JP6638237B2 - 画像形成装置、定着部の制御方法、および、コンピュータプログラム - Google Patents

画像形成装置、定着部の制御方法、および、コンピュータプログラム Download PDF

Info

Publication number
JP6638237B2
JP6638237B2 JP2015149432A JP2015149432A JP6638237B2 JP 6638237 B2 JP6638237 B2 JP 6638237B2 JP 2015149432 A JP2015149432 A JP 2015149432A JP 2015149432 A JP2015149432 A JP 2015149432A JP 6638237 B2 JP6638237 B2 JP 6638237B2
Authority
JP
Japan
Prior art keywords
period
temperature
heater
execution condition
detected temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015149432A
Other languages
English (en)
Other versions
JP2017032641A (ja
Inventor
尚也 矢田
尚也 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2015149432A priority Critical patent/JP6638237B2/ja
Priority to US15/223,019 priority patent/US10012931B2/en
Publication of JP2017032641A publication Critical patent/JP2017032641A/ja
Application granted granted Critical
Publication of JP6638237B2 publication Critical patent/JP6638237B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2039Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/20Details of the fixing device or porcess
    • G03G2215/2003Structural features of the fixing device
    • G03G2215/2016Heating belt
    • G03G2215/2035Heating belt the fixing nip having a stationary belt support member opposing a pressure member

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fixing For Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Control Of Temperature (AREA)

Description

本明細書に開示される技術は、画像形成装置に関する。
ヒータと温度センサとを含む定着部を備え、温度センサからの信号に基づきヒータの温度制御を行う画像形成装置が知られている(例えば特許文献1参照)。具体的には、温度センサからの信号に基づき取得される検知温度が基準温度以下になっている期間にはヒータへの通電を行い続け、検知温度が基準温度を上回っている期間にはヒータへの通電を停止し続ける制御(以下、「ヒータのオンオフ温度制御」という)が実行される。
特開2009−237070号公報
例えば、フリッカの規格であるIEC/EN61000−3−3では、フリッカの指標として、周期的な電圧変化を示すフリッカ値(短期フリッカ値(Pst)、長期フリッカ値(Plt))や、突入電流による瞬間的な電圧変化を示す最大相対電圧変化(dmax)などが挙げられている。上述のヒータのオンオフ温度制御では、温度センサの応答遅れなど、実温度に対する検知温度の遅れ(以下、「温度遅れ」という)により、例えば、検知温度が基準温度を大きく下回る、いわゆるアンダーシュートが発生したりする。これにより、ヒータの温度の変動が大きくなり、これに伴い、ヒータから出力される電流が大きく変化するため、特に、最大相対電圧変化(dmax)を低減できないおそれがある。
本明細書では、上述した課題を解決することが可能な技術を開示する。
本明細書に開示される技術は、以下の形態として実現することが可能である。
本明細書に開示される画像形成装置は、ヒータと、温度センサとを含む定着部と、制御部と、を備え、前記制御部は、前記温度センサからの信号に基づき取得される検知温度が基準温度以下であることを含む実行条件を満たすか否かを判断する処理と、前記実行条件を満たすと判断した場合、予め定められた通電比率で第1の期間だけ前記ヒータへの通電を行う処理と、前記第1の期間の経過後、前記ヒータへの通電を第2の期間だけ停止する処理と、前記第2の期間の経過後、再度、前記実行条件を満たすか否かを判断する処理と、を含む通電比率制御を実行する。本画像形成装置では、検知温度が基準温度以下であることを含む実行条件を満たす場合、予め定められた通電比率で第1の期間だけヒータへの通電が行われ、第1の期間の経過後、ヒータへの通電が第2の期間だけ停止される。これにより、検知温度が基準温度以下になっている期間にヒータへの通電を行い続ける構成に比べて、温度遅れによるヒータの温度の変動が抑制されるため、最大相対電圧変化(dmax)を低減することができる。
なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、画像形成装置、定着部の制御方法、それらの方法または装置の機能を実現するためのコンピュータプログラム、そのコンピュータプログラムを記録した記録媒体等の形態で実現することが可能である。
一実施形態のプリンタ10の全体構成を示す概略図 プリンタ10の電気的構成を示すブロック図 ヒータ制御についてのタイムチャート 待機モード処理を示すフローチャート 変動低減処理を示すフローチャート 監視処理を示すフローチャート 比較例の温度制御における検知温度と通電比率とヒータ電流との推移を示すタイムチャート 変動低減制御における検知温度と通電比率とヒータ電流との推移を示すタイムチャート ウォーミングアップ期間と移行期間と待機モード期間とにおける検知温度の推移を示すタイムチャート
一実施形態のプリンタ10について、図1から図9を参照しつつ説明する。図1は、プリンタ10の全体構成を示す概略図である。図1には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を上方向と呼び、Z軸負方向を下方向と呼び、X軸正方向を前方向と呼び、X軸負方向を後ろ方向と呼び、Y軸正方向を右方向と呼び、Y軸負方向を左方向と呼ぶものとする。図2以降についても同様である。
プリンタ10は、モノクロレーザプリンタであり、筐体100と、シート供給部200と、画像形成部300と、排出ローラ400とを備える。筐体100の上面には、排出口110と、排出トレイ120とが形成されている。なお、プリンタ10は画像形成装置の一例である。
シート供給部200は、筐体100内に設けられており、トレイ210と、ピックアップローラ220と、搬送ローラ230と、レジストレーションローラ240とを有する。トレイ210はシートWを収容する収容部である。トレイ210に収容されたシートWは、ピックアップローラ220によってトレイ210の排出位置から1枚ずつ取り出され、搬送ローラ230により搬送され、レジストレーションローラ240により姿勢が矯正されて、所定のタイミングで画像形成部300に送られる。
画像形成部300は、筐体100内に設けられており、露光部500と、プロセス部600と、定着部700とを備える。露光部500は、レーザ光Lを後述する感光体610に照射する。
プロセス部600は、感光体610と、帯電部620と、現像部630と、転写ローラ640とを有する。感光体610は、軸を中心に回転するドラム状の部材である。帯電部620は、感光体610の表面に対向するように配置され、感光体610の表面を一様に帯電させる。現像部630は、現像剤(トナー)を収容し、感光体610の表面に現像剤を供給する。転写ローラ640は、感光体610に対向するように配置されており、転写バイアスが印加される。
帯電部620によって一様に帯電された感光体610の表面に上述した露光部500からのレーザ光Lが照射されると、感光体610の表面に静電潜像が形成される。現像部630によって感光体610の表面に現像剤が供給されると、感光体610の表面に形成された静電潜像が現像されて現像剤像が形成される。転写ローラ640に転写バイアスが印加されると、感光体610の表面に形成された現像剤像が転写ローラ640の位置を通過するシートW上に転写される。
定着部700は、プロセス部600の感光体610よりもレジストレーションローラ240によるシートWの搬送方向の下流側に配置されており、定着ベルト710と、ハロゲンヒータ720と、ニップ部材730と、加圧ローラ750と、サーミスタ770とを備える。定着ベルト710は、筒状の帯体であり、回転可能に設けられており、該軸方向における両端部にガイド部材(不図示)が設けられている。ハロゲンヒータ720は、交流電源ACS(図2参照)により駆動される発熱体であり、定着ベルト710の近辺に配置されている。加圧ローラ750は、定着ベルト710と対向するように配置されており、定着ベルト710に接触しているとともに、定着ベルト710の両端部に設けられたガイド部材に接触している。加圧ローラ750が、後述のモータ駆動部910によって回転駆動されることにより、ガイド部材を介して定着ベルト710が回転駆動される。ニップ部材730は、金属板であり、加圧ローラ750との間で定着ベルト710を挟む。定着ベルト710と加圧ローラ750との間には、ニップ部Pが形成されている。サーミスタ770は、ニップ部材730の一部に対向しており、ニップ部材730の温度に応じた温度信号Saをコントローラ800(図2参照)に向けて出力する。なお、定着ベルト710は、定着部材の一例であり、ハロゲンヒータ720はヒータの一例であり、サーミスタ770は温度センサの一例である。
ハロゲンヒータ720が交流電源ACSにより駆動されて発熱すると、ハロゲンヒータ720によって定着ベルト710が加熱され、定着ベルト710の温度が上昇する。また、定着ベルト710が回転駆動されると、加圧ローラ750が従動回転する。プロセス部600を経たシートWは、定着ベルト710と加圧ローラ750との間(ニップ部P)に到達すると、定着ベルト710および加圧ローラ750によって搬送されつつ、定着ベルト710によって加熱される。これにより、シートWの表面に形成された現像剤像が熱定着される。
排出ローラ400は、定着部700を経たシートWを排出口110を介して排出トレイ120へと排出するローラである。
図2は、プリンタ10の電気的構成を示すブロック図である。プリンタ10は、上述のプロセス部600やハロゲンヒータ720、サーミスタ770等に加えて、コントローラ800と、モータ駆動部910と、定着駆動回路920と、ゼロクロス信号生成回路930と、通信インターフェース(IF)940と、操作部950と、AC/DCコンバータ970とを備える。
コントローラ800は、CPU810と、ROM820と、RAM830と、不揮発性メモリ840と、ASIC(Application Specific Integrated Circuit)850とを有する。ROM820には、プリンタ10を制御するための制御プログラムや各種設定情報等が記憶されている。RAM830は、CPU810が各種のプログラムを実行する際の作業領域や、データの一時的な記憶領域として利用される。不揮発性メモリ840は、NVRAM、フラッシュメモリ、HDD、EEPROMなどの書き換え可能なメモリである。ASIC850は、画像処理等のためのハード回路である。CPU810は、ROM820から読み出した制御プログラムや各種センサから送られる信号に従って、プリンタ10の各構成要素を制御する。コントローラ800またはCPU810と、定着駆動回路920とは、制御部の一例である。
モータ駆動部910は、図示しない1または複数のモータを有し、当該モータの駆動力によって、上述のピックアップローラ220、レジストレーションローラ240、感光体610および定着ベルト710等を回転駆動させる。通信インターフェース940は、外部デバイスとの通信を可能にするハードウェアである。操作部950は、ユーザによる操作を受け付ける各種のボタンやタッチパネル(いずれも図示しない)を有する。タッチパネルは、各種情報を表示する表示部としても機能する。AC/DCコンバータ970は、プリンタ10に接続された交流電源ACSからの交流電力を直流電力に変換してプリンタ10の各部に供給する。
ゼロクロス信号生成回路930は、交流電源ACSの電圧VがゼロになるゼロクロスタイミングZC(図3参照)に同期したゼロクロス信号Srを生成し、生成されたゼロクロス信号Srをコントローラ800に向けて出力する。ゼロクロス信号Srは、閾値Vtにより規定されるゼロクロスタイミングZCの周辺期間K1にローレベルとなり、ゼロクロスタイミングZCの周辺期間K1以外の期間にハイレベルとなるパルス信号である。
コントローラ800(図2)は、ゼロクロス信号生成回路930によって生成されたゼロクロス信号Srを基準として、トリガ信号Sbを生成する。トリガ信号Sbは、例えば図3に示すように、ゼロクロス信号Srの立ち下がりタイミングから調整期間Twだけ遅延したタイミングでローレベルからハイレベルとなり、期間K2だけハイレベルを維持した後にローレベルとなるパルス信号である。ゼロクロス信号Srの立ち下がりタイミングは交流電源ACSのゼロクロスタイミングZCに同期しているため、トリガ信号Sbの立ち上がりタイミングも交流電源ACSのゼロクロスタイミングZCに同期していることとなる。コントローラ800は、生成されたトリガ信号Sbを、定着駆動回路920に向けて出力する。
定着駆動回路920は、例えばトライアック等により構成される通電時間調整素子を有しており、トリガ信号Sbの立ち上がりタイミングで交流電源ACSとハロゲンヒータ720との間を通電状態とし、交流電源ACSのゼロクロスタイミングZCで交流電源ACSとハロゲンヒータ720との間を非通電状態とする。そのため、ハロゲンヒータ720に印加される電圧(ヒータ電圧)は、図3に示すように、トリガ信号Sbの立ち上がりタイミングから直近のゼロクロスタイミングZCまでの期間に交流電源ACSの電圧Vとなり、ゼロクロスタイミングZCから直近のトリガ信号Sbの立ち上がりタイミングまでの期間にゼロとなる。
コントローラ800は、ゼロクロス信号Srを基準としてトリガ信号Sbを生成する際の調整期間Tw(図3参照)の長さを変更することができる。調整期間Twの長さが変更されると、交流電源ACSからハロゲンヒータ720への通電時間が変更され、その結果、ハロゲンヒータ720の温度が調整される。
コントローラ800(図2)が実行する処理について説明する。プリンタ10に電源が投入されている間、コントローラ800は、定期的に、待機モードの実行条件を満たすか否かを判断する。待機モードは、定着ベルト710の回転を停止させた停止状態で、ヒータ温度を、シートWの表面に形成された現像剤像を熱定着するときの定着温度(例えば160度)より低い待機温度(例えば122度)に維持するモードである。ヒータ温度は、ハロゲンヒータ720の実際の温度である。待機モードの実行条件は、例えば、通信インターフェース940および操作部950のいずれからも、シートWに画像を形成するための印刷指令を受け付けない状態が所定期間だけ継続したことなどである。コントローラ800は、待機モードの実行条件を満たすと判断した場合、待機モード処理を実行する。
図4は、待機モード処理を示すフローチャートである。まず、コントローラ800は、モータ駆動部910に、定着ベルト710の回転駆動を停止させる(S110)。これにより、定着ベルト710は減速し始める。その後、コントローラ800は、検知温度が目標温度Ttに到達したか否かを判断する(S120)。なお、検知温度は、サーミスタ770からの温度信号Saに基づきコントローラ800により検知されるハロゲンヒータ720の温度である。目標温度Ttは、待機モードでは、上記待機温度に設定される。コントローラ800は、検知温度が目標温度Ttに到達していないと判断した場合(S120:NO)、通常のオンオフ処理を実行し(S130)、検知温度が目標温度Ttに到達したと判断した場合(S120:YES)、変動低減処理を実行する(S140)。すなわち、定着ベルト710の減速開始から検知温度が目標温度Ttに到達するまでの移行期間では、通常のオンオフ制御が実行され、この移行期間経過以降、変動低減処理が実行される。なお、コントローラ800は、S120において、定着ベルト710が停止状態になったか否かを判断し、停止状態になったと判断したことを条件に変動低減処理を実行してもよい。これにより、定着ベルト710が回転状態から停止状態に移行する移行期間では、通常のオンオフ制御が実行され、この移行期間経過以降、変動低減処理が実行されることになる。
通常のオンオフ処理は、互いに異なる値を示す複数の通電比率の中から、検知温度と目標温度Ttとの差が大きいほど、値が大きい通電比率を設定し、その設定された通電比率でハロゲンヒータ720への通電を行う通常のオンオフ制御を実行するための処理である。通電比率は、所定の期間に対するハロゲンヒータ720が通電している通電期間ΔTon(図7,8参照)の割合を示すデューティ比である。所定の期間は、通電期間ΔTonと、ハロゲンヒータ720が通電していない非通電期間ΔToffとを合計した期間であり、以下、オンオフ周期という。変動低減処理は、後述の変動低減制御を実行するための処理であり、この待機モードでは目標温度Ttは上記待機温度に設定される。なお、変動低減制御は、通電比率制御の一例であり、目標温度Ttは基準温度の一例である。
図5は、変動低減処理を示すフローチャートである。コントローラ800は、まず、検知温度が目標温度Tt以下であるか否かを判断する(S310)。コントローラ800は、検知温度が目標温度Tt以下でない、すなわち、検知温度が目標温度Ttを上回っていると判断した場合(S310:NO)、ハロゲンヒータ720への通電を停止し(S320)、その通電の停止から所定の第3の期間が経過したか否かを判断する(S330)。ここで、ハロゲンヒータ720への通電を停止するとは、上述の通電比率のオンオフ周期より長い期間だけ、ハロゲンヒータ720を非通電状態にすること、換言すれば、通電比率を0%にすることであり、これにより、ハロゲンヒータ720は発熱動作を停止する。また、コントローラ800がハロゲンヒータ720への通電を停止するとは、正確には、コントローラ800が、定着駆動回路920にハロゲンヒータ720への通電を停止させることを意味する。コントローラ800は、第3の期間が経過していないと判断した場合(S330:NO)、そのまま待機し、第3の期間が経過したと判断した場合(S330:YES)、S310に戻る。すなわち、検知温度が目標温度Ttを上回っている間、ハロゲンヒータ720は発熱動作を停止した状態を維持する。
S310で、コントローラ800は、検知温度が目標温度Tt以下であると判断した場合(S310:YES)、固定の通電比率(本実施形態では33%)でハロゲンヒータ720への通電を開始する(S340)。ここで、ハロゲンヒータ720への通電を開始するとは、通電比率の各オンオフ周期の内、少なくも一部の期間にハロゲンヒータ720を通電状態にすること、換言すれば、0%より大きい通電比率でハロゲンヒータ720への通電を開始することであり、これにより、ハロゲンヒータ720は発熱動作を開始する。また、コントローラ800がハロゲンヒータ720への通電を開始するとは、正確には、コントローラ800が、定着駆動回路920にハロゲンヒータ720への通電を開始させることを意味する。
次に、コントローラ800は、ハロゲンヒータ720への通電の開始から第1の期間が経過したか否かを判断する(S350)。第1の期間は、検知温度と目標温度Ttとの差に関係なく予め定められた長さの期間であり、例えば上記オンオフ周期の整数倍の期間である。コントローラ800は、第1の期間が経過していないと判断した場合(S350:NO)、固定の通電比率によるハロゲンヒータ720への通電を継続し、第1の期間が経過したと判断した場合(S350:YES)、ハロゲンヒータ720への通電を停止する(S360)。次に、コントローラ800は、その通電の停止から第2の期間が経過したか否かを判断する(S370)。第2の期間は、検知温度と目標温度Ttとの差に関係なく予め定められた長さの期間であり、例えば上記オンオフ周期よりも長く、且つ、上記第3の期間よりも長い期間である。第2の期間は、第2の期間の一例である。また、第1の期間と第2の期間との合計期間の長さは、0.5秒以上、2.0秒以下であることが好ましい。
コントローラ800は、第2の期間が経過していないと判断した場合(S370:NO)、そのまま待機し、第2の期間が経過したと判断した場合(S370:YES)、図4のS150に進む。S150では、コントローラ800は、スリープモードの実行条件を満たすか否かを判断し、スリープモードの実行条件を満たすと判断した場合(S150:YES)、スリープモードに移行するための処理を実行し(S160)、本待機モード処理を終了する。スリープモードは、定着ベルト710の回転を停止させた停止状態で、さらに、ハロゲンヒータ720への通電を停止させるモードである。スリープモードの実行条件は、例えば、待機モードの開始から、所定のスリープ基準期間が経過したことなどである。S150で、コントローラ800は、スリープモードの実行条件を満たしていないと判断した場合(S150:NO)、シートWに画像を形成するための印刷指令を、通信インターフェース940や操作部950を介して受け付けたか否かを判断する(S170)。コントローラ800は、印刷指令を受け付けたと判断した場合(S170:YES)、印刷モードに移行するための処理を実行し(S180)、本待機モード処理を終了する。印刷モードは、プリンタ10の各部を制御してシートWに画像を形成する画像形成処理を実行するモードである。
S170で、コントローラ800は、印刷指令を受け付けていないと判断した場合(S170:NO)、S140に戻り、図5のS310に戻り、再度、検知温度が目標温度Tt以下であるか否かを判断する。以上の通り、変動低減制御では、コントローラ800は、検知温度が目標温度Tt以下になった場合、固定の通電比率で第1の期間だけハロゲンヒータ720への通電を行い続けることにより、ハロゲンヒータ720は第1の期間だけ発熱動作を行い続ける。コントローラ800は、第1の期間の終了直後から少なくとも第2の期間だけハロゲンヒータ720への通電を停止し続けることにより、ハロゲンヒータ720は発熱動作を停止させ続ける。その第2の期間の終了以降、コントローラ800は、検知温度が目標温度Tt以下でなければ、さらに、ハロゲンヒータ720への通電を停止し続けることにより、ハロゲンヒータ720は、第2の期間を超えて発熱動作を停止し続け、検知温度が目標温度Tt以下になれば、その時点でハロゲンヒータ720への通電を再開する。
プリンタ10に電源が投入されている間、コントローラ800は、上記待機モード処理に並行して、さらに、定期的に、監視処理を実行する。なお、監視処理の実行時間間隔は、待機モードの実行条件を満たすか否かの判断の実行時間間隔よりも短い。図6は、監視処理を示すフローチャートである。まず、コントローラ800は、検知温度が低温度閾値以上であるか否かを判断する(S510)。低温度閾値は、上記待機温度よりも低い温度であり、第2の温度閾値の一例である。コントローラ800は、検知温度が低温度閾値以上でない、すなわち、検知温度が低温度閾値未満であると判断した場合(S510:NO)、変動低減処理よりも優先して、通常のオンオフ処理を実行し(S520)、S510に戻る。すなわち、コントローラ800は、変動低減処理の実行途中、例えば第1の期間および第2の期間の少なくともいずれかにおいて、検知温度が低温度閾値未満になった場合、割込により、通常のオンオフ処理に切り替える。なお、この通常のオンオフ処理は、基本的には、上記S130の処理と同じ処理であるが、目標温度Ttは、プリントモードの実行中であれば、定着温度であり、待機モードの実行中であれば、待機温度である。
S510で、コントローラ800は、検知温度が低温度閾値以上であると判断した場合(YES)、検知温度が高温度閾値未満であるか否かを判断する(S530)。高温度閾値は、上記定着温度よりも高い温度であり、第1の温度閾値の一例である。コントローラ800は、検知温度が高温度閾値未満でない、すなわち、検知温度が高温度閾値以上であると判断した場合(S530:NO)、変動低減処理よりも優先して、ハロゲンヒータ720への通電を停止し(S540)、S530に戻る。すなわち、コントローラ800は、変動低減処理の実行途中、例えば第1の期間において、検知温度が高温度閾値以上になった場合、割込により、ハロゲンヒータ720への通電を停止する。
S530で、コントローラ800は、検知温度が高温度閾値未満であると判断した場合(S530:YES)、本監視処理を終了する。なお、コントローラ800は、S520で変動低減処理よりも優先して通常のオンオフ処理を実行している最中に、検知温度が低温度閾値以上であり、且つ、高温度閾値未満になった場合、再び変動低減処理に戻る。また、コントローラ800は、S540で変動低減処理よりも優先してハロゲンヒータ720への通電を停止した後に、検知温度が低温度閾値以上であり、且つ、高温度閾値未満になった場合、再び変動低減処理に戻る。
ここで、温度遅れについて説明する。上述したように、サーミスタ770は、ハロゲンヒータ720の温度を検知するために設けられたものである。しかし、一般に、ハロゲンヒータ720等の対象物の実際の温度変化に対して、サーミスタ770等の温度センサからの信号に基づく検知温度の変化が遅れる、いわゆる温度遅れが生じることがある。温度遅れが生じる要因は、例えば、温度センサを対象物と同一の温度環境下に配置することが設計上困難であったり、温度センサや温度センサからの信号を処理する処理装置の応答性が低かったりするなど、様々である。本実施形態では、図1に示すように、ハロゲンヒータ720とサーミスタ770とは互いに離れた位置に配置されているため、特に、温度遅れが顕著に生じやすい。
この温度遅れと最大相対電圧変化(dmax)との関係について、比較例の温度制御を例に挙げて説明する。図7は、比較例の温度制御によりハロゲンヒータ720の温度を制御した場合における検知温度と通電比率とヒータ電流との推移を示すタイムチャートである。ヒータ電流は、ハロゲンヒータ720から出力される電流である。図7において、期間ΔTonXは、ハロゲンヒータ720が通電状態である通電期間ΔTonであり、期間ΔToffXは、ハロゲンヒータ720が非通電状態である非通電期間である。また、期間ΔT1Xは、ハロゲンヒータ720が発熱動作を実行している発熱実行期間であり、オンオフ周期より長い期間である。期間ΔT2Xは、ハロゲンヒータ720が発熱動作を停止している発熱停止期間であり、オンオフ周期より長い期間である。
比較例の温度制御は、常時、検知温度と目標温度Ttとを大小比較しており、図7の上から1段目および上から2段目のタイムチャートに示すように、検知温度が目標温度Tt以下である期間に、33%の通電比率でハロゲンヒータ720への通電を行い続け、検知温度が目標温度Ttを上回った期間に、ハロゲンヒータ720への通電を停止し続ける制御である。
このような比較例の温度制御では、検知温度が目標温度Tt以下になってから、検知温度が目標温度Ttを上回るまで、33%の通電比率でのハロゲンヒータ720への通電が継続されることによりハロゲンヒータ720は発熱動作をし続ける。従って、ヒータ温度が目標温度Ttに達したとしても、温度遅れにより、検知温度が目標温度Tt以下であれば、ハロゲンヒータ720は発熱動作をし続ける。このため、ヒータ温度が目標温度Ttを大きく上回る、いわゆるオーバーシュートが発生する(図7の1段目のタイムチャート参照)。
その後、検知温度が目標温度Ttを上回ると、ハロゲンヒータ720への通電が停止されることにより、ハロゲンヒータ720は発熱動作を停止する。しかし、目標温度Ttを大きく上回ったヒータ温度が目標温度Tt以下になるまでに時間がかかり、さらに、温度遅れにより、検知温度が目標温度Tt以下になるまでに時間がかかるため、発熱停止期間ΔT2Xが長くなる。この発熱停止期間ΔT2Xが長くなるほど、ヒータ温度は目標温度Ttを大きく下回り、これに伴い、ハロゲンヒータ720の抵抗値が相対的に低くなる。この状態で、検知温度が目標温度Tt以下になることによりハロゲンヒータ720への通電が再開されると、ハロゲンヒータ720に振幅が相対的に大きい突入電流が流れることにより、ヒータ電流の振幅が相対的に大きくなる(図7の上から3段目のタイムチャート参照)。以上のように、比較例の温度制御では、温度遅れによるヒータ温度の変動が大きく、これに伴って、ハロゲンヒータ720からのヒータ電流の振幅が相対的に大きいため(図7の上から3段目のタイムチャート参照)、最大相対電圧変化(dmax)も相対的に大きくなる。
ここで、最大相対電圧変化(dmax)を低減する1つの方法として、目標温度Ttを高くする方法がある。目標温度Ttを高くしてハロゲンヒータ720の温度を高く維持すれば、ハロゲンヒータ720の抵抗値を高く維持することができるため、ハロゲンヒータ720への通電を開始したときにおける突入電流を低減でき、最大相対電圧変化(dmax)を低減することができるからである。しかし、例えば、目標温度Ttが定着温度である場合、その定着温度は、シートWの材質等によって適した温度が定まるため、目標温度Ttを高くするにも限界がある。また、目標温度Ttが待機モードにおける待機温度である場合は、特に、目標温度Ttを高くすることが困難である。また、上述の待機モードでは、定着ベルト710が回転している回転状態である場合に比べて、ハロゲンヒータ720から多くの熱が定着ベルト710に伝達されることにより定着ベルト710が焼損し易いからである。なお、本実施形態では、定着ベルト710は、ローラ体に比べて熱容量が小さいベルト体であるため、特に焼損し易い。
最大相対電圧変化(dmax)を低減する他の方法として、上記ハロゲンヒータ720の発熱停止期間ΔT2を短くする方法がある。発熱停止期間ΔT2を短くすれば、温度遅れによる目標温度Ttと検知温度との乖離が小さくなるため、ヒータ温度の変動が抑制され、ハロゲンヒータ720への突入電流を低減でき、最大相対電圧変化(dmax)を低減することができるからである。しかし、発熱動作の実行周期を短くすれば、ハロゲンヒータ720への通電の実行と停止との切り替えの頻度を高くなることによりリップルが発生し、フリッカ値が低減できなくなるおそれがある。従って、この方法では、最大相対電圧変化(dmax)の低減とフリッカ値の低減とを両立することはできない。
図8は、本実施形態の変動低減制御によりハロゲンヒータ720の温度を制御した場合における検知温度と通電比率とヒータ電流との推移を示すタイムチャートである。図8において、期間ΔTonは、ハロゲンヒータ720が通電状態である通電期間であり、期間ΔToffは、ハロゲンヒータ720が非通電状態である非通電期間である。期間ΔT1は、ハロゲンヒータ720が発熱動作を実行している発熱実行期間であり、オンオフ周期より長い期間である。期間ΔT2は、ハロゲンヒータ720が発熱動作を停止している発熱停止期間であり、オンオフ周期より長い期間である。
上述の変動低減制御によれば、発熱実行期間ΔT1の長さは、常に一定であり、第1の期間に一致し、発熱停止期間Δ2の長さは、少なくとも第2の期間の長さ分は確保され、検知温度が目標温度Tt以下であるか否かの再度の判断結果によって変化する。
このように、変動低減制御では、図8の上から2段目および上から3段目のタイムチャートに示すように、検知温度が目標温度Tt以下になると(図5のS310:YES)、検知温度と目標温度Ttとの差に関係なく、第1の期間だけ33%の固定の通電比率でハロゲンヒータ720への通電が行われ(S340,S350)、次に、やはり、検知温度と目標温度Ttとの大小関係に関係なく、ハロゲンヒータ720への通電が第2の期間だけ停止される(S360,S370)。すなわち、検知温度が目標温度Tt以下であると判断されてから、第1の期間と第2の期間との合計期間が経過するまで、検知温度と目標温度Ttとの大小関係および差は、ハロゲンヒータ720の温度制御に反映されない。
従って、変動低減制御によれば、検知温度が目標温度Ttを上回るまでハロゲンヒータ720への通電が継続される比較例の温度制御に比べて、温度遅れによりヒータ温度が目標温度Ttを大きく上回るオーバーシュートの発生が抑制される(図8の上から1段目のタイムチャート参照)。このオーバーシュートの発生が抑制されることにより、変動低減制御の発熱停止期間ΔT2が、比較例の温度制御の発熱停止期間ΔT2Xに比べて短くなるため(図8の上から2段目のタイムチャート参照)、ヒータ温度が目標温度Ttを大きく下回ることが抑制され、ハロゲンヒータ720の抵抗値が相対的に低くなることが抑制される。これにより、ハロゲンヒータ720への通電が再開されたときにハロゲンヒータ720に流れる突入電流が低減される。このように、変動温度制御によれば、目標温度Ttを高くすることなく、温度遅れによるヒータ温度の変動を抑制することができ、ハロゲンヒータ720に振幅が相対的に大きい突入電流が流れることを抑制することができ、最大相対電圧変化(dmax)を低減することができる。また、変動温度制御によれば、ハロゲンヒータ720の発熱停止期間を短くする必要がないため、フリッカ値も低減することができる。
上述の待機モードのように、定着ベルト710が停止状態で定着ベルト710を加熱する、いわゆる停止加熱の実行中では、定着ベルト710の焼損等を避けるため、ハロゲンヒータ720の温度が比較的に低い温度に維持される。ハロゲンヒータ720の温度が比較的に低い温度に維持されると、ハロゲンヒータ720を通電させたときに流れる突入電流により最大相対電圧変化(dmax)が増大し易い。しかし、本実施形態によれば、停止加熱の実行中でも、上記変動低減制御を実行することにより最大相対電圧変化(dmax)を低減することができる(図8参照)。
変動低減制御の第1の期間では、1つの値の通電比ハロゲンヒータ率で720への通電が行われる(図5のS340)。これにより、予め定められた複数の値の通電比率でハロゲンヒータ720への通電が行われる場合に比べて、変動低減制御におけるコントローラ800の処理負担を軽減することができる。また、その1つの値は33%である。これにより、他の値の通電比率を用いる場合に比べて、フリッカ値を低減することができる。
また、第1の期間の長さは、検知温度と目標温度Ttとの差に関わらず一定である。これにより、第1の期間を、例えば検知温度と目標温度Ttとの差に応じて変更する場合に比べて、検知温度と目標温度Ttとの差の変動によってハロゲンヒータ720の温度が変動することが抑制されるため、最大相対電圧変化(dmax)を低減することができる。また、第2の期間が第3の期間より長いため、第2の期間が第3の期間より短い場合に比べて、検知温度と目標温度Ttとの差の変動によってヒータ温度が変動することが抑制されるため、最大相対電圧変化(dmax)を低減することができる。さらに、第1の期間と第2の期間との合計時間は、0.5秒以上、2.0秒以下である。これにより、最大相対電圧変化(dmax)をより確実に低減することができる。
図6の監視処理において、検知温度が低温度閾値未満であると判断された場合(S510:NO)、変動低減処理よりも優先して、通常のオンオフ処理が実行される(S520)。これにより、第1の期間および第2の期間の少なくとも一方において、ヒータ温度が目標温度Ttより低い低温度閾値未満である状態が長期間継続することを抑制することができる。また、検知温度が高温度閾値以上であると判断された場合(S530:NO)、変動低減処理よりも優先して、ハロゲンヒータ720への通電が停止される(S540)。これにより、第1の期間において、ヒータ温度が目標温度Ttより高い高温度閾値以上になっても発熱動作が継続されることを抑制することができる。
図9は、ウォーミングアップ期間と移行期間と待機モード期間とにおける検知温度の推移を示すタイムチャートである。図9に示すように、本実施形態では、プリンタ10の起動時からのウォーミングアップ期間および移行期間(定着ベルト710が回転している回転加熱期間)では、通常のオンオフ制御が実行され(図4のS120:NO,S130)、待機モード期間(定着ベルト710が停止している停止加熱期間)では、変動低減制御が実行される(図4のS120:YES,S140)。これにより、ウォーミングアップ期間および移行期間において、検知温度を早期に目標温度Ttに近づけることができ、待機モード期間において、最大相対電圧変化(dmax)を低減することができる。
本明細書に開示される技術は、上述の実施形態や実施例または以下の変形例に限られるものではなく、その要旨を逸脱しない範囲において種々の構成で実現することができる。
上記実施形態では、画像形成装置として、モノクロの画像を形成するレーザ露光方式のプリンタ10を例示したが、これに限定されず、例えば、カラーの画像を形成可能なカラープリンタでもよい。また、画像形成装置は、プリンタに限定されず、例えば、画像形成部の他に、スキャナなどの原稿読取部をさらに備える複写機や複合機などでもよい。また、画像形成装置は、レーザプリンタに限らず、LEDプリンタなど、他の電子写真方式の画像形成装置でもよい。
また、上記実施形態では、ヒータとして、ハロゲンヒータ720を例示したが、これに限定されず、例えば、赤外線ヒータやカーボンヒータなどでもよい。また、また、ヒータは、交流電源からの電力が供給されて発熱するものに限定されず、直流電源から電力が供給されて発熱するものでもよい。また、上記実施形態では、温度センサとして、サーミスタ770を例示したが、これに限定されず、例えば、サーモスタットや温度ヒューズでもよい。
また、上記実施形態では、定着部700が定着ベルト710を備えるいわゆるベルトタイプ(フィルムタイプ)の定着器であるとしているが、定着部700は、ローラを備えるいわゆるローラタイプの定着器であるとしてもよい。
上記実施形態では、制御部として、1つのCPU810を例示したが、これに限定されず、複数のCPUを含むものや、CPUとASIC等のハード回路とを含むものや、ハード回路のみで構成されたものでもよい。
また、上記実施形態の処理(図4から図6)において、一部のステップの内容を変更したり、一部のステップを省略したり、他のステップと順番を入れ替えたりしてもよい。例えば、図4のS120の判断条件を、検知温度と目標温度Ttとの差が所定値以下であることに差し替えてもよいし、図4のS120の判断条件に、検知温度と目標温度Ttとの差が所定値以下であることを且つ条件として追加してもよい。
上記実施形態において、第1の期間を、例えば検知温度と目標温度Ttとの差に応じて変更する構成としてもよい。また、図5の変動低減処理は、印刷モードで実行されてもよい。
図5の変動低減処理のS340に使用される通電比率は、33%に限定されず、例えば、75%、67%、57%、43%、25%でもよい。また、S340において、コントローラ800は、複数の通電比率でハロゲンヒータ720への通電を行ってもよい。要するに、検知温度と目標温度Ttとの差に関係なく、予め定められた通電比率であればよい。
図5の変動低減処理において、コントローラ800は、第1の期間と第2の期間との合計期間内でも、検知温度が目標温度Tt以下であるか否かを判断していてもよい。要するに、その判断結果がハロゲンヒータ720の温度制御に反映されなければよい。
10:プリンタ 700:定着部 710:定着ベルト 720:ハロゲンヒータ 770:サーミスタ 800:コントローラ 920:定着駆動回路 Tt:目標温度

Claims (15)

  1. ヒータと、温度センサとを含む定着部と、
    制御部と、を備え、
    前記制御部は、
    前記温度センサからの信号に基づき取得される検知温度が基準温度以下であることを含む実行条件を満たすか否かを判断する処理と、
    前記実行条件を満たすと判断した場合、前記検知温度と前記基準温度との差に関係なく、予め定められた通電比率で第1の期間だけ前記ヒータへの通電を行う処理と、
    前記第1の期間の経過後、前記検知温度と前記基準温度との差に関係なく、前記ヒータへの通電を第2の期間だけ停止する処理と、
    前記第2の期間の経過後、再度、前記実行条件を満たすか否かを判断する処理と、を含む通電比率制御を実行し、
    前記通電比率制御は、
    前記検知温度が前記基準温度より高いと判断した場合、前記ヒータへの通電を第3の期間だけ停止させる処理と、
    前記第3の期間の経過後、再度、前記検知温度が前記基準温度以下であるか否かを判断する処理と、を含み、
    前記第2の期間は、前記第3の期間より長い、画像形成装置。
  2. 請求項1に記載の画像形成装置であって、
    前記定着部は、回転駆動される回転状態と停止状態との間で切り替わる定着部材を備え、
    前記制御部は、
    前記定着部材が前記停止状態である場合に、前記通電比率制御を実行する、画像形成装置。
  3. 請求項1または請求項2に記載の画像形成装置であって、
    前記制御部は、
    前記第1の期間において、1つの値の通電比率で前記ヒータへの通電を行う、画像形成装置。
  4. 請求項3に記載の画像形成装置であって、
    前記1つの値は、33%である、画像形成装置。
  5. 請求項1から請求項4までのいずれか一項に記載の画像形成装置であって、
    前記第1の期間の長さは、前記検知温度と前記基準温度との差に関わらず一定である、画像形成装置。
  6. 請求項1から請求項5までのいずれか一項に記載の画像形成装置であって、
    前記第1の期間と前記第2の期間との合計時間は、0.5秒以上、2.0秒以下である、画像形成装置。
  7. 請求項1から請求項6までのいずれか一項に記載の画像形成装置であって、
    前記実行条件には、前記検知温度が、前記基準温度より高い第1の温度閾値未満であることが含まれ、
    前記制御部は、
    前記第1の期間において、前記実行条件を満たさないと判断した場合、前記ヒータへの通電を停止する、画像形成装置。
  8. ヒータと、温度センサとを含む定着部と、
    制御部と、を備え、
    前記制御部は、
    前記温度センサからの信号に基づき取得される検知温度が基準温度以下であることを含む実行条件を満たすか否かを判断する処理と、
    前記実行条件を満たすと判断した場合、前記検知温度と前記基準温度との差に関係なく、予め定められた通電比率で第1の期間だけ前記ヒータへの通電を行う処理と、
    前記第1の期間の経過後、前記検知温度と前記基準温度との差に関係なく、前記ヒータへの通電を第2の期間だけ停止する処理と、
    前記第2の期間の経過後、再度、前記実行条件を満たすか否かを判断する処理と、を含む通電比率制御を実行し、
    前記実行条件には、前記検知温度が、前記基準温度より低い第2の温度閾値以上であることが含まれ、
    前記制御部は、
    前記第1の期間および前記第2の期間の少なくとも一方において、前記実行条件を満たさないと判断した場合、前記検知温度と前記基準温度との差に応じた通電比率で前記ヒータへの通電を行う、画像形成装置。
  9. ヒータと、温度センサと、回転駆動される回転状態と停止状態との間で切り替わる定着部材と、を含む定着部と、
    制御部と、を備え、
    前記制御部は、
    前記定着部材を前記回転状態から前記停止状態に移行させる移行期間では、前記温度センサからの信号に基づき取得される検知温度と基準温度との差に応じた通電比率で前記ヒータへの通電を行い、
    前記移行期間後に、
    前記検知温度が前記基準温度以下であることを含む実行条件を満たすか否かを判断する処理と、
    前記実行条件を満たすと判断した場合、前記検知温度と前記基準温度との差に関係なく、予め定められた通電比率で第1の期間だけ前記ヒータへの通電を行う処理と、
    前記第1の期間の経過後、前記検知温度と前記基準温度との差に関係なく、前記ヒータへの通電を第2の期間だけ停止する処理と、
    前記第2の期間の経過後、再度、前記実行条件を満たすか否かを判断する処理と、を含む通電比率制御を実行する、画像形成装置。
  10. ヒータと、温度センサとを含む定着部の制御方法であって、
    前記温度センサからの信号に基づき取得される検知温度が基準温度以下であることを含む実行条件を満たすか否かを判断する工程と、
    前記実行条件を満たすと判断した場合、前記検知温度と前記基準温度との差に関係なく、予め定められた通電比率で第1の期間だけ前記ヒータへの通電を行う工程と、
    前記第1の期間の経過後、前記検知温度と前記基準温度との差に関係なく、前記ヒータへの通電を第2の期間だけ停止する工程と、
    前記第2の期間の経過後、再度、前記実行条件を満たすか否かを判断する工程と、
    前記検知温度が前記基準温度より高いと判断した場合、前記ヒータへの通電を第3の期間だけ停止させる工程と、
    前記第3の期間の経過後、再度、前記検知温度が前記基準温度以下であるか否かを判断する工程と、を備え、
    前記第2の期間は、前記第3の期間より長い、定着部の制御方法。
  11. ヒータと、温度センサとを含む定着部の制御方法であって、
    前記温度センサからの信号に基づき取得される検知温度が基準温度以下であることを含む実行条件を満たすか否かを判断する工程と、
    前記実行条件を満たすと判断した場合、前記検知温度と前記基準温度との差に関係なく、予め定められた通電比率で第1の期間だけ前記ヒータへの通電を行う工程と、
    前記第1の期間の経過後、前記検知温度と前記基準温度との差に関係なく、前記ヒータへの通電を第2の期間だけ停止する工程と、
    前記第2の期間の経過後、再度、前記実行条件を満たすか否かを判断する工程と、を備え、
    前記実行条件には、前記検知温度が、前記基準温度より低い第2の温度閾値以上であることが含まれ、
    前記第1の期間および前記第2の期間の少なくとも一方において、前記実行条件を満たさないと判断した場合、前記検知温度と前記基準温度との差に応じた通電比率で前記ヒータへの通電を行う、定着部の制御方法。
  12. ヒータと、温度センサと、回転駆動される回転状態と停止状態との間で切り替わる定着部材と、を含む定着部の制御方法であって、
    前記定着部材を前記回転状態から前記停止状態に移行させる移行期間では、前記温度センサからの信号に基づき取得される検知温度と基準温度との差に応じた通電比率で前記ヒータへの通電を行う工程と、
    前記移行期間後に、前記検知温度が前記基準温度以下であることを含む実行条件を満たすか否かを判断する工程と、
    前記実行条件を満たすと判断した場合、前記検知温度と前記基準温度との差に関係なく、予め定められた通電比率で第1の期間だけ前記ヒータへの通電を行う工程と、
    前記第1の期間の経過後、前記検知温度と前記基準温度との差に関係なく、前記ヒータへの通電を第2の期間だけ停止する工程と、
    前記第2の期間の経過後、再度、前記実行条件を満たすか否かを判断する工程と、を備える、定着部の制御方法。
  13. ヒータと、温度センサとを含む定着部を備える画像形成装置が有するコンピュータに、
    前記温度センサからの信号に基づき取得される検知温度が基準温度以下であることを含む実行条件を満たすか否かを判断する処理と、
    前記実行条件を満たすと判断した場合、前記検知温度と前記基準温度との差に関係なく、予め定められた通電比率で第1の期間だけ前記ヒータへの通電を行う処理と、
    前記第1の期間の経過後、前記検知温度と前記基準温度との差に関係なく、前記ヒータへの通電を第2の期間だけ停止する処理と、
    前記第2の期間の経過後、再度、前記実行条件を満たすか否かを判断する処理と、
    前記検知温度が前記基準温度より高いと判断した場合、前記ヒータへの通電を第3の期間だけ停止させる処理と、
    前記第3の期間の経過後、再度、前記検知温度が前記基準温度以下であるか否かを判断する処理と、を実行させ
    前記第2の期間は、前記第3の期間より長い、コンピュータプログラム。
  14. ヒータと、温度センサとを含む定着部を備える画像形成装置が有するコンピュータに、
    前記温度センサからの信号に基づき取得される検知温度が基準温度以下であることを含む実行条件を満たすか否かを判断する処理と、
    前記実行条件を満たすと判断した場合、前記検知温度と前記基準温度との差に関係なく、予め定められた通電比率で第1の期間だけ前記ヒータへの通電を行う処理と、
    前記第1の期間の経過後、前記検知温度と前記基準温度との差に関係なく、前記ヒータへの通電を第2の期間だけ停止する処理と、
    前記第2の期間の経過後、再度、前記実行条件を満たすか否かを判断する処理と、を実行させ、
    さらに、
    前記実行条件には、前記検知温度が、前記基準温度より低い第2の温度閾値以上であることが含まれ、
    前記第1の期間および前記第2の期間の少なくとも一方において、前記実行条件を満たさないと判断した場合、前記検知温度と前記基準温度との差に応じた通電比率で前記ヒータへの通電を行う処理を実行させる、コンピュータプログラム。
  15. ヒータと、温度センサと、回転駆動される回転状態と停止状態との間で切り替わる定着部材と、を含む定着部を備える画像形成装置が有するコンピュータに、
    前記定着部材を前記回転状態から前記停止状態に移行させる移行期間では、前記温度センサからの信号に基づき取得される検知温度と基準温度との差に応じた通電比率で前記ヒータへの通電を行う処理と、
    前記移行期間後に、前記検知温度が前記基準温度以下であることを含む実行条件を満たすか否かを判断する処理と、
    前記実行条件を満たすと判断した場合、前記検知温度と前記基準温度との差に関係なく、予め定められた通電比率で第1の期間だけ前記ヒータへの通電を行う処理と、
    前記第1の期間の経過後、前記検知温度と前記基準温度との差に関係なく、前記ヒータへの通電を第2の期間だけ停止する処理と、
    前記第2の期間の経過後、再度、前記実行条件を満たすか否かを判断する処理と、を実行させる、コンピュータプログラム。
JP2015149432A 2015-07-29 2015-07-29 画像形成装置、定着部の制御方法、および、コンピュータプログラム Active JP6638237B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015149432A JP6638237B2 (ja) 2015-07-29 2015-07-29 画像形成装置、定着部の制御方法、および、コンピュータプログラム
US15/223,019 US10012931B2 (en) 2015-07-29 2016-07-29 Image forming apparatus, method for controlling fixing device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015149432A JP6638237B2 (ja) 2015-07-29 2015-07-29 画像形成装置、定着部の制御方法、および、コンピュータプログラム

Publications (2)

Publication Number Publication Date
JP2017032641A JP2017032641A (ja) 2017-02-09
JP6638237B2 true JP6638237B2 (ja) 2020-01-29

Family

ID=57882772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015149432A Active JP6638237B2 (ja) 2015-07-29 2015-07-29 画像形成装置、定着部の制御方法、および、コンピュータプログラム

Country Status (2)

Country Link
US (1) US10012931B2 (ja)
JP (1) JP6638237B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022190232A (ja) * 2021-06-14 2022-12-26 株式会社ミツトヨ 照明装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934576A (ja) * 1982-08-23 1984-02-24 Canon Inc 温度制御装置
US4603245A (en) * 1982-08-23 1986-07-29 Canon Kabushiki Kaisha Temperature control apparatus
US5040022A (en) * 1989-10-26 1991-08-13 Brother Kogyo Kabushiki Kaisha Temperature control for a fixing apparatus
JP2968054B2 (ja) * 1990-12-21 1999-10-25 株式会社リコー 定着装置における温度検知補正方法
JPH04235583A (ja) * 1991-01-11 1992-08-24 Toshiba Corp 温度制御装置
US5659844A (en) * 1992-08-26 1997-08-19 Minolta Camera Kabushiki Kaisha Fixing device for thermally fixing toner onto a paper sheet and having a controller for controlling the amount of heat received by the paper sheet
JP2991905B2 (ja) * 1993-10-19 1999-12-20 三田工業株式会社 定着装置の温度制御装置
US5701554A (en) * 1994-06-10 1997-12-23 Seiko Epson Corporation Fixing apparatus having controller for setting a target temperature and for estimating the amount of heat transferred to a pressure roller
JPH08146816A (ja) * 1994-11-21 1996-06-07 Tec Corp 加熱定着装置
JP3422003B2 (ja) * 1995-02-24 2003-06-30 株式会社リコー 定着装置および電子写真記録装置
US5669038A (en) * 1995-04-27 1997-09-16 Konica Corporation Heater controlling apparatus and a fixing apparatus of an electrophotographic apparatus in use therewith
JP2001142544A (ja) 1999-11-15 2001-05-25 Konica Corp 加熱処理装置および画像形成装置
JP2003270998A (ja) * 2002-01-08 2003-09-25 Canon Inc 像加熱装置
US6927368B2 (en) * 2003-03-27 2005-08-09 Lexmark International, Inc. Method and apparatus for controlling power to a heater element using dual pulse width modulation control
JP2005202187A (ja) * 2004-01-16 2005-07-28 Konica Minolta Business Technologies Inc 定着装置及び画像形成装置
US7162175B2 (en) * 2004-11-29 2007-01-09 Kabushiki Kaisha Toshiba Image forming apparatus including temperature sensor and method thereof
JP2007148194A (ja) * 2005-11-30 2007-06-14 Kyocera Mita Corp 画像形成装置
JP2008026670A (ja) * 2006-07-21 2008-02-07 Toshiba Corp 画像形成装置、定着装置及び定着装置制御方法
JP2009237070A (ja) 2008-03-26 2009-10-15 Brother Ind Ltd ヒータ制御装置及び画像形成装置
JP5424066B2 (ja) * 2011-03-08 2014-02-26 ブラザー工業株式会社 加熱装置および画像形成装置
JP5782862B2 (ja) * 2011-06-24 2015-09-24 株式会社リコー 定着装置及び画像形成装置
JP2014119696A (ja) * 2012-12-19 2014-06-30 Konica Minolta Inc 画像形成装置
JP6136611B2 (ja) * 2013-06-14 2017-05-31 コニカミノルタ株式会社 画像形成装置

Also Published As

Publication number Publication date
US20170031278A1 (en) 2017-02-02
US10012931B2 (en) 2018-07-03
JP2017032641A (ja) 2017-02-09

Similar Documents

Publication Publication Date Title
US8180241B2 (en) Power control method and apparatus to heat a heating roller
JP2010237283A (ja) 画像形成装置
CN107132741B (zh) 图像形成装置
JP6794270B2 (ja) 電力供給装置及び画像形成装置
JP5761504B2 (ja) 画像形成装置
JP4539453B2 (ja) ヒータ制御装置、画像形成装置、ヒータ制御方法及びプログラム
JP6638237B2 (ja) 画像形成装置、定着部の制御方法、および、コンピュータプログラム
JP2005266454A (ja) 画像形成装置
JP2004013668A (ja) 電源装置及びその制御方法、加熱装置、並びに画像形成装置
US9046836B2 (en) Image forming apparatus for restricting excessive temperature rise of fixing member
JP6555059B2 (ja) 画像形成装置、画像形成装置の制御方法およびコンピュータプログラム
JP7172386B2 (ja) ヒータ制御装置、及び画像形成装置
JP4368227B2 (ja) 電力制御装置、画像形成装置及び電力制御プログラム
JP2016184133A (ja) 画像形成装置、定着部の制御方法、および、定着部の制御プログラム
JP2004264397A (ja) 画像形成装置
JPH10213996A (ja) 熱定着装置の電力制御装置
JP2010039421A (ja) 画像形成装置およびゼロクロス検出制御方法
JP2020020988A (ja) 画像形成装置
JP7187946B2 (ja) ヒータ制御装置、及び画像形成装置
US20240053696A1 (en) Image forming apparatus
RU2477507C2 (ru) Устройство нагрева изображения
JP7013904B2 (ja) 画像形成装置
JP2017015851A (ja) 画像形成装置、画像形成装置の制御方法およびコンピュータプログラム
JP6376018B2 (ja) 画像形成装置
JP2019135528A (ja) 画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R150 Certificate of patent or registration of utility model

Ref document number: 6638237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150