JP6863909B2 - ナノワイヤ光デバイス - Google Patents

ナノワイヤ光デバイス Download PDF

Info

Publication number
JP6863909B2
JP6863909B2 JP2018006387A JP2018006387A JP6863909B2 JP 6863909 B2 JP6863909 B2 JP 6863909B2 JP 2018006387 A JP2018006387 A JP 2018006387A JP 2018006387 A JP2018006387 A JP 2018006387A JP 6863909 B2 JP6863909 B2 JP 6863909B2
Authority
JP
Japan
Prior art keywords
nanowire
photonic crystal
groove
optical device
groove portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018006387A
Other languages
English (en)
Other versions
JP2019125735A (ja
Inventor
雅人 滝口
雅人 滝口
納富 雅也
雅也 納富
倉持 栄一
栄一 倉持
智 佐々木
智 佐々木
功太 舘野
功太 舘野
国強 章
国強 章
新家 昭彦
昭彦 新家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2018006387A priority Critical patent/JP6863909B2/ja
Publication of JP2019125735A publication Critical patent/JP2019125735A/ja
Application granted granted Critical
Publication of JP6863909B2 publication Critical patent/JP6863909B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Description

本発明は、半導体からなるナノワイヤ部を備えるナノワイヤ光デバイスに関する。
半導体ナノワイヤは、非常に小さい一次元構造を有する光学素子として注目を集めている。このナノワイヤは、様々な半導体材料で作製することが可能であり、発光波長の自由度が非常に大きく、pin構造や量子井戸・量子ドットの埋め込み構造が作製できる。また、一度に大量に作製でき、量産化についても有望である。さらに近年では、シリコン基板上に化合物ナノワイヤを直接成長する作製技術も進展しており、このような多機能性を有するナノワイヤを、シリコン光回路の任意の場所に集積できれば、光コンピューティング、小型センサなど新しい光電デバイスの作製が可能となる。
一般的に、ナノワイヤは、単体でもレーザ発振やフォトディテクタなど光学素子として動作することが知られている。しかしながら、ナノワイヤ単体での動作では、光閉じ込めや共振器などのデバイス最適化が行われていないために、レーザ発振閾値、発振線幅、単一モード動作などの特性を十分に引き出すことが難しい。このため、近年では、2次元フォトニック結晶とナノワイヤを組み合わせ、ナノワイヤへの光の閉じ込めを大きくした技術が開発されている(非特許文献1参照)。
この技術では、図10A,図10Bに示すように、2次元フォトニック結晶501に線欠陥による光導波路502を作製し、光導波路502の中にナノワイヤ導入用の溝部503を形成し、溝部503にナノワイヤ504を配置したハイブリッド構造としている。2次元フォトニック結晶501は、よく知られているように、板状の基部505と、基部505に周期的に設けられた複数の格子要素506とから構成されている。例えば、原子間力顕微鏡のプローブ511を用い、作製したナノワイヤ504を、溝部503に配置する。この技術は、レーザ発振や量子光学効果を観測することを可能にしたという点で一定の成功を収めている。
M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, "Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP subwavelength nanowire laser on silicon photonic crystal", APL Photonics, vol. 2, no. 4, 046106, 2017.
ところで、前述した従来のナノワイヤとフォトニック結晶とのハイブリッド構造は、室温で動作せることが容易ではないという問題があった。これは、ナノワイヤの直径と溝部の幅との不一致が原因である。例えば、ナノワイヤの径が、溝部の幅より大きい場合、ナノワイヤが溝部に入らない。一方、ナノワイヤの径が溝部の幅より細すぎる場合、溝部内でナノワイヤとの間に隙間が形成され、ナノワイヤの直径方向の閉じ込め係数が大きく低減してしまう。これらのことにより、従来では、上述したハイブリッド構造を、室温で動作させることが容易ではなかった。例えば、ナノワイヤは、太さが穏やかに変化するテーパー構造となっている場合が多い。このため、ナノワイヤの一部(一端)が溝部に配置可能であっても、他端が上述したような問題のある状態となる場合もある。
また、上述した技術では、ナノワイヤに活性領域を設け、レーザ発振などをさせようとする場合、活性領域に対する導波方向の光閉じ込めも弱いという問題があった。従来の技術では、ナノワイヤの全体が光閉じ込め領域となるため、活性領域などナノワイヤの一部に対する光閉じ込めは弱いものとなっている。また、レーザ発振などをさせようとする場合、ナノワイヤに活性領域を挟んでp型領域およびn型領域を形成し、これら各々に電極パッドを接続し、活性領域に電流注入を可能としている。このような構成では、電極パッドによる吸収によって光閉じ込めの特性が低下するという問題もある。
本発明は、以上のような問題点を解消するためになされたものであり、フォトニック結晶の線欠陥による光導波路に形成した溝部に配置したナノワイヤの直径方向の光閉じ込めをより強くできるようにすることを目的とする。また、本発明は、フォトニック結晶の線欠陥による光導波路に形成した溝部に配置したナノワイヤに設けた活性領域に対する導波方向における光閉じ込めをより強くできるようにすることを目的とする。
本発明に係るナノワイヤ光デバイスは、基部および基部に対象とする光の波長以下の間隔で周期的に設けられて基部とは異なる屈折率の柱状の複数の格子要素を備える板状のフォトニック結晶本体と、フォトニック結晶本体に設けられて格子要素がない部分から構成された複数の欠陥からなる直線状の線欠陥から構成された光導波路と、光導波路にフォトニック結晶本体を貫通して形成されて導波方向に延在する溝部と、溝部に配置された半導体からなるナノワイヤ部とを備え、溝部のフォトニック結晶本体の表面側の幅は、ナノワイヤ部の直径より広く形成され、溝部のフォトニック結晶本体の裏面側の幅は、ナノワイヤ部の直径より狭く形成されている。
上記ナノワイヤ光デバイスにおいて、溝部の導波方向に垂直な断面の形状は、台形とされている。
上記ナノワイヤ光デバイスにおいて、溝部の導波方向に垂直な断面の形状は、階段状とされている。
ノワイヤ光デバイスは、基部および基部に対象とする光の波長以下の間隔で周期的に設けられて基部とは異なる屈折率の柱状の複数の格子要素を備える板状のフォトニック結晶本体と、フォトニック結晶本体に設けられて格子要素がない部分から構成された複数の欠陥からなる直線状の線欠陥から構成された光導波路と、光導波路に形成されて導波方向に延在する溝部と、溝部に配置された半導体からなるナノワイヤ部と、溝部とナノワイヤ部との間を埋める充填層とを備える。
ノワイヤ光デバイスは、基部および基部に対象とする光の波長以下の間隔で周期的に設けられて基部とは異なる屈折率の柱状の複数の格子要素を備える板状のフォトニック結晶本体と、フォトニック結晶本体に設けられて格子要素がない部分から構成された複数の欠陥からなる直線状の線欠陥から構成された光導波路と、光導波路に形成されて導波方向に延在する溝部と、溝部に配置された半導体からなるナノワイヤ部と、ナノワイヤ部の一端側に形成されたp型領域と、ナノワイヤ部の他端側に形成されたn型領域と、p型領域とn型領域とに挾まれたナノワイヤ部に形成された活性領域と、p型領域に接続する第1電極パッドと、n型領域に接続する第2電極パッドと、光導波路に活性領域を挟んで形成された活性領域に光を閉じ込めるための光閉じ込め構造とを備える。
上記ナノワイヤ光デバイスにおいて、光閉じ込め構造は、フォトニック結晶本体に形成された基部とは異なる屈折率の柱状の構造体から構成されている。
以上説明したことにより、本発明によれば、フォトニック結晶の線欠陥による光導波路に形成した溝部に配置したナノワイヤの直径方向の光閉じ込めをより強くできるという優れた効果が得られる。また、本発明によれば、フォトニック結晶の線欠陥による光導波路に形成した溝部に配置したナノワイヤに設けた活性領域に対する導波方向における光閉じ込めをより強くできるという優れた効果が得られる。
図1Aは、本発明の実施の形態1におけるナノワイヤ光デバイスの構成を示す平面図である。 図1Bは、本発明の実施の形態1におけるナノワイヤ光デバイスの一部構成を示す断面図である。 図2Aは、従来の溝部におけるナノワイヤの直径方向の閉じ込め状態について、シミュレーションした結果について説明する説明図である。 図2Bは、従来の溝部におけるナノワイヤの直径方向の閉じ込め状態について、シミュレーションした結果について説明する説明図である。 図3Aは、溝部103における直径70nmのナノワイヤ部104の直径方向の閉じ込め状態について、シミュレーションした結果について説明する説明図である。 図3Bは、溝部103における直径90nmのナノワイヤ部104の直径方向の閉じ込め状態について、シミュレーションした結果について説明する説明図である。 図3Cは、溝部103における直径110nmのナノワイヤ部104の直径方向の閉じ込め状態について、シミュレーションした結果について説明する説明図である。 図3Dは、溝部103における直径135nmのナノワイヤ部104の直径方向の閉じ込め状態について、シミュレーションした結果について説明する説明図である。 図3Eは、溝部103におけるナノワイヤ部104の直径方向の閉じ込め状態について、シミュレーションした結果を示す特性図である。 図4Aは、本発明の実施の形態2におけるナノワイヤ光デバイスの構成を示す平面図である。 図4Bは、本発明の実施の形態2におけるナノワイヤ光デバイスの一部構成を示す断面図である。 図4Cは、溝部123におけるナノワイヤ部104の直径方向の閉じ込め状態について、シミュレーションした結果について説明する説明図である。 図5Aは、本発明の実施の形態2におけるナノワイヤ光デバイスのより細いナノワイヤ部104aを用いた場合の一部構成を示す断面図である。 図5Bは、溝部123におけるナノワイヤ部104aの直径方向の閉じ込め状態について、シミュレーションした結果について説明する説明図である。 図6Aは、本発明の実施の形態3におけるナノワイヤ光デバイスの構成を示す平面図である。 図6Bは、本発明の実施の形態3におけるナノワイヤ光デバイスの一部構成を示す断面図である。 図6Cは、本発明の実施の形態3におけるナノワイヤ光デバイスの溝部203におけるナノワイヤ部204の直径方向の閉じ込め状態について、シミュレーションした結果について説明する説明図である。 図7Aは、本発明の実施の形態4におけるナノワイヤ光デバイスの構成を示す平面図である。 図7Bは、本発明の実施の形態4におけるナノワイヤ光デバイスの一部構成を示す断面図である。 図7Cは、本発明の実施の形態3におけるナノワイヤ光デバイスの溝部203におけるナノワイヤ部204の導波方向の閉じ込め状態について、シミュレーションした結果について説明する説明図である。 図8は、本発明の実施の形態4におけるナノワイヤ光デバイスの他の構成を示す平面図である。 図9は、本発明の実施の形態4におけるナノワイヤ光デバイスの他の構成を示す平面図である。 図10Aは、従来のナノワイヤ光デバイスの構成を示す斜視図である。 図10はB、従来のナノワイヤ光デバイスの構成を示す平面図である。
以下、本発明の実施の形態について説明する。
[実施の形態1]
はじめに、本発明の実施の形態1におけるナノワイヤ光デバイスについて、図1A,図1Bを参照して説明する。なお、図1Bは、図1Aのaa’線の断面を示している。このナノワイヤ光デバイスは、フォトニック結晶本体101と、フォトニック結晶本体101に設けられた光導波路102と、光導波路102に形成された溝部103と、溝部103に配置されたナノワイヤ部104とを備える。ナノワイヤ部104は、半導体から構成されている。ナノワイヤ部104は、例えばInPなどの化合物半導体から構成されていればよい。
フォトニック結晶本体101は、板状の基部105から構成されている。また、フォトニック結晶本体101は、複数の格子要素106を備えている。格子要素106は、対象とする光の波長以下の間隔で周期的に設けられている。また、格子要素106は、屈折率が基部105とは異なるものとされている。基部105は、例えばInPから構成され、格子要素106は、例えば、円柱状の貫通孔である。複数の格子要素106は、例えば平面視で三角格子状に配列している。光導波路102は、フォトニック結晶本体101に設けられて格子要素106がない部分から構成された複数の欠陥からなる直線状の線欠陥から構成されている。
ここで、溝部103は、フォトニック結晶本体101を貫通して形成され、導波方向に延在している。また、溝部103のフォトニック結晶本体101(基部105)の表面側の幅s1は、ナノワイヤ部104の直径Dより広く形成されている。一方、溝部103のフォトニック結晶本体101の裏面側の幅s2は、ナノワイヤ部104の直径Dより狭く形成されている。実施の形態1において、溝部103の導波方向に垂直な断面の形状は、台形とされている。実施の形態1において、溝部103は、貫通しているV溝となっている。なお、溝部103の最大幅は、格子要素106の周期間隔(格子定数)より小さいものとなっている。また、ナノワイヤ部104の太さ(直径)は、格子定数より小さく、また、基部105の厚さより小さいものとなっている。
上述した実施の形態1によれば、ナノワイヤ部104は、延在方向の全域において溝部103の2つの側壁に接した状態となり、溝部103内で、直径方向にナノワイヤ部104との間に隙間が形成されることが無い。この結果、実施の形態1によれば、フォトニック結晶の線欠陥による光導波路102に形成した溝部103に配置したナノワイヤ部104の直径方向の光閉じ込めをより強くできるようになる。
次に、溝部におけるナノワイヤの直径方向の閉じ込め状態について、シミュレーションした結果について説明する。シミュレーションでは、格子要素106は、例えば、貫通孔とした格子要素の孔径を200nmとし、フォトニック結晶本体は、シリコンから構成し、厚さを220nmとした。また、ナノワイヤは、InPから構成し、径は100nmとした。
ナノワイヤの径が溝部の幅と一致し、直径方向に隙間が形成されない場合、図2Aに示す結果となった。また、ナノワイヤの径が、溝部の幅より小さく、直径方向に5nm程度の隙間が形成される場合、図2Bに示す結果となった。図2Bに示されているように隙間が少しでも形成されると、閉じ込め特性が急激に低減することがわかる。このような状況は、ナノワイヤがテーパー構造を持つと、容易に起こりうることで、実際には5nmよりも大きな隙間が形成される場合もあり、より閉じ込め効果は弱くなる。
図2A,図2Bに示した状態に対し、実施の形態1によれば、溝部103をV溝構造とし、基部105を貫通させて形成した。溝部103が、基部105を貫通していない状態では、ナノワイヤ部104ではなく、周囲の空間や基部105側への閉じ込めが大きくなり、ナノワイヤ部104への閉じ込め効果が低下する。
実施の形態1の溝部103におけるナノワイヤ部104の直径方向の閉じ込め状態について、シミュレーションした結果を図3A,図3B,図3C,図3D,図3Eに示す。図3Aは、ナノワイヤ部104の直径Dが70nmである。図3Bは、ナノワイヤ部104の直径Dが90nmである。図3Cは、ナノワイヤ部104の直径Dが110nmである。図3Dは、ナノワイヤ部104の直径Dが135nmである。図3Eは、各結果をグラフにしたものである。なお、いずれの場合も、溝部103は、同一の形状(断面形状)としている。図3A,図3B,図3C,図3D,図3Eに示すように、実施の形態1によれば、ナノワイヤ部104の幅がテーパー状に変化していても、閉じ込め係数を4〜7%程度に維持することが可能である。
次に、溝部103の断面形状の条件について説明する。まず、溝部103の断面形状は、「s1<31/2×L−D・・・(1)」が満たされていればよい。なお、s1は、溝部103のフォトニック結晶本体101の表面側の幅である。また、Lは、フォトニック結晶本体101の格子定数である。また、Dは、ナノワイヤ部104の直径である。式(1)は、溝部103の表面側の幅s1が、31/2×L−D以上にはならないことを示している。
また、溝部103は、基部105を貫通するので、「s1>2×t×tanθ・・・(2)」が満たされていればよい。なお、tは、フォトニック結晶本体101(基部105)の厚さである。また、θは、溝部103の側面と基部105の表面の法線とのなす角度である。
[実施の形態2]
次に、本発明の実施の形態2におけるナノワイヤ光デバイスについて、図4A,図4Bを参照して説明する。なお、図4Bは、図4Aのaa’線の断面を示している。このナノワイヤ光デバイスは、フォトニック結晶本体121と、フォトニック結晶本体121に設けられた光導波路122と、光導波路122に形成された溝部123と、溝部123に配置されたナノワイヤ部104とを備える。ナノワイヤ部104は、半導体から構成されている。ナノワイヤ部104は、例えばInPなどの化合物半導体から構成されていればよい。
フォトニック結晶本体121は、板状の基部125から構成されている。また、フォトニック結晶本体121は、複数の格子要素126を備えている。格子要素126は、対象とする光の波長以下の間隔で周期的に設けられている。また、格子要素126は、屈折率が基部125とは異なるものとされている。基部125は、例えばInPから構成され、格子要素126は、例えば、貫通孔である。複数の格子要素126は、例えば平面視で三角格子状に配列している。光導波路122は、フォトニック結晶本体121に設けられて格子要素126がない部分から構成された複数の欠陥からなる直線状の線欠陥から構成されている。
ここで、溝部123は、フォトニック結晶本体121を貫通して形成され、導波方向に延在している。また、溝部123のフォトニック結晶本体121(基部125)の表面側の幅は、ナノワイヤ部104の直径より広く形成されている。一方、溝部123のフォトニック結晶本体121の裏面側の幅は、ナノワイヤ部104の直径より狭く形成されている。なお、溝部123の最大幅は、格子要素126の周期間隔(格子定数)より小さいものとなっている。また、ナノワイヤ部104の太さ(直径)は、格子定数より小さく、また、基部125の厚さより小さいものとなっている。
実施の形態2において、溝部123の導波方向に垂直な断面の形状は、階段状とされている。実施の形態2において、溝部123は、フォトニック結晶本体121(基部125)の表面側の上部123aと、フォトニック結晶本体121の裏面側の下部123bとから構成されている。上部123aの幅が、ナノワイヤ部104の直径より広く形成され、下部123bの幅が、ナノワイヤ部104の直径より狭く形成されている。
溝部123の断面形状を階段状とすることで、従来に比較して閉じ込め係数の減少を抑制することが可能となる。例えば、図4Bに示すように、上部123aの幅がナノワイヤ部104の直径と等しい場合、接点141,142,143,144の4箇所で接する状態となり、図4Cに示すように、6%程度と高い閉じ込めが実現できる。
また、図5Aに示すように、上部123aの幅がナノワイヤ部104aの直径より大きい場合、接点143,144の2箇所で接する状態となる。この場合、ナノワイヤ部104aの基部125の平面と平行な直径方向における上部123aの側面との間に隙間が形成されるが、図5Bに示すように、3%程度と高い閉じ込めが実現できる。
なお、従来の溝部は、格子要素の径より広い幅としているため、フォトニック結晶本体を作製する時の、リソグラフィープロセスおよびエッチングプロセスと、溝部を形成するためのリソグラフィープロセスおよびエッチングプロセスとを各々別に行っている。実施の形態2においても、従来と同様のプロセスで作製できる。また、実施の形態2では、溝部123の下部123bを、格子要素126と同時に作製し、溝部123の上部123aを、個別に作製すればよい。このように、実施の形態2によれば、従来のプロセスとほぼ同様にすることでナノワイヤ光デバイスが作製できる。
[実施の形態3]
次に、本発明の実施の形態3におけるナノワイヤ光デバイスについて、図6A,図6Bを参照して説明する。なお、図6Bは、図6Aのaa’線の断面を示している。このナノワイヤ光デバイスは、フォトニック結晶本体201と、フォトニック結晶本体201に設けられた光導波路202と、光導波路202に形成された溝部203と、溝部203に配置されたナノワイヤ部204と、溝部203とナノワイヤ部204との間を埋める充填層207とを備える。溝部203は、例えば、断面視矩形とされている。ナノワイヤ部204は、半導体から構成されている。ナノワイヤ部204は、例えばInPなどの化合物半導体から構成されていればよい。
フォトニック結晶本体201は、板状の基部205から構成されている。また、フォトニック結晶本体201は、複数の格子要素206を備えている。格子要素206は、対象とする光の波長以下の間隔で周期的に設けられている。また、格子要素206は、屈折率が基部205とは異なるものとされている。基部205は、例えばInPから構成され、格子要素206は、例えば、貫通孔である。複数の格子要素206は、例えば平面視で三角格子状に配列している。光導波路202は、フォトニック結晶本体201に設けられて格子要素206がない部分から構成された複数の欠陥からなる直線状の線欠陥から構成されている。
実施の形態3によれば、ナノワイヤ部204は、周面全域が、充填層207に接した状態となる。
例えば、溝部203にナノワイヤ部204を配置した後、これらの間にAl23、SiO2などの材料を充填して充填層207とすればよい。例えば、よく知られた原子層堆積法(ALD:Atomic Layer Deposition)などの堆積方法を用いて充填層207を形成すればよい。ALD法によれば、非常に小さな隙間にも原子層レベルで充填層207を形成することができる。
ALD法により形成できる充填層207の材料は、Al23、SiO2などであり、それほど高い屈折率を持たないが、充填層207を形成することで、溝部203と、ナノワイヤ部204との間に空間を形成することがなくなり、図6Cに示すように、閉じ込め係数を上げることが可能になる。
また、基部205をInPなどの化合物半導体から構成した場合、基部205を構成する化合物半導体を再成長させることで、充填層207を形成してもよい。なお、溝部203は、前述した実施の形態1,2と同様の、基部205を貫通するV溝構造や階段状の構造としてもよい。
[実施の形態4]
次に、本発明の実施の形態4におけるナノワイヤ光デバイスについて図7A,図7Bを参照して説明する。このナノワイヤ光デバイスは、フォトニック結晶本体301と、フォトニック結晶本体301に設けられた光導波路302と、光導波路302に形成された溝部303と、溝部303に配置されたナノワイヤ部304とを備える。ナノワイヤ部304は、半導体から構成されている。ナノワイヤ部304は、例えばInPなどの化合物半導体から構成されていればよい。
フォトニック結晶本体301は、板状の基部305から構成されている。また、フォトニック結晶本体301は、複数の格子要素306を備えている。格子要素306は、対象とする光の波長以下の間隔で周期的に設けられている。また、格子要素306は、屈折率が基部305とは異なるものとされている。基部305は、例えばInPから構成され、格子要素306は、例えば、貫通孔である。複数の格子要素306は、例えば平面視で三角格子状に配列している。
光導波路302は、フォトニック結晶本体301に設けられて格子要素306がない部分から構成された複数の欠陥からなる直線状の線欠陥から構成されている。このように構成された光導波路302の導波方向に、溝部303は延在している。これらの構成は、前述した実施の形態と同様である。なお、図7Bは、光導波路302の部分における、図7Aの導波方向に垂直な面の断面を示している。
実施の形態4において、ナノワイヤ部304の一端側には、p型領域307が形成され、ナノワイヤ部304の他端側には、n型領域308が形成されている。p型領域307およびn型領域308は、各々対応する不純物を導入することで形成すればよい。また、p型領域307とn型領域308とに挾まれたナノワイヤ部304には、活性領域309が形成されている。活性領域309は、例えば、多重量子井戸構造とされている。例えば、InAsPからなる量子井戸層とInPからなる障壁層とが、ナノワイヤ部304の延在方向に交互に積層した多重量子井戸構造により活性領域309とすればよい。多重量子井戸構造とした場合、InAsPからなる量子井戸層が活性層として機能する。
また、実施の形態4におけるナノワイヤ光デバイスは、p型領域307に接続する第1電極パッド310と、n型領域308に接続する第2電極パッド311とを備える。また、光導波路302に活性領域309を挟んで形成され、活性領域309に光を閉じ込めるための光閉じ込め構造312を備える。光閉じ込め構造312により共振器が構成されている。光閉じ込め構造312は、例えば、フォトニック結晶本体301に形成された基部305とは異なる屈折率の柱状の構造体から構成されている。この構造体は、例えば、基部305に形成した円柱形状の貫通孔である。
第1電極パッド310,第2電極パッド311に電源(不図示)を接続し、p型領域307,n型領域308に電流を注入することで、活性領域309にキャリアを注入することができる。このようにして活性領域309にキャリアを注入することで、レーザ発振をさせることができる。
実施の形態4における構造においては、溝部303にナノワイヤ部304を配置しただけでは、光閉じ込めがナノワイヤ部304の全体にわたる領域となり、共振器が作れない。また、上述した構造では、ナノワイヤ部304の延在方向にモードが広がってしまうため、第1電極パッド310,第2電極パッド311における金属吸収の損失が高くなってしまう。
これに対し、実施の形態4では、光閉じ込め構造312を設けることで、ナノワイヤ部304の活性領域309に光を閉じ込める共振器を構成した。光閉じ込め構造312としては、フォトニック結晶本体301に形成された基部305とは異なる屈折率の柱状の構造体を、光導波方向に周期的に配置すればよい。このように光閉じ込め構造312を設けることで、図7Cに示すように、共振器Q値を、10000を超える値にすることが可能となる。
なお、図8に示すように、直方体状の貫通孔による光閉じ込め構造312aであってもよい。また、図9に示すように、溝部303と、光導波路302に隣接する格子要素306の列との間に配置した貫通孔による光閉じ込め構造312bであってもよい。
以上に説明したように、本発明によれば、ナノワイヤ部を配置する溝部を、光導波路にフォトニック結晶本体を貫通して形成し、溝部のフォトニック結晶本体の表面側の幅は、ナノワイヤ部の直径より広く形成し、溝部のフォトニック結晶本体の裏面側の幅は、ナノワイヤ部の直径より狭く形成したので、フォトニック結晶の線欠陥による光導波路に形成した溝部に配置したナノワイヤの直径方向の光閉じ込めをより強くできるようになる。
また、本発明によれば、ナノワイヤ部を配置する溝部とナノワイヤ部との間を埋める充填層を備えるようにしたので、フォトニック結晶の線欠陥による光導波路に形成した溝部に配置したナノワイヤの直径方向の光閉じ込めをより強くできるようになる。
また、本発明によれば、ナノワイヤ部を配置する溝部が設けられるフォトニック結晶本体の光導波路に、ナノワイヤ部の活性領域を挟んで活性領域に光を閉じ込めるための光閉じ込め構造を形成したので、フォトニック結晶の線欠陥による光導波路に形成した溝部に配置したナノワイヤに設けた活性領域に対する導波方向における光閉じ込めがより強くできるようになる。
なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
101…フォトニック結晶本体、102…光導波路、103…溝部、104…ナノワイヤ部、105…基部、106…格子要素。

Claims (3)

  1. 基部および前記基部に対象とする光の波長以下の間隔で周期的に設けられて前記基部とは異なる屈折率の柱状の複数の格子要素を備える板状のフォトニック結晶本体と、
    前記フォトニック結晶本体に設けられて前記格子要素がない部分から構成された複数の欠陥からなる直線状の線欠陥から構成された光導波路と、
    前記光導波路に前記フォトニック結晶本体を貫通して形成されて導波方向に延在する溝部と、
    前記溝部に配置された半導体からなるナノワイヤ部と
    を備え、
    前記溝部の前記フォトニック結晶本体の表面側の幅は、前記ナノワイヤ部の直径より広く形成され、
    前記溝部の前記フォトニック結晶本体の裏面側の幅は、前記ナノワイヤ部の直径より狭く形成されている
    ことを特徴とするナノワイヤ光デバイス。
  2. 請求項1記載のナノワイヤ光デバイスにおいて、
    前記溝部の導波方向に垂直な断面の形状は、台形とされていることを特徴とするナノワイヤ光デバイス。
  3. 請求項1記載のナノワイヤ光デバイスにおいて、
    前記溝部の導波方向に垂直な断面の形状は、階段状とされていることを特徴とするナノワイヤ光デバイス。
JP2018006387A 2018-01-18 2018-01-18 ナノワイヤ光デバイス Active JP6863909B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018006387A JP6863909B2 (ja) 2018-01-18 2018-01-18 ナノワイヤ光デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018006387A JP6863909B2 (ja) 2018-01-18 2018-01-18 ナノワイヤ光デバイス

Publications (2)

Publication Number Publication Date
JP2019125735A JP2019125735A (ja) 2019-07-25
JP6863909B2 true JP6863909B2 (ja) 2021-04-21

Family

ID=67399038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018006387A Active JP6863909B2 (ja) 2018-01-18 2018-01-18 ナノワイヤ光デバイス

Country Status (1)

Country Link
JP (1) JP6863909B2 (ja)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100822A (ja) * 2000-09-25 2002-04-05 Toshiba Corp 光導波路装置
JP2004030964A (ja) * 2002-06-21 2004-01-29 Seiko Epson Corp 発光装置、光通信用装置及び光通信システム
US7335908B2 (en) * 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
JP2004296560A (ja) * 2003-03-26 2004-10-21 Hitachi Ltd 半導体レーザの製造方法および集積光回路の製造方法
JP4113478B2 (ja) * 2003-08-19 2008-07-09 日本航空電子工業株式会社 2次元フォトニック結晶光デバイスの製造方法
JP4253288B2 (ja) * 2004-09-03 2009-04-08 株式会社リコー 光結合装置の製造方法
JP2007184566A (ja) * 2005-12-06 2007-07-19 Canon Inc 半導体ナノワイヤを用いた半導体素子、それを用いた表示装置及び撮像装置
JP2010266662A (ja) * 2009-05-14 2010-11-25 Panasonic Electric Works Co Ltd 光学素子が搭載された光導波路基板及びその製造方法
US8313966B2 (en) * 2010-01-04 2012-11-20 The Royal Institution For The Advancement Of Learning/Mcgill University Method for fabricating optical semiconductor tubes and devices thereof
JP5654316B2 (ja) * 2010-10-29 2015-01-14 パナソニックIpマネジメント株式会社 光モジュール
JP5886709B2 (ja) * 2012-07-27 2016-03-16 日本電信電話株式会社 フォトニック結晶共振器の作製方法およびフォトニック結晶共振器
JP5662494B2 (ja) * 2013-01-31 2015-01-28 日本電信電話株式会社 フォトニック結晶デバイス
JP5483655B1 (ja) * 2013-07-11 2014-05-07 日本電信電話株式会社 光記憶装置
JP6054834B2 (ja) * 2013-10-01 2016-12-27 日本電信電話株式会社 ナノワイヤの作製方法

Also Published As

Publication number Publication date
JP2019125735A (ja) 2019-07-25

Similar Documents

Publication Publication Date Title
JP4820749B2 (ja) 2次元フォトニック結晶面発光レーザ光源
KR101131380B1 (ko) 반도체 레이저 소자 및 그 제조 방법
JP3983933B2 (ja) 半導体レーザ、および半導体レーザの製造方法
KR100792078B1 (ko) 2차원 포토닉 결정면 발광레이저
JP4492986B2 (ja) 半導体面発光素子
JP6650699B2 (ja) レーザ装置及びレーザ装置の製造方法
JP2011204895A (ja) 半導体レーザ装置
US10763644B2 (en) Lateral current injection electro-optical device with well-separated doped III-V layers structured as photonic crystals
JP4769658B2 (ja) 共振器
JP4294023B2 (ja) 2次元フォトニック結晶面発光レーザ光源
JP2018093022A (ja) フォトニック結晶内蔵基板およびその製造方法、並びに面発光量子カスケードレーザ
JP6669611B2 (ja) ナノワイヤレーザ
JP6919549B2 (ja) ナノワイヤ光デバイス
KR20040102018A (ko) 양자 나노구조 반도체 레이저 및 양자 나노구조 어레이
JP2006165309A (ja) 半導体レーザ素子
JP2016072302A (ja) 量子カスケード半導体レーザ
JP5906108B2 (ja) フォトニック結晶の製造方法及び面発光レーザの製造方法
JP2011091163A (ja) 半導体集積素子
JP2018152430A (ja) 半導体レーザ
JP6863909B2 (ja) ナノワイヤ光デバイス
JP2006203205A (ja) 単一モード分布帰還型レーザー
JP5612620B2 (ja) フォトニック結晶デバイス
JP2013197502A (ja) 変調器集積半導体レーザ
WO2020100611A1 (ja) ナノワイヤ光デバイス
JP2010098136A (ja) フォトニック結晶面発光レーザ素子およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210401

R150 Certificate of patent or registration of utility model

Ref document number: 6863909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150