JP6929267B2 - 撮像装置及び撮像システム - Google Patents

撮像装置及び撮像システム Download PDF

Info

Publication number
JP6929267B2
JP6929267B2 JP2018243140A JP2018243140A JP6929267B2 JP 6929267 B2 JP6929267 B2 JP 6929267B2 JP 2018243140 A JP2018243140 A JP 2018243140A JP 2018243140 A JP2018243140 A JP 2018243140A JP 6929267 B2 JP6929267 B2 JP 6929267B2
Authority
JP
Japan
Prior art keywords
wiring portion
wiring
photoelectric conversion
conversion element
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018243140A
Other languages
English (en)
Other versions
JP2020107668A (ja
Inventor
将人 大藤
将人 大藤
潤 川鍋
潤 川鍋
健太郎 藤吉
健太郎 藤吉
翔 佐藤
翔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018243140A priority Critical patent/JP6929267B2/ja
Priority to US16/709,808 priority patent/US11368640B2/en
Priority to CN201911333059.1A priority patent/CN111387997B/zh
Publication of JP2020107668A publication Critical patent/JP2020107668A/ja
Application granted granted Critical
Publication of JP6929267B2 publication Critical patent/JP6929267B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4258Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector for detecting non x-ray radiation, e.g. gamma radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20183Arrangements for preventing or correcting crosstalk, e.g. optical or electrical arrangements for correcting crosstalk
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/208Circuits specially adapted for scintillation detectors, e.g. for the photo-multiplier section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14676X-ray, gamma-ray or corpuscular radiation imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、撮像装置及び撮像システムに関するものである。特に、被写体を放射線撮影する放射線撮像装置及び放射線撮像システムに用いて好適なものである。
例えば、X線などの放射線による医療画像診断や非破壊検査用の撮像装置では、放射線を検出する画素をガラスなどの支持基板上に2次元行列状に配置したセンサ基板が用いられる。このうち、いわゆる間接変換型のセンサ基板は、例えば、ガラスなどの支持基板上にアモルファスシリコン(a−Si)などで形成された光電変換素子と、薄膜トランジスタ(TFT)などで形成されたスイッチ素子とを含む画素や、各種の配線を有して構成され、また、入射した放射線を光に変換するシンチレータ(蛍光体)と組み合わせて用いられる。この際、配線には、スイッチ素子を制御する制御配線や、光電変換素子からの電気信号を取り出す信号配線の他に、光電変換素子が光電変換を行うために必要なバイアス電圧を画素領域内へ供給するためのバイアス配線などがある。例えば、特許文献1の図1には、バイアス配線を画素の周囲に縦方向及び横方向にメッシュ状に配置したセンサ基板が記載されている。
特開2014−75377号公報
バイアス配線は、配線抵抗をできるだけ小さくするため、通常は光透過性の透明導電層ではなく光非透過性の金属層で形成される。そして、この場合、シンチレータで発生した光は、一部の光がバイアス配線によって遮られ、残りの光が光電変換素子に入射することになる。
また、センサ基板の一部に強い放射線が入射するなどの、放射線量がセンサ基板の有効画素領域内で一様でない場合、いわゆるクロストークが発生する。このうち、横方向に配置された制御配線と平行に発生するクロストーク(横クロストーク)は、動画センサの高速駆動時に特に問題となる。この横クロストークは、電源から供給されるバイアス電圧の瞬間的・局所的な変動によって発生するため、対策としては、センサ基板内部のバイアス配線の抵抗を下げて、上述したバイアス電圧の変動を低減させることが有効である。
しかしながら、特許文献1に記載のセンサ基板において、バイアス配線の抵抗を下げるためにバイアス配線の線幅を大きくすると、光の入射方向から見た場合にバイアス配線と画素とが重なる面積が大きくなり、その結果、いわゆる開口率が低下してしまう。
即ち、従来の技術においては、高い開口率を維持しつつ、低いクロストークを実現することは困難であった。
本発明は、このような問題点に鑑みてなされたものであり、高い開口率を維持するとともに低いクロストークを実現する撮像装置を提供することを目的とする。
本発明の撮像装置は、光電変換素子と、当該光電変換素子の一方の電極に電気的に接続されたスイッチ素子と、を含む画素が2次元行列状に複数配置された画素領域と、電源からのバイアスを前記画素領域を画定する1つの辺から前記画素領域の各画素に供給するために、前記光電変換素子に対して光の入射側であって、前記画素の周囲において前記1つの辺から離れる第1の方向および当該第1の方向と直交する第2の方向に配置され、前記光電変換素子の他方の電極に電気的に接続されたバイアス配線と、を有し、前記バイアス配線は、前記第1の方向に配置された第1の配線部分と、前記第2の方向に配置された第2の配線部分と、を含み、1つの前記画素あたりの前記第1の配線部分の抵抗値は、当該1つの画素あたりの前記第2の配線部分の抵抗値よりも小さく、かつ、前記第2の配線部分による前記光電変換素子への前記光の入射の損失は、前記第1の配線部分による前記光電変換素子への前記光の入射の損失よりも小さい
本発明の撮像装置における他の態様は、前記第1の配線部分および前記第2の配線部分に基づく前記画素の開口率が85%以上であって、前記第2の方向に沿って発生するクロストークの平均値の絶対値が0.39%以下である。
本発明によれば、高い開口率を維持するとともに低いクロストークを実現することができる。
本発明の第1の実施形態に係る放射線撮像装置の概略構成の一例を示す図である。 図1に示す有効画素領域及び読出回路の内部構成の一例を示す図である。 図2に示す有効画素領域及び読出回路の内部構成の動作方法の一例を示すタイミングチャートである。 本発明の第1の実施形態を示し、図2に示す有効画素領域の画素のレイアウトの一例を示す図である。 図4に示すA−A'断面及びB−B'断面の層構造の一例を示す図である。 図4に示す画素のレイアウトにおいて、1つの画素あたりの第1の配線部分の抵抗値及び第2の配線部分の抵抗値の概念を示す図である。 本発明の第1の実施形態を示し、クロストークの評価法及びその横方向分布の一例を示す図である。 本発明の各実施形態及び比較例のそれぞれについて、開口率、抵抗値、並びに、クロストークの計算結果の一例を示す図である。 図8に示す比較例1及び比較例2における有効画素領域の画素のレイアウトの一例を示す図である。 図8に計算条件として示した抵抗値の各種の組み合わせを行った際のクロストークの計算結果の一例を示す図である。 クロストークの平均値及びその分布における抵抗値に対する依存性を検証するための図である。 クロストークの発生原理を説明するための図である。 本発明の第2の実施形態を示し、図2に示す有効画素領域の画素のレイアウトの一例を示す図である。 図13に示すA−A'断面の層構造の一例を示す図である。 本発明の第3の実施形態に係る放射線撮像装置の概略構成の一例を示す図である。 本発明の実施形態に係る放射線撮像装置が組み込まれた放射線撮像システムの概略構成の一例を示す図である。
以下に、図面を参照しながら、本発明を実施するための形態(実施形態)について説明する。なお、以下に記載する本発明の各実施形態においては、本発明に係る撮像装置として、放射線を用いた撮影を行う放射線撮像装置を適用した例について説明を行う。また、以下に記載する本発明の各実施形態において、放射線には、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギーを有するビーム、例えばX線や粒子線、宇宙線なども含みうる。
(第1の実施形態)
まず、本発明の第1の実施形態について説明する。
図1は、本発明の第1の実施形態に係る放射線撮像装置100の概略構成の一例を示す図である。以下の説明においては、この図1に示す放射線撮像装置100を「放射線撮像装置100−1」として説明する。
放射線撮像装置100−1は、図1に示すように、センサ基板110、駆動回路120、読出回路130、信号処理部140、制御部150、通信部160、及び、電源回路170を有して構成されている。
センサ基板110は、放射線を検出し、検出した放射線量に応じた電気信号を生成する画素111が2次元行列状に複数配置された有効画素領域110aを有して構成されている。この有効画素領域110aには、通常、3000画素×3000画素程度の大規模な2次元行列状の複数の画素111が設けられるが、図1では、紙面の都合上、9画素×9画素を模式的に図示している。また、有効画素領域110aは、図1に示す例では、第1の辺110a1、第2の辺110a2、第3の辺110a3及び第4の辺110a4の4つの辺で画定される領域となっている。そして、図1に示す例では、駆動回路120、読出回路130及び電源回路170は、それぞれ、有効画素領域110aを画定する4つの辺110a1〜110a4のうちの一辺に接続される態様となっている。
駆動回路120は、有効画素領域110aの第1の辺110a1から、制御配線181を介して有効画素領域110aのそれぞれの画素111と接続し、それぞれの画素111を駆動する。具体的に、駆動回路120は、制御配線181を介して有効画素領域110aのそれぞれの画素111の駆動を制御し、電気信号を出力させる。
読出回路130は、有効画素領域110aの第2の辺110a2から、信号配線182を介して有効画素領域110aのそれぞれの画素111と接続し、それぞれの画素111から電気信号を読み出し、当該電気信号に応じた値を出力する。
ここで、駆動回路120や読出回路130は、Si集積回路(IC)チップであってもよい。この際、これらのチップは、COF/ACF実装やCOG(チップオングラス)実装などにより、センサ基板110に電気的に接続される。また、駆動回路120や読出回路130は、複数のチップに分かれていてもよい。図1に示す例では、読出回路130が3つのチップに分かれて構成されているが、本実施形態においてはこの態様に限定されるものではなく、1つのチップで構成してもよく、或いは、3つ以外の数に分かれて構成されていてもよい。また、図1に示す例では、駆動回路120が1つのチップで構成されているが、本実施形態においてはこの態様に限定されるものではなく、任意の複数のチップで構成されていてもよい。
信号処理部140は、読出回路130から取得した値を用いて放射線画像を生成する。
制御部150は、放射線撮像装置100−1の全体の動作を統括的に制御するとともに、各種の処理を行う。
通信部160は、不図示の他の外部装置、例えば制御用コンピュータ等との通信を行う。
電源回路170は、駆動回路120や読出回路130、信号処理部140、制御部150、通信部160などに必要な電源を供給するほか、有効画素領域110aの内部の画素111にバイアス供給線183を通じてバイアス電圧を供給する。図1に示す例では、バイアス供給線183が、3つの読出回路130のチップの間と両端の計4カ所に配置され、電源回路170と有効画素領域110aの第2の辺110a2を接続している。即ち、電源回路170は、有効画素領域110aの第2の辺110a2から、バイアス供給線183を通じて有効画素領域110aのそれぞれの画素111にバイアス電圧を供給する。
図2は、図1に示す有効画素領域110a及び読出回路130の内部構成の一例を示す図である。この図2において、図1に示す構成と同様の構成については同じ符号を付しており、その詳細な説明は省略する。
具体的に、図2(a)に、図1に示す有効画素領域110a及び読出回路130の内部構成の一例を示している。具体的に、図2(a)では、図1に示す有効画素領域110aの内部の画素111のうち、有効画素領域110aの左上に位置する4画素×3画素における画素111と、読出回路130の1チップのみを図示している。
図2(a)に示すように、画素111は、不図示のシンチレータ層(具体的には、図5に示すシンチレータ層541)で発生し入射した光を電気信号である電荷に変換する光電変換素子1111、及び、その電荷に応じた電気信号を出力するスイッチ素子1112を含み構成されている。
本実施形態では、光電変換素子1111は、PIN型フォトダイオードとするが、MIS型ダイオードなどであってもよい。また、本実施形態では、スイッチ素子1112は、制御電極(ゲート電極)と2つの主電極(ソース電極/ドレイン電極)を有する薄膜トランジスタ(TFT)である。この際、本実施形態では、TFTのチャネル層は、a−Siで形成されているものとするが、他の材料であってもよい。そして、光電変換素子1111の一方の電極は、スイッチ素子1112の2つの主電極の一方に電気的に接続され、光電変換素子1111の他方の電極は、バイアス配線112及びバイアス供給線183を介して電源回路170と電気的に接続される。
バイアス配線112には、センサ基板110に含まれる全ての画素111が共通に接続される。バイアス配線112を通じて、電源回路170から各画素111の光電変換素子1111にバイアス電圧が供給される。バイアス配線112は、有効画素領域110a内において、画素111の間に(画素111の周囲に)、縦方向(Y方向,列方向,第1の方向)及び横方向(X方向,行方向,第2の方向)にメッシュ状に延在して配置されている。具体的に、バイアス配線112は、画素111の周囲において、電源回路170が電気的に接続する有効画素領域110aの第2の辺110a2から離れる縦方向(Y方向,列方向,第1の方向)及び当該縦方向と直交する横方向(X方向,行方向,第2の方向)に配置されている。以降の説明においては、バイアス配線112において、縦方向(Y方向,列方向,第1の方向)に配置された配線部分を「第1の配線部分1121」と記載し、横方向(X方向,行方向,第2の方向)に配置された配線部分を「第2の配線部分1122」と記載する。また、バイアス配線112は、光電変換素子1111に対して光の入射側に設けられている。さらに、バイアス配線112や他の配線は、実際には電気抵抗を有し、このうちのバイアス配線112の抵抗について、図2(b)を用いて以下に説明する。
図2(b)は、図2(a)に示すバイアス配線112の抵抗に注目し、有効画素領域110aの2画素×2画素分の画素111を抜き出して示した等価回路図である。この図2(b)には、上述した第1の配線部分1121及び第2の配線部分1122を図示している。ここで、本実施形態では、バイアス配線112の抵抗について、1つの画素111あたりの第1の配線部分1121の抵抗値をRvとし、当該1つの画素111あたりの第2の配線部分1122の抵抗値をRhとする。ここでは、Rv=1Ω、Rh=5Ωとする態様を説明するが、本実施形態においてはこの態様に限定されるものではない。例えば、1つの画素111あたりの第1の配線部分1121の抵抗値Rvが、当該1つの画素111あたりの第2の配線部分1122の抵抗値Rhよりも小さくなる態様も、本実施形態に適用可能である。
センサ基板110は、制御配線G(1),G(2),G(3),・・・(以下、制御配線181と総称する)を介して、駆動回路120と電気的に接続されている。制御配線181には、行を構成する複数の画素111のスイッチ素子1112の制御端子が共通に接続される。駆動回路120は、制御部150から供給された制御信号に応じて、制御配線181を通じて、スイッチ素子1112の導通状態を制御する駆動信号をセンサ基板110のそれぞれの画素111に行単位で供給することによって、画素111に電気信号を出力させる。
センサ基板110は、信号配線Sig(1),Sig(2),Sig(3),・・・(以下、信号配線182と総称する)を介して、読出回路130と電気的に接続されている。信号配線182には、列を構成する複数の画素111のスイッチ素子1112の他方の主電極(光電変換素子1111に接続されていない方の主電極)が共通に接続される。スイッチ素子1112が導通状態である間に光電変換素子1111に蓄積された電荷に応じた電気信号が信号配線182に出力され、この電気信号が読出回路130によって読み出される。
読出回路130は、複数の増幅回路131、マルチプレクサ132、バッファ増幅器133、及び、A/D変換器134を有して構成されている。また、増幅回路131は、積分増幅器1311、可変増幅器1132、サンプルホールド回路1313(1313a及び1313b)、並びに、バッファアンプ1314(1314a及び1314b)を有して構成されている。積分増幅器1311のリセットスイッチが制御部150から供給された制御信号RCに応じてオンになることによって、積分増幅器1311がリセットされる。可変増幅器1132は、積分増幅器1311から供給された電気信号を増幅して出力する。サンプルホールド回路1313は、サンプリングスイッチとサンプリング容量とを有し、可変増幅器1132から供給された電気信号を、制御部150から供給された制御信号SH1及びSH2に応じてサンプルして保持する。サンプルホールド回路1313によって保持された電気信号は、バッファアンプ1314を通じて増幅回路131から出力される。
図3は、図2に示す有効画素領域110a及び読出回路130の内部構成の動作方法の一例を示すタイミングチャートである。この図3では、制御配線181については、n行目の制御配線G(n)と、(n+1)行目の制御配線G(n+1)についてのみ図示している。
放射線撮像装置100−1は、放射線曝射期間と読出期間とを以下の要領で交互に繰り返す。まず、放射線曝射期間の時刻t1〜t2において、有効画素領域110aに放射線が曝射される。続いて、放射線撮像装置100−1は、読出期間に移行する。時刻t3〜t4において、制御信号RCがハイレベルとなり、リセットスイッチRSが導通状態になる。これにより、信号配線182の電位が参照電位Vrefにリセットされる。時刻t5〜t6において、制御信号SH1がハイレベルとなる。可変増幅器1132からは、信号配線182に蓄えられた電荷量に応じた信号が出力され、この時の出力信号がサンプルホールド回路1313aにサンプリングされる。時刻t7〜t8において、制御配線G(n)の電位がハイレベルとなって、n行目のスイッチ素子1112が導通状態となり、n行目の光電変換素子1111から信号配線182に電荷が流れて信号配線182の電荷量が変化する。時刻t9〜t10では、制御信号SH2がハイレベルとなり、時刻t5〜t6と同様、可変増幅器1132の出力信号がサンプルホールド回路1313bにサンプリングされる。サンプルホールド回路1313a及び1313bの信号は、マルチプレクサ132、A/D変換器134等を介して、信号処理部140に出力される。信号処理部140は、サンプルホールド回路1313a及び1313bの各信号の差分を、n行目の光電変換素子1111から読み出された電荷量として記録する。読出期間において、放射線撮像装置100−1は、上述した動作を1行目から順次繰り返すことで、放射線照射量分布に応じた2次元放射線画像を形成する。
図4は、本発明の第1の実施形態を示し、図2に示す有効画素領域110aの画素111のレイアウトの一例を示す図である。ここで、本実施形態では、隣接する画素111の間の画素ピッチをPとし、また、1つの画素111は、一辺の長さがPの正方形であるものとする。
図4に示すように、第1の配線部分1121及び第2の配線部分1122を備えるバイアス配線112は、不図示のシンチレータ層(具体的には、図5に示すシンチレータ層541)で発生した光を反射して当該光を非透過である非透過部材の金属層532と、当該光の少なくとも一部を透過する透過部材の透明導電層531を含み構成されている。具体的に、図4に示す例では、第1の配線部分1121は、図4において灰色が付された非透過部材である金属層532を含み構成されており、第2の配線部分1122は、非透過部材である金属層532と透過部材の透明導電層531とを含み構成されている。この際、図4に示す例では、非透過部材である金属層532の線幅が、第2の配線部分1122の方が第1の配線部分1121よりも小さくなっている(換言すれば、第1の配線部分1121の方が第2の配線部分1122よりも大きくなっている)。例えば、金属層532は、モリブデンやアルミニウムなどの金属の積層構造で形成され、透明導電層531は、ITOなどの透明導電性酸化物で形成される。
また、図2に示す光電変換素子1111は、第1電極522と第2電極526との間に挟持された半導体層524を有して構成されている。不図示のシンチレータ層(具体的には、図5に示すシンチレータ層541)で発生した光が半導体層524に照射されると、半導体層524における光電変換により電荷が発生する。平面視した際、半導体層524に対してバイアス配線112の金属層532が重なっている面積が大きいほど、半導体層524に光が届く効率が低下する。即ち、非透過部材である金属層532による光の損失が大きくなる。本実施形態においては、光が届く効率を表す開口率を、以下の(1)式で定義する。
開口率=((半導体層524の面積)−(半導体層524と金属層532との重なり部分の面積))/P2 ・・・(1)
(1)式において、P2は、図4に示すように、1画素(111)あたりの占有面積である。本実施形態における画素111の開口率は、例えば88%である。本実施形態においては、上述したように、第2の配線部分1122における金属層532の線幅が、第1の配線部分1121における金属層532の線幅よりも小さくなっている。このため、半導体層524と第2の配線部分1122における金属層532との重なり部分の面積は、半導体層524と第1の配線部分1121における金属層532との重なり部分の面積よりも小さい。その結果、バイアス配線112の第2の配線部分1122による光電変換素子1111への光の入射の損失は、バイアス配線112の第1の配線部分1121による光電変換素子1111への光の入射の損失よりも小さくなり、開口率を高めることができる。
図5は、図4に示すA−A'断面及びB−B'断面の層構造の一例を示す図である。具体的に、図5(a)は、図4に示すA−A'断面の層構造の一例を示し、また、図5(b)は、図4に示すB−B'断面の層構造の一例を示している。
スイッチ素子1112は、基板501の上に、基板501の側から順に、制御電極511、絶縁層512、半導体層513、半導体層513よりも不純物濃度の高い不純物半導体層514、第1主電極515、及び、第2主電極516を含み構成されている。不純物半導体層514は、その一部領域で第1主電極515及び第2主電極516と接しており、その一部領域と接する半導体層513の領域の間の領域が、スイッチ素子1112のチャネル領域となる。制御電極511は、制御配線181と電気的に接続されており、第1主電極515は、信号配線182と電気的に接続されており、第2主電極516は、光電変換素子1111の第1電極522と電気的に接続されている。なお、本実施形態では、第1主電極515と信号配線182とは、同じ導電層で一体的に構成されており、第1主電極515が信号配線182の一部をなしている。保護層517は、スイッチ素子1112、制御配線181及び信号配線182を覆うように設けられている。
層間絶縁層520は、複数のスイッチ素子1112を覆うように、基板501と光電変換素子1111の複数の第1電極522との間に配置されており、コンタクトホールを有している。光電変換素子1111の第1電極522とスイッチ素子1112の第2主電極516とが、層間絶縁層520に設けられたコンタクトホールにおいて、電気的に接続される。
光電変換素子1111は、層間絶縁層520の上に、層間絶縁層520の側から順に、第1電極522、第1導電型の不純物半導体層523、半導体層524、第2導電型の不純物半導体層525、及び、第2電極526を含み構成されている。本実施形態では、不純物半導体層523はn型であり、不純物半導体層525はp型であるとするが、両者は逆でもよい。光電変換素子1111の第2電極526には、透明導電層531を介して金属層532が電気的に接続される。
そして、光電変換素子1111を覆うように、絶縁層527及び層間絶縁層528が配置されている。そして、層間絶縁層528の上に、層間絶縁層528の側から順に、透明導電層531、金属層532、パッシベーション層533、層間絶縁層540、及び、シンチレータ層541が設けられている。
シンチレータ層541は、例えば紙面上方から入射した放射線を光に変換する蛍光体の層である。そして、本実施形態では、シンチレータ層541で発生した光の一部が光電変換素子1111の半導体層524に入射する構造となっている。この際、図5に示すように、バイアス配線112を構成する透明導電層531及び金属層532は、光電変換素子1111に対して、シンチレータ層541からの光の入射側に設けられている。
図6は、図4に示す画素111のレイアウトにおいて、1つの画素111あたりの第1の配線部分1121の抵抗値Rv及び第2の配線部分1122の抵抗値Rhの概念を示す図である。この図6において、1つの画素111あたりの第1の配線部分1121の抵抗値Rvは、A点とB点の間の抵抗値に相当し、1つの画素111あたりの第2の配線部分1122の抵抗値Rhは、A点とC点との間の抵抗値に相当する。そして、これらの抵抗値Rv及びRhは、それぞれ、各点間の金属層532と透明導電層531の各電気抵抗が並列接続されたものとして求めることができる。Alなどの金属の電気伝導度に比べて、ITOなどの透明導電層の電気伝導度は小さいため、本実施形態における抵抗値Rv及びRhは、実質的に金属層532の線幅によって決まる。
図7は、本発明の第1の実施形態を示し、クロストークの評価法及びその横方向分布の一例を示す図である。具体的に、図7(a)は、クロストークの評価法の一例を示し、図7(b)は、クロストークの横方向分布の一例を示す。
まず、図7(a)の説明を行う。この図7(a)において、図1に示す構成と同様の構成については同じ符号を付しており、その詳細な説明は省略する。図7(a)では、有効画素領域110aには、3000画素×3000画素程度の画素111が配置されているものとする。また、有効画素領域110aの上辺(図1の「第2の辺110a2」に相当)には、複数のチップに分かれた読出回路130が接続され、その隙間及び両側から、複数のバイアス供給線183を介して電源回路170からバイアス電圧が供給されている。ここで、有効画素領域110aにおける最下行(電源回路170が電気的に接続された上辺(図1の「第2の辺110a2」に相当)から最も遠い行)において、中央の1/3程度(幅1000画素程度)の領域に強い放射線を照射し、この部分の光電変換素子1111に大量の電荷を発生させる。このときの各画素111におけるクロストークの大きさは、以下の(2)式で与えられる。
クロストーク(%)=((各画素111から読み出される電荷量)/(放射線照射領域の光電変換素子1111に与えた電荷量))÷(1/3) ・・・(2)
(2)式において、最後の(1/3)は、放射線照射領域の幅が有効領域の幅の1/3であることに由来する補正係数である。
次いで、図7(b)の説明を行う。図7(b)は、図7(a)の評価法で得られるクロストークの横方向分布の一例である。放射線照射領域以外の画素111においては、光電変換素子1111における発生電荷量がゼロであるにもかかわらず、読出回路130にゼロではない電荷が出力され、かつその符号は放射線照射領域の画素111から読み出される電荷と逆符号である。したがって、クロストークは負の値となる。本実施形態では、クロストークの評価指標として、以下に記載する(a)及び(b)の2つを用いる。
(a)クロストーク発生領域(放射線を照射していない2/3の領域)における、クロストークの平均値(%):図7(b)の「平均値」に相当
(b)クロストークの分布(図7(b)の「最大値と最小値の差」)
特に、人間の目の明暗グレイスケールに対する感度は、一般的に8bit(1/256)相当であるとされるため、クロストークが視認できないようにするためには、少なくとも上記(a)の絶対値(負号を除いた値)が0.39%よりも小さくなるようにする必要がある。
図8は、本発明の各実施形態及び比較例のそれぞれについて、開口率、抵抗値Rv及びRh、並びに、クロストークの計算結果の一例を示す図である。この図8において、第1の実施形態は、図4に示す有効画素領域110aの画素111のレイアウトを用いた場合を示している。
図9は、図8に示す比較例1及び比較例2における有効画素領域110aの画素111のレイアウトの一例を示す図である。具体的に、図9(a)は、図8に示す比較例1における有効画素領域110aの画素111のレイアウトの一例を示し、図9(b)は、図8に示す比較例2における有効画素領域110aの画素111のレイアウトの一例を示している。この図9(a)及び図9(b)は、それぞれ、比較例1及び比較例2の説明箇所で後述する。
さらに、図8において、第2の実施形態は、後述する図13に示す有効画素領域110aの画素111のレイアウトを用いた場合を示している。また、図8において、クロストークの計算結果は、それぞれの画素111のレイアウトに対して、SPICEシミュレーションによって試算したクロストークの平均値と分布である。また、それぞれの場合について、計算条件として、抵抗値Rv及びRhを図8に示すように設定している。
図8に示す第1の実施形態の場合は、計算条件として抵抗値Rvを1Ωとし、抵抗値Rhを5Ωとした。そして、この第1の実施形態の場合では、開口率が88%、クロストークの平均値の絶対値が0.16%、クロストークの分布が0.01%となった。この第1の実施形態の結果によれば、高開口率と低クロストークの両立が可能であることが分かる。
<比較例1>
次いで、図9(a)を用いて、比較例1における有効画素領域110aの画素111のレイアウトを説明する。この図9(a)において、図4に示す構成と同様の構成については同じ符号を付しており、その詳細な説明は省略する。図9(a)に示す比較例1では、第1の配線部分1121における金属層532の線幅と第2の配線部分1122における金属層532の線幅とが等しく、かつ、それらの線幅を、図4に示す第2の配線部分1122における金属層532の線幅と同じ線幅(細い)としたものである。なお、透明導電層531についても上記と同様である。このため、図8に示す比較例1の場合は、計算条件として抵抗値Rvを5Ωとし、抵抗値Rhを5Ωとした。そして、この比較例1の場合では、開口率が93%、クロストークの平均値の絶対値が0.40%、クロストークの分布が0.01%となった。この比較例1の結果によれば、金属層532の線幅が第1の配線部分1121及び第2の配線部分1122ともに細いため、第1の実施形態の場合と比較して開口率は93%とより高くなるが、クロストークの平均値の絶対値が大きくなってしまい、0.39%を超える値となってしまう。即ち、比較例1の場合は、低クロストークの実現が困難である。
<比較例2>
次いで、図9(b)を用いて、比較例2における有効画素領域110aの画素111のレイアウトを説明する。この図9(b)において、図4に示す構成と同様の構成については同じ符号を付しており、その詳細な説明は省略する。図9(b)に示す比較例2では、第1の配線部分1121における金属層532の線幅と第2の配線部分1122における金属層532の線幅とが等しく、かつ、それらの線幅を、図4に示す第1の配線部分1121における金属層532の線幅と同じ線幅(太い)としたものである。なお、透明導電層531についても上記と同様である。このため、図8に示す比較例2の場合は、計算条件として抵抗値Rvを1Ωとし、抵抗値Rhを1Ωとした。そして、この比較例2の場合では、開口率が84%、クロストークの平均値の絶対値が0.16%、クロストークの分布が0.01%となった。この比較例2の結果によれば、金属層532の線幅が第1の配線部分1121及び第2の配線部分1122ともに太いため、第1の実施形態と同様にクロストークの平均値の絶対値を抑えることができるが、第1の実施形態と比較して開口率が85%未満に低下してしまう。即ち、比較例2の場合は、高開口率の実現が困難である。
本発明の実施形態においては、図8の結果から、画素111の開口率が85%以上であって、横方向(X方向,行方向,第2の方向)に沿って発生するクロストークの平均値の絶対値が0.39%以下である範囲を想定している。これにより、クロストークを人間の目で視認できない程度(0.39%以下)に抑制しながら、高い開口率(85%以上)を実現することができる。
[効果がある抵抗値Rv及びRhの範囲について]
図10は、図8に計算条件として示した抵抗値Rv及びRhの各種の組み合わせを行った際のクロストークの計算結果の一例を示す図である。具体的に、図10では、no.#1〜#9の9通りの抵抗値Rv及びRhの組み合わせについて、N行×M列の2次元行列の画素111の配置におけるクロストークの平均値及びその分布をSPICEシミュレーションで計算した結果である。この計算においては、N=M=3000とした。この図10からは、以下の(ア)及び(イ)のことがわかる。
(ア)クロストークの平均値の絶対値は、抵抗値Rvによって決まり、抵抗値Rhにはほぼ影響を受けない。
(イ)クロストークの分布の大きさは、抵抗値Rhによって決まり、抵抗値Rvには影響を受けない。
図11は、クロストークの平均値及びその分布における抵抗値Rv及びRhに対する依存性を検証するための図である。具体的に、図11(a)は、図10のno.#1〜#3のクロストークの平均値を抵抗値Rvに対してプロットしたものである。抵抗値Rvが4Ω以下であれば、クロストークの平均値の絶対値は0.39%以下となる。そして、抵抗値Rvがさらに小さければ小さいほど、クロストークの平均値の絶対値はゼロに近づく。
また、図11(b)は、図10のno.#3〜#9のクロストークの分布を、Rh/Rvの比に対してプロットしたものである。おおむねRh/Rv>300程度であると分布は一定値となるのに対し、Rh/Rv≦300程度とすると分布が低減する。
この図11を用いて検証した原因は、図12を用いて、以下のように理解することができる。図12は、クロストークの発生原理を説明するための図である。具体的に、図12(a)は、図7(a)の放射線照射領域(N行M列の画素行列の最下行=N行目)の右端付近を拡大した等価回路の一例を示している。この図12(a)において、図2に示す構成と同様の構成については同じ符号を付しており、その詳細な説明は省略する。また、図12(b)は、図12(a)に示す等価回路のタイミングチャートの一例を示している。
図12(a)において、m列目までが放射線照射領域である。m+1列目以降の画素111は、放射線は照射されていないが、クロストークが発生する画素111である。放射線照射画素(m列目)、非照射画素のうちm+1列目、m+2列目において光電変換素子1111に印加されているバイアス電圧Vsを、それぞれ、Vs(m,N)、Vs(m+1,N)、Vs(m+2,N)とする。また、これらの放射線照射前における初期値は、Vs0であるとする。
通常、a−Siの光電変換素子1111における初期値Vs0の大きさは、数V〜10V程度であり、初期値Vs0の符号は光電変換素子1111の極性に応じた正または負の値であるが、本実施形態では説明を簡単にするため、正の値で表示する。図12(b)の時刻t1からt2の間、放射線照射画素に放射線が照射され、光電変換素子1111に電荷が発生する。その後、時刻t7で制御配線G(N)の電位がハイレベルとなると、N行目の各画素111のスイッチ素子1112が導通し、放射線照射画素(m列目)ではバイアス電圧Vs(m,N)が瞬間的に低下する。一方、共通電極は、バイアス配線112を介して隣接画素間で上下左右に接続されているため、非照射画素における共通電極電位も影響を受け、バイアス電圧Vs(m+1,N)及びVs(m+2,N)も瞬間的に低下する。これらの低下量は、放射線照射画素に近ければ近いほど大きい。
その後、これらの各画素111の共通電極に電源回路170から電流が流入し、バイアス電圧Vs(m,N)、Vs(m+1,N)及びVs(m+2,N)が、初期値Vs0に向かって徐々に回復する。なお、このようにバイアス電圧Vsが変動している(初期値Vs0まで回復していない)間は、各信号配線182における電荷量(不図示)も、可変増幅器1132の出力も本来の値からずれている。バイアス電圧Vsの回復が遅く、初期値Vs0からのずれが残った状態で、時刻t10において読出回路130のサンプルホールド回路1313bが動作し、信号配線182の電荷量を確定してしまうと、信号配線182の電荷量の本来の値からのずれ量が画像に現れる。これがクロストークとなる。
上述したバイアス電圧Vsの回復過程において、クロストーク発生画素(たとえば(m+1,N))の共通電極には、下記のような複数の電流流入経路がある。
(1)同列(m+1列目)のN画素分の第1の配線部分1121を経由する「縦の経路」である。
(2)隣接列(m+2列目)のN画素分の第1の配線部分1121と、1画素分の第2の配線部分1122を経由する「縦+横の経路」である。
他にも、さらに右の列(m+3列目以降)の第1の配線部分1121と、2画素分以上の第2の配線部分1122を経由する「縦+横の経路」もある。
図12(a)には、上述した(1)の経路及び(2)の経路について図示している。
(1)の「縦の経路」の抵抗値が小さいと、バイアス電圧Vs(m,N)、Vs(m+1,N)及びVs(m+2,N)などのすべてのバイアス電圧Vsの回復が全体的に早くなり、クロストークの平均値が小さくなる。このため、上述した(ア)のとおり、クロストークの平均値の絶対値は、抵抗値Rvによって決まる。
一方、(2)の「縦+横の経路」の抵抗値が小さいと、縦方向の複数の第1の配線部分1121から同時に電流が供給されるため、バイアスVsの局所的な変動が横方向にならされ、クロストークの最大値と最小値の差(分布)が小さくなる。このため、上述した(イ)のとおり、クロストークの分布の大きさは、抵抗値Rhによって決まる。クロストークの分布が十分抑えられるのは、クロストーク発生画素への電流供給が、「縦の経路」及び「縦+横の経路」の両方の経路を利用してスムーズに行われるときである。具体的には、「縦+横の経路」の代表として(2)に注目し、1画素分の横方向の抵抗値(Rh)がN画素分の縦方向の抵抗値(N×Rv)と比較して、十分(1桁程度)に小さければよい。即ち、以下の(3)式が成り立てばよい。
(Rh)/(N×Rv)≦(1/10) ・・・(3)
(3)式において、N=3000程度の場合、Rh/Rv≦300であればこの条件を満たす。これが、図11(b)において、Rh/Rv≦300で分布が改善する原因であると考えられる。
このことから、本発明の実施形態においては、抵抗値Rv及びRhに関して、1<Rh/Rv≦300であることが好適である。
本実施形態では、Y方向のバイアス配線112の第1の配線部分1121は、クロストークの平均値の絶対値における低減の観点から、十分な線幅を有する金属層532によって抵抗値Rvを低減するように形成する。この際、金属層532による光電変換素子1111への入射光の損失をなるべく抑えるために、金属層532は、画素間の境界に配置する。一方、バイアス配線112の第2の配線部分1122は、抵抗値Rh>Rvであってもクロストークの平均値が悪化することはない。この抵抗値Rh/Rvの比については、クロストークの分布が所望の値以下となるように設定すればよい。本実施形態では、1<Rh/Rvとする。また、X方向のバイアス配線112の第2の配線部分1122は、高開口率化の観点から、バイアス配線112の第1の配線部分1121よりも細い線幅の金属層532を含むように形成する。
以上のことから、第1の実施形態によれば、高い開口率を維持するとともに低いクロストークを実現することができる。
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。なお、以下に記載する第2の実施形態の説明では、上述した第1の実施形態と共通する事項については説明を省略し、上述した第1の実施形態と異なる事項について説明を行う。
第2の実施形態に係る放射線撮像装置の概略構成は、図1に示す第1の実施形態に係る放射線撮像装置100−1の概略構成と同様である。また、第2の実施形態における有効画素領域110a及び読出回路130の内部構成は、図2に示す第1の実施形態における有効画素領域110a及び読出回路130の内部構成と同様である。
図13は、本発明の第2の実施形態を示し、図2に示す有効画素領域110aの画素111のレイアウトの一例を示す図である。この図13において、図4に示す構成と同様の構成については同じ符号を付しており、その詳細な説明は省略する。ここで、本実施形態においても、隣接する画素111の間の画素ピッチをPとし、また、1つの画素111は、一辺の長さがPの正方形であるものとする。
また、図14は、図13に示すA−A'断面の層構造の一例を示す図である。この図14において、図5に示す構成と同様の構成については同じ符号を付しており、その詳細な説明は省略する。なお、この図14では、図5に示すシンチレータ層541等の記載は省略している。
この図13に示す有効画素領域110aの画素111のレイアウトにおいて、図4に示す第1の実施形態における有効画素領域110aの画素111のレイアウトとの違いは、バイアス配線112の第2の配線部分1122の層構造である。具体的に、第2の実施形態では、バイアス配線112の第2の配線部分1122は、図13に示すように、光の非透過部材である金属層532を含まずに光の透過部材である透明導電層531を含み形成されている。なお、第2の実施形態においても、バイアス配線112の第1の配線部分1121は、第1の実施形態と同様に、金属層532を含み形成されている。
この第2の実施形態では、バイアス配線112の第2の配線部分1122を、光の非透過部材である金属層532を含まずに透明導電層531で形成しているため、この第2の配線部分1122による光電変換素子1111への入射光の損失を、第1の実施形態の場合よりも更に少なくすることができる。
図8に示すように、この第2の実施形態の場合では、開口率が90%となり、第1の実施形態の場合よりも更に大きくなった。バイアス配線112の抵抗値については、透明導電層531の電気伝導度が金属層532に比べて低いため、第1の実施形態の場合よりも抵抗値Rvが大きく、Rv=300Ω、Rh=1Ωである。また、第2の実施形態の場合、クロストークの分布が0.07%と第1の実施形態よりも大きいが、クロストークの平均値の絶対値は、第1の実施形態と同程度の0.15%に抑えられる。
第2の実施形態によれば、上述した第1の実施形態における効果に加えて、更に開口率を高くすることが可能となる。
(第3の実施形態)
次に、本発明の第3の実施形態について説明する。なお、以下に記載する第3の実施形態の説明では、上述した第1及び第2の実施形態と共通する事項については説明を省略し、上述した第1及び第2の実施形態と異なる事項について説明を行う。
図15は、本発明の第3の実施形態に係る放射線撮像装置100の概略構成の一例を示す図である。以下の説明においては、この図15に示す放射線撮像装置100を「放射線撮像装置100−3」として説明する。この図15において、図1に示す構成と同様の構成については同じ符号を付しており、その詳細な説明は省略する。
図15に示す放射線撮像装置100−3において、図1に示す放射線撮像装置100−1との違いは、駆動回路120が3つのチップに分かれて構成されている点と、電源回路170が、駆動回路120が電気的に接続されている有効画素領域110aの第1の辺110a1に対して、3つの駆動回路120のチップ間と両端の計4か所に配置されたバイアス供給線183を介して電気的に接続されている点である。
このように、第3の実施形態に係る放射線撮像装置100−3では、第1の実施形態に係る放射線撮像装置100−1に対して、電源回路170を電気的に接続させる有効画素領域110aの1つの辺を変更しているため、図15に示すように、横方向をY方向(行方向,第1の方向)とし、縦方向をX方向(列方向,第2の方向)として定義する。このため、第3の実施形態では、バイアス配線112において、Y方向(行方向,第1の方向)に配置された配線部分が「第1の配線部分1121」となり、X方向(列方向,第2の方向)に配置された配線部分が「第2の配線部分1122」となる。よって、抵抗値Rv及びRhの定義は、それぞれ、第1の実施形態と同様である。
第1の実施形態と同様、第3の実施形態においても、Y方向のバイアス配線112の第1の配線部分1121は、クロストークの平均値の絶対値における低減の観点から、十分な線幅を有する金属層532によって抵抗値Rvを低減するように形成する。また、X方向のバイアス配線112の第2の配線部分1122は、高開口率化の観点から、バイアス配線112の第1の配線部分1121よりも細い線幅の金属層532、または、当該金属層532を含まずに透明導電層531を含むように形成する。
第3の実施形態によれば、第1の実施形態と同様に、高い開口率を維持するとともに低いクロストークを実現することができる。
各実施形態の放射線撮像装置100は、医療や非破壊検査などの用途に応用されうる。以下、図16を参照しながら上述の放射線撮像装置100が組み込まれた放射線撮像システムについて例示的に説明する。放射線撮像装置6040(上述の放射線撮像装置100に相当する)に放射線を照射するための放射線源であるX線チューブ6050で発生したX線6060は、患者又は被験者6061の胸部6062を透過し、放射線撮像装置6040に入射する。この入射したX線に患者又は被験者6061の体内部の情報が含まれる。放射線撮像装置6040において、X線6060の入射に対応してシンチレータが発光し、これが光電変換素子で光電変換され、電気的情報を得る。この情報は、デジタルに変換され信号処理部としてのイメージプロセッサ6070によって画像処理され、制御室の表示部としてのディスプレイ6080で観察できる。
また、この情報は、電話、LAN、インターネットなどのネットワーク6090などの伝送処理部によって遠隔地へ転送できる。これによって別の場所のドクタールームなどの表示部であるディスプレイ6081に表示し、遠隔地の医師が診断することも可能である。また、この情報は、光ディスクなどの記録媒体に記録することができ、またフィルムプロセッサ6100によって記録媒体となるフィルム6110に記録することもできる。
なお、上述した本発明の実施形態は、いずれも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。即ち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
100:放射線撮像装置、110:センサ基板、110a:有効画素領域、111:画素、1111:光電変換素子、1112:スイッチ素子、112:バイアス配線、1121:バイアス配線の第1の配線部分、1122:バイアス配線の第2の配線部分、120:駆動回路、130:読出回路、140:信号処理部、150:制御部、160:通信部、170:電源回路、181:制御配線、182:信号配線、183:バイアス供給線

Claims (9)

  1. 光電変換素子と、当該光電変換素子の一方の電極に電気的に接続されたスイッチ素子と、を含む画素が2次元行列状に複数配置された画素領域と、
    電源からのバイアスを前記画素領域を画定する1つの辺から前記画素領域の各画素に供給するために、前記光電変換素子に対して光の入射側であって、前記画素の周囲において前記1つの辺から離れる第1の方向および当該第1の方向と直交する第2の方向に配置され、前記光電変換素子の他方の電極に電気的に接続されたバイアス配線と、
    を有し、
    前記バイアス配線は、前記第1の方向に配置された第1の配線部分と、前記第2の方向に配置された第2の配線部分と、を含み、
    1つの前記画素あたりの前記第1の配線部分の抵抗値は、当該1つの画素あたりの前記第2の配線部分の抵抗値よりも小さく、かつ、前記第2の配線部分による前記光電変換素子への前記光の入射の損失は、前記第1の配線部分による前記光電変換素子への前記光の入射の損失よりも小さいことを特徴とする撮像装置。
  2. 前記1つの画素あたりの前記第1の配線部分の抵抗値をRvとし、前記1つの画素あたりの前記第2の配線部分の抵抗値をRhとすると、1<Rh/Rv≦300であることを特徴とする請求項1に記載の撮像装置。
  3. 前記バイアス配線は、前記第1の配線部分および前記第2の配線部分が、前記光を非透過である非透過部材を含み、前記非透過部材の線幅が、前記第2の配線部分の方が前記第1の配線部分よりも小さいことを特徴とする請求項1または2に記載の撮像装置。
  4. 前記バイアス配線は、前記第1の配線部分が前記光を非透過である非透過部材を含み、前記第2の配線部分が前記光を透過する透過部材を含むことを特徴とする請求項1または2に記載の撮像装置。
  5. 前記非透過部材は、金属層であり、
    前記光を透過する透過部材は、透明導電層であることを特徴とする請求項3または4に記載の撮像装置。
  6. 前記画素を駆動する駆動回路と、
    前記光電変換素子に入射した光が前記光電変換素子で変換された電気信号を前記画素から読み出す読出回路と、
    を更に有し、
    前記駆動回路および前記読出回路は、それぞれ、前記画素領域を画定する一辺に接続されていることを特徴とする請求項1乃至5のいずれか1項に記載の撮像装置。
  7. 入射した放射線を前記光に変換するシンチレータ層を更に有することを特徴とする請求項1乃至6のいずれか1項に記載の撮像装置。
  8. 記第1の配線部分および前記第2の配線部分に基づく前記画素の開口率が85%以上であって、前記第2の方向に沿って発生するクロストークの平均値の絶対値が0.39%以下であることを特徴とする請求項1乃至7のいずれか1項に記載の撮像装置。
  9. 請求項1乃至8のいずれか1項に記載の撮像装置と、
    前記撮像装置からの信号を処理する信号処理部と、
    を備えることを特徴とする撮像システム。
JP2018243140A 2018-12-26 2018-12-26 撮像装置及び撮像システム Active JP6929267B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018243140A JP6929267B2 (ja) 2018-12-26 2018-12-26 撮像装置及び撮像システム
US16/709,808 US11368640B2 (en) 2018-12-26 2019-12-10 Imaging apparatus and imaging system
CN201911333059.1A CN111387997B (zh) 2018-12-26 2019-12-23 成像装置和成像系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243140A JP6929267B2 (ja) 2018-12-26 2018-12-26 撮像装置及び撮像システム

Publications (2)

Publication Number Publication Date
JP2020107668A JP2020107668A (ja) 2020-07-09
JP6929267B2 true JP6929267B2 (ja) 2021-09-01

Family

ID=71123474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243140A Active JP6929267B2 (ja) 2018-12-26 2018-12-26 撮像装置及び撮像システム

Country Status (3)

Country Link
US (1) US11368640B2 (ja)
JP (1) JP6929267B2 (ja)
CN (1) CN111387997B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102707324B1 (ko) * 2019-11-21 2024-09-20 삼성디스플레이 주식회사 유기 발광 표시 장치
FR3119707A1 (fr) * 2021-02-08 2022-08-12 Trixell Détecteur numérique à intégration numérique de charges

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3556452B2 (ja) * 1997-12-17 2004-08-18 シャープ株式会社 情報読込装置
JP4630432B2 (ja) * 2000-08-09 2011-02-09 キヤノン株式会社 光電変換装置
US8263924B2 (en) * 2007-01-17 2012-09-11 Forza Silicon Ground and power mesh in an integrated circuit chip
JP2010080635A (ja) * 2008-09-25 2010-04-08 Fujifilm Corp 放射線検出素子
JP2010273095A (ja) * 2009-05-21 2010-12-02 Renesas Electronics Corp 撮像装置
JP2011159781A (ja) * 2010-02-01 2011-08-18 Epson Imaging Devices Corp 光電変換装置、エックス線撮像装置及び光電変換装置の製造方法
JP2011159782A (ja) * 2010-02-01 2011-08-18 Epson Imaging Devices Corp 光電変換装置、エックス線撮像装置及び光電変換装置の製造方法
JP2012114160A (ja) * 2010-11-22 2012-06-14 Panasonic Corp 固体撮像装置及びその製造方法
US8558185B2 (en) * 2010-12-21 2013-10-15 Carestream Health, Inc. Digital radiographic detector array including spacers and methods for same
WO2012103550A2 (en) * 2011-01-28 2012-08-02 Jun Seung Ik Radiation detecting panel
CN103534808B (zh) * 2011-05-30 2016-02-10 株式会社岛津制作所 放射线检测器
JP5709709B2 (ja) * 2011-05-31 2015-04-30 キヤノン株式会社 検出装置の製造方法、その検出装置及び検出システム
JP5994344B2 (ja) * 2012-04-04 2016-09-21 ソニー株式会社 固体撮像装置、電子機器
JP2013219067A (ja) * 2012-04-04 2013-10-24 Canon Inc 放射線検出装置の製造方法、放射線検出装置、及び放射線撮像システム
CN104396017B (zh) * 2012-04-17 2018-08-24 东芝电子管器件株式会社 制造x射线平板检测器的方法和x射线平板检测器tft阵列基板
JP2013235934A (ja) * 2012-05-08 2013-11-21 Canon Inc 検出装置、検出システム、及び、検出装置の製造方法
JP5709810B2 (ja) 2012-10-02 2015-04-30 キヤノン株式会社 検出装置の製造方法、その検出装置及び検出システム
JP6530600B2 (ja) * 2014-12-03 2019-06-12 キヤノン株式会社 放射線検出装置及び放射線検出システム
JP6218760B2 (ja) * 2015-01-15 2017-10-25 ソニーセミコンダクタソリューションズ株式会社 光電変換素子及び撮像装置
JP6052313B2 (ja) * 2015-02-26 2016-12-27 株式会社島津製作所 放射線検出器
KR102551141B1 (ko) * 2016-03-31 2023-07-03 삼성전자주식회사 이미지 센서 및 이를 포함하는 전자 장치
JP6692237B2 (ja) * 2016-07-19 2020-05-13 株式会社日立製作所 放射線検出器
KR102668224B1 (ko) * 2016-11-30 2024-05-24 엘지디스플레이 주식회사 표시장치
CN107247269B (zh) * 2017-06-11 2020-02-18 宁波飞芯电子科技有限公司 用于采集处理激光信号的探测装置、像素单元及阵列
JP6874578B2 (ja) * 2017-07-26 2021-05-19 富士通株式会社 アレイセンサおよび撮像装置

Also Published As

Publication number Publication date
US11368640B2 (en) 2022-06-21
CN111387997B (zh) 2023-12-12
US20200213543A1 (en) 2020-07-02
CN111387997A (zh) 2020-07-10
JP2020107668A (ja) 2020-07-09

Similar Documents

Publication Publication Date Title
US7791034B2 (en) Imaging apparatus, radiation imaging apparatus, and radiation imaging system
JP4307322B2 (ja) 放射線撮像装置及び放射線撮像システム
JP5173234B2 (ja) 放射線撮像装置及び放射線撮像システム
JP6378573B2 (ja) 放射線撮像装置及び放射線撮像システム
JP5683850B2 (ja) 放射線検出素子、及び放射線画像撮影装置
US7429723B2 (en) Conversion apparatus, radiation detection apparatus, and radiation detection system
JP2016220116A (ja) 放射線撮像装置及び放射線撮像システム
JP5467846B2 (ja) 放射線検出素子
JP6929267B2 (ja) 撮像装置及び撮像システム
JP2005129892A (ja) 撮像装置及びその製造方法、放射線撮像装置、放射線撮像システム
JP2014225527A (ja) 検出装置、及び、検出システム
JP5020840B2 (ja) 画像検出装置および画像検出器の駆動方法
US9093347B2 (en) Detecting apparatus and detecting system
JP6719324B2 (ja) 放射線撮像装置及び放射線撮像システム
JP2008096278A (ja) 放射線画像検出器
JP2018014555A (ja) 放射線検出器、および放射線画像撮影装置
JP2009186268A (ja) 画像検出装置
JP2015141037A (ja) 放射線検出器
JP6929327B2 (ja) 放射線撮像装置及び放射線撮像システム
JP6164924B2 (ja) 検出装置、及び、検出システム
JP7398931B2 (ja) 放射線撮像装置および放射線撮像システム
JP2006005150A (ja) 撮像装置及び放射線撮像装置、放射線撮像システム
EP4235226A1 (en) Radiation detector and detection method
JP2018195949A (ja) 放射線撮像装置及び放射線撮像システム
JP6088686B2 (ja) 放射線画像撮影装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210810

R151 Written notification of patent or utility model registration

Ref document number: 6929267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151