JP2006203205A - 単一モード分布帰還型レーザー - Google Patents

単一モード分布帰還型レーザー Download PDF

Info

Publication number
JP2006203205A
JP2006203205A JP2006010057A JP2006010057A JP2006203205A JP 2006203205 A JP2006203205 A JP 2006203205A JP 2006010057 A JP2006010057 A JP 2006010057A JP 2006010057 A JP2006010057 A JP 2006010057A JP 2006203205 A JP2006203205 A JP 2006203205A
Authority
JP
Japan
Prior art keywords
distributed feedback
waveguide
feedback laser
region
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2006010057A
Other languages
English (en)
Inventor
In Kim
仁 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2006203205A publication Critical patent/JP2006203205A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0287Facet reflectivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/101Curved waveguide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1215Multiplicity of periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/124Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
    • H01S5/1243Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts by other means than a jump in the grating period, e.g. bent waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface

Abstract

【課題】製造が容易であり、かつ向上した単一モード特性を有する分布帰還型レーザーを提供する。
【解決手段】単一モードの光を生成する分布帰還型レーザー200は、半導体基板210と、所定の周期で隔てられるように配列された複数の格子221を有し、半導体基板210上に形成された下部クラッド220と、格子221の配列方向に対して垂直方向に湾曲するように形成され、光を発振させるために下部クラッド220上に設けられた導波路230と、導波路230上に形成された上部クラッド240と、上部電極251と、下部電極252とを有する。
【選択図】図5

Description

本発明は、単一モード分布帰還型の半導体レーザーに関し、特に、格子を有する分布帰還型レーザーに関するものである。
通常、分布帰還型レーザー(Distributed feedback laser)は、導波路上に形成されたブラッグ格子(Bragg gratings)を含み、単一モードの光を生成するための光源として光通信に広く使用されている。
図1は、従来の分布帰還型レーザーを示す図である。同図に示すように、従来の分布帰還型レーザー100は、半導体基板110と、格子121が形成された下部クラッド120と、この下部クラッド120上に形成(成長)された導波路130と、導波路130上に形成(成長)された上部クラッド140と、下部電極及び上部電極151、152と、真空蒸着により形成された無反射層及び高反射層161、162とを含んでいる。
導波路130は、下部クラッド120上に順次に形成(成長)された下部導波路131、多重量子井戸132及び上部導波路133からなる。また、導波路130は、格子121によってブラッグ波長を中心とした左右対称の一対のピーク(Peak)を有する光を生成し、生成された光のピークのうち無反射層161と高反射層162との間で位相(grating phase)が一致するピークをレーザー光として発振させる。そして、無反射層161は、高反射層162に比べて高い出力が得られるため、分布帰還型レーザー100からの発振されたレーザー光は、無反射層161を通して出力される。
一般に、分布帰還型レーザー100において、800〜1600nm波長帯域のレーザー光を生成するためには、InP、GaAs系の半導体物質から構成される下部クラッド120に、100〜250nmの周期を有する格子121が形成される。この従来の分布帰還型レーザー100は、格子の位相関係だけでなく、無反射層161と高反射層層162との間の長さの変化よって、その内部の電場分布(Electric Field Distribution)が変わり、電場分布の変化は、発振されるレーザー光の単一モード特性をも変化させる。
そして、従来の分布帰還型レーザー100から発振されたレーザー光の単一モード特性は、前記格子121と無反射層及び高反射層161、162が形成された壁界面との間の統計的な位相分布に基づくものであり、当該単一モード特性は、製造工程において制御不可能である。このために、従来の分布帰還型レーザー100では、単一モード特性に対する歩留まりが、著しく低下することになる。
上述した分布帰還型レーザー100のブラッグ波長は、格子121の周期と導波路130の有効屈折率との関係によって決まり、分布帰還型レーザー100の単一モード特性を向上させるための方法としては、導波路130のメサ幅を変化(相違)させて形成するストライプエンジニアド構造(Stripe engineered structure)や互いに異なる周期を有する複数の格子からなるチャープ格子(Chirped grating)構造などが提案されている。
チャープ格子構造は、互いに異なる周期を有する複数の格子が形成された構造である。一般に、チャープ格子構造の分布帰還型レーザーでは、既存のホログラムリソグラフィ(Hologram lithography)の代わりに電子ビームリソグラフィ(Electron-Beam Lithography)を用いてチャープ格子を形成している(非特許文献1参照)。しかしながら、チャープ格子を形成するための電子ビームリソグラフィは、工程が複雑であり、格子の間隔を所望通りに精密に制御することが難しく、さらには、製造コストも高くなるという課題がある。
また、一般的な半導体レーザーでは、横方向の単一モードを得るために、リッジ構造や埋め込みへテロ(Buried hetero)構造の導波路を形成する方法が用いられている。このような構造においては、導波路のストライプ幅を変化させることで有効屈折率(neff)を変化させる、ストライプエンジニアド格子方法(Stripe engineered grating method)が知られている。このストライプエンジニアド格子方法は、電子ビームリソグラフィなどにより製造されるチャープ格子構造の分布帰還型レーザーに代替する方法として提案されている。下記に示す数式は、格子のブラッグ波長、有効屈折率及び格子周期の関係を示すものである。
Figure 2006203205
上記数式1において、λBは格子のブラッグ波長を、Λは格子の周期を、そして、neffは導波路の有効屈折率をそれぞれ示している。図2は、導波路のメサ幅とそれに基づく有効屈折率の変化を説明するためのグラフであり、当該図2からわかるように、メサ幅と有効屈折率とは比例関係にある。
なお、上述のストライプエンジニアド格子構造は、導波路の幅が光の進行方向によって変わる構造である(非特許文献2及び非特許文献3参照)。
図3は、ストライプエンジニアド格子構造を有する分布帰還型レーザーにおいて生じるキンク(Kink)現象を示すグラフである。すなわち、ストライプエンジニアド格子構造を有する分布帰還型レーザーは、導波路の特定の位置でメサの幅が変わるテーパー状(Tapered configuration)であり、実際の電圧は一定に印加されても、図3のグラフで示したように、半導体レーザーにおいて閾値電流の近くで印加される電流が急激に変化するような動作特性を有するキンク現象が現れるという問題がある。
このようなキンク現象は、導波路の線幅を異ならせるように形成する場合に、当該導波路の幅に依存して引き起こされる電流差の発生により現れるもので、レーザー発振前後で電流の流れが急激に変化することになる。
"Modeling of Distributed Feedback Semiconductor Laser with Axially-Varying Parameters"[ G. P. Agrawal and A. H. Bonbeck、IEEE Journal of Quantum Electronics, vol. 24, No. 12, pp. 2407〜2414, December, 1988]
"Analysis, Fabrication, and Characterization of 1.55-μm Selection-Free Tapered Stripe DFB Lasers"[F. Grillot, B. Thedrez, F. Mallecot, C. Chaumont, S. Hubert, M. F. Martineau, A. Pinquier, and L. Roux、IEEE Photonics Technology Letters, vol. 14, No. 8, pp. 1040〜1042, August 2002]
"Feedback Sensitivity and Coherence Collapse Threshold of Semiconductor DFB Lasers with Complex Structures"[F. Grillot, B. Thedrez, F. Mallecot and G. H. Duan、IEEE Journal of Quantum Electronics, vol. 40, No. 3, pp. 231〜240, March 2004]
本発明は、上述のような従来の問題点を解決するためになされたもので、その目的は、製造が容易であり、かつ向上した単一モード特性を有する分布帰還型レーザーを提供することにある。
上記の目的を達成するために、本発明の単一モードの光を生成する分布帰還型レーザーは、半導体基板と、所定の周期で隔てられるように配列された複数の格子を有し、半導体基板上に形成(成長)された下部クラッドと、格子の配列方向に対して垂直方向に湾曲するように形成され、光を発振させるために下部クラッドに設けられた導波路と、導波路上に形成(成長)された上部クラッドと、該上部クラッド上に形成された上部電極と、半導体基板の下部に形成された下部電極とを有することを特徴とする。
本発明によれば、ストライプエンジニアド格子構造のように、メサ線幅が変化する導波路構造を形成しなくても、分布帰還型レーザーの好適な単一モード特性を得ることが可能となる。すなわち、分布帰還型レーザーの単一モード特性を向上させるために、工程が複雑で、かつ製造コストが高いストライプエンジニアド格子又はチャープ格子を適用する必要がないため、製造コストを低減させつつ、向上した単一モード特定を有する分布帰還型レーザーを提供することが可能となる。
また、本発明によれば、ストライプエンジニアド格子を含まない構成であることから、メサ線幅の差異によるキンク現象を制御(抑制)することが可能となる。
以下、添付図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、下記の説明において、本発明の要旨のみを明瞭にするために、公知の機能や構成についての詳細な説明を適宜省略する。
(第1の実施形態)
図4は、本発明の好適な第1の実施形態における分布帰還型レーザーを示す図である。同図において、本実施形態の分布帰還型レーザー200は、半導体基板210と、一定の周期で隔てられるように配列されている(所定間隔で配列された)複数の格子221を備え、半導体基板210上に成長された下部クラッド220と、格子221の配列方向に対して垂直方向に湾曲するように下部クラッド220上に成長された光を発振させるための導波路230と、導波路230上に成長された上部クラッド240と、分布帰還型レーザー200に電流を印加するために形成されている上部電極及び下部電極251、252と、無反射層261、262とを含んでいる。
下部クラッド220は、半導体基板210上に成長され、その内部に複数の格子221が一定の周期(Λ)で離隔するように形成されている。導波路230は、下部クラッド220上に順次に積層された下部導波路231と、多重量子井戸232と、上部導波路233とを含むように構成されている。
図5は、図4に示した分布帰還型レーザー200の導波路230を示す断面(X−X´)図である。図5に示すように、本実施形態の導波路230は、格子221の配列方向に対して直線状に形成された第1領域230aと、この第1領域230aから延長され、格子221の配列方向に直交する方向(垂直方向)に所定の角度で湾曲した第2領域230bとから構成されている。
導波路230は、下部クラッド220から一定の高さを有するように成長され、成長後もメサエッチング(Mesa etching)又はリッジ(ridge)エッチングによって第1領域230aから延長された第2領域230bを形成することができる。
このように、本実施形態では、導波路230の第2領域230bが格子221の配列方向に対し垂直方向に所定の角度を有するように湾曲形成されているため、格子221の物理的な実際の周期間隔(Λ)は一定であるが、第2領域230bの下部に位置する格子221の有効格子周期(間隔)は、第2領域230bの湾曲角(傾き角)θによって変化する。すなわち、格子221は、チャープ格子形成に一般に用いられる電子ビームリソグラフィ工程を経ることなく形成することができる。
言い換えれば、第2領域230bに形成された格子221は、有効格子周期が長くなることと同様の動作特性を有することになり、第2領域230bで生成される光のブラッグ(Bragg)波長は、長波長側へ移動することになる。以下の数式2は、本実施形態における格子221のブラッグ波長、有効屈折率及び格子周期の関係を示すものである。
Figure 2006203205
ここで、λBはブラッグ波長を、neffは導波路230の有効屈折率を、θは第2領域230bが格子221の配列方向に対して垂直方向に湾曲した角度を表し、Λは、格子221の周期をそれぞれ表している。
導波路230は、ブラッグ波長を中心に左右対称の一対のピーク(Peak)を有する光を生成し、格子221の周期と分布帰還レーザー200の位相とが一致する当該ピークの光が、レーザー光として発振される。このように、単一波長レーザー光を発振させる分布帰還型レーザー200の特性を単一モード特性という。
また、上記数式2を参照すると、光のブラッグ波長は、格子221の周期と、導波路230の有効屈折率と、第2領域230bが格子221の配列方向に対して湾曲した角度θによって決定されることがわかる。
本実施形態の第1領域230aは、第1ブラッグ波長を有する第1光を生成し、第2領域230bは、第1ブラッグ波長に対して所定の波長間隔だけ隔てられている第2ブラッグ波長を有する第2光を生成する。当該第1及び第2光は、それぞれのブラッグ波長を中心として左右対称の一対のピークを有している。すなわち、本実施形態の分布帰還型レーザー200は、発振されるレーザー光の中心波長と同じ波長を有する第1及び第2光のピークを重ね合わせることにより、向上した単一モード特性を有するレーザー光を発振させることが可能になる。具体的には、第2領域230bの湾曲した角(傾き角)θを調節することで、第1及び第2光の特定のピークを発振されるレーザー光の中心波長と重ね合わせることが可能になる。
図6は、導波路230の傾き角θに基づく波長の変化を示すグラフである。同図に示すように、第2領域230bの傾き角θがそれぞれ0°、4°、7°である場合では、傾き角θが4°の周辺におけるブラッグ反射効果が、傾き角θが0°であるときに比べて、顕著な長波長側のピーク特性を示しており、これによってチャープ格子特性を有することが分かる。これに対し、傾き角θが7°であるときは、結合係数が既に小さくなり、チャープ格子のような動作特性を有することができないことが分かる。
このために本実施形態では、例えば、第2領域230bが70〜100μmの長さを有し、かつ5〜10μm以内の範囲でその傾き角が0〜7°以内であることが好ましい。より具体的に説明すると、第2領域230bの傾き角θを、第2領域230b内において0〜7°の範囲内で連続的に変えることで、設計上の素子と実際製造された素子間の小さな変動にあまり影響されないようにすることが好ましい。すなわち、第2領域230bは、その単位長さ(5〜10μm)当たりの傾き角θが0°〜7°の範囲で形成され、当該第2領域230bが全体として連続的に湾曲するように形成される。言い換えれば、第2領域230bは、光の進行方向に対して直交する方向に湾曲して形成されるが、その湾曲は、第2領域230b全体で一定の曲率を有するものではなく、その単位長さ当たりに0°〜7°の傾き角で湾曲し、第2領域230b全体として、光の進行方向に対して直交する方向に連続的に湾曲するように形成されている。
図7は、本実施形態の分布帰還型レーザー200の長手方向におけるブラッグ波長の変化(図7(a))及び結合係数の変化(図7(b))を示すグラフである。図7(a)において、傾き角θが0°で約4nm程度のストップバンド(Stop band)を含む高い結合係数を有する格子を本実施形態の分布帰還型レーザー200に適用することにより、チャープ格子の動作特性を実現可能であることがわかる。
(第2の実施形態)
図8は、本発明の第2の実施形態における分布帰還型レーザーの格子構造を示す図である。図8において、格子311は、導波路310の両端に窓領域321、322を含んでおり、格子311の窓領域321、322は、導波路310のメサエッチング工程で形成することが可能である。
また、窓領域321、322は、無反射層(図示せず)を通して分布帰還型レーザーの内部へ光が入力されることを防止する役割を果たすことができるため、窓領域321、322は、約20μmの長さを有するように形成されることが好ましい。
(第3の実施形態)
図9は、本発明の第3の実施形態における分布帰還型レーザーの格子構造を示す図である。図9において、導波路410は、エッチング工程中にモニターフォトダイオード(MPD)420と所定の間隔隔てられるように形成される。そして、導波路410及びモニターフォトダイオード420上に格子411が更に形成されている。モニターフォトダイオード420は、導波路410から約30μm離隔された位置でFe添加InP再成長工程による電気的絶縁に通じて形成することができる。
以上、本発明を具体的な実施形態に則して詳細に説明したが、本発明の範囲は、前述の実施形態に限定されるものではなく、特許請求の範囲の記載及びこれと均等なものの範囲により定められるべきである。
従来の分布帰還型レーザーを示す図である。 従来の分布帰還型レーザーのメサ幅に基づく有効屈折率の変化を説明するためのグラフである。 従来のストライプエンジニアド構造を有する分布帰還型レーザーにおけるキンク現象を説明するためのグラフである 本発明の好適な第1の実施形態における分布帰還型レーザーを示す図である。 図4に示した分布帰還型レーザーの導波路を示す断面図である。 本発明の好適な第1の実施形態における導波路の傾き角と発振モードの波長変化の関係を説明するためのグラフである。 本発明の好適な第1の実施形態におけるブラッグ波長と結合係数分布を説明するためのグラフである。 本発明の第2の実施形態における格子及び導波路構造を示す図である。 本発明の第3の実施形態における格子及び導波路構造を示す図である。
符号の説明
200 分布帰還型レーザー
210 半導体基板
220 下部クラッド
221 格子
230 導波路
231 下部導波路
232 多重量子井戸
233 上部導波路
240 上部クラッド
251 上部電極
252 下部電極
261、262 無反射層

Claims (16)

  1. 単一モードの光を生成する分布帰還型レーザーであって、
    半導体基板と、
    所定の周期で隔てられるように配列された複数の格子を有し、前記半導体基板上に設けられた下部クラッドと、
    前記格子の配列方向に対して垂直方向に湾曲するように形成されて光を発振させるために前記下部クラッド上に設けられた導波路と、
    前記導波路上に形成された上部クラッドとを有することを特徴とする単一モード分布帰還型レーザー。
  2. 前記分布帰還型レーザーは、前記光が出力される第1面及び該第1面に対向する第2面に蒸着された複数の無反射層をさらに有することを特徴とする請求項1に記載の単一モード分布帰還型レーザー。
  3. 前記導波路は、前記下部クラッド上に順次に積層された下部導波路、多重量子井戸、及び上部導波路を含むことを特徴とする請求項1に記載の単一モード分布帰還型レーザー。
  4. 前記導波路は、メサ構造を有するようにエッチングされて形成されることを特徴とする請求項1に記載の単一モード分布帰還型レーザー。
  5. 前記導波路に接するように前記下部クラッド上に形成された電流遮断層をさらに含むことを特徴とする請求項1に記載の単一モード分布帰還型レーザー。
  6. 前記導波路は、前記格子の配列方向に対して直線状に形成された第1領域と、前記第1領域から延び、前記格子の配列方向に対して直交する方向に所定角度で湾曲した第2領域とを有することを特徴とする請求項1に記載の単一モード分布帰還型レーザー。
  7. 前記第1領域の長さは、200μm〜300μmであることを特徴とする請求項6に記載の単一モード分布帰還型レーザー。
  8. 前記第2領域の長さは、前記第1領域から前記光の進行方向へ70〜100μmであることを特徴とする請求項6に記載の単一モード分布帰還型レーザー。
  9. 前記第2領域は、その単位長さ当たりの傾き角度が0°〜7°の範囲内で前記光の進行方向に対して直交する方向に湾曲するように連続的に形成されていることを特徴とする請求項6に記載の単一モード分布帰還型レーザー。
  10. 前記半導体基板の下部に形成された下部電極と、
    前記上部クラッド上に形成された上部電極とをさらに有することを特徴とする請求項1に記載の単一モード分布帰還型レーザー。
  11. 単一モードの光を生成する分布帰還型レーザーの製造方法であって、
    所定の周期で隔てられるように配列された複数の格子を有する下部クラッドを、半導体基板上に形成する段階と、
    前記格子の配列方向に対して垂直方向に湾曲するように形成された光を発振させるための導波路を前記下部クラッド上に形成する段階と、
    前記導波路上に上部クラッドを形成する段階とを有することを特徴とする単一モード分布帰還型レーザー製造方法。
  12. 前記光が出力される第1面及び該第1面に対向する第2面に蒸着された複数の無反射層を形成する段階をさらに有することを特徴とする請求項11に記載の単一モード分布帰還型レーザー製造方法。
  13. 前記導波路は、メサ構造を有するようにエッチングされて形成されることを特徴とする請求項11に記載の単一モード分布帰還型レーザー製造方法。
  14. 前記導波路に接するように前記下部クラッド上に電流遮断層を形成する段階をさらに有することを特徴とする請求項11に記載の単一モード分布帰還型レーザー製造方法。
  15. 前記導波路を形成する段階は、
    前記格子の配列方向に対して直線状に形成された第1領域を形成する段階と、
    前記第1領域から延のび、前記格子の配列方向に対して直交する方向に所定の角度で湾曲した第2領域を形成する段階とを有することを特徴とする請求項11に記載の単一モード分布帰還型レーザー製造方法。
  16. 前記半導体基板の下部に下部電極を形成する段階と、
    前記上部クラッド上に上部電極を形成する段階とをさらに有することを特徴とする請求項11に記載の単一モード分布帰還型レーザー製造方法。
JP2006010057A 2005-01-21 2006-01-18 単一モード分布帰還型レーザー Abandoned JP2006203205A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050005990A KR100594108B1 (ko) 2005-01-21 2005-01-21 단일 모드 분포 귀환 레이저

Publications (1)

Publication Number Publication Date
JP2006203205A true JP2006203205A (ja) 2006-08-03

Family

ID=36696726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006010057A Abandoned JP2006203205A (ja) 2005-01-21 2006-01-18 単一モード分布帰還型レーザー

Country Status (3)

Country Link
US (1) US20060165147A1 (ja)
JP (1) JP2006203205A (ja)
KR (1) KR100594108B1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088285A (ja) * 2005-09-22 2007-04-05 Nec Electronics Corp 半導体レーザ素子の製造方法および半導体レーザ素子
KR100842277B1 (ko) * 2006-12-07 2008-06-30 한국전자통신연구원 반사형 반도체 광증폭기 및 수퍼 루미네센스 다이오드
KR101208030B1 (ko) 2009-03-23 2012-12-04 한국전자통신연구원 외부 공진 레이저 광원
WO2021148120A1 (en) * 2020-01-23 2021-07-29 Huawei Technologies Co., Ltd. Single-mode dfb laser
WO2023227189A1 (en) * 2022-05-23 2023-11-30 Huawei Technologies Co., Ltd. Tilted semiconductor laser
CN115864134B (zh) * 2023-02-17 2023-04-25 福建慧芯激光科技有限公司 一种多弯波导dfb激光器芯片

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105820B2 (ja) * 1985-12-25 1994-12-21 国際電信電話株式会社 モニタ付分布帰還形半導体レ−ザ
US5663976A (en) * 1995-10-16 1997-09-02 Northwestern University Buried-ridge laser device
JP3387746B2 (ja) * 1996-07-31 2003-03-17 キヤノン株式会社 屈曲チャンネルストライプの偏波変調可能な半導体レーザ
US6289030B1 (en) * 1997-01-31 2001-09-11 Hewlett-Packard Company Fabrication of semiconductor devices
JP3678872B2 (ja) * 1997-03-28 2005-08-03 パイオニア株式会社 分布帰還型半導体レーザ素子の製造方法及び分布帰還型半導体レーザ素子
JPH10326907A (ja) * 1997-05-26 1998-12-08 Mitsubishi Electric Corp 受光素子,及びその製造方法
US6091755A (en) 1997-11-21 2000-07-18 Sdl, Inc. Optically amplifying semiconductor diodes with curved waveguides for external cavities
JP3264369B2 (ja) 1999-02-05 2002-03-11 日本電気株式会社 光変調器集積半導体レーザ及びその製造方法
US6542533B1 (en) 2000-04-10 2003-04-01 Triquint Technology Holding Co Process for obtaining ultra-low reflectivity facets for electro-absorption modulated lasers
JP2003069154A (ja) * 2001-06-11 2003-03-07 Sharp Corp 半導体レーザ素子およびその製造方法
KR100401204B1 (ko) * 2001-11-23 2003-10-10 삼성전자주식회사 곡선 광도파로를 갖는 광소자를 포함하는 광통신 모듈
US7065108B2 (en) * 2002-12-24 2006-06-20 Electronics And Telecommunications Research Institute Method of wavelength tuning in a semiconductor tunable laser

Also Published As

Publication number Publication date
US20060165147A1 (en) 2006-07-27
KR100594108B1 (ko) 2006-06-30

Similar Documents

Publication Publication Date Title
JP3104789B2 (ja) 半導体光素子およびその製造方法
US8477819B2 (en) Semiconductor laser diode device and method of fabrication thereof
US5699378A (en) Optical comb filters used with waveguide, laser and manufacturing method of same
JP2011204895A (ja) 半導体レーザ装置
JP6510391B2 (ja) 半導体レーザ
JP6487195B2 (ja) 半導体光集積素子、半導体光集積素子の製造方法及び光モジュール
JPWO2009116140A1 (ja) 光半導体素子及びその製造方法
JP6588859B2 (ja) 半導体レーザ
JP2008153260A (ja) 光半導体素子及びその製造方法
JP3682367B2 (ja) 分布帰還型半導体レーザ
JPH1168241A (ja) 半導体レーザー
JP2006203205A (ja) 単一モード分布帰還型レーザー
KR20130120266A (ko) 분포 궤환형 레이저 다이오드
US20210143609A1 (en) Semiconductor optical device and method for producing semiconductor optical device
JP6588858B2 (ja) 半導体レーザ
JP3266497B2 (ja) レーザー装置
JP2016096310A (ja) 半導体光素子およびその製造方法
US6696311B2 (en) Increasing the yield of precise wavelength lasers
US9941666B2 (en) Method for producing quantum cascade laser and quantum cascade laser
JP2950302B2 (ja) 半導体レーザ
JP2018088456A (ja) 量子カスケード半導体レーザ
JP5163355B2 (ja) 半導体レーザ装置
JP6747521B2 (ja) 半導体レーザ素子、半導体レーザ素子の製造方法
JP2009295879A (ja) 半導体光機能素子とその製造方法および電界吸収型光変調器集積半導体レーザ
JPWO2005060058A1 (ja) 半導体レーザーおよびその製造方法

Legal Events

Date Code Title Description
A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20081126