JP2010098136A - フォトニック結晶面発光レーザ素子およびその製造方法 - Google Patents

フォトニック結晶面発光レーザ素子およびその製造方法 Download PDF

Info

Publication number
JP2010098136A
JP2010098136A JP2008267782A JP2008267782A JP2010098136A JP 2010098136 A JP2010098136 A JP 2010098136A JP 2008267782 A JP2008267782 A JP 2008267782A JP 2008267782 A JP2008267782 A JP 2008267782A JP 2010098136 A JP2010098136 A JP 2010098136A
Authority
JP
Japan
Prior art keywords
layer
emitting laser
photonic crystal
refractive index
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008267782A
Other languages
English (en)
Other versions
JP5309877B2 (ja
Inventor
Hideki Matsubara
秀樹 松原
Hirohisa Saito
裕久 齊藤
Susumu Yoshimoto
晋 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008267782A priority Critical patent/JP5309877B2/ja
Publication of JP2010098136A publication Critical patent/JP2010098136A/ja
Application granted granted Critical
Publication of JP5309877B2 publication Critical patent/JP5309877B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】製造プロセスを簡略化しつつ、室温において発振可能であるとともに、安定して動作することが可能なフォトニック結晶面発光レーザ素子およびその製造方法を提供する。
【解決手段】面発光レーザ1は、活性層13と、活性層13を挟むように配置されたn−クラッド層12およびp−クラッド層14と、p−クラッド層14の表面上に形成され、活性層13と独立したフォトニック結晶層15と、フォトニック結晶層15と接触するように形成されたp型表面電極16とを備えている。
【選択図】図1

Description

この発明は、フォトニック結晶面発光レーザ素子およびその製造方法に関し、より特定的には、製造プロセスを簡略化しつつ、室温において発振可能であるとともに、安定して動作することが可能なフォトニック結晶面発光レーザ素子およびその製造方法に関する。
近年、面発光レーザ素子の構造中に2次元フォトニック結晶層を挿入することにより、当該フォトニック結晶層を光共振器および回折格子として機能させ、単一モード発振と面発光とを実現するフォトニック結晶面発光レーザ素子が提案されている(たとえば、特許文献1および2参照)。特許文献1に開示されたフォトニック結晶面発光レーザ素子では、フォトニック結晶層を別途形成し、活性層が形成された基板に当該フォトニック結晶層を融着する融着法を用いることにより、構造中にフォトニック結晶層を形成している。また、特許文献2に開示されたフォトニック結晶面発光レーザ素子では、窒化ガリウム(GaN)系材料の特異な性質を利用し、フォトニック結晶層上にさらに半導体層をエピタキシャル成長させる再成長エピ法を用いて、構造中にフォトニック結晶層を形成している。
さらに、フォトニック結晶面発光レーザ素子の一例として、素子表面から活性層まで貫通する空気孔を周期的に並べたフォトニック結晶構造を構造中に形成した欠陥型フォトニック結晶レーザが提案されている(たとえば、非特許文献1参照)。この欠陥型フォトニック結晶レーザにおいては、フォトニック結晶構造内に空気孔の欠損による格子欠陥を導入することで、その格子欠陥中に局在したモードを利用して、素子表面に垂直な方向へのレーザ発振を達成している。
特許第3983933号明細書 国際公開第2006/062084号パンフレット ラファエル コロンベリ(Raffaele Colombelli)他、、サイエンス(SCIENCE)、"カンタムカスケードサーフェスエミッティングフォトニッククリスタルレーザ(Quantum Cascade Surface-Emitting Photonic Crystal Laser)"、21 November 2003、Vol.302、p.1374-1377
しかしながら、上記特許文献1、2に開示されたフォトニック結晶面発光レーザ素子においては、活性層の近傍にフォトニック結晶層を配置し、当該フォトニック結晶層と電極との間に半導体層であるクラッド層を配置する構造が採用される。その結果、このクラッド層をフォトニック結晶層上に形成するため、融着法や再成長エピ法などの煩雑な製造工程を含む製造プロセスを採用する必要があるという問題がある。
また、上記非特許文献1に開示された欠陥型フォトニック結晶レーザは、欠陥部に強く局在モードを閉じ込めるため、活性層での発光とフォトニック結晶の光結合の強さとを極大化する必要が生じ、フォトニック結晶の空気孔が活性層にまで到達する構造となっている。その結果、レーザ光の発振は極低温環境下のみで起こり、たとえば室温などではレーザ光の発振は難しい。これは、活性層中に空気孔の露出側壁が多数存在することになり、室温においてはその露出面においてキャリアの非発光再結合が非常に起こりやすくなる(表面再結合速度が非常に速い)ためである。そのため、非特許文献1に開示されたレーザ素子において発光及び発振を実現するには、表面再結合速度を小さくするため、素子全体を液体ヘリウム温度(4K)程度の極低温に冷却する必要がある。したがって、非特許文献1に開示されたレーザ素子では室温での使用は難しく、現実の応用が困難である。
さらに、欠陥型フォトニック結晶レーザにおいては、欠陥部に強く局在モードを閉じ込めるには、欠陥部自体の体積を波長レベルまで極小化する必要がある。そのため、局在する光の量を大きくすることが難しく、高出力のレーザ発振は困難であると考えられる。また、たとえ高出力の発振に成功した場合でも、出射される光は非常に狭い欠陥表面部から出射されるため、この欠陥表面部に光集中が起こって端面破壊現象(CODと呼ばれる突然死現象)を容易に引き起こす可能性がある。このため、信頼性の高い素子を作ることは困難であった。
この発明は、上記のような課題を解決するために成されたものである。すなわち、本発明の目的は、製造プロセスを簡略化しつつ、室温において発振可能であるとともに、安定して動作することが可能なフォトニック結晶面発光レーザ素子およびその製造方法を提供することである。
本発明に従ったフォトニック結晶面発光レーザ素子は、活性層と、活性層を挟むように配置された半導体層と、半導体層の表面上に形成され、活性層と独立した2次元回折格子と、2次元回折格子と接触するように形成された電極とを備えている。
本発明のフォトニック結晶面発光レーザ素子においては、2次元回折格子が活性層と独立して形成されているため、当該2次元回折格子を構成する凹部(空気孔など)が活性層にまで到達する場合のように、活性層が当該凹部の形成により損傷を受けたり空気中に露出したりすることがない。そのため、2次元回折格子の凹部が活性層に到達している場合に比べてキャリアの非発光再結合が起こりにくくなり、室温での十分な発光を実現できる。また、本発明のフォトニック結晶面発光レーザ素子においては、出射面を大きくすることにより光集中を抑制することが可能であるため、非特許文献1に開示された欠陥型フォトニック結晶レーザのような端面破壊現象が起こる可能性が低く、高い信頼性を実現できる。さらに、本発明のフォトニック結晶面発光レーザ素子においては、2次元回折格子と接触するように電極が形成されており、2次元回折格子と当該電極との間にクラッド層などの半導体層を形成する必要がない。その結果、融着法や再成長エピ法などの煩雑な製造工程を含む製造プロセスを採用する必要がなく、簡便な製造プロセスにより製造することが可能となっている。
以上のように、本発明のフォトニック結晶面発光レーザ素子によれば、製造プロセスを簡略化しつつ、室温において発振可能であるとともに、安定して動作することが可能なフォトニック結晶面発光レーザ素子を提供することができる。
上記フォトニック結晶面発光レーザ素子において好ましくは、活性層から出射される光の波長は1.5μm以上8μm以下の範囲内となっている。
このような中赤外領域の光を出射する活性層を採用することにより、エバネッセント光の広がる領域が広くなり、活性層と2次元回折格子との距離を大きくしても、エバネッセント光を2次元回折格子に到達させることが可能となる。そのため、電極と接触する位置に2次元回折格子を配置する上記本発明のフォトニック結晶面発光レーザ素子の構造を採用することが容易となる。
上記フォトニック結晶面発光レーザ素子においては、2次元回折格子は、低屈折率部分と、当該低屈折率部分の屈折率よりも高い屈折率を有する高屈折率部分とを有するものとすることができる。そして、高屈折率部分は半導体からなり、低屈折率部分は、高屈折率部分に形成された孔とすることができる。
このような構成の2次元回折格子は、高屈折率部分となる半導体層の形成とエッチングなどによる孔の形成という比較的簡単な工程で形成できる。そのため、製造工程の簡略化が可能となり、低コストなフォトニック結晶面発光レーザ素子を実現することができる。
上記フォトニック結晶面発光レーザ素子においては、2次元回折格子は、低屈折率部分と、当該低屈折率部分の屈折率よりも高い屈折率を有する高屈折率部分とを有するものとすることができる。そして、高屈折率部分は半導体からなり、低屈折率部分は、高屈折率部分に形成された孔の内部に配置される誘電体を含むものとすることができる。
このような構成の2次元回折格子は、高屈折率部分となる半導体層の形成とエッチングなどによる孔の形成、および当該孔の内部における誘電体の形成という比較的簡単な工程で形成できる。そのため、製造工程の簡略化が可能となり、低コストなフォトニック結晶面発光レーザ素子を実現することができる。
上記フォトニック結晶面発光レーザ素子においては、2次元回折格子は、低屈折率部分と、当該低屈折率部分の屈折率よりも高い屈折率を有する高屈折率部分とを有するものとすることができる。そして、高屈折率部分は金属からなり、低屈折率部分は半導体からなるものとすることができる。
このような構成の2次元回折格子は、低屈折率部分となる半導体層の形成と、金属を配置するためのたとえば孔のエッチングなどによる形成、および当該孔の内部における金属の形成という比較的簡単な工程で形成できる。そのため、製造工程の簡略化が可能となり、低コストなフォトニック結晶面発光レーザ素子を実現することができる。
本発明に従ったフォトニック結晶面発光レーザ素子の製造方法は、活性層を形成する工程と、活性層上に半導体層を形成する工程と、半導体層上に、活性層と独立した2次元回折格子を形成する工程と、2次元回折格子に接触するように電極を形成する工程とを備えている。
このようにすれば、上記本発明のフォトニック結晶面発光レーザ素子を容易に製造することができる。また、半導体層上に2次元回折格子を形成するとともに、当該2次元回折格子に接触するように電極を形成するので、融着法やエピ再成長法などの煩雑な工程を実施する必要がない。そのため、フォトニック結晶面発光レーザ素子の製造工程を簡略化できるとともに、製造コストを低減することができる。
上記本発明のフォトニック結晶面発光レーザ素子の製造方法においては、2次元回折格子を形成する工程は、半導体層上に、2次元回折格子を構成するベース層を形成する工程と、ベース層に凹部を形成する工程とを含むことができる。また、電極を形成する工程は、ベース層上に電極の一部を構成する導電体層を形成する工程と、導電体層上に、電極を構成する他の導電体層を形成する工程とを含むことができる。さらに、凹部を形成する工程では、導電体層およびベース層がエッチングにより部分的に除去されることによって凹部が形成されてもよい。そして、他の導電体層を形成する工程では、めっき法を用いて当該他の導電体層を横方向に成長させることによって、ベース層における凹部の上部を他の導電体により閉じることができる。
このような製造工程を採用することにより、ベース層に空孔(空気が充填された孔)が複数形成されて構成される2次元回折格子を容易に形成することができる。
上記本発明のフォトニック結晶面発光レーザ素子の製造方法においては、2次元回折格子を形成する工程は、半導体層上に、2次元回折格子を構成するベース層を形成する工程と、ベース層に凹部を形成する工程と、凹部の内部を充填する誘電体層を形成する工程とを含んでもよい。また、電極を形成する工程は、ベース層上に電極の一部を構成する導電体層を形成する工程と、導電体層上に、電極を構成する他の導電体層を形成する工程とを含んでもよい。この場合、凹部を形成する工程では、導電体層およびベース層がエッチングにより部分的に除去されることによって凹部が形成されてもよい。そして、他の導電体層を形成する工程では、めっき法を用いて他の導電体層を横方向に成長させることによって、誘電体層が形成されたベース層における凹部の上部を他の導電体により閉じるようにしてもよい。
このような製造工程を採用することにより、誘電体層が充填された凹部がベース層に複数形成されて構成される2次元回折格子を容易に形成することができる。
上記本発明のフォトニック結晶面発光レーザ素子の製造方法においては、2次元回折格子を形成する工程は、半導体層上に、2次元回折格子を構成するベース層を形成する工程と、ベース層に凹部を形成する工程とを含んでもよい。この場合、電極を形成する工程では、凹部の内部からベース層の上部表面上にまで延在するように電極が形成されてもよい。
このような製造工程を採用することにより、ベース層に電極の一部が充填された凹部が複数形成された形態の2次元回折格子を容易に形成することができる。
以上の説明から明らかなように、本発明のフォトニック結晶面発光レーザ素子およびその製造方法によれば、製造プロセスを簡略化しつつ、室温において発振可能であるとともに、安定して動作することが可能なフォトニック結晶面発光レーザ素子およびその製造方法を提供することができる。
以下、図面に基づき、本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
(実施の形態1)
まず、本発明の一実施の形態である実施の形態1について説明する。図1は、実施の形態1におけるフォトニック結晶面発光レーザ素子である面発光レーザの構成を示す概略断面図である。また、図2は、図1の面発光レーザに含まれるフォトニック結晶層の構成の一部を示す概略斜視図である。また、図3は、図1の面発光レーザが備えるp型表面電極の構成を示す概略平面図である。
図1を参照して、実施の形態1における面発光レーザ1は、中赤外域からテラヘルツ(THz)帯に渡る周波数の(波長が1.5μm以上1mm以下である)、特に中赤外域の周波数の(周波数が1.5μm以上8μm以下である)レーザ光を発振可能なレーザ素子である。
この面発光レーザ1は、導電型がn型(第1導電型)であるn−基板11と、n−基板11の一方の主表面上に配置されたn型の半導体層としてのn−クラッド層12と、n−クラッド層12上に配置された活性層13と、活性層13上に配置された導電型がp型(第2導電型)の半導体層としてのp−クラッド層14と、p−クラッド層14上に配置された2次元回折格子としてのフォトニック結晶層15と、フォトニック結晶層15上に接触して配置されたp型表面電極16と、n−基板11においてn−クラッド層12が配置されている側とは反対側の主表面上に形成されたn型裏面電極17とを備えている。
n−基板11は、たとえばGaSb(ガリウムアンチモン)からなるとともに、n型不純物を含むことにより、導電型がn型(第1導電型)となっている。n−クラッド層12は、n−基板11の(001)面に格子整合し、たとえばAlGaAsSb(アルミニウムガリウム砒素アンチモン)からなるとともに、n型不純物を含むことにより、導電型がn型となっている。
活性層13は、たとえばアンドープの(意図的な不純物の添加を行なわない)AlGaSb(アルミニウムガリウムアンチモン)からなるバリア層と、アンドープのInGaAsSb(インジウムガリウム砒素アンチモン)からなる井戸層とが交互に積層されたMQW(Multi Quantum Well;多重量子井戸)構造を有している。
p−クラッド層14は、たとえばAlGaAsSbからなるとともに、p型不純物を含むことにより、導電型がp型(第2導電型)となっている。
フォトニック結晶層15は、図1および図2を参照して、たとえばAlGaAsSbからなるとともに、p型不純物を含むことにより導電型がp型となっている主層15Aと、当該主層15A上に形成され、たとえばGaSb(ガリウムアンチモン)からなるとともに、p型不純物を含むことにより導電型がp型となっているコンタクト層15Bとを含んでいる。そして、主層15Aとコンタクト層15Bとはベース層15Dを構成し、当該ベース層15Dには、周期的な凹部としての孔15Cが形成されている。より具体的には、フォトニック結晶層15においては、空気孔である孔15Cが三角格子状に配置されている。その結果、孔15Cが低屈折率部分となり、その周囲のベース層15Dが低屈折部分よりも屈折率の高い高屈折率部分となっている。そして、孔15Cの各々は、三角格子の格子点となる位置、言い換えれば正三角形の頂点の位置に形成されている。一つの格子点の中心と、この格子点に隣接する6つの格子点の中心との各々の距離はすべて等しくなっている。なお、フォトニック結晶層15と活性層13との間は、たとえば1μm以上離れている。
つまり、2次元回折格子としてのフォトニック結晶層15は、低屈折率部分としての孔15Cと、孔15Cの屈折率よりも高い屈折率を有する高屈折率部分としてのベース層15Dとを有している。そして、ベース層15Dは半導体からなり、孔15Cは、ベース層15Dに形成された孔である。
p型表面電極16には、図1および図3に示すように、フォトニック結晶層15における空気孔である孔15Cと平面的に見て重なる位置に、孔15Cの平面形状と同じ平面形状を有する孔16Aが形成されている。その結果、孔16Aおよび孔15Cからは、p−クラッド層14が露出している。なお、p型表面電極16を構成する素材としては、コンタクト層15Bとオーミックコンタクト可能な種々の素材を採用することができる。
n型裏面電極17は、n−基板11の裏面全体を覆うように形成されている。なお、n型裏面電極17を構成する素材としては、n−基板11とオーミックコンタクト可能な種々の素材を採用することができ、たとえばp型表面電極16と同じ素材を採用することができる。
次に、本実施の形態における面発光レーザ1の動作について簡単に説明する。図1を参照して、p型表面電極16とn型裏面電極17との間に電圧を印加すると、n−クラッド層12側から電子が、p−クラッド層14側から正孔が、それぞれ活性層13に注入される。そして、活性層13内において注入された当該電子と正孔とが再結合することにより、光が発生する。ここで、発生する光は、たとえば波長が1.5μm以上の比較的長波長の光である。なお、発生する光の波長は、活性層13の構成により調整することができる。
活性層13において発生した光は、n−クラッド層12とp−クラッド層14とによって活性層13内に閉じ込められるが、一部の光はエバネッセント光としてフォトニック結晶層15に到達する。ここで、活性層13において発生する光が波長1.5μm以上の光(たとえば中赤外光)となるように、活性層13の構造は規定されているため、エバネッセント光の広がる領域が広くなる。なぜならエバネッセント光の広がりは、その光の波長に比例するからである。そのため、図1に示す面発光レーザ1においては、フォトニック結晶層15と活性層13との間の距離をたとえば1μm以上としても、十分フォトニック結晶層15に活性層13からのエバネッセント光が到達する。フォトニック結晶層15に到達したエバネッセント光の波長と、フォトニック結晶層15が有する所定の周期とが一致する場合には、その周期に対応する波長において定在波が誘起される。
このような現象は、活性層13およびフォトニック結晶層15が2次元的に広がりをもって形成されているので、p型表面電極16の直下の領域において生じうる。そして、当該定在波によるフィードバック効果により、レーザ発振を起こすことが可能となる。
フォトニック結晶層15(2次元回折格子)は、少なくとも2方向に同一の周期で並進させたときに重なり合うような性質を有する。このような2次元回折格子は、正三角形、正方形、または正六角形を一面に敷き詰めて配置し、その各頂点に格子点を設けることによって形成される。ここでは、正三角形を用いて形成される格子を三角格子、正方形を用いて形成される格子を正方格子、正六角形を用いて形成される格子を六角格子とそれぞれ呼ぶ。
図4は、三角格子における光の回折を説明するための図である。三角格子は、一辺の長さがaである正三角形によって埋め尽くされている。図4において、複数の格子点(孔15C)のうち任意に選択された格子点Aに着目し、格子点Aから格子点Bに向かう方向をX−Γ方向と呼び、また格子点Aから格子点Cへ向かう方向をX−J方向と呼ぶ。ここでは、活性層13(図1参照)において発生される光の波長が、X−Γ方向に関する格子周期に対応している場合について説明する。
2次元回折格子は、以下に説明する3個の1次元回折格子群L、M、Nを含むと考えることができる。1次元回折格子群Lは、Y軸方向に向けて設けられた1次元格子L、L、Lなどからなっている。1次元回折格子群Mは、X軸方向に対して120度の角度の方向に向けて設けられた1次元格子M1、M2、M3などからなっている。1次元回折格子群Nは、X軸方向に対して60度の方向に向けて設けられた1次元格子N1、N2、N3などからなっている。これら3つの1次元回折格子群L、N、およびMは、任意の格子点を中心に120度の角度で回転すると重なりあう。各1次元回折格子群L、N、およびMにおいて、1次元格子間の間隔はdであり、1次元格子内の間隔はaである。
まず、格子群Lに関して考える。格子点Aから格子点Bの方向に進む光は、格子点Bにおいて回折現象を生じる。回折方向は、ブラッグ条件2d・sinθ=mλ(m=0、±1、・・)によって規定される。ここで、λは高屈折率部分であるベース層15D(特に主層15A;図2参照)内における光の波長である。2次のブラッグ反射(m=±2)を満足するように回折格子が形成されている場合には、θ=±60゜、±120゜の角度に別の格子点D、E、FおよびGが存在する。また、m=0に対応する角度θ=0、180゜にも格子点AおよびKが存在する。
格子点Bにおいて、たとえば格子点Dの方向に向けて回折された光は、格子点Dにおいて格子群Mに従って回折される。この回折は、格子群Lに従う回折現象と同様に考えることができる。次いで、格子点Dにおいて格子点Hに向けて回折される光は、格子群Nに従って回折される。このようにして順次、格子点H、格子点I、格子点Jと回折されていく。格子点Jから格子点Aに向けて回折される光は、格子群Nに従って回折される。
以上のように、格子点Aから格子点Bに進む光は、複数回の回折を経て、最初の格子点Aに到達する。このため、ある方向に進む光が複数回の回折を介して元の格子点の位置に戻るので、各格子点間には定在波が立つ。したがって、この2次元回折格子は光共振器、つまり波長選択器および反射器として作用する。
また、上記ブラッグ条件2d・sinθ=mλ(m=0、±1、・・)において、mが奇数である条件でのブラッグ反射の方向は、θ=±90゜となる。これは、2次元回折格子の主表面に対して垂直方向にも回折が強くなることを意味している。これにより、図1を参照して、2次元回折格子の主表面(フォトニック結晶層15の主表面)に対して垂直方向に光が進行し、孔15Cおよび孔16Aを通して矢印αの方向に沿って光が放出される。
さらに、この2次元回折格子では、上記のような光の回折は2次元的に配置されたすべての格子点において生じ得る。そのため、X−Γ方向に伝搬する光が、ブラッグ回折によって2次元的に相互に結合し、コヒーレントな状態が形成される。以上のように、本実施の形態における面発光レーザ1は、面発光素子として機能することができる。
図5は、フォトニック結晶層の他の構成を示す概略斜視図である。図5を参照して、フォトニック結晶層15は正方格子の形態を有する2次元回折格子を構成している。孔15Cの各々は、正方格子の格子点となる位置、言い換えれば正方形の頂点の位置に形成されている。一つの格子点(孔15C)の中心と、この格子点に隣接する8つの格子点の中心との各々の距離はすべて等しい。
図6は、正方格子における光の回折を説明するための図である。正方格子は、一辺の長さがdである正方形で埋め尽くされている。図6において、任意に選択された格子点Wに着目し、格子点Wから格子点Pに向かう方向をX−Γ方向と呼び、また格子点Wから格子点Qへ向かう方向X−J方向と呼ぶ。ここでは、活性層13(図1参照)において発生する光の波長が、X−Γ方向に関する格子周期に対応している場合について説明する。
2次元回折格子は、以下に説明する2個の1次元回折格子群U、Vを含むと考えることができる。1次元回折格子群Uは、Y軸方向に向けて設けられた1次元格子U、U、Uなどからなっている。1次元回折格子群Vは、X軸方向に向けて設けられた1次元格子V、V、Vなどからなっている。これら2つの1次元回折格子群UおよびVは、任意の格子点を中心に90゜の角度で回転すると重なりあう。各1次元回折格子群UおよびVにおいて、1次元格子間の間隔はdであり、1次元格子内の間隔もdである。
まず、格子群Uに関して考える。格子点Wから格子点Pの方向に進む光は、格子点Pにおいて回折現象を生じる。回折方向は、3角格子の場合と同様に、ブラッグ条件2d・sinθ=mλ(m=0、±1、・・)によって規定される。2次のブラッグ反射(m=±2)を満足するように回折格子が形成されている場合には、θ=±90゜の角度に別の格子点Q、Rが存在し、m=0に対応する角度θ=0、180゜にも格子点W、Sが存在する。
格子点Pにおいて格子点Qの方向に向けて回折された光は、格子点Qにおいて格子群Vに従って回折される。この回折は、格子群Uに従う回折現象と同様に考えることができる。次いで、格子点Qにおいて格子点Tに向けて回折される光は、格子群Uに従って回折される。このようにして順次に回折され、格子点Tから格子点Wに向けて回折される光は、さらに格子群Vに従って回折される。
以上、説明したように、格子点Wから格子点Pに進む光は、複数回の回折を経て、最初の格子点Wに到達する。そのため、本実施の形態の半導体レーザ素子においては、ある方向に進む光が複数回の回折を介して元の格子点の位置に戻るので、各格子点間には定在波が立つ。したがって、この2次元回折格子は光共振器、つまり波長選択器および反射器として作用する。したがって、図2および図4に基づいて説明したフォトニック結晶層15に代えて、上記図5および図6に基づいて説明したフォトニック結晶層15を使用した場合でも、本実施の形態における面発光レーザ1は、面発光素子として機能することができる。
ここで、面発光レーザ1は、第1導電型(n型)の基板であるn−基板11と、n−基板11上に形成されたn型の半導体層としてのn−クラッド層12と、n−クラッド層12上に形成された活性層13と、活性層13上に形成された第2導電型(p型)の半導体層としてのp−クラッド層14と、p−クラッド層14上に形成され、活性層13と独立した2次元回折格子としてのフォトニック結晶層15と、フォトニック結晶層15と接触するように形成されたp型表面電極16とを備えている。
すなわち、面発光レーザ1は、活性層13と、活性層13を挟むように配置された半導体層としてのn−クラッド層12およびp−クラッド層14と、p−クラッド層14の表面上に形成され、活性層13と独立した2次元回折格子としてのフォトニック結晶層15と、フォトニック結晶層15と接触するように形成されたp型表面電極16とを備えるフォトニック結晶面発光レーザ素子である。
本実施の形態における面発光レーザ1においては、上述のように、フォトニック結晶層15が活性層13と独立して形成されている。そのため、フォトニック結晶層15を構成する孔15Cが活性層13にまで到達する場合のように、活性層13が孔15Cの形成により損傷を受けたり空気中に露出したりすることがない。その結果、フォトニック結晶層15の孔15Cが活性層13に到達している場合に比べてキャリアの非発光再結合が起こりにくくなり、室温での十分な発光を実現できる。また、本実施の形態における面発光レーザ1においては、出射面を大きくすることにより光集中を抑制することが可能であるため、欠陥型フォトニック結晶レーザのような端面破壊現象が起こる可能性が低く、安定して動作することができる。さらに、本実施の形態における面発光レーザ1においては、フォトニック結晶層15と接触するようにp型表面電極16が形成されており、フォトニック結晶層15とp型表面電極16との間にクラッド層などの半導体層を形成する必要がない。その結果、融着法や再成長エピ法などの煩雑な製造工程を含む製造プロセスを採用する必要がなく、簡便な製造プロセスにより製造することが可能となっている。
なお、上述した特許文献1および2に開示されているフォトニック結晶面発光レーザ素子は、基本的に近赤外光から可視光(波長にして0.4μm以上1.5μm未満)のレーザを前提としている。この場合、エバネッセント光の拡がる領域(その広さは波長に比例する)が小さく、フォトニック結晶層を活性層の近傍に作り込む必要がある。したがって、特許文献1および2では融着法や再成長法を用いて素子を形成していた。しかし、本実施の形態における面発光レーザ1では、中赤外光からTHz帯域(波長にして1.5μm以上1000μm以下)のレーザ光、特に中赤外光である波長1.5μm以上8μm以下のレーザ光を発振対象とするため、エバネッセント光の拡がる領域が広くなる。そのため、フォトニック結晶層15と活性層13との間の距離を大きく離すことが可能となっている。したがって、図1に示すように、p型表面電極16に接触してフォトニック結晶層15を形成した構成とすることが可能となっている。その結果、本実施の形態における面発光レーザ1においては、融着法や再成長法などの面倒な作製法を用いることが必須ではない。
また、フォトニック結晶層15における孔15Cの加工位置と活性層13との距離が離れていることから、孔15Cを形成する際の加工に伴う活性層13への加工ダメージもほとんど発生しない。同様に、フォトニック結晶層15を作り込む際に発生する応力と歪みが、活性層13に対して及ぼす影響も少なくなる。そのため、他の短波長のフォトニック結晶面発光レーザ素子では、残留応力の強さから採用が困難な場合があった、誘電体柱埋め込みフォトニック結晶構造などを採用することも容易となっている。その結果、構造の自由度が大きく拡がっている。
以上のように、本実施の形態における面発光レーザ1は、製造プロセスを簡略化しつつ、室温において発振可能であるとともに、安定して動作することが可能なフォトニック結晶面発光レーザ素子となっている。
次に、実施の形態1におけるフォトニック結晶面発光レーザ素子の製造方法について説明する。図7は、実施の形態1におけるフォトニック結晶面発光レーザ素子の製造方法の概略を示すフローチャートである。また、図8〜図12は、実施の形態1におけるフォトニック結晶面発光レーザ素子の製造方法を説明するための概略断面図である。以下に説明する製造方法により、上記本実施の形態における面発光レーザ1を容易に製造することができる。
図7を参照して、本実施の形態における面発光レーザの製造方法においては、まず工程(S10)として基板準備工程が実施される。具体的には、図8を参照して、たとえばGaSbからなり、導電型がn型であるn−基板11が準備される。なお、本発明の面発光レーザを構成する基板の素材としては、GaSbのほか、InAsなどを採用することができる。
次に、工程(S20)としてn−クラッド層形成工程が実施される。この工程(S20)では、図9を参照して、工程(S10)において準備されたn−基板11の一方の主表面((001)面)上に、たとえばAlGaAsSbからなり、導電型がn型であるn−クラッド層12が形成される。n−クラッド層12の形成は、たとえばn−基板11上に、n型不純物を含むAlGaAsSb層をエピタキシャル成長させることにより実施することができる。なお、本発明の面発光レーザを構成するn−クラッド層の素材としては、基板をGaSbとする場合にたとえばAlGaAsSbを採用することができるほか、基板をInAsとする場合はGaAsSb、AlAsSbなどを採用することができる。
次に、工程(S30)として活性層形成工程が実施される。この工程(S30)では、n−クラッド層12上に活性層13が形成される。具体的には、図9を参照して、工程(S20)において形成されたn−クラッド層12上に、アンドープのAlGaSbからなるバリア層とアンドープのInGaAsSbからなる井戸層とを交互に複数回繰り返してエピタキシャル成長させる。これにより、アンドープのAlGaSbからなるバリア層と、アンドープのInGaAsSbからなる井戸層とが交互に積層されたMQW構造を有する活性層13が形成される。なお、本発明の面発光レーザを構成するバリア層/井戸層の素材の組合せとしては、基板をGaSbとする場合にAlInAs/InGaAsSbを採用することができるほか、基板をInAsとする場合はInAs/InAsSb、InGaAs/InSbなどを採用することができる。
次に、工程(S40)として、p型半導体層形成工程が実施される。この工程(S40)では、図9を参照して、工程(S30)において形成された活性層13上に、たとえばAlGaAsSbからなり、導電型がp型であるp型半導体層91が形成される。このp型半導体層91の形成は、活性層13上に、たとえばp型不純物を含むAlGaAsSb層をエピタキシャル成長させることにより実施することができる。このp型半導体層91は、本実施の形態におけるp−クラッド層14、およびフォトニック結晶層15の主層15Aを構成する。なお、本発明の面発光レーザを構成するp−クラッド層14およびフォトニック結晶層15の主層15Aの素材としては、基板をGaSbとする場合にAlGaAsSbを採用することができるほか、基板をInAsとする場合はAlAsSb、GaAsSbなどを採用することができる。
次に、工程(S50)として、p型コンタクト層形成工程が実施される。この工程(S50)では、図9を参照して、工程(S40)において形成されたp型半導体層91上に、たとえばGaSbからなり、導電型がp型である第2p型半導体層92が形成される。この第2p型半導体層92の形成は、p型半導体層91上に、たとえばp型不純物を含むGaSb層をエピタキシャル成長させることにより実施することができる。この第2p型半導体層92は、本実施の形態におけるフォトニック結晶層15のコンタクト層15Bを構成する。なお、本発明の面発光レーザを構成するコンタクト層の素材としては、基板をGaSbとする場合にGaSbなどを採用することができるほか、基板をInAsとする場合はInAsなどを採用することができる。また、上記工程(S20)〜(S50)は、たとえばMBE(Molecular Beam Epitaxy;分子線エピタキシー)法により実施することができる。
次に、工程(S60)として、電極形成工程が実施される。この工程(S60)では、図10を参照して、たとえば蒸着法を用いて第2p型半導体層92の上部表面上に導電体からなるp型表面電極16が形成される。また、n−基板11の裏面側(n−クラッド層12が形成された表面とは反対側の裏面)に、蒸着法を用いてn型裏面電極17が形成される。
次に、工程(S70)として、凹部形成工程が実施される。この工程(S70)では、p型表面電極16および第2p型半導体層92を貫通し、p型半導体層91の厚み方向の中央にまで至る凹部が形成される。この凹部は、図1を参照して、p型表面電極16の孔16Aおよびフォトニック結晶層15の孔15Cを構成する。
具体的には、図11を参照して、まず第2p型半導体層92上にレジストが塗布されてレジスト層99が形成される。その後、露光および現像が実施されることにより、所望の孔16Aおよび孔15Cの形状および位置に対応する開口99Aがレジスト層99に形成される。次に、図11および図12を参照して、開口99Aが形成されたレジスト層99がマスクとして用いられて、たとえばドライエッチングが実施されることにより、p型表面電極16および第2p型半導体層92を貫通し、p型半導体層91の厚み方向の中央にまで至る空気孔が形成される。これにより、p型表面電極16に孔16Aが形成されるとともに、フォトニック結晶層15に孔15Cが形成される。すなわち、p型半導体層91のうち、厚み方向において、空気孔が形成された領域がフォトニック結晶層15となり、空気孔が形成されなかった領域がp−クラッド層14となる。その後、レジスト層99が除去されることにより、図1に示す本実施の形態における面発光レーザ1が完成する。
以上のように工程(S10)〜(S70)が実施されることにより、煩雑な融着法や再成長エピ法などを用いることなく、本実施の形態における面発光レーザ1を容易に製造することができる。
(実施の形態2)
次に、本発明の他の実施の形態である実施の形態2について説明する。図13は、実施の形態2におけるフォトニック結晶面発光レーザ素子である面発光レーザの構成を示す概略断面図である。また、図14は、図13の面発光レーザに含まれるフォトニック結晶層の構成の一部を示す概略斜視図である。
図13および図14ならびに図1および図2を参照して、実施の形態2における面発光レーザ1は、基本的には上述の実施の形態1における面発光レーザ1と同様の構成を有し、同様に動作するとともに、同様の効果を奏する。しかし、実施の形態2の面発光レーザ1は、フォトニック結晶層の構成において、実施の形態1の場合とは異なっている。
すなわち、図13および図14を参照して、実施の形態2の面発光レーザ1におけるフォトニック結晶層15の孔15Cは、誘電体からなる誘電体柱15E(誘電体層)により充填されている。これにより、実施の形態2における面発光レーザ1においては、フォトニック結晶層15の孔15Cの内部における誘電率を空気とは異なる種々の値に調整することにより、孔15Cの内部における屈折率を制御することが可能となっている。なお、誘電体柱15Eを構成する誘電体としては、たとえばSiO(二酸化珪素)、Si(窒化珪素)、Al(酸化アルミニウム;アルミナ)、TiO(酸化チタン;チタニア)などを採用することができる。
つまり、2次元回折格子としてのフォトニック結晶層15は、低屈折率部分と、低屈折率部分の屈折率よりも高い屈折率を有する高屈折率部分とを有している。そして、高屈折率部分は半導体からなるベース層15Dであり、低屈折率部分はベース層15Dに形成された孔15Cの内部に配置される誘電体柱15Eである。なお、本実施の形態の変形例として、誘電体からなる誘電体柱15Eに代えて、導電性を有し、ベース層15Dとは光の屈折率が異なる透明材料、たとえば透明酸化物であるITO(Indium Tin Oxide;酸化インジウムスズ)などからなる導電性透明体柱を採用してもよい。すなわち、フォトニック結晶層15の孔15Cの内部には、ベース層15Dとは光の屈折率が異なる透明体柱を配置することができる。
次に、実施の形態2における面発光レーザの製造方法について説明する。図15は、実施の形態2における面発光レーザの製造方法の概略を示すフローチャートである。また、図16は、実施の形態2における面発光レーザの製造方法を説明するための概略断面図である。実施の形態2における面発光レーザ1は、基本的には実施の形態1の面発光レーザと同様に製造することができるが、誘電体柱15Eが形成される工程が追加される点において、実施の形態1とは異なっている。
すなわち、図15を参照して、まず、工程(S10)〜(S60)が実施の形態1の場合と同様に実施される。その後、工程(S70)においては、実施の形態1における工程(S70)のうち、レジスト層99を除去する直前のプロセスまでと同様に実施される。そして、レジスト層99を除去することなく、工程(S80)として凹部充填工程が実施される。この工程(S80)では、図16を参照して、レジスト層99からなるマスクが形成された表面上に、たとえばCVD(Chemical Vapor Deposition;化学気相堆積)法により、SiOからなるSiO層98が形成される。これにより、孔15Cは、SiO層98により充填される。その後、レジスト層99上のSiO層98がレジスト層99とともに除去されることにより(リフトオフ)、図13に示す実施の形態2における面発光レーザ1が完成する。
実施の形態2における面発光レーザ1においては、フォトニック結晶層15と活性層13との距離が十分に離れているため、フォトニック結晶層15を作り込む際に発生する応力と歪みが、活性層13に対して及ぼす影響が小さくなっている。そのため、従来のフォトニック結晶面発光レーザ素子では残留応力の強さから採用が困難な場合があった、誘電体柱15Eを埋め込んだフォトニック結晶層15を採用することが容易となっている。
(実施の形態3)
次に、本発明のさらに他の実施の形態である実施の形態3について説明する。図17は、実施の形態3におけるフォトニック結晶面発光レーザ素子である面発光レーザの構成を示す概略断面図である。また、図18は、図17の面発光レーザにおけるn型裏面電極側の構成を示す概略平面図である。また、図19は、図17の面発光レーザにおけるp型表面電極側の構成を示す概略平面図である。
図17〜図19ならびに図1および図3を参照して、実施の形態3における面発光レーザ1は、基本的には上述の実施の形態1における面発光レーザ1と同様の構成を有し、同様に動作するとともに、同様の効果を奏する。しかし、実施の形態3の面発光レーザ1は、p型表面電極16およびn型裏面電極17の構成において、実施の形態1の場合とは異なっている。
すなわち、図17〜図19を参照して、実施の形態3における面発光レーザ1のp型表面電極16には、実施の形態1の場合とは異なり、p型表面電極16を厚み方向に貫通する孔16Aは形成されていない。そして、p型表面電極16は、フォトニック結晶層15において孔15Cが形成された領域全体を覆うように形成されている。すなわち、フォトニック結晶層15に形成された孔15Cは、p型表面電極16によって封止されている。
一方、n型裏面電極17には、貫通孔である窓部17Aが形成されている。そして、この窓部17Aから、n−基板11が露出している。この窓部17Aは、実施の形態3における面発光レーザ1の出射面として機能する。すなわち、面発光レーザ1においては、矢印αの向きに沿って、n−基板11の裏面側(n型裏面電極17が形成された側)から光が出射される。
次に、実施の形態3における面発光レーザの製造方法について説明する。図20は、実施の形態3における面発光レーザの製造方法の概略を示すフローチャートである。また、図21〜図24は、実施の形態3における面発光レーザの製造方法を説明するための概略断面図である。実施の形態3における面発光レーザ1は、基本的には実施の形態1の面発光レーザと同様に製造することができるが、p型表面電極16およびn型裏面電極17の形成プロセスにおいて、実施の形態1とは異なっている。
すなわち、図20を参照して、まず、工程(S10)〜(S50)が実施の形態1の場合と同様に実施される。その後、工程(S60)として実施される電極形成工程では、図21を参照して、第2p型半導体層92のうち、孔15Cが形成される領域(図17参照)上を覆うように、p型表面電極16の一部を構成する導電体層としての第1p型表面電極16Bが形成される。一方、n−基板11においてn−クラッド層12が形成された側とは反対側の主表面上に、n型裏面電極17が形成される。このn型裏面電極17には、平面的に見て孔15Cが形成されるべき領域(図17参照)に重なる領域に、窓部17Aが形成される。
次に、工程(S70)では、図22を参照して、第1p型表面電極16Bが形成された第2p型半導体層92上に、レジストが塗布されることによりレジスト層99が形成される。その後、露光および現像が実施されることにより、所望の孔15Cの形状および位置(図17参照)に対応する開口99Aがレジスト層99に形成される。さらに、図23を参照して、開口99Aが形成されたレジスト層99がマスクとして用いられて、たとえばドライエッチングが実施されることにより、第1p型表面電極16Bおよび第2p型半導体層92を貫通し、p型半導体層91の厚み方向の中央にまで至る空気孔が形成される。これにより、p型半導体層91のうち、厚み方向において、空気孔が形成された領域がフォトニック結晶層15となり、空気孔が形成されなかった領域がp−クラッド層14となる。その後、図24を参照して、レジスト層99が除去される。
次に、図20を参照して、工程(S90)として電極厚膜化工程が実施される。この工程(S90)では、第1p型表面電極16B上に、p型表面電極16を構成する他の導電体層としての第2p型表面電極16Cが形成される。具体的には、図24を参照して、工程(S60)において形成され、工程(S70)において貫通孔が形成された第1p型表面電極16B上に、たとえばめっき法を用いて他の導電体層としての第2p型表面電極16Cが形成される。ここで、この工程(S90)では、図17を参照して、めっき法を用いて第2p型表面電極16Cを横方向に成長させることによって、フォトニック結晶層15に形成された孔15Cの上部が、第2p型表面電極16Cにより閉じられる。以上の工程により、実施の形態3における面発光レーザ1を容易に製造することができる。
(実施の形態4)
次に、本発明のさらに他の実施の形態である実施の形態4について説明する。図25は、実施の形態4におけるフォトニック結晶面発光レーザ素子である面発光レーザの構成を示す概略断面図である。
図25および図17を参照して、実施の形態4における面発光レーザ1は、基本的には上述の実施の形態3における面発光レーザ1と同様の構成を有し、同様に動作するとともに、同様の効果を奏する。しかし、実施の形態4の面発光レーザ1は、フォトニック結晶層の構成において、実施の形態3の場合とは異なっている。
すなわち、図25を参照して、実施の形態4の面発光レーザ1におけるフォトニック結晶層15の孔15Cは、誘電体からなる誘電体柱15E(誘電体層)により充填されている。これにより、実施の形態4における面発光レーザ1においては、フォトニック結晶層15の孔15Cの内部における誘電率を空気とは異なる種々の値に制御することが可能となっている。なお、誘電体柱15Eを構成する誘電体としては、たとえばSiO、Si、Al、TiOなどを採用することができる。また、本実施の形態の変形例として、誘電体からなる誘電体柱15Eに代えて、導電性を有し、ベース層15Dとは光の屈折率が異なる透明材料、たとえば透明酸化物であるITOなどからなる導電性透明体柱を採用してもよい。すなわち、フォトニック結晶層15の孔15Cの内部には、ベース層15Dとは光の屈折率が異なる透明体柱を配置することができる。
次に、実施の形態4における面発光レーザの製造方法について説明する。図26は、実施の形態4における面発光レーザの製造方法の概略を示すフローチャートである。また、図27および図28は、実施の形態4における面発光レーザの製造方法を説明するための概略断面図である。実施の形態4における面発光レーザ1は、基本的には実施の形態3の面発光レーザと同様に製造することができるが、誘電体柱15Eが形成される工程が追加される点において、実施の形態3とは異なっている。
すなわち、図26を参照して、まず、工程(S10)〜(S60)が実施の形態3の場合と同様に実施される。その後、工程(S70)においては、実施の形態3における工程(S70)のうちレジスト層99を除去する直前のプロセスまでと同様のプロセスが実施される。そして、レジスト層99を除去することなく、工程(S80)として凹部充填工程が実施される。この工程(S80)では、図27を参照して、レジスト層99からなるマスクが形成された表面上に、たとえばCVD法により、SiOからなるSiO層98が形成される。これにより、孔15CがSiO層98により充填される。その後、レジスト層99上のSiO層98がレジスト層99とともに除去されることにより(リフトオフ)、図28に示す構造を得ることができる。そして、工程(S90)が実施の形態3の場合と同様に実施されることにより、実施の形態4における面発光レーザ1が完成する。
(実施の形態5)
次に、本発明のさらに他の実施の形態である実施の形態5について説明する。図29は、実施の形態5におけるフォトニック結晶面発光レーザ素子である面発光レーザの構成を示す概略断面図である。
図29および図17を参照して、実施の形態5における面発光レーザ1は、基本的には上述の実施の形態3における面発光レーザ1と同様の構成を有し、同様に動作するとともに、同様の効果を奏する。しかし、実施の形態5の面発光レーザ1は、フォトニック結晶層およびp型表面電極の構成において、実施の形態3の場合とは異なっている。
すなわち、図29を参照して、実施の形態5の面発光レーザ1におけるフォトニック結晶層15の孔15Cは、p型表面電極16を構成する導電体(たとえば金属)からなる導電体柱15F(導電体層)により充填されている。つまり、2次元回折格子としてのフォトニック結晶層15は、低屈折率部分と、低屈折率部分の屈折率よりも高い屈折率を有する高屈折率部分とを有している。そして、高屈折率部分は導電体柱15Fを構成する金属からなり、低屈折率部分は半導体からなるフォトニック結晶層15のベース層となっている。
次に、実施の形態5における面発光レーザの製造方法について説明する。図30は、実施の形態5における面発光レーザの製造方法の概略を示すフローチャートである。また、図31〜図33は、実施の形態5における面発光レーザの製造方法を説明するための概略断面図である。実施の形態5における面発光レーザ1は、基本的には実施の形態3の面発光レーザと同様に製造することができるが、フォトニック結晶層およびp型表面電極を形成する工程において、実施の形態3とは異なっている。
すなわち、図30を参照して、まず、工程(S10)〜(S50)が実施の形態3の場合と同様に実施される。その後、工程(S61)として、裏面電極形成工程が実施される。この工程(S61)では、実施の形態3における工程(S60)のうち、n型裏面電極17を形成する工程が、実施の形態3の場合と同様に実施され、図31に示す構造が得られる。
次に、工程(S70)として凹部形成工程が実施される。この工程(S70)では、図32を参照して、開口99Aが形成されたレジスト層99からなるマスクが形成される。その後、実施の形態3の場合と同様に、たとえばドライエッチングが実施され、孔15Cが形成される。その後、図33に示すように、レジスト層99が除去される。
次に、工程(S100)として、表面電極形成工程が実施される。この工程(S100)では、図29を参照して、工程(S70)において形成された孔15Cの内部からベース層を構成するコンタクト層15Bの上部表面上にまで延在するようにp型表面電極16が形成される。これにより、工程(S70)において形成された孔15Cは、導電体柱15Fにより充填される。以上の工程により、実施の形態5における面発光レーザ1を容易に製造することができる。
以下、本発明の実施例1について説明する。上記実施の形態3における面発光レーザ1と同様の構成を有するレーザ素子を作製し、動作状態を確認する実験を行なった。実験の手順は以下の通りである。
まず、上記実施の形態3と同様の構成を有する面発光装置を作製した。具体的には、まずn−GaSb基板(001)面上に、厚み3μmの格子整合n−AlGaAsSbクラッド層、活性層、厚み1μmの格子整合p−AlGaAsSbクラッド層、厚み1.1μmのp−AlGaAsSb主層およびp−GaSbコンタクト層からなるフォトニック結晶層、矩形のp型表面電極が形成され、n−GaSb基板の反対側の主表面上に窓部を有するn型裏面電極を形成した面発光レーザを準備した。ここで、活性層は、アンドープAlGaSbバリア層とアンドープInGaAsSb井戸層との繰り返し構造によるMQW(多重量子井戸)構造とした。バリア層の組成はAl(0.3)Ga(0.7)Sbとし、井戸層の組成はIn(0.4)Ga(0.6)As(0.15)Sb(0.85)とした。また、格子整合n−クラッド層およびp−クラッド層の組成はAl(0.9)Ga(0.1)As(0.05)Sb(0.95)とした。さらに、フォトニック結晶層は、空気孔である孔が三角格子状に配置されている構造を採用し、格子定数が0.74μm、空気充填率15%(空気孔の形状は底面の直径300nmの円柱形状で、深さ(高さ)1.1μmとした。フォトニック結晶層において孔が形成されている領域の平面形状は、一辺300μmの正方形形状とした。製造プロセスは、上記実施の形態3の場合と同様とした。
次に、準備されたレーザ素子に対して適切な電流を流して裏面側から観察したところ、閾値電流密度200A/cmにて室温パルス発振が確認された。また、発振波長は2.5μmの単一波長であった。この発振の様子を遠視野像(FFP)で観察すると、基板面と垂直な方向に放射角1度でドーナツ状のパターンとなっており、シングルモードであることが分かった。
また、同様の構成において、フォトニック結晶層の孔をSiOで埋め込んだ構造(上記実施の形態4と同様の構造)のレーザ素子も準備し、同様の実験を実施したところ、同様の発振特性が得られた。
以下、本発明の実施例2について説明する。上記実施の形態5における面発光レーザ1と同様の構成を有するレーザ素子を作製し、動作状態を確認する実験を行なった。実験の手順は以下の通りである。
まず、上記実施の形態5と同様の構成を有する面発光装置を作製した。具体的には、まずn−InAs基板(001)面上に、厚み3μmの格子整合n−AlAsSbクラッド層、活性層、厚み1μmの格子整合p−AlAsSbクラッド層、厚み1.1μmのp−AlAsSb主層およびp−InAsコンタクト層からなるフォトニック結晶層、矩形のp型表面電極が形成され、n−InAs基板の反対側の主表面上に窓部を有するn型裏面電極を形成した面発光レーザを準備した。ここで、活性層は、アンドープInAsバリア層とアンドープInAsSb井戸層との繰り返し構造によるMQW(多重量子井戸)構造とした。井戸層の組成はInAs(0.9)Sb(0.1)とした。また、格子整合n−クラッド層およびp−クラッド層の組成はAlAs(0.15)Sb(0.85)とした。さらに、フォトニック結晶層は、孔が三角格子状に配置されている構造を採用し、格子定数が1.3μm、空気充填率15%(空気孔の形状は底面の直径530nmの円柱形状で、深さ(高さ)1.1μmとした。そして、この孔をp型表面電極を構成する金属で充填した。フォトニック結晶層において孔が形成されている領域の平面形状は、一辺400μmの正方形形状とした。製造プロセスは、上記実施の形態5の場合と同様とした。
次に、準備されたレーザ素子に対して適切な電流を流して裏面側から観察したところ、閾値電流密度450A/cmにて室温パルス発振が確認された。また、発振波長は3.8μmの単一波長であった。この発振の様子を遠視野像(FFP)で観察すると、基板面と垂直な方向に放射角1度でドーナツ状のパターンとなっており、シングルモードであることが分かった。
以上の実施例における実験結果より、本発明のフォトニック結晶面発光レーザ素子は、製造プロセスを簡略化しつつ、室温において発振可能であることが確認された。
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明のフォトニック結晶面発光レーザ素子およびその製造方法は、製造プロセスを簡略化が求められるフォトニック結晶面発光レーザ素子およびその製造方法に、特に有利に適用される。
実施の形態1における面発光レーザの構成を示す概略断面図である。 図1の面発光レーザに含まれるフォトニック結晶層の構成の一部を示す概略斜視図である。 図1の面発光レーザが備えるp型表面電極の構成を示す概略平面図である。 三角格子における光の回折を説明するための図である。 フォトニック結晶層の他の構成を示す概略斜視図である。 正方格子における光の回折を説明するための図である。 実施の形態1におけるフォトニック結晶面発光レーザ素子の製造方法の概略を示すフローチャートである。 実施の形態1におけるフォトニック結晶面発光レーザ素子の製造方法を説明するための概略断面図である。 実施の形態1におけるフォトニック結晶面発光レーザ素子の製造方法を説明するための概略断面図である。 実施の形態1におけるフォトニック結晶面発光レーザ素子の製造方法を説明するための概略断面図である。 実施の形態1におけるフォトニック結晶面発光レーザ素子の製造方法を説明するための概略断面図である。 実施の形態1におけるフォトニック結晶面発光レーザ素子の製造方法を説明するための概略断面図である。 実施の形態2における面発光レーザの構成を示す概略断面図である。 図13の面発光レーザに含まれるフォトニック結晶層の構成の一部を示す概略斜視図である。 実施の形態2における面発光レーザの製造方法の概略を示すフローチャートである。 実施の形態2における面発光レーザの製造方法を説明するための概略断面図である。 実施の形態3における面発光レーザの構成を示す概略断面図である。 図17の面発光レーザにおけるn型裏面電極側の構成を示す概略平面図である。 図17の面発光レーザにおけるp型表面電極側の構成を示す概略平面図である。 実施の形態3における面発光レーザの製造方法の概略を示すフローチャートである。 実施の形態3における面発光レーザの製造方法を説明するための概略断面図である。 実施の形態3における面発光レーザの製造方法を説明するための概略断面図である。 実施の形態3における面発光レーザの製造方法を説明するための概略断面図である。 実施の形態3における面発光レーザの製造方法を説明するための概略断面図である。 実施の形態4における面発光レーザの構成を示す概略断面図である。 実施の形態4における面発光レーザの製造方法の概略を示すフローチャートである。 実施の形態4における面発光レーザの製造方法を説明するための概略断面図である。 実施の形態4における面発光レーザの製造方法を説明するための概略断面図である。 実施の形態5における面発光レーザの構成を示す概略断面図である。 実施の形態5における面発光レーザの製造方法の概略を示すフローチャートである。 実施の形態5における面発光レーザの製造方法を説明するための概略断面図である。 実施の形態5における面発光レーザの製造方法を説明するための概略断面図である。 実施の形態5における面発光レーザの製造方法を説明するための概略断面図である。
符号の説明
1 面発光レーザ、11 n−基板、12 n−クラッド層、13 活性層、14 p−クラッド層、15 フォトニック結晶層、15A 主層、15B コンタクト層、15C 孔、15D ベース層、15E 誘電体柱、15F 導電体柱、16 p型表面電極、16A 孔、16B 第1p型表面電極、16C 第2p型表面電極、17 n型裏面電極、17A 窓部、91 p型半導体層、92 第2p型半導体層、98 SiO層、99 レジスト層、99A 開口。

Claims (9)

  1. 活性層と、
    前記活性層を挟むように配置された半導体層と、
    前記半導体層の表面上に形成され、前記活性層と独立した2次元回折格子と、
    前記2次元回折格子と接触するように形成された電極とを備える、フォトニック結晶面発光レーザ素子。
  2. 前記活性層から出射される光の波長が1.5μm以上8μm以下の範囲内となっている、請求項1に記載のフォトニック結晶面発光レーザ素子。
  3. 前記2次元回折格子は、低屈折率部分と、前記低屈折率部分の屈折率よりも高い屈折率を有する高屈折率部分とを有し、
    前記高屈折率部分は半導体からなり、
    前記低屈折率部分は、前記高屈折率部分に形成された孔である、請求項1または2に記載のフォトニック結晶面発光レーザ素子。
  4. 前記2次元回折格子は、低屈折率部分と、前記低屈折率部分の屈折率よりも高い屈折率を有する高屈折率部分とを有し、
    前記高屈折率部分は半導体からなり、
    前記低屈折率部分は、前記高屈折率部分に形成された孔の内部に配置される誘電体を含む、請求項1または2に記載のフォトニック結晶面発光レーザ素子。
  5. 前記2次元回折格子は、低屈折率部分と、前記低屈折率部分の屈折率よりも高い屈折率を有する高屈折率部分とを有し、
    前記高屈折率部分は金属からなり、
    前記低屈折率部分は半導体からなる、請求項1または2に記載のフォトニック結晶面発光レーザ素子。
  6. 活性層を形成する工程と、
    前記活性層上に半導体層を形成する工程と、
    前記半導体層上に、前記活性層と独立した2次元回折格子を形成する工程と、
    前記2次元回折格子に接触するように電極を形成する工程とを備える、フォトニック結晶面発光レーザ素子の製造方法。
  7. 前記2次元回折格子を形成する工程は、
    前記半導体層上に、前記2次元回折格子を構成するベース層を形成する工程と、
    前記ベース層に凹部を形成する工程とを含み、
    前記電極を形成する工程は、
    前記ベース層上に前記電極の一部を構成する導電体層を形成する工程と、
    前記導電体層上に、前記電極を構成する他の導電体層を形成する工程とを含み、
    前記凹部を形成する工程では、前記導電体層および前記ベース層がエッチングにより部分的に除去されることによって前記凹部が形成され、
    前記他の導電体層を形成する工程では、めっき法を用いて前記他の導電体層を横方向に成長させることによって、前記ベース層における前記凹部の上部を前記他の導電体により閉じる、請求項6に記載のフォトニック結晶面発光レーザ素子の製造方法。
  8. 前記2次元回折格子を形成する工程は、
    前記半導体層上に、前記2次元回折格子を構成するベース層を形成する工程と、
    前記ベース層に凹部を形成する工程と、
    前記凹部の内部を充填する誘電体層を形成する工程とを含み、
    前記電極を形成する工程は、
    前記ベース層上に前記電極の一部を構成する導電体層を形成する工程と、
    前記導電体層上に、前記電極を構成する他の導電体層を形成する工程とを含み、
    前記凹部を形成する工程では、前記導電体層および前記ベース層がエッチングにより部分的に除去されることによって前記凹部が形成され、
    前記他の導電体層を形成する工程では、めっき法を用いて前記他の導電体層を横方向に成長させることによって、前記誘電体層が形成された前記ベース層における前記凹部の上部を前記他の導電体により閉じる、請求項6に記載のフォトニック結晶面発光レーザ素子の製造方法。
  9. 前記2次元回折格子を形成する工程は、
    前記半導体層上に、前記2次元回折格子を構成するベース層を形成する工程と、
    前記ベース層に凹部を形成する工程とを含み、
    前記電極を形成する工程では、前記凹部の内部から前記ベース層の上部表面上にまで延在するように前記電極が形成される、請求項6に記載のフォトニック結晶面発光レーザ素子の製造方法。
JP2008267782A 2008-10-16 2008-10-16 フォトニック結晶面発光レーザ素子 Expired - Fee Related JP5309877B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267782A JP5309877B2 (ja) 2008-10-16 2008-10-16 フォトニック結晶面発光レーザ素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267782A JP5309877B2 (ja) 2008-10-16 2008-10-16 フォトニック結晶面発光レーザ素子

Publications (2)

Publication Number Publication Date
JP2010098136A true JP2010098136A (ja) 2010-04-30
JP5309877B2 JP5309877B2 (ja) 2013-10-09

Family

ID=42259613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267782A Expired - Fee Related JP5309877B2 (ja) 2008-10-16 2008-10-16 フォトニック結晶面発光レーザ素子

Country Status (1)

Country Link
JP (1) JP5309877B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123025A (ja) * 2011-12-09 2013-06-20 National Chiao Tung Univ 空気媒質層を有する半導体光学装置の製造方法及び空気媒質層の形成方法(Asemiconductoropticaldevicehavingairmedialayerandthemethodforformingtheairmedialayer)
TWI698057B (zh) * 2018-02-13 2020-07-01 國立交通大學 具有透明導電層之二維光子晶體面射型雷射
JP2021007136A (ja) * 2019-06-28 2021-01-21 セイコーエプソン株式会社 発光装置およびプロジェクター

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332351A (ja) * 1999-05-21 2000-11-30 Susumu Noda 半導体発光デバイスおよび半導体発光デバイスの製造方法
JP2005129604A (ja) * 2003-10-22 2005-05-19 Sony Corp 半導体レーザ
JP2006156944A (ja) * 2004-10-25 2006-06-15 Ricoh Co Ltd フォトニック結晶レーザ、フォトニック結晶レーザの製造方法、面発光レーザアレイ、光伝送システム、及び書き込みシステム
JP2006332595A (ja) * 2005-04-28 2006-12-07 Canon Inc 垂直共振器型面発光レーザ装置
JP2007242945A (ja) * 2006-03-09 2007-09-20 Furukawa Electric Co Ltd:The 面発光半導体レーザ素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332351A (ja) * 1999-05-21 2000-11-30 Susumu Noda 半導体発光デバイスおよび半導体発光デバイスの製造方法
JP2005129604A (ja) * 2003-10-22 2005-05-19 Sony Corp 半導体レーザ
JP2006156944A (ja) * 2004-10-25 2006-06-15 Ricoh Co Ltd フォトニック結晶レーザ、フォトニック結晶レーザの製造方法、面発光レーザアレイ、光伝送システム、及び書き込みシステム
JP2006332595A (ja) * 2005-04-28 2006-12-07 Canon Inc 垂直共振器型面発光レーザ装置
JP2007242945A (ja) * 2006-03-09 2007-09-20 Furukawa Electric Co Ltd:The 面発光半導体レーザ素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123025A (ja) * 2011-12-09 2013-06-20 National Chiao Tung Univ 空気媒質層を有する半導体光学装置の製造方法及び空気媒質層の形成方法(Asemiconductoropticaldevicehavingairmedialayerandthemethodforformingtheairmedialayer)
TWI698057B (zh) * 2018-02-13 2020-07-01 國立交通大學 具有透明導電層之二維光子晶體面射型雷射
JP2021007136A (ja) * 2019-06-28 2021-01-21 セイコーエプソン株式会社 発光装置およびプロジェクター
JP7136020B2 (ja) 2019-06-28 2022-09-13 セイコーエプソン株式会社 発光装置およびプロジェクター
US11569636B2 (en) 2019-06-28 2023-01-31 Seiko Epson Corporation Light emitting device and projector

Also Published As

Publication number Publication date
JP5309877B2 (ja) 2013-10-09

Similar Documents

Publication Publication Date Title
US6683898B2 (en) Mode control using transversal bandgap structure in VCSELs
US11050219B2 (en) Laser device and method for its operation
KR100759603B1 (ko) 수직 공진기형 면발광 레이저 장치
US7085301B2 (en) Photonic crystal single transverse mode defect structure for vertical cavity surface emitting laser
US7664158B2 (en) Two-dimensional photonic crystal surface-emitting laser
JP2009231773A (ja) フォトニック結晶面発光レーザ素子およびその製造方法
US20140355635A1 (en) Two dimensional photonic crystal surface emitting lasers
US10340659B1 (en) Electronically pumped surface-emitting photonic crystal laser
WO2005086302A1 (ja) 2次元フォトニック結晶面発光レーザ光源
JPWO2003067724A1 (ja) 半導体発光素子およびその製造方法
US20220131343A1 (en) Two-dimensional photonic-crystal surface-emitting laser
TWI276274B (en) Semiconductor laser device
JP2011108935A (ja) 2次元フォトニック結晶面発光レーザおよびその製造方法
JP2006165309A (ja) 半導体レーザ素子
JP2010098135A (ja) 面発光装置およびその製造方法
Hong et al. Impact of air-hole on the optical performances of epitaxially regrown p-side up photonic crystal surface-emitting lasers
JP2008098379A (ja) 2次元フォトニック結晶面発光レーザおよびその製造方法
JP5309877B2 (ja) フォトニック結晶面発光レーザ素子
US9859683B2 (en) Distributed feedback semiconductor laser element
EP2048754B1 (en) Laser diode having nano patterns and method of fabricating the same
US10840673B1 (en) Electrically pumped surface-emitting photonic crystal laser
US6577661B1 (en) Semiconductor laser with lateral light confinement by polygonal surface optical grating resonator
JP2008277563A (ja) 面発光レーザ
JP2875929B2 (ja) 半導体レーザ素子およびその製造方法
JP2003273454A (ja) 2次元フォトニック結晶面発光レーザ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees