から8000lxのセンサー照度が有効データ範囲に収まるとすれば、ゲインが4倍(×4)時には20lxから2000lxのセンサー照度が有効データ範囲に収まることになる。同様に、ゲインが16倍(×16)時には5lxから500lxのセンサー照度が有効データ範囲に収まることになる。また、仮に被写体までの距離が1mの場合の予備発光の反射光によるセンサー照度が1000lxだった場合、ゲインが1倍(×1)時には約0.4mから約3.5mの被写体距離範囲の反射光が測光できる。同様にゲインが4倍(×4)時には約0.8mから約7mの被写体距離範囲の反射光が測光でき、ゲインが16倍(×16)時には約1.6mから約14mの被写体距離範囲の反射光が測光できる。
また図8(b)に例示したように、ゲイン設定1では、ゲインが1倍(×1)とゲインが4倍(×4)とを交互に混在させているので、合わせて約0.4mから約7mの被写体距離範囲の反射光が測光できる。ゲイン設定2ではゲインが4倍(×4)とゲインが16倍(×16)とを交互に混在させているので、合わせて約0.8mから約14mの被写体距離範囲の反射光が測光できる。ゲイン設定3ではゲインが1倍(×1)とゲインが16倍(×16)とを交互に混在させているので、合わせて約0.4mから約14mの被写体距離範囲の反射光が測光できる。ここで、ゲイン設定3は最も広い被写体距離範囲を測光できるが、高ゲインと低ゲインの2種類のゲインの差つまり設定感度差を大きくしているので、後述するS311の処理で生成する顔検知画像が顔検知に適した画像にならない可能性がある。よって、本実施形態において、ゲイン設定3を選択するのは、S205で既に顔検知がされていた場合と、S302で人物が主被写体である可能性が低い撮影倍率βである場合(1/20以上1/100以内の範囲でない場合)としている。一方、ゲイン設定1は約0.4mから約7mの比較的近距離被写体時の測光に適するとともに、2種類のゲインの差つまり設定感度差を小さくしているので、後述するS311の処理で生成する顔検知画像が顔検知に適した画像になる可能性が高くなる。よって、本実施形態では、ゲイン設定1を選択するのは、S205で顔検知ができていないが、S302で人物が主被写体である可能性が考えられて撮影距離が3m未満の近距離撮影の場合としている。また、ゲイン設定2は約0.8mから約14mの比較的遠距離の撮影時の測光に適するとともに、2種類のゲインの差つまり設定感度差を小さくしているので、後述するS311で生成する顔検知画像が顔検知に適した画像になる可能性が高くなる。よって、本実施形態では、ゲイン設定2を選択するのは、S205で顔検知ができていないがS302で人物が主被写体である可能性が考えられて、撮影距離が3m以上の遠距離撮影の場合としている。
前述したS304、S305、S306の何れかの処理が終了すると、制御部41は、S307へ処理を進める。
S307に進むと、制御部41は、フラッシュの予備発光直前、つまりフラッシュ発光が行われていない定常光時の測光を行う。この時の制御部41は、前述したS304、S305、S306の何れかの処理で決めたゲイン設定を測光用センサー26に対して行い、予備発光測光時と同じ蓄積時間で信号蓄積を行わせる。
次にS308において、制御部41は、S307で測光用センサー26の画素アレイ26Cに蓄積された信号を読み出させてAD変換されたデータを、信号処理回路42に入力させる。また、制御部41は、信号処理回路42を制御して、低ゲインにて読み出した画素信号のデジタルデータに対して高ゲインと低ゲインとの比率分だけ値を大きくするような演算を施させて、それらのゲイン差による感度差の補正を行わせる。
次にS309において、制御部41は、フラッシュの予備発光時の測光を行う。すなわち制御部41は、S304、S305、S306の何れかの処理で決めたゲイン設定を測光用センサー26に行い、予備発光直前の測光時(定常光時)と同じ蓄積時間で信号蓄積を行わせる。さらに、制御部41は、この信号蓄積と同期して予備発光するように、フラッシュ制御部61に対してフラッシュの予備発光を指示する。これによりフラッシュ制御部61は、発光モニター部37の出力信号に基づき、予め定められた予備発光量だけ発光するように発光部34のキセノン管を発光させる。
次にS310において、制御部41は、S309で測光用センサー26の画素アレイ26Cに蓄積された信号を読み出させてAD変換がなされたデータを、信号処理回路42に入力させる。また、制御部41は、S308と同様に、信号処理回路42を制御し、低ゲインにて読み出した画素信号のデジタルデータに対して、高ゲインと低ゲインの比率分だけ値を大きくするような演算を施させて感度差(ゲイン差)の補正を行わせる。
次にS311において、制御部41は、信号処理回路42を制御し、フラッシュの予備発光時に測光用センサー26に蓄積されて読み出された信号を基に、顔検知用画像を生成させる。
以下、S311において信号処理回路42で行われる顔検知用画像の具体的な生成処理を、図9のフローチャートを参照しながら説明する。
図9のS351において、信号処理回路42は、図7のS310で入力された、予備発光時の信号を基に、高ゲインと低ゲインとのゲイン設定別に画素単位毎の出力値についての度数分布を作成する。また、信号処理回路42は、作成した度数分布を、画素単位毎の出力値が低すぎる場合(under)、中庸な場合(middle)、高すぎる場合(over)の3条件に分けるように分類する。
次にS352において、信号処理回路42は、S351で作成した度数分布について、高ゲイン設定した画素の分布と低ゲイン設定した画素の分布とを比較して、中庸な場合(middle)に含まれる画素の度数が多い方はどちらかを判別する。そして、信号処理回路42は、中庸な場合(middle)に含まれる画素の度数が高ゲイン設定の方が大きいと判定した場合にはS356へ処理を進める。一方、信号処理回路42は、中庸な場合(middle)に含まれる画素の度数が低ゲイン設定の方が大きいと判定した場合にはS353へ処理を進める。
S353に進んだ場合、信号処理回路42は、高ゲイン設定した画素の分布において中庸な場合(middle)に含まれる画素の度数が所定以上あり且つ高すぎる場合(over)に含まれる画素の度数が所定以下という条件に当てはまるか判定する。この条件に当てはまる度数分布は、例えば図10(a)のような分布の場合である。なお、図10(a)~図10(d)において、度数分布Lは低ゲイン設定した画素の度数分布であり、度数分布Hは高ゲイン設定した画素の度数分布である。信号処理回路42は、S353の条件に合致しないと判定した場合にはS355に処理を進め、一方、条件に合致すると判定した場合にはS354に処理を進める。
ここで、S353の条件に合致するのは、低ゲイン設定した画素の方が飽和も黒つぶれもしていない中庸な画素が多いが、高ゲイン設定した画素の大部分が飽和している訳ではないという場合である。よってS354に進むと、信号処理回路42は、低ゲイン設定した画素の情報に感度が合うように高ゲイン設定した画素の情報をデジタル処理にて感度ダウンすることに相当する演算処理を行い、交互に別感度を設定した画像から感度が均一な画像へ補正する。
一方、S353の条件に合致しないのは、図10(b)に例示するように、低ゲイン設定した画素の方が飽和も黒つぶれもしていない中庸な画素が多いが、高ゲイン設定した画素についてはゲインが高かったために飽和してしまった画素が多いという場合である。よってS355に進むと、信号処理回路42は、高ゲイン設定した画素部については周辺の低ゲイン設定した画素に基づく補間処理を行い、交互に別感度を設定した画像から感度が均一な画像へ補正する。
また、S356に進んだ場合、信号処理回路42は、低ゲイン設定した画素の分布において中庸な場合(middle)に含まれる画素の度数が所定以上あり且つ低すぎる場合(under)に含まれる画素の度数が所定以下という条件に当てはまるか判定する。この条件に当てはまる度数分布は、例えば図10(c)のような分布の場合である。そして、信号処理回路42は、この条件に合致しないと判定した場合にはS358に処理を進め、一方、この条件に合致すると判定した場合にはS357に処理を進める。
ここで、S356の条件に合致するのは、高ゲイン設定した画素の方が飽和も黒つぶれもしていない中庸な画素が多いが、低ゲイン設定した画素の大部分が黒つぶれしている訳ではないという場合である。よってS357に進むと、信号処理回路42は、高ゲイン設定した画素の情報に感度が合うように低ゲイン設定した画素の情報をデジタル処理にて感度アップすることに相当する演算処理を行い、交互に別感度を設定した画像から感度が均一な画像に補正する。
一方、S356の条件に合致しないのは、図10(d)に例示するように、高ゲイン設定した画素の方が飽和も黒つぶれもしていない中庸な画素が多いが、低ゲイン設定した画素についてはゲインが低かったために黒つぶれしてしまった画素が多い場合である。よってS358に進むと、信号処理回路42は、低ゲイン設定した画素部については周辺の高ゲイン設定した画素に基づく補間処理を行い、交互に別感度を設定した画像から感度が均一な画像に補正する。
これらS354、S355、S357、S358の何れかの処理が終了すると、信号処理回路42は、S359に処理を進める。
S359に進むと、信号処理回路42は、S354、S355、S357、S358の何れかにて補正処理された画像から、顔検知用の画像を生成する。ここでは、前述したS201と同様に、先ず図3(b)で示した測光用センサー26のベイヤー配列となっている画素アレイの各画素に対し、周知の方法にてR,G,Bの色毎に補間処理を行い画素毎にR,G,Bの情報を持たせる。また前述同様に、式(1)により、画素毎の色情報R(i),G(i),B(i)に所定の係数(M11~M33)を用いたマトリクス演算を行い、画素毎に輝度情報Yr(i)及び色差情報Cx(i),Cy(i)を生成して顔検出用画像情報とする。
そして、制御部41は、信号処理回路42によるS359の処理が終了すると、図7のS312へ処理を進める。
図7のS312に進むと、制御部41は、信号処理回路42に対し、前述のようにして生成された顔検知用画像から、前述したS202と同様の顔検知処理を行わせる。その後、制御部41は、図11のフローチャートのS321に処理を進める。図11のフローチャートの処理は、制御部41により行われても良いし、制御部41による制御の下で信号処理回路42により行われても良い。ここでは、制御部41により図11のフローチャートの処理が行われるとする。
S321に進むと、制御部41は、前述のS308で測光用センサー26から読み出されて取得した予備発光直前(定常光時)の画素信号に対し、所定の測光ブロック毎に高ゲイン、低ゲイン別で、且つR,G,Bの各色別に積分(加算)処理を行う。この積分(加算)処理の結果得られたデータは、Rの高ゲインRPH(j)、Gの高ゲインGPH(j)、Bの高ゲインBPH(j)、Rの低ゲインRPL(j)、Gの低ゲインGPL(j)、Bの低ゲインBPL(j)となされる。なお、jは前述した測光用センサー26の各測光ブロックを示す。
次にS322において、制御部41は、測光用センサー26の測光ブロック毎に、RPH(j)とRPL(j)のどちらが有効か、GPH(j)とGPL(j)のどちらが有効か、BPH(j)とBPL(j)のどちらが有効かを、それぞれ判定する。具体的には、それぞれの測光ブロックにおいて、高ゲインと低ゲインのそれぞれに対応する色別の積分値(加算値)のうち、AD変換された後の値が飽和や黒潰れとみなされる値となる画素を含む数が少ないほうを、有効なデータと判定する。さらに、制御部41は、それぞれの測光ブロックにおいて有効と判定された方をR,G,Bの色毎に積分(加算)し、それらR,G,Bの色毎の積分値(加算値)をRP(j),GP(j),BP(j)とする。
次にS323において、制御部41は、式(4)に示すように、測光ブロック毎に求めたR,G,Bの色別の積分値RP(j),GP(j),BP(j)から被写体の輝度値YPr(j)を算出する。式(4)において、前述同様に、jは測光用センサー26の個々の測光ブロックを、輝度算出用係数n1,n2,n3はn1+n2+n3=1の関係を有する。
YPr(j)=n1×RP(j)+n2×GP(j)+n3×BP(j) 式(4)
また制御部41は、リニア系の予備発光直前の輝度情報YPr(j)を用い、2を底とする対数圧縮系への変換関数処理とレンズ情報等の光学的特性に基づく画面エリア毎の輝度情報の補正処理Qとを行い対数圧縮系の輝度情報YP(j)を求める。例えば制御部41は、式(5)により、対数圧縮系の輝度情報YP(j)を求める。
YP(j)=log2{YPr(j)}×Q(j) 式(5)
次にS324において、制御部41は、S310で測光用センサー26から入力された予備発光時の画素信号を用い、所定の測光ブロック毎に高ゲイン、低ゲイン別で、且つR,G,Bの各色別に加算処理を行う。この加算処理の結果得られたデータは、Rの高ゲインRHH(j)、Gの高ゲインGHH(j)、Bの高ゲインBHH(j)、Rの低ゲインRHL(j)、Gの低ゲインGHL(j)、Bの低ゲインBHL(j)である。
次にS325において、制御部41は、測光用センサー26の測光ブロック毎に、RHH(j)とRHL(j)のどちらが有効か、GHH(j)とGHL(j)のどちらが有効か、BHH(j)とBHL(j)のどちらが有効かを、それぞれ判定する。判定の方法はS322と同様である。さらに、制御部41は、それぞれの測光ブロックにおいて有効と判定された方をR,G,Bの色毎に積分(加算)し、それらR,G,Bの色毎の積分値(加算値)をRH(j),GH(j),BH(j)とする。
次にS326において、制御部41は、式(6)に示すように、測光ブロック毎に求めたR,G,Bの色別の積分値RH(j),GH(j),BH(j)から輝度値YHr(j)を算出する。式(6)のjとn1,n2,n3は前述同様である。
YHr(j)=n1×RH(j)+n2×GH(j)+n3×BH(j) 式(6)
また制御部41は、前述同様に、リニア系の予備発光直前の輝度情報YHr(j)を用い、対数圧縮系への変換関数処理とレンズ情報等の光学的特性に基づく画面エリア毎の輝度情報の補正処理Qとを行い対数圧縮系の輝度情報YH(j)を求める。この場合の制御部41は、式(7)により、対数圧縮系の輝度情報YH(j)を求める。
YH(j)=log2{YHr(j)}×Q(j) 式(7)
次にS327において、制御部41は、測光ブロック毎に予備発光直前の輝度情報YP(j)と予備発光時の輝度情報YH(j)とから、予備発光時のフラッシュ光の反射光分のみの輝度値YD(j)を算出する。ここで、予備発光直前の輝度情報YP(j)と予備発光時の輝度情報YH(j)とはそれぞれ圧縮系での値である。このため、制御部41は、それぞれのべき乗をとって伸長させてから差分をとり、その差分値を対数圧縮することより、式(8)の演算を行う。
YD(j)=log2(2YH(j)-2YP(j)) 式(8)
次にS328において、制御部41は、測光ブロック毎に予備発光直前の輝度情報YP(j)と予備発光時の輝度情報YH(j)とから、式(9)により、輝度値の差YR(j)を演算する。
YR(j)=YH(j)-YP(j) 式(9)
ここで、予備発光直前の輝度情報YP(j)と予備発光時の輝度情報YH(j)とはそれぞれ対数圧縮系での値であることから、これら差分を求めることは、輝度値の比を求めることと等価である。なお、輝度値の比を求める理由は、例えば特開2005-275265号公報などに記載されているように、各測光ブロックにおいて輝度値の比の値が一致するエリアは被写体までの距離が一致するエリアと見なせることによる。
次にS329において、制御部41は、被写体距離情報DTを取得し、その被写体距離情報DTを基に所定値LVL0及び所定値LVL1を演算する。なおS329の処理は制御部41が行っても良い。所定値LVL0は、前述のS103又はS105でレンズ制御部51から得られる被写体距離情報DTと、予備発光時の発光光量を表す情報(発光光量情報ELとする。)とから、その距離における標準的な反射率の被写体の反射輝度を考慮して計算される。所定値LVL0は、被写体距離情報DTでの標準的な反射率の被写体の反射輝度よりも少し高くなるような値として決められている。これは、被写体距離情報DTが実際は多少の誤差を持つことを考慮して、その誤差分程度だけLVL0を高くしておき、実際の標準的な反射率の被写体における予備発光時の反射光がLVL0よりも高くならないようにするためである。これは、例えば式(10)により求められる。
LVL0=-log2(DT)×2+EL 式(10)
一方、所定値LVL1は所定値LVL0に対して所定値RLを減じて決定される。所定値RVLは、実際の標準的な反射率の被写体の予備発光時の反射光がLVL1を下回らないように、被写体距離情報DTの誤差などを考慮して例えば式(11)の関係を有する値として決定されている。
LVL1=LVL0-RVL 式(11)
そして、前述のように被写体距離情報DTによって通常は被写体の予備発光時の反射光が所定値LVL0とLVL1との間に入ることを前提として、以下の図12のフローチャートに示すようなフラッシュ本発光量決定のための演算が行われる。図12のフラッシュ本発光量決定の演算処理は、制御部41により行われても良いし、制御部41による制御の下で信号処理回路42により行われても良い。ここでは、制御部41により図12のフローチャートの処理が行われるとする。すなわち、図11のS329の処理が完了すると、制御部41は、図12に示すフローチャートのS331に処理を進める。
図12のS331に進むと、制御部41は、後述する基準値BaseRを選択するための選択肢エリアを限定する係数K(j)を、所定のデフォルト値に設定する。係数K(j)には全ての測光ブロックに対してそれぞれ値0又は値1が設定される。ここで設定するデフォルト値として、通常、主被写体が存在する可能性が低い撮影画面周辺部に対応した測光ブロックには値0が設定され、それ以外の測光ブロックには値1が設定される。
次にS332において、制御部41は、前述した図6のS202で定常光時に行われた顔検知処理にて顔検知ができていたかどうかをチェックする。制御部41は、定常光時に顔検知ができていたと判定した場合にはS334に処理を進め、顔検知ができていないと判定した場合にはS333に処理を進める。
S333に進んだ場合、制御部41は、前述の図7のS312で予備発光時に行われた顔検知処理にて顔検知ができていたかどうかをチェックする。制御部41は、予備発光時に顔検知ができていたと判定した場合にはS334に処理を進め、顔検知ができていないと判定した場合にはS335に処理を進める。
S334に進んだ場合、制御部41は、前述のS202で定常光時に行われた顔検知処理又はS312で予備発光時に行われた顔検知処理にて検知された顔位置情報或いは顔大きさ情報に基づき、S331でデフォルト設定した係数K(j)を修正する。この修正処理は、顔が含まれる測光ブロックもしくは顔位置に近い測光ブロックに対しては1を設定し、そうでない測光ブロックに対しては0とするような処理である。
一方、S335に進んだ場合、制御部41は、前述の図11のS327で演算された測光ブロック毎の輝度値YD(j)を、前述の図11のS329にて演算された所定値LVL0及びLVL1と比較する。そして、制御部41は、YD(j)>LVL0又はYD(j)<LVL1となるエリアがあれば、そのエリアの係数K(j)を0とする。これにより、ガラス等の鏡面物体からの正反射により輝度値YD(j)が異常に高くなっているエリアやフラッシュ光が届かないくらいに距離が離れていて輝度値YD(j)が非常に低くなっているエリアでは係数K(j)値が0となる。なお、制御部41は、前述のS331にてデフォルトとしてK(j)=0となっていたエリアは、そのまま0とする。
次にS336において、制御部41は、K(j)=1である測光ブロックの中で輝度値の比YR(j)が最大の値を示すエリアを選択し、これを基準エリアとする。その基準エリアにおける輝度値の比YR(j)の値を基準値baseRと呼び、基準値baseRとYR(j)の値が同一の値を示しているエリアを主被写体エリアとする。
次にS337において、制御部41は、全ての測光ブロックにおいて輝度値の比YR(j)と基準値baseRとの差RR(j)を式(12)により算出する。
RR(j)=baseR-YR(j) 式(12)
ここで、輝度値の比YR(j)と基準値baseRとはともに対数圧縮系での値なのでRR(j)は基準エリアのYR(j)とその他のエリアのYR(j)との比を算出していることになる。このRR(j)の値が小さくなる測光エリアというのは、主被写体エリアであると想定され、基準値baseRとなったとエリアの被写体と略等価な距離に被写体が存在するエリアである。一方で、RR(j)の値が正の方向に大きくなる測光エリアというのは主被写体エリアであると想定し基準値baseRとなったとエリアの被写体よりも遠くに離れていた被写体が存在していると見なせるエリアである。逆に、RR(j)の値が負の方向に大きくなる測光エリアというのは、主被写体エリアであると想定され、基準値baseRとなったとエリアの被写体よりも近くにあると見なせるエリアである。すなわちこうしたエリアは、被写体が主被写体以外に手前に存在する障害物が存在するエリアや、ガラス等の鏡面による異常に高い反射光量が得られたエリアであると考えられる。
次にS338において、制御部41は、全ての測光ブロックにおいて算出されたRR(j)に応じて重み付け係数W(j)を決定する。重み付け係数W(j)は、例えば特開2005-275265号公報等の記載と同様にRR(j)の値の絶対値が小さい程大きくし、RR(j)の値の絶対値が大きい程小さくする。
次にS339において、制御部41は、全ての測光ブロックにおける被写体の反射光の重み付け演算を行う。そして、制御部41は、この重み付け演算により主被写体エリアと見なしたエリアと同一距離の被写体であると想定されるエリア程重み付けが大きくなった画面全体の反射光の平均値AVEを式(13)により算出する。
AVE=Σ(YD(j)×W(j))/ΣW(j) 式(13)
次にS340において、制御部41は、前述のS107で決定したEVTとS339で演算したAVEとから、式(14)により、本発光時の発光量LAを演算する。この発光量LAは、予備発光時のフラッシュ発光量に対する本発光の相対値となる。
LA=EVT-AVE 式(14)
そして、発光量LAの値は、制御部41からフラッシュ制御部61に送られて、後述するS111にてこれに従った発光量での本発光が行われることにより、所望のフラッシュ発光量による撮像が行われることになる。S340の処理後、制御部41は、図5のS110に処理を進める。
S110に進むと、制御部41は、第1モータードライバ46に制御信号を出力し、第1モーター47を駆動して主ミラー13及び第1反射ミラー14を跳ね上げさせる。
続いて制御部41は、前述のS107にて演算した絞り値情報をレンズ制御部51に対して出力する。この情報に従って、レンズ制御部51は絞り31を駆動するように第3モータードライバ54に信号出力して、第3モーター55を駆動する。これにより撮影レンズは、設定された絞り値に対応した絞り込み状態となる。
次にS111において、制御部41は、シャッター駆動部49に対して信号出力を行い、シャッター10を開放状態とする。これにより撮像素子12には撮影レンズからの光線が入射して撮像が可能となる。その後、制御部41は、前述のS107にて演算したシャッター時間に従った蓄積時間と所定の撮像感度に従った読み出しゲインとに撮像素子12が設定されて信号蓄積が行われるように信号処理回路42に対して指示を出す。また、制御部41は、この撮像タイミングに同期してフラッシュ制御部61に対してフラッシュの発光指示を与える。フラッシュ制御部61はその発光指示に従って、S109にて演算した発光量LAに対応する発光量となるように発光モニター部37の出力信号に基づき発光部34のキセノン管を発光させる。これによってフラッシュ本発光を伴った本撮像が行われることになる。
そして、制御部41は、本撮像が終了すると、シャッター駆動部49に対して信号出力を行い、シャッター10を遮光状態とする。これにより撮像素子12に対する撮影レンズからの光線が遮断される。
次にS112において、制御部41は、レンズ制御部51に対して絞り31を開放するように情報出力する。この情報に従ってレンズ制御部51は絞り31を駆動するように第3モータードライバ54に信号出力して、第3モーター55を駆動する。これにより撮影レンズは絞り開放状態となる。さらに、レンズ制御部51は、第1モータードライバ46に制御信号を出力して、第1モーター47を駆動して主ミラー13及び第1反射ミラー14をダウンさせる。
次にS113において、制御部41は、撮像画像情報を撮像素子12からAD変換しながら読み出して、必要な補正処理や補間処理を行うように信号処理回路42に対して指示を出す。
次にS114において、制御部41は、信号処理回路42に対して指示を出して撮像画像情報に対してホワイトバランス調整を行わせる。この時の信号処理回路42は、撮像画像情報について1画面内を複数分割し、各分割した領域毎の色差信号より被写体の白色領域を抽出する。さらに、信号処理回路42は、抽出した領域の信号に基づいて画面全体の赤(R)チャンネル及び青(B)チャンネルのゲイン補正を行い、ホワイトバランス調整を行う。
次にS115において、制御部41は、信号処理回路42に対し、ホワイトバランス調整が行われた撮像画像情報を記録ファイルフォーマットに圧縮変換して記憶部45に記憶するように指示を出す。
以上により、これで一連の撮影シーケンスが終了する。
なお、本実施形態では、前述のS301で定常光による顔検知ができたかどうかを判定したが、顔検知は条件によっては時間を要する場合がある。このため、S205からS301へ進む間に顔検知が完了しないような条件の場合は、S107で行った定常光の測光結果が顔検知を行うのが難しそうな輝度条件或いは逆光度合で判定しても良い。その場合は顔検知が困難な低輝度時又は強い逆光時にはS302へ進み、そうでない場合はS306へ進むようにする。
以上説明したように、第1実施形態においては、フラッシュ撮影の予備発光時に被写体からの反射光を測光する際に、測光輝度範囲を拡大することと、被写体の反射光を測光した画像情報から人物の顔を検知することがともに可能となる。そして、本実施形態においては、被写体等の反射光の測光信号から生成する画像は、被写体(顔等)の検出に必要な画像品質が確保されたものとなる。したがって、本実施形態においては、人物撮影時のフラッシュの本発光量が適正となる確率を高めることができる。
<第2実施形態>
第1実施形態では、フラッシュの予備発光時の測光を行う場合に測光輝度範囲を拡大する手法として、画素信号をAD変換する際のアナログゲインを2行毎交互に高ゲイン/低ゲインに設定する例を説明した。第2実施形態では、測光用センサー26について受光面積の差による高感度画素及び低感度画素を有するセンサー構成とすることによっても第1実施形態と同様な機能を実現する。図13(a)と図13(b)を参照して、第2実施形態の測光用センサー26について説明する。なお、カメラ1、交換レンズ2、フラッシュ装置3の構成及び各フローチャートは、概ね前述した構成及びフローチャートと同様であるため、それらの図示と説明は省略する。
図13(a)は、第2実施形態の測光用センサー26における画素アレイ26Cのうち、1ベイヤー単位の画素構成を表している。青色透過フィルター(B)を透過する光を受光する画素は面積が大きい画素Bhと面積が小さい画素Bsとに分割されている。また緑色透過フィルター(G1)を透過する光を受光する画素は面積が大きい画素G1hと面積が小さい画素G1sとに分割され、緑色透過フィルター(G2)を透過する光を受光する画素は面積が大きい画素G2hと面積が小さい画素G2sとに分割されている。同様に、赤色透過フィルター(R)を透過する光を受光する画素は面積が大きい画素Rhと面積が小さい画素Rsとに分割されている。
そして、第2実施形態の場合、青色透過フィルター(B)を透過する光を受光する画素では、高感度画素として設定される場合は大画素Bhと小画素Bsとにより蓄積された信号電荷を加算して読み出すようにする。一方、低感度画素として設定される場合は小画素Bsにのみ蓄積された信号電荷を読み出すようにする。このようにすることで、第2実施形態においては、大画素Bhと小画素Bsの合計面積と小画素Bsの単独面積の比率分の感度差を有して測光輝度範囲を拡大することができる。緑色透過フィルター(G1及びG2)を透過する光を受光する画素及び赤色透過フィルター(R)を透過する光を受光する画素についても同様である。
第2実施形態によれば、このような画素構成を有する測光用センサー26で領域毎に感度設定を変更することで、図13(b)に示すように高感度領域と低感度領域を交互に設けることができる。そして、第2実施形態においても、このように感度設定した測光用センサー26から読み出したフラッシュ予備発光時の画像から顔検知画像が生成される。第2実施形態の場合、図9のS354では低感度設定した画素の情報に感度が合うように高感度設定した画素の情報をデジタル処理にて面積比率による感度差分だけ感度ダウンするのに相当する演算処理が行われる。そして、交互に別感度を設定した画像から感度が均一な画像に補正される。また、第2実施形態の場合、図9のS357では高感度設定した画素の情報に感度が合うように低感度設定した画素の情報をデジタル処理にて面積比率による感度差分だけ感度アップするのに相当する演算処理が行われる。そして、交互に別感度を設定した画像から感度が均一な画像に補正される。
<第3実施形態>
前述したフラッシュ予備発光時の測光を行う場合において測光輝度範囲を拡大する手法には、特許第5610961号公報に記載の技術または特許第5893550号公報に記載の技術を適用することもできる。特許第5610961号公報の技術では、AD変換部が全ての画素データについて第1ゲイン及び第1ゲインよりも高い第2ゲインでのAD変換を行い、両者の変換データを比較して最適な方のデータが選択される。特許第5893550号公報の技術では、AD変換部において増幅回路が出力する信号を所定の参照信号と比較して増幅回路のゲインを第1ゲイン及び第1ゲインよりも高い第2ゲインから選択し、画素毎に最適な増幅ゲインが選択された信号をAD変換する。
第3実施形態では、測光用センサー26に特許第5610961号公報に記載の技術または特許第5893550号公報に記載の技術を適用し、それ以外の図1、図2、図4に示した構成は第1実施形態と同じであるのでそれらの説明は省略する。したがって、第3実施形態の場合、測光用センサー26は、特許第5610961号公報に記載のAD変換部または特許第5893550号公報に記載のAD変換部および増幅回路を有する。
また第3実施形態の場合、動作フローチャートとしては、第1実施形態の図11のフローチャートに代えて後述する図16に示すフローチャートの処理を実行し、図9のフローチャートに代えて後述する図17に示すフローチャートの処理を実行する。以下、第3実施形態について、第1実施形態とは異なる部分について具体的に説明する。
図14は、第3実施形態において、図7のフローチャートのS304からS306の処理にて測光用センサー26に対して設定される第1ゲイン及び第2ゲインを表した図である。すなわち、第3実施形態の場合、図14に示すように、設定し得る最も低いゲインを1倍(×1)とし、ゲイン設定1では、第2ゲインが4倍(×4)、第1ゲインが1倍(×1)に設定される。また、ゲイン設定2では、第2ゲインが8倍(×8)、第1ゲインが2倍(×2)に設定され、ゲイン設定3では、第2ゲインが8倍(×8)、第1ゲインが1倍(×1)に設定される。なお、設定ゲインと測光可能な被写体距離との対応関係は第1実施形態にて説明した内容と特に変わらない。
第3実施形態においても、図7のS304の処理に進むのは、前述同様に、撮影倍率βが人物撮影の可能性が高く、撮影距離が3m未満の近距離である条件に合致した場合である。そして、S304に進むと、制御部41は、フラッシュ予備発光時の測光を行うために測光用センサー26に設定するゲインを、図14のゲイン設定1にする。すなわち制御部41は、測光用センサー26のAD変換部における増幅回路に設定する2種類のゲインを、ゲイン設定1のように第1ゲインを1倍(×1)、第2ゲインを4倍(×4)とし、比較的低感度の組合せにすることで近距離被写体に適した設定とする。
また第3実施形態において、図7のS305の処理に進むのは、前述同様に、撮影倍率βが人物撮影の可能性が高く、撮影距離が3m未満の近距離ではない条件に合致した場合である。そして、S305に進むと、制御部41は、フラッシュ予備発光時の測光を行うために測光用センサー26に設定するゲインを、ゲイン設定2にする。すなわち制御部41は、測光用センサー26のAD変換部における増幅回路に設定する2種類のゲインを、ゲイン設定2のように第1ゲインを2倍(×2)、第2ゲインを8倍(×8)とし、比較的高感度の組合せにすることで遠距離被写体に適した設定する。
また第3実施形態において、図7のS306の処理に進むのは、前述同様に、S301にて顔検知がなされたと判定された場合、又はS302にて撮影倍率βが1/20以上1/100以内の範囲ではなかった条件に合致した場合である。そして、S306に進むと、制御部41は、フラッシュ予備発光時の測光を行うための測光用センサー26に設定するゲインを、ゲイン設定3にする。すなわち制御部41は、測光用センサー26のAD変換部における増幅回路に設定する2種類のゲインを、ゲイン設定3のように第1ゲインを1倍(×1)、第2ゲインを8倍(×8)とし、低感度と高感度を組み合わせた広範囲な被写体距離に対応可能な設定とする。
図15(a)~図15(d)は、図7のS308及びS310の処理で実行する、異なるゲインでAD変換されたデジタル測光信号(測光データ)の感度差補正の具体例を表した図である。図14で説明したように、第3実施形態の場合、測光用センサー26にて蓄積された各画素のデータは、AD変換時のアナログゲインとして1倍(×1)、2倍(×2)、4倍(×4)、8倍(×8)の4種類のうちの何れかが設定されることになる。ここでは、AD変換ビット数を例えば10ビットとし、本実施形態において最大のゲインである8倍(×8)時のAD変換データを基準として考えて説明する。
アナログゲインが8倍(×8)となされてAD変換されたデータは、図15(a)に示すように、その10ビット変換データ(D9~D0)の上位にダミーデータとして3ビットのデータ(D12~D10)を付加して13ビット化される。ダミーデータ(D12~D10)の各ビット値は全て0である。
アナログゲインが4倍(×4)となされてAD変換されたデータは、図15(b)に示すように、その10ビット変換データ(D9~D0)に1ビット左シフト操作が行われ、データ(D10~D1)として値が2倍化される。さらに、その上位にダミーデータとして2ビットのデータ(D12~D11)を付加するとともに、最下位ビットにはダミーデータ(D0)を付加して13ビット化される。ダミーデータ(D12,D11,D0)の各ビット値は全て0である。
アナログゲインが2倍(×2)となされてAD変換されたデータは、図15(c)に示すように、その10ビット変換データ(D9~D0)に2ビット左シフト操作が行われ、データ(D11~D2)として値が4倍化される。さらに、その上位にダミーデータとして1ビットのデータ(D12)を付加するとともに、下位ビットとしてダミーデータ(D1,D0)を付加して13ビット化される。ダミーデータ(D12,D1,D0)の各ビット値は全て0である。
アナログゲインが1倍(×1)となされてAD変換されたデータは、図15(d)に示すように、その10ビット変換データ(D9~D0)に3ビット左シフト操作が行われ、データ(D12~D3)として値が8倍化される。さらに、その下位ビットとしてダミーデータ(D2~D0)を付加して13ビット化される。ダミーデータ(D2~D0)の各ビット値は全て0である。
第3実施形態では、以上のような処理を行うことで、2種類設定されたアナログゲインから画素毎に最適なゲインが選択されることによる画素間に複数感度が混在する測光信号から、感度差を平準化した測光信号を生成することができる。
図16は、第3実施形態において、第1実施形態の図11のフローチャートに代えて実行される処理のフローチャートであり、図7のS312の処理後、図16のフローチャートのS371に処理が進む。
S371に進むと、制御部41は、図7のS308で入力されてゲイン差補正された予備発光直前における測光用センサー26からの画素信号を、前述の第1実施形態と同様に、所定の測光ブロック毎にR,G,Bの各色別に加算処理する。加算処理を行った結果得られたデータは、前述の同様にR,G,Bの色毎にRP(j),GP(j),BP(j)とする。
さらにS371において、制御部41は、前述の式(4)により、測光ブロック毎にRP(j),GP(j),BP(j)から輝度値YPr(j)を算出する。
また、第3実施形態の場合も前述同様、制御部41は、前述の式(5)により、リニア系での予備発光直前の輝度情報YPr(i)について対数圧縮系への変換関数処理と補正処理Qとを行い、対数圧縮系の輝度情報YP(j)を求める。
次にS373において、制御部41は、図7のS310で入力されてゲイン差補正された予備発光時における測光用センサー26からの画素信号を、前述の第1実施形態と同様に、所定の測光ブロック毎にR,G,Bの各色別に加算処理する。加算処理を行った結果得られたデータは、前述同様にR,G,Bの色毎にRH(j),GH(j),BH(j)とする。
さらにS374において、制御部41は、前述の式(6)により、測光ブロック毎にRH(j),GH(j),BH(j)から輝度値YHr(j)を算出する。
またこの場合も前述同様に、制御部41は、前述の式(7)により、リニア系での予備発光時の輝度情報YHr(j)について対数圧縮系への変換関数処理と補正処理Qとを行い、対数圧縮系での予備発光時の輝度情報YH(j)とする。
次にS375において、制御部41は、第1実施形態の場合と同様に、測光ブロック毎に予備発光直前の輝度情報YP(j)と予備発光時の輝度情報YH(j)とから、予備発光時のフラッシュ反射光分のみの輝度値YD(j)を算出する。
また予備発光直前の輝度情報YP(j)と予備発光時の輝度情報YH(j)とはそれぞれ圧縮系での値である。このため、制御部41は、前述同様の式(8)により、それぞれのべき乗をとって伸長させてから差分をとり、その差分値を対数圧縮する演算を行う。
次にS376において、制御部41は、前述の式(9)により、測光ブロック毎に予備発光直前の輝度情報YP(j)と予備発光時の輝度情報YH(j)とから、輝度値の比YR(j)を演算する。
また、前述の第1実施形態でも説明したように、予備発光直前の輝度情報YP(j)と予備発光時の輝度情報YH(j)とはそれぞれ対数圧縮系での値であり、これらの差分をとることは輝度値の比をとることと等価である。
次にS377において、制御部41は、前述した第1実施形態で説明したのと同様に、被写体距離情報DTから所定値LVL0及びLVL1を演算する。また、LVL0は、前述の式(10)により、被写体距離情報DTと予備発光時の発光光量情報ELとから計算される。LVL1についても前述同様の式(11)により決定される。
そして、第3実施形態の場合も第1実施形態と同様に、被写体距離情報DTによって、通常は被写体の予備発光時の反射光は所定値LVL0とLVL1の間に入ることを前提として、制御部41では、前述同様にフラッシュ本発光量決定のための演算が行われる。
また第3実施形態の場合、図7のS311で実行する顔検知画像生成は、第1実施形態の図9のフローチャートに代えて、図17のフローチャートの処理により行われる。
S401において、信号処理回路42は、図7のS310で入力されてゲイン差補正された予備発光時の測光用センサー26の画素信号から、画素単位毎の出力値についての度数分布情報を作成する。度数分布情報は、測光用センサー26の全画素の情報から生成しても良いが、情報量が多すぎて時間がかかる場合も想定される。このような場合は、前述した図5のS104からS105にて取得されている画面各部の焦点検出情報に基づき、主被写体が存在する可能性が高い領域或いは撮影ピントが顔検出可能な程度に合っているとみなせる領域に限定して行っても良い。
このように領域を限定する場合の具体例を、図18の撮影構図例を用いて説明する。
図18は、撮影構図の一例であり、撮影画面の中央左寄りに人物HMが配置されている。また図18には、焦点検出用センサー20によって撮影画面内の各部に配置された焦点検出位置F01~F27も示している。
ここで、図5のS105の焦点調節完了状態において、人物HMに合焦した状態になっているとする。この場合、各焦点検出位置F01~F27で取得される各焦点検出情報は、人物HMの領域に対応した各位置F01,F02,F05~F07,F12~F14,F19~F21,F25,F26において合焦状態或いは合焦からのずれが小さい情報となる。これに対し、焦点検出位置F03等の他の各焦点検出位置、つまり合焦している人物HMを除いた背景等に対応した焦点検出位置で取得される焦点検出情報は、合焦からのずれが大きい情報となる。一方で、例えば人物の顔が撮影された画像であっても、人物に対してピントが外れていてぼけている画像である場合には、その画像から顔を検出ができないことが多い。したがって制御部41は、測光用センサー26の各出力値のうち、合焦状態或いは合焦からのずれが小さい各焦点検出位置F01,F02,F05~F07,F12~F14,F19~F21,F25,F26に対応した出力値を基に度数分布情報を作成する。
図17に説明を戻す。S401の後、信号処理回路42は、S402に処理を進める。
S402に進むと、信号処理回路42は、S401で作成した度数分布情報を基に、図15(a)~図15(d)で説明した手法でゲイン差補正された予備発光時の測光用センサー26からの画素信号の各画素の出力値のビットシフト量を決定する。ここで、図15(a)~図15(d)で説明したように、ゲイン差補正された予備発光時の測光用センサー26の画素信号の各画素のデータ長は13ビット長となっているので、各画素の画素値は最小値0から最大値8191の範囲内で存在し得る。したがって、信号処理回路42は、図19(a)に示すようにしてビットシフト量を決める。
すなわち図19(a)に示すように、信号処理回路42は、画素値が255以下のデータの度数が所定値以上である場合にはビットシフト量を5と決定する。また、画素値が255以下のデータの度数が所定値未満で、且つ画素値が511以下のデータの度数が所定値以上の場合、信号処理回路42は、ビットシフト量を4と決定する。以下同様に、画素値が511以下のデータの度数が所定値未満で、且つ画素値が1023以下のデータの度数が所定値以上の場合にはビットシフト量を3と決定する。画素値が1023以下のデータの度数が所定値未満で、且つ画素値が2047以下のデータの度数が所定値以上の場合には、ビットシフト量を2と決定する。画素値が2047以下のデータの度数が所定値未満で、且つ画素値が4095以下のデータの度数が所定値以上の場合には、ビットシフト量を2と決定する。画素値が4095以下のデータの度数が所定値未満で、且つ画素値が8191以下のデータの度数が所定値以上の場合には、ビットシフト量を1と決定する。画素値が4095以下のデータの度数が所定値未満の場合には、ビットシフト量を0と決定する。
次にS403に進むと、信号処理回路42は、ゲイン差補正された予備発光時の測光用センサー26の画素信号の画素出力値を、決定されたビットシフト量に従って左シフトし、さらに下位5ビットを切り捨ててビット長を短縮する処理によるデータ変換を行う。図19(b)は、ビットシフト量が2と決定された場合の例を表しており、13ビット長のゲイン差補正後のデータを左側に2ビットシフトし、下位2ビットはデータ"0"を挿入してビットシフトが行われた例である。さらに、制御部41は、図19(c)に示すように、ビットシフト後の下位5ビットを切り捨てし、上位8ビットを残した8ビットデータに短縮する。
なお、画像情報から人物の顔を検出する機能を有するハードウェア等は既に様々存在するが、検出元の画像に要求される画像フォーマットは汎用的なフォーマットである場合が多い。汎用的な画像フォーマットの多くは輝度情報や色差情報を8ビット長で表すことが多い。そのため、ここではゲイン差補正によって13ビット長となっていた予備発光時の画素データを8ビット長に変換することを行う。その際、S403の処理を実行することで13ビット長のうちの有効性が高いビット部分を効果的に切り出すことができる。
次にS404において、信号処理回路42は、S403にて8ビット長に変換された各画素のデータから、顔検出用の画像を生成する。顔検出用の画像生成は、前述の第1実施形態で説明したのと同様に、図3(b)で示した測光用センサー26のベイヤー配列の画素アレイから周知の方法にてR,G,Bの色毎に補間処理を行い画素毎にR,G,Bの情報を持たせる。続けて、前述の式(1)のように、画素毎の色情報R(i),G(i),B(i)に所定の係数(M11~M33)によるマトリクス演算を施し、画素毎に輝度情報YR(i)及び色差情報Cx(i),Cy(i)を生成して顔検出用画像情報とする。そして、信号処理回路42は、このS404の処理が終了すると図7のS312へ処理を進めて顔検出処理を行う。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
第1実施形態~第3実施形態の中で用いた各数値等は一例であり、それらに限定されるものではない。各実施形態では、撮像素子12とは別に備えられた測光用センサー26によってフラッシュの予備発光時の測光を行う例を挙げたが、撮像素子12にてフラッシュ予備発光時の測光を行う場合であっても前述同様の技術を適用可能である。また、各実施形態において、例えばゲインによる感度差と面積による感度差を併用しても良い。
また前述の実施形態では、反射光の測光信号から生成した画像から顔等を検知し、その顔の領域に対して適切なフラッシュ本発光量を求める例を挙げたが、検知した顔画像の用途は本発光量を求めるものに必ずしも限定しなくても良い。一例として、検知した顔画像は、個人を特定する際の顔認識などに用いられて良い。その他にも、撮影対象の被写体は、顔に限定されず、自動車等の車両、各種の商品や工業製品、動物等の他の様々な被写体であっても良く、本実施形態はいずれについても適用可能である。
前述した実施形態では、レンズ交換が可能ないわゆる一眼レフタイプのデジタルカメラを例に挙げたが、フラッシュ発光が可能なものであれば、他の撮像装置にも適用可能である。例えば、デジタルカメラだけでなくフィルムカメラ、カメラ機能を備えたスマートフォンやタブレット端末などの各種携帯端末、各種の監視カメラ、工業用カメラ、車載カメラ、医療用カメラなどにも本実施形態は適用可能である。
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
上述の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。即ち、本発明は、その技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
1:カメラ、2:交換レンズ、3:フラッシュ装置、12:撮像素子、20:焦点検出用センサー、26:測光用センサー、34:発光部、35:発光部ユニット、37:発光モニター部、41:制御部、42:信号処理回路、51:レンズ制御部、61:フラッシュ制御部

Claims (10)

  1. 複数配列された画素を有し、フラッシュの予備発光時に、前記複数配列の行または画素ごとに少なくとも二つの異なる感度が設定され、前記設定された感度ごとの信号を出力するセンサと、
    前記設定された感度ごとに出力された前記信号に対して前記設定された感度の差に対応した補正を行い、前記補正を行った信号を基に画像を生成する生成手段と、
    前記生成手段が生成した画像から被写体領域を検知し、検知した前記被写体領域に応じて前記フラッシュの本発光時の発光量を決定する決定手段と、を有し、
    前記生成手段は、前記感度の差に対応した前記補正として、低感度領域の画像に感度が合うように高感度領域の画像の感度を下げる処理と、高感度領域の画像を低感度領域の画像情報にて補間処理する処理と、高感度領域の画像に感度が合うように低感度領域の画像の感度を上げる処理と、低感度領域の画像を高感度領域の画像情報にて補間処理する処理との、いずれかの処理で前記感度の差を均一にする補正を行うことを特徴とする撮像装置。
  2. 前記生成手段は、前記高感度領域の情報の度数分布と前記低感度領域の情報の度数分布とに基づき、前記感度の差を均一にする補正のための前記いずれかの処理を選択することを特徴とする請求項に記載の撮像装置。
  3. 前記センサは、前記複数配列の行からなる領域ごとに前記信号に対するゲインを異ならせる設定と、前記画素ごとに光を受光する面積を異ならせる設定との、少なくともいずれかにより前記異なる感度への設定が行われることを特徴とする請求項1または2に記載の撮像装置。
  4. 複数配列された画素を有し、フラッシュの予備発光時に、前記複数配列の行または画素ごとに少なくとも二つの異なる感度が設定され、前記設定された感度ごとの信号を出力するセンサと、
    前記設定された感度ごとに出力された前記信号に対して前記設定された感度の差に対応した補正を行い、前記補正を行った信号を基に画像を生成する生成手段と、
    前記生成手段が生成した画像から被写体領域を検知し、検知した前記被写体領域に応じて前記フラッシュの本発光時の発光量を決定する決定手段と、を有し、
    前記センサは、前記複数配列の画素から読み出された画素信号をAD変換する際のゲインが、前記フラッシュの予備発光時に前記複数配列の行または画素ごとに少なくとも二つの異なるゲインに設定されて、前記設定されたゲインに基づくAD変換を行ってデジタル信号を出力し、
    前記生成手段は、前記デジタル信号の度数分布情報に基づきビットシフト量を決定し、前記設定された感度に基づきビット長を拡大した前記デジタル信号に対して前記ビットシフト量によるビットシフトを行い、さらにビット長の短縮を行った後のデジタル信号を基に前記被写体領域の画像を生成することを特徴とする撮像装置。
  5. 前記生成手段は、前記度数分布情報を生成する領域を、焦点検出情報に基づいて設定することを特徴とする請求項に記載の撮像装置。
  6. 前記センサから出力された、前記フラッシュの予備発光直前の定常光に基づく信号から前記被写体領域が検知されたか否かにより、前記センサに前記設定する感度を変更する設定手段を有することを特徴とする請求項1乃至5のいずれか1項に記載の撮像装置。
  7. 撮影倍率または被写体距離を取得し、前記撮影倍率または被写体距離に基づいて、前記センサに前記設定する感度を変更する設定手段を有することを特徴とする請求項1乃至6のいずれか1項に記載の撮像装置。
  8. 前記被写体領域は顔領域であることを特徴とする請求項1乃至7のいずれか1項に記載の撮像装置。
  9. 複数配列された画素を有し、フラッシュの予備発光時に、前記複数配列の行または画素ごとに少なくとも二つの異なる感度が設定されたセンサから、前記設定された感度ごとの信号を取得する工程と、
    前記設定された感度ごとに取得した前記信号に対して前記設定された感度の差に対応した補正として、低感度領域の画像に感度が合うように高感度領域の画像の感度を下げる処理と、高感度領域の画像を低感度領域の画像情報にて補間処理する処理と、高感度領域の画像に感度が合うように低感度領域の画像の感度を上げる処理と、低感度領域の画像を高感度領域の画像情報にて補間処理する処理との、いずれかの処理で前記感度の差を均一にする補正を行い、前記補正を行った信号を基に画像を生成する工程と、
    生成した前記画像から被写体領域を検知し、検知した前記被写体領域に応じて前記フラッシュの本発光時の発光量を決定する工程と、
    を有することを特徴とする撮像装置の制御方法。
  10. 撮像装置が備えるコンピュータを、請求項1乃至8のいずれか1項に記載の撮像装置の各手段として機能させるためのプログラム。
JP2018017494A 2018-02-02 2018-02-02 撮像装置、撮像装置の制御方法、およびプログラム Active JP7016712B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018017494A JP7016712B2 (ja) 2018-02-02 2018-02-02 撮像装置、撮像装置の制御方法、およびプログラム
US16/259,813 US10999523B2 (en) 2018-02-02 2019-01-28 Image pickup apparatus, method for controlling image pickup apparatus, and storage medium for controlling flash photography when a still image is imaged

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018017494A JP7016712B2 (ja) 2018-02-02 2018-02-02 撮像装置、撮像装置の制御方法、およびプログラム

Publications (3)

Publication Number Publication Date
JP2019133099A JP2019133099A (ja) 2019-08-08
JP2019133099A5 JP2019133099A5 (ja) 2021-03-18
JP7016712B2 true JP7016712B2 (ja) 2022-02-07

Family

ID=67477174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018017494A Active JP7016712B2 (ja) 2018-02-02 2018-02-02 撮像装置、撮像装置の制御方法、およびプログラム

Country Status (2)

Country Link
US (1) US10999523B2 (ja)
JP (1) JP7016712B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7158880B2 (ja) * 2018-04-04 2022-10-24 キヤノン株式会社 撮像装置、その制御方法、および制御プログラム
JP7316130B2 (ja) * 2019-07-16 2023-07-27 キヤノン株式会社 画像処理装置、画像処理装置の制御方法、プログラム
CN111372008B (zh) * 2020-03-13 2021-06-25 深圳市睿联技术股份有限公司 基于视频内容的亮度自动增益调节方法及摄像机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324656A (ja) 2002-05-08 2003-11-14 Sony Corp 撮像装置および方法、記録媒体、並びにプログラム
US20100046936A1 (en) 2008-08-22 2010-02-25 Samsung Digital Imaging Co., Ltd. Photographing control method and apparatus using strobe
JP2012113248A (ja) 2010-11-26 2012-06-14 Canon Inc 撮像装置
JP2015122706A (ja) 2013-12-25 2015-07-02 ソニー株式会社 制御装置、制御方法および制御システム
JP2016082487A (ja) 2014-10-20 2016-05-16 キヤノン株式会社 露出制御装置及びその制御方法、撮像装置、プログラム、記憶媒体
JP2017097288A (ja) 2015-11-27 2017-06-01 キヤノン株式会社 撮像装置、その制御方法、および制御プログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610961B2 (ja) 1973-03-02 1981-03-11
JP3363683B2 (ja) 1995-12-28 2003-01-08 キヤノン株式会社 焦点検出装置及びそれを用いた光学機器
JP2005117192A (ja) 2003-10-03 2005-04-28 Matsushita Electric Ind Co Ltd 固体撮像装置の駆動方法およびこれを備えたカメラ
JP2005184508A (ja) 2003-12-19 2005-07-07 Canon Inc 撮像装置及びその制御方法
JP4110109B2 (ja) 2004-03-26 2008-07-02 キヤノン株式会社 撮像装置及び撮像制御方法
JP2008187615A (ja) * 2007-01-31 2008-08-14 Canon Inc 撮像素子、撮像装置、制御方法、及びプログラム
JP5610961B2 (ja) 2010-09-30 2014-10-22 キヤノン株式会社 固体撮像装置及び固体撮像装置の駆動方法
JP5893550B2 (ja) 2012-04-12 2016-03-23 キヤノン株式会社 撮像装置及び撮像システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324656A (ja) 2002-05-08 2003-11-14 Sony Corp 撮像装置および方法、記録媒体、並びにプログラム
US20100046936A1 (en) 2008-08-22 2010-02-25 Samsung Digital Imaging Co., Ltd. Photographing control method and apparatus using strobe
JP2012113248A (ja) 2010-11-26 2012-06-14 Canon Inc 撮像装置
JP2015122706A (ja) 2013-12-25 2015-07-02 ソニー株式会社 制御装置、制御方法および制御システム
JP2016082487A (ja) 2014-10-20 2016-05-16 キヤノン株式会社 露出制御装置及びその制御方法、撮像装置、プログラム、記憶媒体
JP2017097288A (ja) 2015-11-27 2017-06-01 キヤノン株式会社 撮像装置、その制御方法、および制御プログラム

Also Published As

Publication number Publication date
US10999523B2 (en) 2021-05-04
US20190246028A1 (en) 2019-08-08
JP2019133099A (ja) 2019-08-08

Similar Documents

Publication Publication Date Title
JP6120500B2 (ja) 撮像装置およびその制御方法
JP6046905B2 (ja) 撮像装置、露出制御方法、及びプログラム
US9456144B2 (en) Imaging apparatus and control method
US8629934B2 (en) Imaging apparatus and method for controlling the same
JP7016712B2 (ja) 撮像装置、撮像装置の制御方法、およびプログラム
JPH0915491A (ja) 自動焦点調節装置
JP2012242676A (ja) 撮像装置及び制御方法
JP2014137482A (ja) 撮影装置および撮影用照明装置
JP3436259B2 (ja) 測光装置
JP2004361611A (ja) 固体撮像素子及び撮影装置
JP6741881B2 (ja) 画像処理装置、撮像装置、画像処理方法、およびプログラム
JP7091053B2 (ja) 撮像装置および焦点検出方法
JP2015031743A (ja) 露出制御装置、その制御方法、および制御プログラム、並びに撮像装置
JP6727933B2 (ja) 撮像装置及び制御方法
JP5875307B2 (ja) 撮像装置、及びその制御方法
JP2004004449A (ja) カメラの露出制御システム
JP2011182336A (ja) 撮像装置及びその制御方法
JP2002320233A (ja) カメラの確認用ディスプレイ
JP6742733B2 (ja) 撮像装置、その制御方法、および制御プログラム
JP6388392B2 (ja) シーン判別装置、その制御方法、および制御プログラム、並びに撮像装置
JP2012141549A (ja) 撮像装置
JP6395790B2 (ja) 撮像装置、撮像装置の制御方法およびフォーカス制御プログラム
JP2008199518A (ja) カメラ
JP2006119454A (ja) 撮像装置および撮像装置の測光方法
CN111601045B (zh) 控制闪光拍摄的摄像设备及其控制方法和存储介质

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220126