JP6608988B2 - 蓄電システム - Google Patents

蓄電システム Download PDF

Info

Publication number
JP6608988B2
JP6608988B2 JP2018073997A JP2018073997A JP6608988B2 JP 6608988 B2 JP6608988 B2 JP 6608988B2 JP 2018073997 A JP2018073997 A JP 2018073997A JP 2018073997 A JP2018073997 A JP 2018073997A JP 6608988 B2 JP6608988 B2 JP 6608988B2
Authority
JP
Japan
Prior art keywords
oxide
transistor
film
oxide layer
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018073997A
Other languages
English (en)
Other versions
JP2018142544A (ja
Inventor
実 高橋
圭 高橋
潤 小山
純平 桃
圭恵 森若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2018142544A publication Critical patent/JP2018142544A/ja
Application granted granted Critical
Publication of JP6608988B2 publication Critical patent/JP6608988B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Semiconductor Memories (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明の一形態は、物(プロダクト、機械(マシン)、製品(マニュファクチャ)、組成
物(コンポジション・オブ・マター)を含む。)、及び方法(プロセス。単純方法及び生
産方法を含む。)に関する。特に、本発明の一形態は、蓄電システム、蓄電装置、半導体
装置、若しくはその他の電気機器、それらの駆動方法、又はそれらの製造方法に関する。
なお、蓄電装置とは、蓄電機能を有する素子及び装置全般を指すものである。また、半導
体装置とは、半導体特性を利用することで機能しうる装置全般を指し、トランジスタ、半
導体回路、記憶装置、撮像装置、表示装置、電気光学装置および電子機器などは、全て半
導体装置になりうる。また、蓄電装置も半導体装置になりうる。
近年、リチウムイオン二次電池及びリチウムイオンキャパシタなど、蓄電装置の開発が行
われている。
それに伴い、リチウムイオン二次電池の正極活物質として、リチウムを安定して供給でき
る材料の開発が続けられている。
例えば、リチウム供給源として、コバルト酸リチウム(LiCoO)等リチウム(Li
)及びコバルト(Co)を含む化合物などが知られている(特許文献1参照)。
特開2009−295514号公報
蓄電装置には大容量化、長寿命化、高信頼性化などの電池性能の向上が求められている。
電池性能の向上を実現するためには、蓄電装置の使用環境や、動作状況の解析が必要とな
る。
例えば、モバイルコンピュータや携帯情報端末などの電子機器に付属して電力を供給する
する蓄電装置では、電子機器が有する記憶手段に蓄電装置の動作状況が記憶される場合が
ある。このような場合、電子機器の破損や、電子機器と蓄電装置の分離が生じると、蓄電
装置のみではそれまで記憶された蓄電装置の使用環境や動作状態の情報が取得できないと
いう問題がある。
本発明の一態様は、動作状況の解析が容易な蓄電装置などの提供を課題の一つとする。
本発明の一態様では、新規な蓄電装置などを提供することを課題の一つとする。
本発明の一態様では、破裂しにくい蓄電装置などを提供することを課題の一つとする。
本発明の一態様では、発火しにくい蓄電装置などを提供することを課題の一つとする。
本発明の一態様では、劣化しにくい蓄電装置などを提供することを課題の一つとする。
本発明の一態様は、動作状況の解析が容易な蓄電システムなどの提供を課題の一つとする
本発明の一態様では、新規な蓄電システムなどを提供することを課題の一つとする。
特に、本発明の一態様は、上記に掲げる課題のうち少なくとも一つを解決することができ
る場合がある。なお、本発明の一態様は、これらの課題の全てを解決する必要はないもの
とする。なお、上記に掲げる課題に含まれていない課題であっても、明細書、図面又は特
許請求の範囲等の記載から自ずと明らかとなるものであり、明細書、図面又は特許請求の
範囲等などの記載から、課題として抽出することができる。
二次電池に、測定手段であるセンサと、判定手段であるマイクロコントローラユニット(
以下、「MCU」ともいう。MCU:Micro Control Unit)と、記憶
手段であるメモリを付加する。センサにより二次電池の電池残量、電圧、電流、温度など
の状態を測定する。MCUは、測定結果を演算処理して二次電池の動作状態(以下、「動
作モード」ともいう)を判定する。また、MCUは、二次電池の動作状態に応じて、測定
結果をメモリに記憶する。センサの一例としては、二次電池の温度を測定する温度センサ
、二次電池の電圧を測定する電圧センサ、二次電池の電荷蓄積量を測定するクーロンカウ
ンタなどを挙げることができる。
また、MCUは一定時間ごとにセンサから得られた情報(データ)を演算処理し、二次電
池がどのような動作モードで動作しているかを判定する。メモリは、動作モードに応じた
複数の記憶領域を有し、センサから得られたデータを、MCUが判定した動作モードに対
応した記憶領域に記憶する。なお、動作モードによっては、データを記憶しない場合もあ
りうる。
メモリは、電力が供給されていない状態でもデータを保持できるメモリ(以下、「不揮発
性メモリ」ともいう)を用いることが好ましい。不揮発性メモリを用いることで、二次電
池が正常に機能できない状態になっても、記憶された情報を読み出すことができる。また
、不揮発性メモリは、酸化物半導体を用いた記憶素子を用いて構成することが好ましい。
酸化物半導体を用いた記憶素子は、100℃乃至200℃の環境下においても記憶された
情報を保持することができる。
また、MCUは、揮発性記憶部と不揮発性記憶部を有する。揮発性記憶部は一つまたは複
数の揮発性記憶素子を有し、不揮発性記憶部は一つまたは複数の不揮発性記憶素子を有す
る。不揮発性記憶素子は、少なくとも電力が供給されていないときの上記揮発性記憶素子
よりデータの保持時間が長いものとする。不揮発性記憶部を有するMCUを用いることで
、一定時間毎に動作と停止を繰り返す間欠動作を容易に実現することが可能となる。また
、不揮発性記憶部は、酸化物半導体を用いた記憶素子を用いて構成することが好ましい。
不揮発性記憶部に酸化物半導体を用いた記憶素子を用いることで、MCUの消費電力を低
減することができる。なお、MCUの不揮発性記憶部の少なくとも一部を、上記メモリと
して用いることも可能である。
本発明の一態様は、二次電池と、センサと、MCUと、酸化物半導体を有するメモリを有
し、MCUは、センサを介して二次電池と接続され、メモリは、MCUと接続されている
ことを特徴とする。
本発明の一態様は、二次電池と、センサと、MCUを有し、MCUは、センサを介して前
記二次電池と接続され、MCUは、酸化物半導体を有するメモリを有することを特徴とす
る。
本発明の一態様は、複数の動作状態を有する二次電池と、二次電池の電池残量、電圧、お
よび電流の情報を測定する測定手段と、二次電池の動作状態を判定する判定手段と、二次
電池の動作状態に応じた記憶領域を有する記憶手段と、を有し、情報を動作状態に応じた
記憶領域に記憶することを特徴とする。
本発明の一態様は、複数の動作状態を有する二次電池と、二次電池の状態を測定する測定
手段と、二次電池の動作状態を判定する判定手段と、動作状態に応じた記憶領域を有する
記憶手段を有し、判定手段は、測定手段の情報をもとに動作状態を判定し、動作状態の開
始時と終了時の情報を、動作状態に応じた前記記憶領域に記憶することを特徴とする。
本発明の一態様により、動作状況の解析が容易な蓄電装置を提供することができる。
本発明の一態様により、新規な蓄電装置を提供することができる。
蓄電装置の構成例を説明するブロック図。 二次電池の各動作モードを説明する図。 蓄電装置の動作例を説明するフローチャート。 蓄電装置の動作例を説明するフローチャート。 蓄電装置の動作例を説明するフローチャート。 MCUの構成例を説明するブロック図。 不揮発性記憶部を有するレジスタの一例を説明する回路図。 記憶装置の一例を説明する図。 記憶装置の一例を説明する図。 記憶装置の回路図およびメモリセルの電気特性を示す図。 トランジスタの構成例を示す図。 トランジスタの構成例を示す図。 酸化物積層膜の構成例を示す図。 バンド構造の模式図。 酸化物積層膜の断面構成例の一部を示す図。 半導体装置の断面構造の一例を示す図。 二次電池の正極を説明する図。 二次電池の負極を説明する図。 二次電池の構成例を説明する図。 二次電池の構成例を説明する図。 蓄電装置の構成例を説明する図。 HEMSの構成例を説明する図。 電気機器の一例を説明する図。 電気機器の一例を説明する図。
以下では、本発明の一態様を実施するための形態について図面を用いて詳細に説明する。
ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ること
は、当業者であれば容易に理解される。また、本発明の一態様は、以下に示す発明を実施
するための形態の記載内容に限定して解釈されるものではない。
以下に説明する本発明の構成において、同一部分又は同様の機能を有する部分には同一の
符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能
を有する部分を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合があ
る。
本明細書で説明する各図において、各構成の大きさ、膜の厚さ、又は領域は、明瞭化のた
めに誇張されている場合がある。よって、必ずしもそのスケールに限定されない。
本明細書等において、第1、第2等として付される序数詞は便宜上用いるものであり、工
程順又は積層順を示すものではない。また、本明細書等において発明を特定するための事
項として固有の名称を示すものではない。
また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に限
定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、
その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配
線」が一体となって形成されている場合なども含む。
また、トランジスタの「ソース」や「ドレイン」の機能は、異なる極性のトランジスタを
採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることが
ある。このため、本明細書においては、「ソース」や「ドレイン」の用語は、入れ替えて
用いることができるものとする。
なお、XとYとが接続されている、と明示的に記載する場合は、XとYとが電気的に接続
されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続され
ている場合とを含むものとする。ここで、X、Yは、対象物(例えば、装置、素子、回路
、配線、電極、端子、導電層、絶縁層、など)であるとする。したがって、所定の接続関
係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接
続関係以外のものも含むものとする。
また、本明細書等において接続とは、電気的に接続される場合、機能的に接続される場合
、及び直接接続される場合を含む。さらに、本発明の一態様を実施するための形態に示す
各構成要素の接続関係は、図又は文章に示す接続関係のみに限定されない。
また、本明細書等においては、能動素子(トランジスタ、ダイオードなど)、受動素子(
容量素子、抵抗素子など)などが有するすべての端子について、その接続先を特定しなく
ても、当業者であれば、発明の一態様を構成することは可能な場合がある。つまり、接続
先を特定しなくても、発明の一態様が明確であり、本明細書等に記載されていると判断す
ることが可能な場合がある。特に、端子の接続先が複数考えられる場合には、その端子の
接続先を特定の箇所に限定する必要はない。従って、能動素子(トランジスタ、ダイオー
ドなど)、受動素子(容量素子、抵抗素子など)などが有する一部の端子についてのみ、
その接続先を特定することによって、発明の一態様を構成することが可能な場合がある。
また、本明細書等においては、ある回路について、少なくとも接続先を特定すれば、当業
者であれば、発明を特定することが可能な場合がある。又は、ある回路について、少なく
とも機能を特定すれば、当業者であれば、発明を特定することが可能な場合がある。つま
り、機能を特定すれば、発明の一態様が明確であり、本明細書等に記載されていると判断
することが可能な場合がある。または、ある回路について、機能を特定しなくても、接続
先を特定すれば、発明の一態様として開示されているものであり、発明の一態様を構成す
ることが可能である。又は、ある回路について、接続先を特定しなくても、機能を特定す
れば、発明の一態様として開示されているものであり、発明の一態様を構成することが可
能である。
また、本明細書等において、二次電池用の正極及び負極の双方を併せて電極とよぶことが
あるが、この場合、電極は正極及び負極のうち少なくともいずれか一方を示すものとする
なお、本明細書における回路記号において、チャネルが形成される半導体層に酸化物半導
体を用いるトランジスタと明確に判明できるように、チャネルが形成される半導体層に酸
化物半導体を用いるトランジスタの回路記号に「OS」と記載する場合がある。
本明細書において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置さ
れている状態をいう。従って、−5°以上5°以下の場合も含まれる。また、「垂直」お
よび「直交」とは、二つの直線が80°以上100°以下の角度で配置されている状態を
いう。従って、85°以上95°以下の場合も含まれる。
なお、明細書の中の図面や文章において規定されていない内容について、その内容を除く
ことを規定した発明を構成できる。又は、ある値について、上限値と下限値などで示され
る数値範囲が記載されている場合、該数値範囲を任意に狭める、又は該数値範囲の中の一
点を除くことで、該数値範囲を一部除いて発明を規定できる。これらにより、例えば、従
来技術が本発明の技術的範囲内に入らないことを規定できる。
また、この発明を実施するための形態に記載の内容は、適宜組み合わせて用いることがで
きる。
《1.蓄電装置》
[1−1.蓄電装置100の構成例]
図1(A)は、蓄電装置100の構成例を示すブロック図である。図1(A)に示す蓄電
装置100は、端子102および端子103に接続された二次電池101と、センサ10
4と、MCU105と、メモリ106を有する。
二次電池101への充電や、二次電池101から図示しない負荷への電力供給(放電)は
、端子102および端子103を介して行われる。二次電池101には、二次電池101
の状態を検出するためのセンサ104が接続される。センサ104にはMCU105が接
続される。MCU105は、センサ104から得られた情報を演算処理し、二次電池10
1がどのような動作モードにあるかを判断する。
メモリ106は一または複数の記憶領域を有する。図1(A)では、複数の記憶領域とし
て、記憶領域106a、記憶領域106b、記憶領域106cを例示している。MCU1
05は、センサ104から得られた情報をメモリ106が有する記憶領域に記憶する。メ
モリ106に複数の記憶領域を設けることで、動作モードと記憶領域を対応させて情報を
記憶することができる。
メモリ106は、不揮発性メモリを用いることが好ましい。不揮発性メモリを用いること
で、電力の供給が無くても記憶された情報を保持することができる。よって、二次電池が
正常に機能できない状態になっても、記憶された情報を読み出すことができる。また、不
揮発性メモリは、酸化物半導体を用いた記憶素子を用いて構成することが好ましい。
MCU105は、揮発性記憶部と不揮発性記憶部を有する。不揮発性記憶部を有するMC
Uを用いることで、一定時間毎に動作と停止を繰り返す間欠動作を容易に実現することが
可能となる。また、不揮発性記憶部は、酸化物半導体を用いた記憶素子を用いて構成する
ことが好ましい。不揮発性記憶部に酸化物半導体を用いた記憶素子を用いることで、MC
Uの消費電力を低減することができる。なお、MCU105の不揮発性記憶部の少なくと
も一部を、メモリ106として用いることも可能である。
[1−2.蓄電装置100の変形例]
図1(B)に蓄電装置100の変形例を示す。図1(B)に示す蓄電装置100は、セン
サ104として、温度センサ104a、クーロンカウンタ104b、電圧計104c、電
流計104dを用いる構成例を示している。
また、図1(B)に示す蓄電装置100は、メモリ106を、MCU105の内部に設け
る構成を例示している。また、図1(B)に示す蓄電装置100は、MCU105に接続
された通信手段107を設け、通信手段107を介して外部機器(図示せず)と情報の送
受信を行うことが可能な構成としている。
通信手段107を用いた外部機器(図示せず)との情報の送受信は、100BASE−T
Xや1000BASE−TX、PLC(Power Line Communicati
on)などの通信規格を用いた有線通信により行ってもよいし、IEEE802.11a
、IEEE802.11b、IEEE802.11g、IEEE802.11n、IEE
E802.15.1などの通信規格を用いた無線通信により行ってもよい。
また、通信時の不正アクセスや、混信による動作不良を防ぐため、通信内容は暗号化する
ことが好ましい。通信内容を暗号化するための規格として、AES(Advanced
Encryption Standard)方式、TKIP(Temporal Key
Integrity Protocol)方式、WEP(Wired Equival
ent Privacy)方式などを用いることができる。
なお、センサ104、MCU105、メモリ106、通信手段107には、端子102お
よび端子103を介して電力が供給される。すなわち、端子102および端子103に外
部電源から電力が供給されている場合は、外部電源から電力が供給され、そうでない場合
は、二次電池101から電力が供給される。
なお、図1において、メモリ106やMCU105を有する場合について述べたが、本発
明の実施形態の一態様は、これに限定されない。場合によっては、または、状況に応じて
、メモリ106やMCU105を設けないことも可能である。
[1−3.蓄電装置100の動作モード]
蓄電装置100の動作は、二次電池101に電荷を蓄積する充電動作(充電モード211
)と、二次電池101に接続された負荷に電力を供給する放電動作(放電モード221)
と、充電動作も放電動作も行わない待機動作(待機モード231)に大別される。
図2に、二次電池101の各動作モードにおける電流および電圧の時間変化を例示する。
図2(A)は、充電モード211における二次電池101の電流と電圧の時間変化を示す
図である。図2(B)は、放電モード221、および待機モード231における二次電池
101の電流と電圧の時間変化を示す図である。
図2(A)、図2(B)とも、横軸は時間を示し、縦軸は電流または電圧の大きさ(絶対
値)を示している。また、電流曲線201は時間の経過とともに変化する電流の大きさを
示している。また、電圧曲線202は、時間の経過とともに変化する電圧の大きさを示し
ている。
二次電池101の充電は、外部電源から供給される電力を、端子102および端子103
を介して二次電池101へ供給することで行われる。また、二次電池101の充電方法は
、充電時に二次電池101へ供給する電流(充電電流)を一定値として行う定電流充電モ
ード212と、充電時に二次電池101へ供給する電圧(充電電圧)を一定値として行う
定電圧充電モード213がある。特に充電される二次電池101の出力電圧が小さい場合
に、定電圧充電モード213で充電を行うと、二次電池101に急激に大電流が供給され
て、二次電池101に破裂や発火を起させる恐れがある。このため、二次電池101の充
電は定電流充電モード212で行うことが好ましい。
また、充電モード211は、定電流充電モード212、定電圧充電モード213、および
注ぎ足し充電モード214に分けて考えることができる。
ここで、定電流充電モード212による充電動作について説明しておく。定電流充電モー
ド212は、充電電流が一定になるように、二次電池101に電力を供給する。充電が開
始されると二次電池101の内部抵抗が上昇する。すると、充電電流の値を一定とするた
め、充電電圧が上昇する。定電流充電モード212による充電は、充電電圧が事前に設定
された電圧Vcnsに上昇するまで行われる。
続いて、定電圧充電モード213による充電動作について説明しておく。二次電池は、充
電電圧が大きくなりすぎると、劣化または破損する恐れがある。よって、定電流充電モー
ド212による充電の終了後、充電電圧を定電圧Vcnsとして二次電池101に電力を
供給する。定電圧充電モード213により充電することで、充電電圧の上昇を防ぎながら
二次電池101に充電することができる。
また、充電電圧を一定として充電すると、二次電池101の内部抵抗の上昇にともない、
充電電流が低下する。定電圧充電モード213による充電は、充電電流が事前に設定され
た電流Icutoffに低下するまで行われる。
なお、注ぎ足し充電モード214は、充電電圧が電圧Vcnsの50%以上の時に行われ
る充電動作であり、定電流充電モード212と同様に、充電電流が一定となるように行わ
れる。
放電モード221は、端子102および端子103を介して二次電池101に接続された
負荷に、二次電池101が電力を供給する動作である。二次電池101が負荷に供給する
電流(出力電流)の大きさは、負荷の大きさにより変動する。また、電力の供給にともな
い、二次電池101が出力する電圧が低下する。
また、負荷の破損や、端子102および端子103の短絡などの理由により、出力電流が
急激に大きくなる場合がある。急激な放電は、二次電池101を痛めやすく、二次電池1
01の充電容量の低下や、電池寿命の低下の一因となりうる。このように、出力電流が大
きい放電モードを急速放電モード222という。
なお、自然放電などによる電圧の低下以外に二次電池101に電力の入出力が行われない
状態を待機モードという。
[1−4.蓄電装置100の動作例]
センサ104およびMCU105により、二次電池101の動作状況を常に監視すること
ができる。例えば、温度センサ104aにより二次電池101の温度を測定することがで
きる。また、電圧計104cにより、二次電池101の充放電電圧を測定することができ
る。また、電流計104dにより、二次電池101の充放電電流を測定することができる
クーロンカウンタ104bは、端子102または端子103と二次電池101の間を流れ
る電流を検出抵抗により電圧に変換し、該電圧をもとに検出抵抗を流れた電荷量を算出す
る。クーロンカウンタ104bの測定結果をもとに、二次電池101の電荷蓄積量(電池
残量)を見積もることができる。また、一定時間あたりの電池残量の変化をもとに、電流
値を算出することができる。よって、電流計104dを設けずに、クーロンカウンタ10
4bを電流計として用いることもできる。
なお、急速放電モードに対応するため、センサ104およびMCU105による測定周期
は、1ms以下、好ましくは100μs以下とする。
充電モード211において、二次電池101の電池残量、電圧変化、温度変化を計測する
ことで二次電池101の状態を推測することができる。また、放電モード221において
、定格電流を超えた電力供給動作が発生すると、電池特性や電池寿命の劣化が生じやすい
また、センサ104およびMCU105により二次電池101の温度を監視し、例えば、
二次電池101が一定温度以上になった時の温度データを、メモリ106の記憶領域10
6cに記憶する。
特に、待機モード231や、通常の放電モード(急速放電モード222以外の放電モード
221)における二次電池101の温度を記憶することで、二次電池101の保管温度や
、使用温度を後に推測することができる。また、二次電池101の温度を監視することで
、発火等の事故を防ぐことが可能になる。
また、少なくとも、定電流充電モード212、定電圧充電モード213、および急速放電
モード222において、少なくとも、各モードの開始時点と終了時点における電池残量、
電圧、電流、および温度などの二次電池101の状態を示す電池情報と、各モードの開始
から終了までの時間と、急速放電モード222期間中に流れた最大電流値をメモリ106
に記憶することで、二次電池101の不良解析を効率よく行うことができる。
本発明の一態様の蓄電装置100の動作例として、センサ104で得られた情報をもとに
MCU105が動作モードを判定し、メモリ106内に設けられた記憶領域にセンサ10
4で得られた情報を記憶する動作について説明する。
以下、図3乃至図5のフローチャートを用いて、充電モード211時の動作記録を記憶領
域106aに記憶し、放電モード221の動作記録を記憶領域106bに記憶する動作例
について説明する。具体的には、定電流充電モード212および定電圧充電モード213
の、開始時点と終了時点における電池情報と開始から終了までの時間をメモリ106の記
憶領域106aに記憶する動作と、急速放電モード222の開始時点と終了時点における
電池情報と、開始から終了までの時間と、急速放電モード222期間中の最大電流値をメ
モリ106の記憶領域106bに記憶する動作例について説明する。
ここでは定電流充電モードと判定された時にモードフラグの値を1とし、定電圧充電モー
ドと判定された時にモードフラグの値を2とし、急速放電モードと判定された時にモード
フラグの値を3とし、これら以外の動作モードの場合はモードフラグの値を0としている
[1−4−1.定電流充電モードの判定と電池情報の記憶動作]
まず、MCU105による定電流充電モード212の判定と、電池情報の記憶動作につい
て説明する。はじめに、MCU105内に設定された、動作モードを判定するためのモー
ドフラグの値を0にする(ステップS301、図3(A)参照)。
次に、MCU105は、クーロンカウンタ104bの測定結果をもとに、前回測定時より
も二次電池101の電池残量が増加しているか否かを判断する(ステップS302)。
前回測定時よりも電池残量が増加している場合は、次に、前回測定時よりも電圧が大きく
なっているか否かを判断する(ステップS303)。
前回測定時よりも電圧が大きくなっている場合は、モードフラグが2か否かを確認する(
ステップS304、図4参照)。モードフラグが2でない場合は、次に、モードフラグが
1でないことを確認する(ステップS306)。ここで、モードフラグが1でない場合は
、動作モードが定電流充電モード212に切り替わったと判断し、メモリ106の記憶領
域106aに電池残量、電圧、電流、温度などの電池情報を記憶する。また、モードフラ
グを1にする(ステップS307)。
次に、時間の計測を開始する(ステップS308)。次に、一定時間、測定動作を停止す
る。この時の停止時間はメモリ106の記憶容量などにより決定すればよい。ここでは、
停止時間を1分とする(ステップS309)。
一定時間停止した後、再度ステップS302にもどり、前回測定時よりも二次電池101
の電池残量が増加しているか否かを判断する(図3(A)参照)。
前回測定時よりも電池残量が増加している場合は、次に、前回測定時よりも電圧が大きく
なっているか否かを判断する(ステップS303)。前回測定時よりも電圧が大きくなっ
ている場合、モードフラグが2か否かを確認する(ステップS304、図4参照)。モー
ドフラグが2でない場合は、次に、モードフラグが1でないこと確認する(ステップS3
06)。
モードフラグが1の場合、ステップS307、ステップS308は行わずに、一定時間測
定動作を停止する(ステップS309)。
一定時間測定動作を停止した後、再度ステップS302にもどり、前回測定時よりも二次
電池101の電池残量が増加しているか否かを判断する(図3(A)参照)。
充電が終了すると、二次電池101の電池残量は増加しない。電池残量が増加していなか
った場合、次に電池残量が減少しているか否かを判断する(ステップS319、図5参照
)。電池残量が減少していない場合は、モードフラグが0か否かを確認する(ステップS
316、図3(B)参照)。モードフラグが0でない場合は、時間の計測を終了し(ステ
ップS317)、メモリ106の記憶領域106aに電池残量、電圧、電流、および温度
などの電池情報と、経過時間を記憶する(ステップS318)。その後、一定時間測定動
作を停止し(ステップS327)、再度ステップS302にもどる。
以上のようにして、定電流充電モード212であることの判定と、定電流充電モード21
2の開始時点と終了時点における電池残量、電圧、電流、および温度の情報と、定電流充
電モード212の開始から終了までの時間をメモリ106に記憶することができる。
[1−4−2.定電圧充電モードの判定と電池情報の記憶動作]
次に、MCU105による定電圧充電モード213の判定と、電池情報の記憶動作につい
て説明する。はじめに、モードフラグの値を0にする(ステップS301、図3(A)参
照)。
次に、MCU105は、クーロンカウンタ104bの測定結果をもとに、前回測定時より
も二次電池101の電池残量が増加しているか否かを判断する(ステップS302)。
前回測定時よりも電池残量が増加している場合は、次に、前回測定時よりも電圧が大きく
なっているか否かを判断する(ステップS303)。
前回測定時よりも電圧が大きくなっていない場合は、モードフラグが1か否かを確認する
(ステップS310、図4参照)。モードフラグが1でない場合は、次に、モードフラグ
が2でないこと確認する(ステップS312)。ここで、モードフラグが2でない場合は
、動作モードが定電圧充電モード213に切り替わったと判断し、メモリ106の記憶領
域106aに電池残量、電圧、電流、温度などの電池情報を記憶する。また、モードフラ
グを2にする(ステップS313)。
次に、時間の計測を開始する(ステップS314)。次に、一定時間、測定動作を停止す
る(ステップS315)。
一定時間停止した後、再度ステップS302にもどり、前回測定時よりも二次電池101
の電池残量が増加しているか否かを判断する(図3(A)参照)。
前回測定時よりも電池残量が増加している場合は、次に、前回測定時よりも電圧が大きく
なっているか否かを判断する(ステップS303)。前回測定時よりも電圧が大きくなっ
ていない場合は、モードフラグが1か否かを確認する(ステップS310、図4参照)。
モードフラグが1でない場合は、次に、モードフラグが2でないこと確認する(ステップ
S312)。
モードフラグが2の場合、ステップS313、ステップS314は行わずに、再度、一定
時間測定動作を停止する(ステップS315)。
一定時間測定動作を停止した後、再度ステップS302にもどり、前回測定時よりも二次
電池101の電池残量が増加しているか否かを判断する(図3(A)参照)。
充電が終了すると、二次電池101の電池残量は増加しない。電池残量が増加していなか
った場合、次に電池残量が減少しているか否かを判断する(ステップS319、図5参照
)。電池残量が減少していない場合は、モードフラグが0か否かを確認する(ステップS
316、図3(B)参照)。モードフラグが0でない場合は、時間の計測を終了し(ステ
ップS317、図3(B)参照)、メモリ106の記憶領域106aに電池残量、電圧、
電流、および温度などの電池情報と、経過時間を記憶する(ステップS318)。その後
、一定時間測定動作を停止し(ステップS327)、再度ステップS302にもどる。
以上のようにして、定電圧充電モード213であることの判定と、定電圧充電モード21
3の開始時点と終了時点における電池残量、電圧、電流、および温度などの電池情報と、
定電圧充電モード213の開始から終了までの時間をメモリ106に記憶することができ
る。
[1−4−3.定電流充電モードから定電圧充電モードへ切り替わった時の記憶動作]
次に、MCU105による、定電流充電モード212から定電圧充電モード213へ切り
替わった時の判定と、電池情報の記憶動作について説明する。
ここでは、すでにMCU105により二次電池101が定電流充電モード212で動作し
ていると判定されているものとする。すなわち、定電流充電モード212の開始時点の電
池情報が記憶されており、時間の計測が開始されており、モードフラグが1となっている
ものとする。
ステップS309の終了後、再度ステップS302にもどり、前回測定時よりも二次電池
101の電池残量が増加しているか否かを判断する(図3(A)参照)。
前回測定時よりも電池残量が増加している場合は、次に、前回測定時よりも電圧が大きく
なっているか否かを判断する(ステップS303)。
この時、二次電池101の動作モードが定電圧充電モード213に切り替わっている場合
は、前回測定時よりも電圧が大きくなっていない。よって、次に、ステップS310に進
み、モードフラグの値が1か否かを確認する(図4参照)。
モードフラグの値は1であるため、時間の計測を終了し(ステップS326)、電池残量
、電圧、電流、および温度などの電池情報と、定電流充電モード212の開始から終了ま
での時間をメモリ106の記憶領域106aに記憶する(ステップS311)。また、モ
ードフラグを2にする。ステップS311で記憶された電池情報は、定電流充電モード2
12の終了時点での電池情報であり、定電圧充電モード213の開始時点での電池情報で
もある。
次に、時間の計測を再開する(ステップS314)。この後の動作は、前述したMCU1
05による定電圧充電モード213の判定と電池情報の記憶動作と同であるため、その説
明は省略する。
なお、図2では、定電流充電モード212の経過時間を確定させるため、定電流充電モー
ド212から定電圧充電モード213への切り替え時点で一旦時間計測を終了させている
が、時間計測を終了させずに各動作モードの経過時間を算出してもよい。
[1−4−4.定電圧充電モードから定電流充電モードへ切り替わった時の記憶動作]
次に、MCU105による、定電圧充電モード213から定電流充電モード212へ切り
替わった時の判定と、電池情報の記憶動作について説明する。
ここでは、すでにMCU105により二次電池101が、定電圧充電モード213で動作
していると判定されているものとする。すなわち、定電圧充電モード213の開始時点の
電池情報が記憶されており、時間の計測が開始されており、モードフラグが2となってい
るものとする。
ステップS315の終了後、再度ステップS302にもどり、前回測定時よりも二次電池
101の電池残量が増加しているか否かを判断する(図3(A)参照)。
前回測定時よりも電池残量が増加している場合は、次に、前回測定時よりも電圧が大きく
なっているか否かを判断する(ステップS303)。
この時、二次電池101の動作モードが定電流充電モード212に切り替わっている場合
は、前回測定時よりも電圧が大きくなっている。よって、次に、ステップS304に進み
、モードフラグの値が2か否かを確認する(図4参照)。
モードフラグの値は2であるため、時間の計測を終了し(ステップS325)、電池残量
、電圧、電流、および温度などの電池情報と、定電圧充電モード213の開始から終了ま
での時間をメモリ106の記憶領域106aに記憶する(ステップS305)。また、モ
ードフラグを1にする。ステップS305で記憶された電池情報は、定電圧充電モード2
13の終了時点での電池情報であり、定電流充電モード212の開始時点での電池情報で
もある。
次に、時間の計測を再開する(ステップS308)。この後の動作は、前述したMCU1
05による定電流充電モード212の判定と電池情報の記憶動作と同であるため、その説
明は省略する。
[1−4−5.急速放電モードの判定と電池情報の記憶動作]
次に、MCU105による急速放電モード222の判定と、電池情報の記憶動作について
説明する。はじめに、モードフラグの値を0にする(ステップS301、図3(A)参照
)。
次に、MCU105は、クーロンカウンタ104bの測定結果をもとに、前回測定時より
も二次電池101の電池残量が増加しているか否かを判断する(ステップS302)。
前回測定時よりも電池残量が増加していない場合に電池残量が減少しているか否かを判断
する(ステップS319、図5参照)。
二次電池101が放電モードである場合は、二次電池101の電池残量は減少する。二次
電池101の電池残量が減少している場合、次に電流値が定格電流よりも大きいか否かを
判断する(ステップS320)。
電流値が定格電流よりも大きい場合は、次に、モードフラグが3でないことを確認する(
ステップS321)。
ここで、モードフラグが3でない場合は、動作モードが急速放電モード222に切り替わ
ったと判断し、メモリ106の記憶領域106bに電池残量、電圧、電流、温度などの電
池情報を記憶する。また、モードフラグを3にする(ステップS322)。
次に、時間の計測を開始する(ステップS323)。次に、一定時間、測定動作を停止す
る(ステップS324)。この時の停止時間は、想定される急速放電の時間の二分の一か
ら十分の一程度とすればよい。一般に、急速放電が行われる時間は1ms乃至数msであ
ることが多いため、ここでは停止時間を100μsとする。
一定時間停止した後、再度ステップS319にもどり、前回測定時よりも二次電池101
の電池残量が減少しているか否かを判断する。なお、ステップS319ではなく、ステッ
プS302にもどっても構わない。
ステップS319において、前回測定時よりも電池残量が減少している場合は、ステップ
S320において、電流値が定格電流よりも大きいか否かを判断する。
電流値が定格電流よりも大きい場合は、次に、モードフラグが3か否かを確認する(ステ
ップS321)。ここで、モードフラグが3である場合は、ステップS322、ステップ
S323は行わずに、再度、一定時間測定動作を停止する(ステップS324)。
一定時間測定動作を停止した後、再度ステップS319にもどり、前回測定時よりも二次
電池101の電池残量が減少しているか否かを判断する。なお、ステップS319ではな
く、ステップS302にもどっても構わない。
放電動作が終了すると、二次電池101の電池残量は減少しない。電池残量が減少してい
なかった場合、モードフラグが0か否かを確認する(ステップS316、図3(B)参照
)。また、二次電池101の電池残量が減少していても、電流値が定格電流よりも大きく
ない場合も、ステップS316に移動してモードフラグが0か否かを確認する。
ここでは、モードフラグが3であるため、時間の計測を終了し(ステップS317)、メ
モリ106の記憶領域106bに電池残量、電圧、電流、温度、急速放電モード222期
間中の最大電流値などの電池情報と、経過時間を記憶する(ステップS327)。また、
モードフラグを0にする。その後、ステップS302へもどる。
以上のようにして、急速放電モード222であることの判定と、急速放電モード222の
開始時点と終了時点における電池残量、電圧、電流、温度および急速放電モード222期
間中に流れた最大電流値などの電池情報と、急速放電モード222の開始から終了までの
時間をメモリ106に記憶することができる。
[1−4−6.注ぎ足し充電モードの判定と、電池情報の記憶動作]
なお、注ぎ足し充電モード214は、充電電圧が電圧Vcnsの50%以上の時に行われ
る定電流充電モード212であるため、上記動作例では、定電流充電モード212と見な
されて電池情報などが記憶される。
[1−4−7.通常の放電モードおよび待機モードの判定と、電池情報の記憶動作]
通常の放電モード(急速放電モード222以外の放電モード221)の場合、モードフラ
グの値は0である。よって、電池残量は減少しているが、ステップS316においてモー
ドフラグが0と等しいと判断され、電池情報の記憶動作は行わずにステップS302へも
どる。
また、待機モード231の場合、自然放電などの原因により電池容量の減少があったとし
ても、定格電流よりも大きい電流は流れないため、電池情報の記憶動作は行われない。
なお、上記動作例では、通常の放電モードと待機モード231における電池情報などの記
憶は行わないが、必要に応じて通常の放電モードと待機モード231における電池情報な
どを記憶してもよい。
また、上記動作例では、動作モードに応じてメモリ106の異なる記憶領域に電池情報な
どを記憶する構成を例示しているが、本発明の一態様はこれに限定されず、異なる動作モ
ードの電池情報などを同じ記憶領域に記憶してもよい。
《2.MCU》
[2−1.MCU105の構成例]
次に、MCU105に適用可能な回路705の構成例について、図6を用いて説明する。
図6は、回路705のブロック図である。
回路705は、CPU710、バスブリッジ711、メモリ712、メモリインターフェ
イス713、コントローラ720、割り込みコントローラ721、I/Oインターフェイ
ス(入出力インターフェイス)722、及びパワーゲートユニット730を有する。
回路705は、更に、水晶発振回路741、タイマー回路745、I/Oインターフェイ
ス746、I/Oポート750、コンパレータ751、I/Oインターフェイス752、
バスライン761、バスライン762、バスライン763、及びデータバスライン764
を有する。更に、回路705は、外部装置との接続部として少なくとも接続端子770乃
至接続端子776を有する。なお、各接続端子770乃至接続端子776は、1つの端子
または複数の端子でなる端子群を表す。また、水晶振動子743を有する発振子742が
、接続端子772、及び接続端子773を介して回路705に接続されている。
CPU710はレジスタ785を有し、バスブリッジ711を介してバスライン761乃
至バスライン763、及びデータバスライン764に接続されている。
メモリ712は、CPU710のメインメモリとして機能することができる記憶装置であ
り、例えば、ランダムアクセスメモリ(RAM:Random Access Memo
ry)が用いられる。メモリ712は、CPU710が処理する命令、命令の実行に必要
なデータ、及びCPU710の処理によるデータを記憶する装置である。CPU710が
処理する命令により、メモリ712へのデータの書き込み、読み出しが行われる。また、
メモリ712の一部をメモリ106として用いてもよい。
回路705では、低消費電力モードでは、メモリ712の電力供給が遮断される。そのた
め、メモリ712は電力が供給されていない状態でもデータを保持できるメモリで構成す
ることが好ましい。
メモリインターフェイス713は、外部記憶装置との入出力インターフェイスである。C
PU710が処理する命令により、メモリインターフェイス713を介して、接続端子7
76に接続される外部記憶装置へのデータの書き込み及び読み出しが行われる。
クロック生成回路715は、CPU710で使用されるクロック信号MCLK(以下、単
に「MCLK」とも呼ぶ。)を生成する回路であり、RC発振器等を有する。MCLKは
コントローラ720及び割り込みコントローラ721にも出力される。
コントローラ720は回路705の制御を行う回路であり、例えば、回路705の電源制
御、クロック生成回路715、水晶発振回路741の制御等を行うことができる。
接続端子770は、外部の割り込み信号入力用の端子であり、接続端子770を介してマ
スク不可能な割り込み信号NMIがコントローラ720に入力される。コントローラ72
0にマスク不可能な割り込み信号NMIが入力されると、コントローラ720は直ちにC
PU710にマスク不可能な割り込み信号NMIを出力し、CPU710に割り込み処理
を実行させる。
また、割り込み信号INTが、接続端子770を介して割り込みコントローラ721に入
力される。割り込みコントローラ721には、周辺回路(745、750、751)から
の割り込み信号(T0IRQ、P0IRQ、C0IRQ)も、バス(761乃至764)
を経由せずに入力される。
割り込みコントローラ721は割り込み要求の優先順位を割り当てる機能を有する。割り
込みコントローラ721は割り込み信号を検出すると、その割り込み要求が有効であるか
否かを判定する。有効な割り込み要求であれば、コントローラ720に割り込み信号IR
Qを出力する。
また、割り込みコントローラ721はI/Oインターフェイス722を介して、バスライ
ン761及びデータバスライン764に接続されている。
コントローラ720は、割り込み信号INTが入力されると、CPU710に割り込み信
号INT2を出力し、CPU710に割り込み処理を実行させる。
また、割り込み信号T0IRQが割り込みコントローラ721を介さず直接コントローラ
720に入力される場合がある。コントローラ720は、割り込み信号T0IRQが入力
されると、CPU710にマスク不可能な割り込み信号NMI2を出力し、CPU710
に割り込み処理を実行させる。
コントローラ720のレジスタ780は、コントローラ720内に設けられ、割り込みコ
ントローラ721のレジスタ786は、I/Oインターフェイス722に設けられている
続いて、回路705が有する周辺回路を説明する。回路705は、周辺回路として、タイ
マー回路745、I/Oポート750及びコンパレータ751を有する。これらの周辺回
路は一例であり、回路705が使用される状況に応じて、必要な回路を設けることができ
る。
タイマー回路745は、クロック生成回路740から出力されるクロック信号TCLK(
以下、単に「TCLK」とも呼ぶ。)を用いて、時間を計測する機能を有する。また、タ
イマー回路745は、決められた時間間隔で、割り込み信号T0IRQを、コントローラ
720及び割り込みコントローラ721に出力する。タイマー回路745は、I/Oイン
ターフェイス746を介して、バスライン761及びデータバスライン764に接続され
ている。
TCLKはMCLKよりも低い周波数のクロック信号である。例えば、MCLKの周波数
を数MHz程度(例えば、8MHz)とし、TCLKは、数十kHz程度(例えば、32
kHz)とする。クロック生成回路740は、回路705に内蔵された水晶発振回路74
1と、接続端子772及び接続端子773に接続された発振子742を有する。発振子7
42の振動子として、水晶振動子743が用いられている。なお、CR発振器等でクロッ
ク生成回路740を構成することで、クロック生成回路740の全てのモジュールを回路
705に内蔵することが可能である。
I/Oポート750は、接続端子774を介して接続された外部機器(例えば、センサ1
04)と情報の入出力を行うためのインターフェイスであり、デジタル信号の入出力イン
ターフェイスである。I/Oポート750は、入力されたデジタル信号に応じて、割り込
み信号P0IRQを割り込みコントローラ721に出力する。
接続端子775から入力されるアナログ信号を処理する周辺回路として、コンパレータ7
51が設けられている。コンパレータ751は、接続端子775から入力されるアナログ
信号の電位(または電流)と基準信号の電位(または電流)との大小を比較し、値が0又
は1のデジタル信号を発生する。さらに、コンパレータ751は、このデジタル信号に応
じて、割り込み信号C0IRQを発生する。割り込み信号C0IRQは割り込みコントロ
ーラ721に出力される。
I/Oポート750及びコンパレータ751は共通のI/Oインターフェイス752を介
してバスライン761及びデータバスライン764に接続されている。ここでは、I/O
ポート750、コンパレータ751各々のI/Oインターフェイスに共有できる回路があ
るため、1つのI/Oインターフェイス752で構成しているが、I/Oポート750、
コンパレータ751のI/Oインターフェイスを別々に設けることもできる。
また、周辺回路のレジスタは、対応する入出力インターフェイスに設けられている。タイ
マー回路745のレジスタ787はI/Oインターフェイス746に設けられ、I/Oポ
ート750のレジスタ783及びコンパレータ751のレジスタ784は、それぞれ、I
/Oインターフェイス752に設けられている。
回路705は内部回路への電力供給を遮断するためのパワーゲートユニット730を有す
る。パワーゲートユニット730により、動作に必要な回路のみに電力供給を行うことで
、回路705全体の消費電力を下げることができる。
図6に示すように、回路705内の破線で囲んだユニット701、ユニット702、ユニ
ット703、ユニット704の回路は、パワーゲートユニット730を介して、接続端子
771に接続されている。接続端子771は、高電源電位VDD(以下、単に「VDD」
とも呼ぶ。)供給用の電源端子である。接続端子771は、例えば二次電池101に接続
される。なお、接続端子771と二次電池101の間にコンバータを設けてもよい。
本発明の一態様は、ユニット701は、タイマー回路745、及びI/Oインターフェイ
ス746を含み、ユニット702は、I/Oポート750、コンパレータ751、及びI
/Oインターフェイス752を含み、ユニット703は、割り込みコントローラ721、
及びI/Oインターフェイス722を含み、ユニット704は、CPU710、メモリ7
12、バスブリッジ711、及びメモリインターフェイス713を含む。
パワーゲートユニット730は、コントローラ720により制御される。パワーゲートユ
ニット730は、ユニット701乃至704へのVDDの供給を遮断するためのスイッチ
回路731及びスイッチ回路732を有する。
スイッチ回路731、スイッチ回路732のオン/オフはコントローラ720により制御
される。具体的には、コントローラ720は、CPU710の要求によりパワーゲートユ
ニット730が有するスイッチ回路の一部または全部をオフ状態とする信号を出力する(
電力供給の停止)。また、コントローラ720は、マスク不可能な割り込み信号NMI、
またはタイマー回路745からの割り込み信号T0IRQをトリガーにして、パワーゲー
トユニット730が有するスイッチ回路をオン状態とする信号を出力する(電力供給の開
始)。
なお、図6では、パワーゲートユニット730に、2つのスイッチ回路(スイッチ回路7
31、スイッチ回路732)を設ける構成を示しているが、これに限定されず、電源遮断
に必要な数のスイッチ回路を設ければよい。
また、本発明の一態様では、ユニット701に対する電力供給を独立して制御できるよう
にスイッチ回路731を設け、ユニット702乃至704に対する電力供給を独立して制
御できるようにスイッチ回路732を設けているが、このような電力供給経路に限定され
るものではない。例えば、スイッチ回路732とは別のスイッチ回路を設けて、メモリ7
12の電力供給を独立して制御できるようにしてもよい。また、1つの回路に対して、複
数のスイッチ回路を設けてもよい。
また、コントローラ720には、パワーゲートユニット730を介さず、常時、接続端子
771からVDDが供給される。また、ノイズの影響を少なくするため、クロック生成回
路715の発振回路、水晶発振回路741には、それぞれ、VDDの電源回路と異なる外
部の電源回路から電源電位が供給される。
コントローラ720及びパワーゲートユニット730等を備えることにより、回路705
を3種類の動作モードで動作させることが可能である。第1の動作モードは、通常動作モ
ードであり、回路705の全ての回路がアクティブな状態である。ここでは、第1の動作
モードを「Activeモード」と呼ぶ。
第2、及び第3の動作モードは低消費電力モードであり、一部の回路をアクティブにする
モードである。第2の動作モードでは、コントローラ720、並びにタイマー回路745
とその関連回路(水晶発振回路741、I/Oインターフェイス746)がアクティブで
ある。第3の動作モードでは、コントローラ720のみがアクティブである。ここでは、
第2の動作モードを「Noff1モード」と呼び、第3の動作モードを「Noff2モー
ド」と呼ぶことにする。
Noff1モードでは、コントローラ720と周辺回路の一部(タイマー動作に必要な回
路)が動作し、Noff2モードでは、コントローラ720のみが動作している。
なお、クロック生成回路715の発振器、及び水晶発振回路741は、動作モードに関わ
らず、電源が常時供給される。クロック生成回路715及び水晶発振回路741を非アク
ティブにするには、コントローラ720からまたは外部からイネーブル信号を入力し、ク
ロック生成回路715及び水晶発振回路741の発振を停止させることにより行われる。
また、Noff1、Noff2モードでは、パワーゲートユニット730により電力供給
が遮断されるため、I/Oポート750、I/Oインターフェイス752は非Activ
eになるが、接続端子774に接続されている外部機器を正常に動作させるために、I/
Oポート750、I/Oインターフェイス752の一部には電力が供給される。具体的に
は、I/Oポート750の出力バッファ、I/Oポート750用のレジスタ783である
なお、本明細書では、回路が非アクティブとは、電力の供給が遮断されて回路が停止して
いる状態の他、Activeモード(通常動作モード)での主要な機能が停止している状
態や、Activeモードよりも省電力で動作している状態を含む。
また、回路705では、Noff1、Noff2モードから、Activeモードへの復
帰を高速化するため、レジスタ784乃至レジスタ787は、電源遮断時にデータを退避
させるバックアップ保持部を更に有する。別言すると、レジスタ784乃至レジスタ78
7は、揮発性のデータ保持部(「揮発性記憶部」とも言う)と、不揮発性のデータ保持部
(「不揮発性記憶部」とも言う)を有する。Activeモード中、レジスタ784乃至
レジスタ787は、揮発性記憶部にアクセスして、データの書き込み、読み出しが行われ
る。
なお、コントローラ720には常に電力が供給されているため、コントローラ720のレ
ジスタ780には、不揮発性記憶部は設けられていない。また、上述したように、Nof
f1/Noff2モードでも、I/Oポート750には出力バッファを機能させるためレ
ジスタ783を動作させている。よって、レジスタ783には常に電力が供給されている
ため、不揮発性記憶部が設けられていない。
また、揮発性記憶部は一つまたは複数の揮発性記憶素子を有し、不揮発性記憶部は一つま
たは複数の不揮発性記憶素子を有する。なお、揮発性記憶素子は、不揮発性記憶素子より
もアクセス速度が速いものとする。
上記揮発性記憶素子を構成するトランジスタに用いる半導体材料は特に限定されないが、
後述する不揮発性記憶素子を構成するトランジスタに用いる半導体材料とは、異なる禁制
帯幅を持つ材料とすることが好ましい。このような半導体材料としては、例えば、シリコ
ン、ゲルマニウム、シリコンゲルマニウム、またはガリウムヒ素等を用いることができ、
単結晶半導体を用いることが好ましい。データの処理速度を向上させるという観点からは
、例えば、単結晶シリコンを用いたトランジスタなど、スイッチング速度の高いトランジ
スタを適用するのが好適である。
不揮発性記憶素子は、揮発性記憶素子のデータに対応する電荷が保持されたノードと電気
的に接続されており、電源が遮断されている間に揮発性記憶素子のデータを退避させるた
めに用いる。よって、不揮発性記憶素子は、少なくとも電力が供給されていないときの上
記揮発性記憶素子よりデータの保持時間が長いものとする。
ActiveモードからNoff1、Noff2モードへ移行する際は、電源遮断に先立
って、レジスタ784乃至787の揮発性記憶部のデータは不揮発性記憶部に書き込まれ
、揮発性記憶部のデータを初期値にリセットし、電源が遮断される。
Noff1、またはNoff2モードからActiveへ復帰する場合、レジスタ784
乃至787に電力供給が再開されると、まず揮発性記憶部のデータが初期値にリセットさ
れる。そして、不揮発性記憶部のデータが揮発性記憶部に書き込まれる。
従って、低消費電力モードでも、回路705の処理に必要なデータがレジスタ784乃至
787で保持されているため、回路705を低消費電力モードからActiveモードへ
直ちに復帰させることが可能になる。
[2−2.レジスタの構成例]
図7に、レジスタ784乃至レジスタ787に用いることができる、1ビットのデータを
保持可能な、揮発性記憶部と不揮発性記憶部を有する回路構成の一例をレジスタ1196
として示す。
図7に示すレジスタ1196は、揮発性記憶部であるフリップフロップ248と、不揮発
性記憶部233と、セレクタ245を有する。
フリップフロップ248には、リセット信号RST、クロック信号CLK、及びデータ信
号Dが与えられる。フリップフロップ248は、クロック信号CLKに従って入力される
データ信号Dのデータを保持し、データ信号Qとして、データ信号Dに対応して高電位H
、または低電位Lを出力する機能を有する。
不揮発性記憶部233には、書き込み制御信号WE、読み出し制御信号RD、及びデータ
信号Dが与えられる。
不揮発性記憶部233は、書き込み制御信号WEに従って、入力されるデータ信号Dのデ
ータを記憶し、読み出し制御信号RDに従って、記憶されたデータをデータ信号Dとして
出力する機能を有する。
セレクタ245は、読み出し制御信号RDに従って、データ信号Dまたは不揮発性記憶部
233から出力されるデータ信号を選択して、フリップフロップ248に入力する。
また図7に示すように不揮発性記憶部233には、トランジスタ240及び容量素子24
1が設けられている。
トランジスタ240は、nチャネル型トランジスタである。トランジスタ240のソース
またはドレインの一方は、フリップフロップ248の出力端子に接続されている。トラン
ジスタ240は、書き込み制御信号WEに従ってフリップフロップ248から出力される
データ信号の保持を制御する機能を有する。
トランジスタ240としては、オフ電流が極めて小さいトランジスタを用いることが好ま
しい。例えば、トランジスタ240として、チャネルが形成される半導体層に酸化物半導
体を含むトランジスタ(以下、「OSトランジスタ」ともいう)を用いることができる。
容量素子241を構成する一対の電極の一方と、トランジスタ240のソースまたはドレ
インの他方は、ノードM1に接続されている。また、容量素子241を構成する一対の電
極の他方にはVSSが与えられる。容量素子241は、記憶するデータ信号Dのデータに
基づく電荷をノードM1に保持する機能を有する。トランジスタ240としては、オフ電
流が極めて小さいトランジスタを用いることが好ましい。トランジスタ240にオフ電流
が極めて小さいトランジスタを用いることにより、電源電圧の供給が停止してもノードM
1の電荷は保持され、データが保持される。また、トランジスタ240にオフ電流が極め
て小さいトランジスタを用いることにより、容量素子241を小さく、または省略するこ
とができる。
トランジスタ244は、pチャネル型トランジスタである。トランジスタ244のソース
及びドレインの一方にはVDDが与えられる。また、トランジスタ244のゲートには読
み出し制御信号RDが入力される。
トランジスタ243は、nチャネル型トランジスタである。トランジスタ243のソース
及びドレインの一方と、トランジスタ244のソース及びドレインの他方は、ノードM2
に接続されている。また、トランジスタ243のゲートは、トランジスタ244のゲート
に接続し、読み出し制御信号RDが入力される。
トランジスタ242は、nチャネル型トランジスタである。トランジスタ242のソース
及びドレインの一方は、トランジスタ243のソース及びドレインの他方に接続されてお
り、ソース及びドレインの他方には、VSSが与えられる。なお、フリップフロップ24
8が出力する高電位Hはトランジスタ242をオン状態とする電位であり、フリップフロ
ップ248が出力する低電位Lはトランジスタ242をオフ状態とする電位である。
インバーター246の入力端子は、ノードM2接続されている。また、インバーター24
6の出力端子は、セレクタ245の入力端子に接続される。
容量素子247を構成する電極の一方はノードM2接続され、他方にはVSSが与えられ
る。容量素子247は、インバーター246に入力されるデータ信号のデータに基づく電
荷を保持する機能を有する。
以上のような構成を有する図7に示すレジスタ1196は、フリップフロップ248から
不揮発性記憶部233へデータの退避を行う際は、書き込み制御信号WEとしてトランジ
スタ240をオン状態とする信号を入力することにより、フリップフロップ248のデー
タ信号Qに対応した電荷が、ノードM1に与えられる。その後、書き込み制御信号WEと
してトランジスタ240をオフ状態とする信号を入力することにより、ノードM1に与え
られた電荷が保持される。また、読み出し制御信号RDの電位としてVSSが与えられて
いる間は、トランジスタ243がオフ状態、トランジスタ244がオン状態となり、ノー
ドM2の電位はVDDになる。
不揮発性記憶部233からフリップフロップ248へデータの復帰を行う際は、読み出し
制御信号RDとしてVDDを与える。すると、トランジスタ244がオフ状態、トランジ
スタ243がオン状態となり、ノードM1に保持された電荷に応じた電位がノードM2に
与えられる。ノードM1にデータ信号Qの高電位Hに対応する電荷が保持されている場合
、トランジスタ242はオン状態であり、ノードM2にVSSが与えられ、インバーター
246から出力されたVDDが、セレクタ245を介してフリップフロップ248に入力
される。また、ノードM1にデータ信号Qの低電位Lに対応する電荷が保持されている場
合、トランジスタ242はオフ状態であり、読み出し制御信号RDの電位としてVSSが
与えられていたときのノードM2の電位(VDD)が保持されており、インバーター24
6から出力されたVSSが、セレクタ245を介してフリップフロップ248に入力され
る。
上述のように、レジスタ1196に揮発性記憶部と不揮発性記憶部233を設けることに
より、CPUへの電力供給が遮断される前に、揮発性記憶部から不揮発性記憶部233に
データを退避させることができ、CPUへの電力供給が再開されたときに、不揮発性記憶
部233から揮発性記憶部にデータを素早く復帰させることができる。
このようにデータの退避及び復帰を行うことによって、電源遮断が行われるたびに揮発性
記憶部が初期化された状態からCPUを起動し直す必要がなくなるので、電力供給の再開
後CPUは速やかに測定に係る演算処理を開始することができる。
トランジスタ242は、情報の読み出し速度を向上させるという観点から、上述の揮発性
記憶素子に用いたトランジスタと同様のトランジスタを用いることが好ましい。
なお、レジスタ1196では、トランジスタ242のソース及びドレインの他方と容量素
子241の他方の電極ともにVSSが供給されているが、トランジスタ242のソース及
びドレインの他方と容量素子241の他方の電極は、同じ電位としても良いし、異なる電
位としても良い。また、容量素子241は必ずしも設ける必要はなく、例えば、トランジ
スタ242の寄生容量が大きい場合は、当該寄生容量で容量素子241の代替とすること
ができる。
ノードM1は、不揮発性メモリ素子として用いられるフローティングゲート型トランジス
タのフローティングゲートと同等の作用を奏する。しかしながら、トランジスタ240の
オンオフ動作により直接的にデータの書き換えを行うことができるので、高電圧を用いて
フローティングゲート内への電荷の注入、及びフローティングゲートからの電荷の引き抜
きが不要である。つまり、不揮発性記憶部233では、従来のフローティングゲート型ト
ランジスタにおいて書き込みや消去の際に必要であった高電圧が不要である。よって、不
揮発性記憶部233を用いることにより、データの退避の際に必要な消費電力の低減を図
ることができる。
また同様の理由により、データの書き込み動作や消去動作に起因する動作速度の低下を抑
制することができるので、不揮発性記憶部233の動作の高速化が実現される。また同様
の理由により、従来のフローティングゲート型トランジスタにおいて指摘されているゲー
ト絶縁膜(トンネル絶縁膜)の劣化という問題が存在しない。つまり、不揮発性記憶部2
33は、従来のフローティングゲート型トランジスタと異なり、原理的な書き込み回数の
制限が存在しないことを意味する。以上により、不揮発性記憶部233は、レジスタなど
の多くの書き換え回数や高速動作を要求される記憶装置としても十分に用いることができ
る。
また、OSトランジスタを用いて形成された不揮発性記憶素子は、100℃乃至200℃
の環境下においてもデータの保持を可能とすることができる。よって、不揮発性記憶部2
33は、OSトランジスタを用いて形成することが好ましい。
なお、上記において不揮発性記憶部233は、図7に示す構成に限られるものではない。
例えば、相変化メモリ(PCM:Phase Change Memory)、抵抗変化
型メモリ(ReRAM:Resistance Random Access Memo
ry)、磁気抵抗メモリ(MRAM:Magnetoresistive Random
Access Memory)、強誘電体メモリ(FeRAM:Ferroelect
ric Random Access Memory)、フラッシュメモリなどを用いる
ことができる。
また、揮発性記憶素子は、例えばバッファレジスタや、汎用レジスタなどのレジスタを構
成することができる。また、揮発性記憶部にSRAM(Static Random A
ccess Memory)などからなるキャッシュメモリを設けることもできる。これ
らのレジスタやキャッシュメモリは上記の不揮発性記憶部233にデータを退避させるこ
とができる。
《3.記憶装置》
次に、蓄電装置100を構成するメモリ106に適用可能な記憶装置の一例について説明
する。
[3−1.DOSRAM]
図8に、メモリ106に適用可能な記憶装置の一例として、DOSRAM(Dynami
c Oxide Semiconductor Random Access Memo
ry)を例示する。DOSRAMは、OSトランジスタをメモリセルの選択トランジスタ
(スイッチング素子としてのトランジスタ)に用いた記憶装置である。
図8(A)は、メモリセル1050の回路図である。また、図8(B)は、メモリセル1
050をマトリクス状に配置したメモリセルアレイの回路図である。
メモリセル1050は、トランジスタ1055と、キャパシタ1056を有する。また、
トランジスタ1055のゲートはワード線1052と電気的に接続される。トランジスタ
1055のソースはビット線1051と電気的に接続される。トランジスタ1055のド
レインはキャパシタ1056の一端と電気的に接続される。キャパシタ1056の他端は
容量線1053に電気的に接続される。
メモリセルアレイは、メモリセル1050と、ビット線1051と、ワード線1052と
、容量線1053と、センスアンプ1054と、をそれぞれ複数有する。
なお、ビット線1051及びワード線1052がグリッド状に設けられ、各メモリセル1
050はビット線1051及びワード線1052の交点に付き一つずつ配置される。ビッ
ト線1051はセンスアンプ1054と接続され、ビット線1051の電位をデータとし
て読み出す機能を有する。
図9は、記憶装置の斜視図である。図9に示す記憶装置は、上部に記憶回路としてメモリ
セルを複数含む、メモリセルアレイ(メモリセルアレイ3400a乃至メモリセルアレイ
3400n(nは2以上の整数))を複数層有し、下部にメモリセルアレイ3400a乃
至メモリセルアレイ3400nを動作させるために必要な論理回路3004を有する。
キャパシタ1056に保持された電圧は、トランジスタ1055のリーク電流によって時
間が経つと徐々に低減していく。当初V0からV1まで充電された電圧は、時間が経過す
るとdata1を読み出す限界点であるVAまで低減する。この期間を保持期間T_1と
する。すなわち、2値メモリセルの場合、保持期間T_1の間にリフレッシュをする必要
がある。
例えば、トランジスタ1055のオフ電流が十分小さくない場合、キャパシタ1056に
保持された電圧の時間変化が大きいため、保持期間T_1が短くなる。従って、頻繁にリ
フレッシュをする必要がある。リフレッシュの頻度が高まると、記憶装置の消費電力が高
まってしまう。
そこで、トランジスタ1055としてOSトランジスタを用いる。OSトランジスタはオ
フ電流が極めて小さいトランジスタである。トランジスタ1055としてOSトランジス
タを用いることにより、保持期間T_1を極めて長くすることができる。すなわち、リフ
レッシュの頻度を少なくすることが可能となるため、消費電力を低減することができる。
例えば、オフ電流が1×10−21Aから1×10−25Aであるトランジスタ1055
でメモリセルを構成すると、電力を供給せずに数日間から数十年間に渡ってデータを保持
することが可能となる。また、メモリセル1050をMCU105が有する不揮発性記憶
部に用いることもできる。
OSトランジスタを用いることによって、集積度が高く、消費電力の小さい記憶装置を得
ることができる。
また、OSトランジスタを用いて形成された記憶装置は、100℃乃至200℃の環境下
においてもデータの保持を可能とすることができる。
[3−2.NOSRAM]
次に、図8及び図9に示した記憶装置とは異なる記憶装置の一例として、NOSRAM(
Non−volatile Oxide Semiconductor Random
Access Memory)について説明する。NOSRAMとは、OSトランジスタ
を、メモリセルの選択トランジスタ(スイッチング素子としてのトランジスタ)に用い、
シリコン材料などを用いたトランジスタをメモリセルの出力トランジスタに用いたメモリ
を指す。
図10(A)はメモリセル及び配線を含む記憶装置の回路図である。また、図10(B)
は図10(A)に示すメモリセルの電気特性を示す図である。
メモリセルは、トランジスタ1071と、トランジスタ1072と、キャパシタ1073
とを有する。ここで、トランジスタ1071のゲートはワード線1076と電気的に接続
される。トランジスタ1071のソースはソース線1074と電気的に接続される。トラ
ンジスタ1071のドレインはトランジスタ1072のゲート及びキャパシタ1073の
一端と電気的に接続され、この部分をノード1079とする。トランジスタ1072のソ
ースはソース線1075と電気的に接続される。トランジスタ1072のドレインはドレ
イン線1077と電気的に接続される。キャパシタ1073の他端は容量線1078と電
気的に接続される。
なお、図10に示す記憶装置は、ノード1079の電位に応じて、トランジスタ1072
の見かけ上のしきい値電圧が変動することを利用したものである。例えば、図10(B)
は容量線1078の電圧VCLと、トランジスタ1072を流れるドレイン電流I_2
との関係を説明する図である。
なお、トランジスタ1071を介してノード1079の電位を調整することができる。例
えば、ソース線1074の電位を高電源電位VDDとする。このとき、ワード線1076
の電位をトランジスタ1071のしきい値電圧Vthに高電源電位VDDを加えた電位以
上とすることで、ノード1079の電位をHIGHにすることができる。また、ワード線
1076の電位をトランジスタ1071のしきい値電圧Vth以下とすることで、ノード
1079の電位をLOWにすることができる。
そのため、トランジスタ1072は、LOWで示したVCL−I_2カーブと、HIG
Hで示したVCL−I_2カーブのいずれかの電気特性となる。すなわち、LOWでは
、VCL=0VにてI_2が小さいため、データ0となる。また、HIGHでは、V
=0VにてI_2が大きいため、データ1となる。このようにして、ノード1079
にデータを記憶することができる。
トランジスタ1071としてオフ電流の低いトランジスタを用いることにより、データの
保持期間を長くすることができる。具体的には、OSトランジスタはオフ電流が極めて小
さいトランジスタであるため、トランジスタ1071としてOSトランジスタを用いるこ
とにより、ノード1079の電位を極めて長い期間維持することができる。また、データ
の読み出しを、トランジスタ1072を用いておこなうことにより、データを読み出す際
にノード1079に記憶したデータが失われないため、繰り返しデータを読み出すことが
できる。例えば、オフ電流が1×10−21Aから1×10−25Aであるトランジスタ
1071でメモリセルを構成すると、電力を供給せずに数日間から数十年間に渡ってデー
タを保持することが可能となる。また、NOSRAMはMCU105が有する不揮発性記
憶部に用いることもできる。
また、OSトランジスタを用いて形成された記憶装置は、100℃乃至200℃の環境下
においてもデータの保持を可能とすることができる。
OSトランジスタを用いることによって、集積度が高く、消費電力の小さい記憶装置を得
ることができる。
[3−3.記憶容量]
メモリ106の記憶容量は、二次電池101の電池容量、充放電電圧、充放電電流、想定
使用温度および想定動作時間と、それぞれのデータを測定する際の分解能を基に決定すれ
ばよい。
充電モードにおいて、電池容量を測定する際の分解能は、最大電池容量の10%以下、好
ましくは1%以下、より好ましくは0.1%以下である。また、電圧および電流を測定す
る際の分解能は、最小読み値の1/2以下、好ましくは1/10以下である。また、温度
を測定する際の分解能は、10℃以下、好ましくは5℃以下である。動作時間の分解能は
、充電モード時は10分以下、好ましくは1分以下である。
なお、急速放電モードでは、短時間に大きな電流が流れるため、電流を測定する際の分解
能を、定格電流の2/3以下、好ましくは1/2以下とする。また、動作時間の分解能を
、10ms以下、好ましくは1ms以下、より好ましくは100μs以下とする。
例えば、最大電池容量3000mAh、充放電電圧0乃至6.0V、充放電電流0乃至3
.0A、想定使用温度0乃至200℃、動作時間480分(8時間)とした場合の、充電
モード一回当たりの記憶容量は表1のように求める事ができる。
Figure 0006608988
また、急速放電モード一回当たりの記憶容量は表2のように求める事ができる。なお、表
2では、急速放電モードの最大動作時間を50ms、最大放電電流を30Aとしている。
Figure 0006608988
表1より、充電モード一回当たりの、開始時と終了時の電池情報、および動作時間を記録
するために必要な記憶容量は75bitである。また、表2より、急速放電モード一回当
たりの、開始時と終了時の電池情報、および動作時間を記録するために必要な記憶容量は
67bitである。
また、1日当たり充電モードを5回、急速放電モードを5回記録するとした場合、3年間
の記録に必要な容量は、(75×5+67×5)×365×3=777450bit、す
なわち、約760kbitと見積もることができる。
《4.半導体装置》
MCUやメモリなどに用いることができる半導体装置の構成例について説明する。
[4−1.トランジスタの構成例]
MCUやメモリなどに用いることができるトランジスタの構成例について説明する。
MCUやメモリなどに用いることができるトランジスタの構造に特段の限定はなく、任意
の構造を用いることができる。例えば、以下に説明するボトムゲート構造のスタガ型やプ
レーナ型のトランジスタを用いることができる。また、トランジスタはチャネル形成領域
が1つ形成されるシングルゲート構造でも、2つ形成されるダブルゲート構造若しくは3
つ形成されるトリプルゲート構造などのマルチゲート構造であってもよい。また、チャネ
ル形成領域の上下にゲート絶縁層を介して配置された2つのゲート電極を有する構造(本
明細書においては、これをデュアルゲート構造という)でもよい。
[4−1−1.ボトムゲート構造]
図11に、ボトムゲート型トランジスタの一種である、ボトムゲートトップコンタクト構
造のトランジスタ421の構成例を示す。図11(A)は、トランジスタ421の平面図
であり、図11(B)は、図11(A)中の一点鎖線A1−A2における断面図であり、
図11(C)は、図11(A)中の一点鎖線B1−B2における断面図である。
トランジスタ421は、絶縁表面を有する基板400上に設けられたゲート電極401と
、ゲート電極401上に設けられたゲート絶縁膜402と、ゲート絶縁膜402を介して
ゲート電極401と重畳する酸化物膜404と、酸化物膜404と接して設けられたソー
ス電極405a及びドレイン電極405bと、を有する。また、ソース電極405a及び
ドレイン電極405bを覆い、酸化物膜404と接するように絶縁膜406が設けられて
いる。なお、基板400は、他の素子が形成された被素子形成基板であってもよい。
なお、酸化物膜404のうち、ソース電極405a及びドレイン電極405bに接する領
域にn型化領域403を有していてもよい。
[4−1−2.トップゲート構造]
図12(A)に、トップゲート構造のトランジスタ422を示す。
トランジスタ422は、絶縁表面を有する基板400上に設けられた絶縁膜408と、絶
縁膜408上に設けられた酸化物膜404と、酸化物膜404に接して設けられたソース
電極405a及びドレイン電極405bと、酸化物膜404、ソース電極405a及びド
レイン電極405b上に設けられたゲート絶縁膜409と、ゲート絶縁膜409を介して
酸化物膜404と重畳するゲート電極410と、を有する。
なお、酸化物膜404のうち、ソース電極405a及びドレイン電極405bに接する領
域にn型化領域403を有していてもよい。
[4−1−3.デュアルゲート構造]
図12(B)に、チャネル形成領域の上下にゲート絶縁膜を介して配置された2つのゲー
ト電極を有する、デュアルゲート構造のトランジスタ423を示す。
トランジスタ423は、絶縁表面を有する基板400上に設けられたゲート電極401と
、ゲート電極401上に設けられたゲート絶縁膜402と、ゲート絶縁膜402を介して
ゲート電極401と重畳する酸化物膜404と、酸化物膜404と接して設けられたソー
ス電極405a及びドレイン電極405bと、ソース電極405a及びドレイン電極40
5bを覆い、酸化物膜404と接するゲート絶縁膜409と、ゲート絶縁膜409を介し
て酸化物膜404と重畳するゲート電極410と、を有する。
なお、酸化物膜404のうち、ソース電極405a及びドレイン電極405bに接する領
域にn型化領域403を有していてもよい。
[4−2.トランジスタの構成要素]
トランジスタの各構成要素について説明する。
[4−2−1.導電層]
ゲート電極401及びゲート電極410としては、例えばAl、Cr、Cu、Ta、Ti
、Mo、Wなどを有する層を用いることができる。
ソース電極405a及びドレイン電極405bとしては、例えばAl、Cr、Cu、Ta
、Ti、Mo、Wなどを有する層を用いることができる。
[4−2−2.絶縁層]
ゲート絶縁膜402、絶縁膜406、ゲート絶縁膜409としては、例えば酸化シリコン
膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化ガリウム膜、酸化
アルミニウム膜、又は酸化窒化アルミニウム膜を用いることができる。
[4−2−3.酸化物膜]
さらに、酸化物膜404に適用可能な材料について説明する。
[4−2−3−1.単層膜]
酸化物膜404としては、例えばIn系金属酸化物、Zn系金属酸化物、In−Zn系金
属酸化物、又はIn−Ga−Zn系金属酸化物などの膜を適用できる。
また、上記In−Ga−Zn系金属酸化物に含まれるGaの一部若しくは全部の代わりに
他の金属元素を含む金属酸化物を用いてもよい。上記他の金属元素としては、例えばガリ
ウムよりも多くの酸素原子と結合が可能な金属元素を用いればよく、例えばチタン、ジル
コニウム、ハフニウム、ゲルマニウム、及び錫のいずれか一つ又は複数の元素を用いれば
よい。また、上記他の金属元素としては、ランタン、セリウム、プラセオジム、ネオジム
、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム
、エルビウム、ツリウム、イッテルビウム、及びルテチウムのいずれか一つ又は複数の元
素を用いればよい。これらの金属元素は、スタビライザーとしての機能を有する。なお、
これらの金属元素の添加量は、金属酸化物が半導体として機能することが可能な量である
。ガリウムよりも多くの酸素原子と結合が可能な金属元素を用い、さらには金属酸化物中
に酸素を供給することにより、金属酸化物中の酸素欠陥を少なくできる。
酸化物膜中の水素濃度は、二次イオン質量分析(SIMS:Secondary Ion
Mass Spectrometry)において、2×1020atoms/cm
下、好ましくは5×1019atoms/cm以下、より好ましくは1×1019at
oms/cm以下、さらに好ましくは5×1018atoms/cm以下とすること
ができる。
また、酸化物膜中の窒素濃度は、SIMSにおいて、5×1019atoms/cm
満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018at
oms/cm以下、さらに好ましくは5×1017atoms/cm以下とすること
ができる。
また、酸化物膜中の炭素濃度は、SIMSにおいて、5×1019atoms/cm
満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018at
oms/cm以下、さらに好ましくは5×1017atoms/cm以下とすること
ができる。
また、酸化物膜中のシリコン濃度は、SIMSにおいて、5×1019atoms/cm
未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018
atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とする
ことができる。
また、酸化物膜では、昇温脱離ガス分光法(TDS:Thermal Desorpti
on Spectroscopy)分析によるm/zが2(水素分子など)である気体分
子(原子)、m/zが18である気体分子(原子)、m/zが28である気体分子(原子
)及びm/zが44である気体分子(原子)の放出量が、それぞれ1×1019個/cm
以下、好ましくは1×1018個/cm以下であることが好ましい。
酸化物膜404には、例えば酸化物半導体膜を用いることができる。
以下では、酸化物半導体膜の構造について説明する。
酸化物半導体膜は、単結晶酸化物半導体膜と非単結晶酸化物半導体膜とに大別される。非
単結晶酸化物半導体膜とは、非晶質酸化物半導体膜、微結晶酸化物半導体膜、多結晶酸化
物半導体膜、CAAC−OS(C Axis Aligned Crystalline
Oxide Semiconductor)膜などをいう。
非晶質酸化物半導体膜は、膜中における原子配列が不規則であり、結晶成分を有さない酸
化物半導体膜である。微小領域においても結晶部を有さず、膜全体が完全な非晶質構造の
酸化物半導体膜が典型である。
微結晶酸化物半導体膜は、例えば、1nm以上10nm未満の大きさの微結晶(ナノ結晶
ともいう。)を含む。従って、微結晶酸化物半導体膜は、非晶質酸化物半導体膜よりも原
子配列の規則性が高い。そのため、微結晶酸化物半導体膜は、非晶質酸化物半導体膜より
も欠陥準位密度が低いという特徴がある。
CAAC−OS膜は、複数の結晶部を有する酸化物半導体膜の一つであり、ほとんどの結
晶部は、一辺が100nm未満の立方体内に収まる大きさである。従って、CAAC−O
S膜に含まれる結晶部は、一辺が10nm未満、5nm未満または3nm未満の立方体内
に収まる大きさの場合も含まれる。CAAC−OS膜は、微結晶酸化物半導体膜よりも欠
陥準位密度が低いという特徴がある。以下、CAAC−OS膜について詳細な説明を行う
CAAC−OS膜を透過型電子顕微鏡(TEM:Transmission Elect
ron Microscope)によって観察すると、結晶部同士の明確な境界、即ち結
晶粒界(グレインバウンダリーともいう。)を確認することができない。そのため、CA
AC−OS膜は、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。
CAAC−OS膜を、試料面と概略平行な方向からTEMによって観察(断面TEM観察
)すると、結晶部において、金属原子が層状に配列していることを確認できる。金属原子
の各層は、CAAC−OS膜の膜を形成する面(被形成面ともいう。)または上面の凹凸
を反映した形状であり、CAAC−OS膜の被形成面または上面と平行に配列する。
一方、CAAC−OS膜を、試料面と概略垂直な方向からTEMによって観察(平面TE
M観察)すると、結晶部において、金属原子が三角形状または六角形状に配列しているこ
とを確認できる。しかしながら、異なる結晶部間で、金属原子の配列に規則性は見られな
い。
断面TEM観察および平面TEM観察より、CAAC−OS膜の結晶部は配向性を有して
いることがわかる。
CAAC−OS膜に対し、X線回折(XRD:X−Ray Diffraction)装
置を用いて構造解析を行うと、例えばInGaZnOの結晶を有するCAAC−OS膜
のout−of−plane法による解析では、回折角(2θ)が31°近傍にピークが
現れる場合がある。このピークは、InGaZnOの結晶の(009)面に帰属される
ことから、CAAC−OS膜の結晶がc軸配向性を有し、c軸が被形成面または上面に概
略垂直な方向を向いていることが確認できる。
一方、CAAC−OS膜に対し、c軸に概略垂直な方向からX線を入射させるin−pl
ane法による解析では、2θが56°近傍にピークが現れる場合がある。このピークは
、InGaZnOの結晶の(110)面に帰属される。InGaZnOの単結晶酸化
物半導体膜であれば、2θを56°近傍に固定し、試料面の法線ベクトルを軸(φ軸)と
して試料を回転させながら分析(φスキャン)を行うと、(110)面と等価な結晶面に
帰属されるピークが6本観察される。これに対し、CAAC−OS膜の場合は、2θを5
6°近傍に固定してφスキャンした場合でも、明瞭なピークが現れない。
以上のことから、CAAC−OS膜では、異なる結晶部間ではa軸およびb軸の配向は不
規則であるが、c軸配向性を有し、かつc軸が被形成面または上面の法線ベクトルに平行
な方向を向いていることがわかる。従って、前述の断面TEM観察で確認された層状に配
列した金属原子の各層は、結晶のab面に平行な面である。
なお、結晶部は、CAAC−OS膜を成膜した際、または加熱処理などの結晶化処理を行
った際に形成される。上述したように、結晶のc軸は、CAAC−OS膜の被形成面また
は上面の法線ベクトルに平行な方向に配向する。従って、例えば、CAAC−OS膜の形
状をエッチングなどによって変化させた場合、結晶のc軸がCAAC−OS膜の被形成面
または上面の法線ベクトルと平行にならないこともある。
また、CAAC−OS膜中の結晶化度が均一でなくてもよい。例えば、CAAC−OS膜
の結晶部が、CAAC−OS膜の上面近傍からの結晶成長によって形成される場合、上面
近傍の領域は、被形成面近傍の領域よりも結晶化度が高くなることがある。また、CAA
C−OS膜に不純物を添加する場合、不純物が添加された領域の結晶化度が変化し、部分
的に結晶化度の異なる領域が形成されることもある。
なお、InGaZnOの結晶を有するCAAC−OS膜のout−of−plane法
による解析では、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現れ
る場合がある。2θが36°近傍のピークは、CAAC−OS膜中の一部に、c軸配向性
を有さない結晶が含まれることを示している。CAAC−OS膜は、2θが31°近傍に
ピークを示し、2θが36°近傍にピークを示さないことが好ましい。
CAAC−OS膜を酸化物膜に用いたトランジスタは、可視光や紫外光の照射による電気
特性の変動が小さい。よって、当該トランジスタは、信頼性が高い。
酸化物半導体膜は、スパッタリング法により形成することができる。スパッタリング用タ
ーゲットとしてIn−Ga−Zn−O化合物ターゲットを用いる場合、例えばInO
末、GaO粉末、及びZnO粉末を2:2:1、8:4:3、3:1:1、1:1:
1、4:2:3、3:1:2、3:1:4のmol数比で混合して形成したIn−Ga−
Zn−O化合物ターゲットを用いることが好ましい。x、y、及びzは任意の正の数であ
る。なお、スパッタリング用ターゲットは、多結晶であってもよい。
また、マグネトロンを用い、磁場によりスパッタリング用ターゲットの近傍のプラズマ空
間を高密度化してもよい。マグネトロンスパッタリング装置では、例えば、スパッタリン
グ用ターゲットの前方に磁場を形成するため、スパッタリング用ターゲットの後方に磁石
組立体が配置される。当該磁場は、スパッタリング用ターゲットのスパッタリング時にお
いて、電離した電子やスパッタリングにより生じた二次電子を捉える。このようにして補
足された電子は成膜室内の希ガス等の不活性ガスとの衝突確率を高め、その結果プラズマ
密度が高まる。これにより、例えば被素子形成層の温度を著しく上昇させることなく、成
膜の速度を上げることができる。
スパッタリング法を用いてCAAC−OS膜を形成する場合、例えば、スパッタリング装
置の成膜室内に存在する不純物(水素、水、二酸化炭素、及び窒素など)を低減すること
が好ましい。また、成膜ガス中の不純物を低減することが好ましい。例えば、酸素ガスや
アルゴンガスの成膜ガスとして、露点が−40℃以下、好ましくは−80℃以下、より好
ましくは−100℃以下にまで高純度化したガスを用いることにより、CAAC−OS膜
に対する不純物の混入を抑制できる。
スパッタリング法を用いてCAAC−OS膜を形成する場合、成膜ガス中の酸素割合を高
くし、電力を最適化して成膜時のプラズマダメージを抑制させることが好ましい。例えば
、成膜ガス中の酸素割合を、30体積%以上、好ましくは100体積%にすることが好ま
しい。
スパッタリング法を用いてCAAC−OS膜を成膜する場合、成膜時の基板加熱(150
℃乃至450℃)に加え、成膜後の工程において加熱処理を行うことで、膜中の水素や水
などを除去し、膜中の不純物濃度を低減させることが好ましい。
上記工程に示すように、成膜中に、水素や水などを膜中に含ませないようにすることによ
り、酸化物膜404に含まれる不純物濃度を低減することができる。また、酸化物膜40
4の成膜後に、加熱処理を行うことにより、酸化物膜に含まれる水素や水などを除去する
ことによって、不純物濃度を低減することができる。
酸化物膜404の成膜後に加熱処理を行う場合、加熱処理に用いる加熱装置に特別な限定
はなく、抵抗発熱体などの発熱体からの熱伝導または熱輻射によって、被処理物を加熱す
る装置を備えていてもよい。例えば、電気炉や、LRTA(Lamp Rapid Th
ermal Anneal)装置、GRTA(Gas Rapid Thermal A
nneal)装置等のRTA(Rapid Thermal Anneal)装置を用い
ることができる。LRTA装置は、ハロゲンランプ、メタルハライドランプ、キセノンア
ークランプ、カーボンアークランプ、高圧ナトリウムランプ、高圧水銀ランプなどのラン
プから発する光(電磁波)の輻射により、被処理物を加熱する装置である。GRTA装置
は、高温のガスを用いて加熱処理を行う装置である。
加熱処理を行うことによって、酸化物膜404から水素(水、水酸基を含む化合物)など
の不純物を放出させることができる。これにより、酸化物膜404中の不純物を低減し、
酸化物膜404を高純度化することができる。また、特に、酸化物膜404から不安定な
キャリア源である水素を脱離させることができるため、酸化物膜404を用いたトランジ
スタの信頼性を向上させることができる。
この後に、酸化物膜404に酸素を供給し、酸素欠損を補填することにより、酸化物膜4
04をi型(真性半導体)またはi型に限りなく近い状態にすることができる。また、i
型に限りなく近い酸化物膜のキャリア密度は、1×1017/cm未満、1×1015
/cm未満、又は1×1013/cm未満である。
酸化物膜404に酸素を供給する処理は、イオンドーピング装置またはプラズマ処理装置
を用いて行うことができる。また、イオンドーピング装置として、質量分離機能を有する
イオンドーピング装置を用いてもよい。酸素を添加するためのガスとしては、16
しくは18などの酸素ガス、亜酸化窒素ガスまたはオゾンガスなどを用いることがで
きる。
また、酸化性ガスを含む雰囲気で加熱処理を行うことにより、酸化物膜404に酸素を供
給し、不純物の放出と同時に酸化物膜404の酸素欠損を補填することができる。また、
不活性ガス雰囲気で加熱処理した後に、酸化性ガスを10ppm以上、1%以上または1
0%以上含む雰囲気で加熱処理を行い、酸化物膜404中の酸素欠損を補填してもよい。
酸化物膜404を高純度化し、さらに、i型(真性半導体)またはi型に限りなく近い状
態にすることで、酸化物膜404を用いたトランジスタのしきい値電圧がマイナス方向へ
変動することを抑制させることができる。さらに、トランジスタの信頼性を向上させるこ
とができる。よって、半導体装置の信頼性を向上させることができる。
[4−2−3−2.積層膜]
さらに、酸化物膜404は積層膜でもよい。酸化物積層膜について以下に説明する。例え
ば、酸化物膜404を、非晶質酸化物半導体膜、微結晶酸化物半導体膜、CAAC−OS
膜のうち、二種以上を有する積層膜としてもよい。
酸化物積層膜の構成例を図13(A)に示す
図13(A)に示す積層構造は、絶縁膜408と、ゲート絶縁膜409との間に、酸化物
積層膜160を有して構成される。また、酸化物積層膜160は、酸化物層161、酸化
物層162、及び酸化物層163を含む。なお、図13(B)に示すように、必ずしも酸
化物層161を設けなくてもよい。
酸化物層161及び酸化物層163は、酸化物層162を構成する金属元素を一種以上含
む酸化物層である。
酸化物層162は、上記酸化物膜404に適用可能な酸化物を用いて形成される。
酸化物層161としては、In−M−Zn酸化物(Al、Ti、Ga、Ge、Y、Zr、
Sn、La、Ce又はHf等の金属)で表記され、酸化物層162よりもMの原子数比が
高い酸化物層を含む。具体的には、酸化物層161として、酸化物層162よりも前述の
元素を1.5倍以上、好ましくは2倍以上、さらに好ましくは3倍以上高い原子数比で含
む酸化物層を用いる。前述の元素はインジウムよりも酸素と強く結合するため、酸素欠損
が酸化物層に生じることを抑制することができる機能を有する。即ち、酸化物層161は
酸化物層162よりも酸素欠損が生じにくい酸化物層である。
酸化物層163としては、酸化物層161と同様にIn−M−Zn酸化物(Al、Ti、
Ga、Ge、Y、Zr、Sn、La、Ce又はHf等の金属)で表記され、酸化物層16
2よりもMの原子数比が高い酸化物層を含む。具体的には、酸化物層163として、酸化
物層162よりも前述の元素を1.5倍以上、好ましくは2倍以上、さらに好ましくは3
倍以上高い原子数比で含む酸化物層を用いる。
つまり、酸化物層161、酸化物層162、酸化物層163が、少なくともインジウム、
亜鉛及びM(Al、Ti、Ga、Ge、Y、Zr、Sn、La、Ce又はHf等の金属)
を含むIn−M−Zn酸化物であるとき、酸化物層161をIn:M:Zn=x:y
:z[原子数比]、酸化物層162をIn:M:Zn=x:y:z[原子数比]
、酸化物層163をIn:M:Zn=x3:3:[原子数比]とすると、y/x
及びy/xがy/xよりも大きくなることが好ましい。y/x及びy
はy/xよりも1.5倍以上、好ましくは2倍以上、さらに好ましくは3倍以上
とする。このとき、酸化物層162において、yがx以上であるとトランジスタの電
気特性を安定させることができる。ただし、yがxの3倍以上になると、トランジス
タの電界効果移動度が低下してしまうため、yはxの3倍未満であることが好ましい
なお、酸化物層161がIn−M−Zn酸化物であるとき、InとMの原子数比率は好ま
しくはInが50atomic%未満、Mが50atomic%以上、さらに好ましくは
Inが25atomic%未満、Mが75atomic%以上とする。また、酸化物層1
62がIn−M−Zn酸化物であるとき、InとMの原子数比率は好ましくはInが25
atomic%以上、Mが75atomic%未満、さらに好ましくはInが34ato
mic%以上、Mが66atomic%未満とする。また、酸化物層163がIn−M−
Zn酸化物であるとき、InとMの原子数比率は好ましくはInが50atomic%未
満、Mが50atomic%以上、さらに好ましくはInが25atomic%未満、M
が75atomic%以上とする。なお、上記のInとMの原子数比率は、InとMとの
和を100atomic%としたときの値である。
なお、酸化物層161と、酸化物層163とは、異なる構成元素を含む層としてもよいし
、同じ構成元素を同一の原子数比で、又は異なる原子数比で含む層としてもよい。
酸化物層161、酸化物層162、及び酸化物層163には、例えば、インジウム、亜鉛
及びガリウムを含んだ酸化物半導体を用いることができる。具体的には、酸化物層161
としては、In:Ga:Zn=1:3:2[原子数比]のIn−Ga−Zn酸化物、In
:Ga:Zn=1:3:4[原子数比]のIn−Ga−Zn酸化物、In:Ga:Zn=
1:6:4[原子数比]のIn−Ga−Zn酸化物、In:Ga:Zn=1:9:6[原
子数比]のIn−Ga−Zn酸化物、又はその近傍の組成を有する酸化物を用いることが
でき、酸化物層162としては、In:Ga:Zn=1:1:1[原子数比]のIn−G
a−Zn酸化物、In:Ga:Zn=3:1:2[原子数比]のIn−Ga−Zn酸化物
、又はその近傍の組成を有する酸化物を用いることができ、酸化物層163としては、I
n:Ga:Zn=1:3:2[原子数比]のIn−Ga−Zn酸化物、In:Ga:Zn
=1:3:4[原子数比]のIn−Ga−Zn酸化物、In:Ga:Zn=1:6:4[
原子数比]のIn−Ga−Zn酸化物、In:Ga:Zn=1:9:6[原子数比]のI
n−Ga−Zn酸化物、又はその近傍の組成を有する酸化物を用いることができる。
酸化物層161の厚さは、3nm以上100nm以下、好ましくは3nm以上50nm以
下とする。また、酸化物層162の厚さは、3nm以上1500nm以下、好ましくは3
nm以上100nm以下、さらに好ましくは3nm以上50nm以下とする。
なお、酸化物層161及び酸化物層163は、酸化物層162に用いる材料よりもインジ
ウムの原子数比が少ない材料を用いる。酸化物層中のインジウムやガリウムなどの含有量
は、飛行時間型二次イオン質量分析法(TOF−SIMS)や、X線電子分光法(XPS
)で比較できる。
また、酸化物層161及び酸化物層163は、酸化物層162を構成する金属元素を一種
以上含み、伝導帯下端のエネルギーが酸化物層162よりも、0.05eV、0.07e
V、0.1eV、0.15eVのいずれか以上であって、2eV、1eV、0.5eV、
0.4eVのいずれか以下の範囲で真空準位に近い酸化物半導体で形成することが好まし
い。
このような構造において、トランジスタのゲート電極に電界を印加すると、酸化物積層膜
160のうち、伝導帯下端のエネルギーが最も小さい酸化物層162にチャネルが形成さ
れる。すなわち、酸化物層162とゲート絶縁膜409との間に酸化物層163が形成さ
れていることよって、トランジスタのチャネルをゲート絶縁膜409と接しない構造とす
ることができる。
ここで、酸化物積層膜160のバンド構造を説明する。
酸化物積層膜160のバンド構造は、例えば分光エリプソメータを用いて酸化物層161
乃至酸化物層163のエネルギーギャップ、酸化物層161乃至酸化物層163のそれぞ
れの界面のエネルギーギャップを測定し、紫外線光電子分光分析(UPSともいう)装置
を用いて酸化物層161乃至酸化物層163のそれぞれの真空準位と価電子帯上端のエネ
ルギー差を測定し、真空準位と価電子帯上端のエネルギー差と、各層のエネルギーギャッ
プとの差分として算出される真空準位と伝導帯下端のエネルギー差(電子親和力)をプロ
ットすることにより特定することができる。ここでは、酸化物層161及び酸化物層16
3をエネルギーギャップが3.15eVであるIn−Ga−Zn酸化物とし、酸化物層1
62をエネルギーギャップが2.8eVであるIn−Ga−Zn酸化物とする。さらに、
酸化物層161と酸化物層162との界面近傍のエネルギーギャップを3eV、酸化物層
163と酸化物層162との界面近傍のエネルギーギャップを3eVとする。
上記により特定されたバンド構造の模式図を図14(A)に示す。図14(A)では、酸
化物層161及び酸化物層163と接して、酸化シリコン膜を設けた場合について説明す
る。ここで、縦軸は電子エネルギー(eV)を、横軸は距離を、それぞれ示す。また、E
cI1及びEcI2は酸化シリコン膜の伝導帯下端のエネルギー、EcS1は酸化物層1
61の伝導帯下端のエネルギー、EcS2は酸化物層162の伝導帯下端のエネルギー、
EcS3は酸化物層163の伝導帯下端のエネルギーを示す。
図14(A)に示すように、酸化物層161、酸化物層162、酸化物層163において
、伝導帯下端のエネルギーが連続的に変化する。これは、酸化物層161、酸化物層16
2、酸化物層163の組成が近似することにより、酸素が相互に拡散しやすい点からも理
解される。
なお、図14(A)では酸化物層161及び酸化物層163が同様のエネルギーギャップ
を有する酸化物層である場合について示したが、それぞれが異なるエネルギーギャップを
有する酸化物層であっても構わない。例えば、EcS3よりもEcS1が高いエネルギー
を有する場合、バンド構造の一部は、図14(B)のように示される。また、図14に示
さないが、EcS1よりもEcS3が高いエネルギーを有しても構わない。
図14(A)、(B)より、酸化物層162がウェル(井戸)となり、酸化物積層膜16
0を用いたトランジスタにおいて、チャネルが酸化物層162に形成されることがわかる
。なお、酸化物積層膜160は伝導帯下端のエネルギーが連続的に変化しているため、U
字型井戸(U Shape Well)とも呼ぶことができる。また、このような構成で
形成されたチャネルを埋め込みチャネルということもできる。
酸化物層161及び酸化物層163は、酸化物層162を構成する金属元素を一種以上含
む酸化物層であるから、酸化物積層膜160は主成分を共通して積層された酸化物積層膜
ともいえる。主成分を共通として積層された酸化物積層膜は、各層を単に積層するのでは
なく連続接合(ここでは、特に伝導帯下端のエネルギーが各層の間で連続的に変化するU
字型の井戸構造)が形成されるように作製する。なぜなら、各層の界面にトラップ中心や
再結合中心のような欠陥準位を形成するような不純物が混在していると、エネルギーバン
ドの連続性が失われ、界面でキャリアがトラップあるいは再結合により消滅してしまうた
めである。
連続接合を形成するためには、ロードロック室を備えたマルチチャンバー方式の成膜装置
(スパッタリング装置)を用いて各層を大気に触れさせることなく連続して積層すること
が必要となる。スパッタリング装置における各チャンバーは、酸化物半導体にとって不純
物となる水等を可能な限り除去すべくクライオポンプのような吸着式の真空排気ポンプを
用いて高真空排気(1×10−4Pa乃至5×10−7Pa程度まで)することが好まし
い。又は、ターボ分子ポンプとコールドトラップを組み合わせて排気系からチャンバー内
に気体が逆流しないようにしておくことが好ましい。
高純度真性酸化物半導体を得るためには、チャンバー内を高真空排気するのみならずスパ
ッタガスの高純度化も必要である。スパッタガスとして用いる酸素ガスやアルゴンガスは
、露点が−40℃以下、好ましくは−80℃以下、より好ましくは−100℃以下にまで
高純度化したガスを用いることで酸化物半導体に水分等が取り込まれることを可能な限り
防ぐことができる。
酸化物層161及び酸化物層163はバリア層として機能し、酸化物積層膜160に接す
る絶縁膜と、酸化物積層膜160との界面に形成されるトラップ準位の影響が、トランジ
スタのキャリアの主な経路(キャリアパス)となる酸化物層162へと及ぶことを抑制す
ることができる。
例えば、酸化物半導体層に含まれる酸素欠損は、酸化物半導体のエネルギーギャップ内の
深いエネルギー位置に存在する局在準位として顕在化する。このような局在準位にキャリ
アがトラップされることで、トランジスタの信頼性が低下するため、酸化物半導体層に含
まれる酸素欠損を低減することが必要となる。酸化物積層膜160においては、酸化物層
162と比較して酸素欠損の生じにくい酸化物層を酸化物層162の上下に接して設ける
ことで、酸化物層162における酸素欠損を低減することができる。例えば、酸化物層1
62は、一定光電流測定法(CPMともいう)により測定された局在準位による吸収係数
を1×10−3/cm未満、好ましくは1×10−4/cm未満とすることができる。
なお、チャネル形成領域とは、酸化物積層膜160(酸化物層161、酸化物層162、
及び酸化物層163)のうち、ゲート電極410が重畳している領域をいう。ただし、酸
化物積層膜160中にn型化領域403が形成されうる場合においては、酸化物積層膜1
60のうち、ゲート電極410が重畳し、且つn型化領域403に挟まれた領域がチャネ
ル形成領域となる。このように、チャネル形成領域は、酸化物積層膜160のうち、ゲー
ト電極410が重畳している領域に主に形成され、酸化物積層膜160の半導体特性に依
存する。したがって、酸化物積層膜160のゲート電極410が重畳した領域は、酸化物
積層膜160がi型の場合にはチャネル形成領域であり、酸化物積層膜160がn型の場
合にはチャネル形成領域でない場合がある。なお、チャネルとは、チャネル形成領域にお
いて、電流が主として流れる経路をいう。
また、酸化物層162が、構成元素の異なる絶縁層(例えば、酸化シリコンを含む下地絶
縁層)と接する場合、2層の界面に界面準位が形成され、該界面準位はチャネルを形成す
ることがある。このような場合、しきい値電圧の異なる別のトランジスタが出現し、トラ
ンジスタの見かけ上のしきい値電圧が変動することがある。しかしながら、酸化物積層膜
160においては酸化物層162を構成する金属元素を一種以上含んで酸化物層161が
構成されるため、酸化物層161と酸化物層162の界面に界面準位を形成しにくくなる
。よって酸化物層161を設けることにより、トランジスタのしきい値電圧などの電気特
性のばらつきを低減することができる。
また、ゲート絶縁膜409と酸化物層162との界面にチャネルが形成される場合、該界
面で界面散乱が起こり、トランジスタの電界効果移動度が低くなる。しかしながら、酸化
物積層膜160においては、酸化物層162を構成する金属元素を一種以上含んで酸化物
層163が構成されるため、酸化物層162と酸化物層163との界面ではキャリアの散
乱が起こりにくく、トランジスタの電界効果移動度を高くすることができる。
また、酸化物層161及び酸化物層163は、酸化物積層膜160に接する絶縁層の構成
元素が、酸化物層162へ混入して、不純物による準位が形成されることを抑制するため
のバリア層としても機能する。
例えば、酸化物積層膜160に接する絶縁層として、シリコンを含む絶縁層を用いる場合
、該絶縁層中のシリコン、又は絶縁層中に混入されうる炭素が、酸化物層161又は酸化
物層163の中へ界面から数nm程度まで混入することがある。シリコン、炭素等の不純
物が酸化物半導体層中に入ると不純物準位を形成し、不純物準位がドナーとなり電子を生
成することでn型化することがある。
しかしながら、酸化物層161及び酸化物層163の膜厚が、数nmよりも厚ければ、混
入したシリコン、炭素等の不純物が酸化物層162にまで到達しないため、不純物準位の
影響は低減される。
ここで、酸化物層162に含まれるシリコンの濃度は3×1018/cm以下、好まし
くは3×1017/cm以下とする。また、酸化物層162に含まれる炭素の濃度は3
×1018/cm以下、好ましくは3×1017/cm以下とする。特に酸化物層1
62に第14族元素であるシリコン又は炭素が多く混入しないように、酸化物層161及
び酸化物層163で、キャリアパスとなる酸化物層162を挟む、又は囲む構成とするこ
とが好ましい。すなわち、酸化物層162に含まれるシリコン及び炭素の濃度は、酸化物
層161及び酸化物層163に含まれるシリコン及び炭素の濃度よりも低いことが好まし
い。
なお、酸化物層中の不純物濃度は二次イオン分析法(SIMS:Secondary I
on Mass Spectrometry)で測定することができる。
また、水素や水分が不純物として酸化物半導体層に含まれてしまうとドナーを作りn型化
するため、酸化物積層膜160の上方に水素や水分が外部から侵入することを防止する保
護絶縁層(窒化シリコン層など)を設けることは、井戸型構造を実現する上で有用である
さらに、図15(A)乃至図15(C)に、トランジスタのチャネル幅方向における酸化
物積層膜160の断面構成例の一部を示す。酸化物積層膜160は、絶縁膜408の上に
酸化物層161と、酸化物層161上に設けられた酸化物層162と、酸化物層162上
に設けられた酸化物層163と、酸化物層161の側面、酸化物層162の側面、酸化物
層163の側面に接して設けられた酸化物層164と、を有する。このとき、酸化物層1
62は、酸化物層161、酸化物層163、及び酸化物層164により囲まれている。ま
た、酸化物層164は、ゲート絶縁膜409に接し、また、ゲート絶縁膜409に接して
ゲート電極410が設けられている。
図15(A)に示す酸化物積層膜160は、任意の一又は複数の曲率半径で定義される曲
面を有する。このとき、ゲート絶縁膜409に接する酸化物層164の面の少なくとも一
部は曲面である。なお、図15(A)に示すように、ゲート電極410が絶縁膜408に
接してもよい。
酸化物層164は、例えば酸化物層161に適用可能な材料を含む。酸化物層164は、
例えばドライエッチング法などにより、酸化物層161、酸化物層162、及び酸化物層
163をエッチングする際に、酸化物層161の反応生成物が酸化物層162及び酸化物
層163の側面に付着することにより生成される。
なお、酸化物層161、酸化物層163、及び酸化物層164は厳密に区別のつかない場
合がある。そのため、酸化物層162が酸化物に囲まれていると言い換えることもできる
また、酸化物積層膜160が図15(B)に示す構造であってもよい。図15(B)に示
す酸化物積層膜160は、端部に傾斜(テーパー角)領域を有する構造である。端部に傾
斜(テーパー角)領域を設けることにより、ゲート絶縁膜409の被覆性を向上させるこ
とができる。また、図15(C)に示すように、上記テーパ領域の一部が削られた構造で
あってもよい。
上記に示すトランジスタは、酸化物半導体膜と、酸化物半導体膜の上側及び下側に接して
設けられる酸化物層の積層でなる酸化物積層膜の断面は、曲面又は傾斜領域を有する。酸
化物積層膜の断面に曲面又は傾斜領域を有することで、酸化物積層膜上に形成される膜の
被覆性を向上させることができる。よって、酸化物積層膜上に形成された膜を均一に形成
することができ、膜密度の低い領域や、膜が形成されていない領域から酸化物積層膜中に
不純物元素が入り込み、トランジスタの電気特性の劣化を抑制し、安定した特性のトラン
ジスタとすることができる。
以上のように、酸化物半導体に接し酸化物を形成し、酸化物半導体と酸化物とを含む酸化
物積層膜とすることによって、水素、水分等の不純物又は酸化物半導体に接する絶縁膜か
らの不純物が、酸化物半導体膜中に入り込むことによってキャリアの形成を抑制すること
ができる。
[4−3.トランジスタを用いた半導体装置の構成例]
上記トランジスタを用いた半導体装置の構成例について説明する。
図16は、半導体装置の断面構造の一例である。図16に示す半導体装置は、トランジス
タ1172と、絶縁膜等を介してトランジスタ1172上に設けられたトランジスタ11
71と、キャパシタ1178と、を有する。
本実施形態では、下部のトランジスタ1172には半導体材料を用い、上部のトランジス
タ1171には酸化物膜を用い、当該半導体材料として半導体基板を用いた構造の半導体
装置を示す。
図16は、下部に半導体材料を用いたトランジスタを有し、上部に本発明の一態様に係る
酸化物膜を用いたトランジスタを有する半導体装置の断面構成を示す一例である。ここで
、半導体材料と本発明の一態様に係る酸化物膜とは異なる材料を用いる。例えば、半導体
材料を酸化物又は酸化物半導体以外の半導体材料とすることができる。酸化物又は酸化物
半導体以外の材料としては、例えば、シリコン、ゲルマニウム、シリコンゲルマニウム、
炭化シリコン、又はガリウムヒ素等を用いることができ、単結晶半導体を用いることが好
ましい。単結晶半導体を用いたトランジスタは、高速動作が容易である。一方で、酸化物
膜を用いたトランジスタは、オフ電流が数yA/μm乃至数zA/μm程度と十分低い特
性を利用した回路に用いることができる。これらのことから、図16に示す半導体装置を
用いて、例えば低消費電力の論理回路を構成することもできる。半導体材料としてその他
に、有機半導体材料などを用いてもよい。
また、図示しないが、上述した半導体基板の替わりに、SOI(Silicon On
Insulator)基板を用いてもよい。
SOI基板(SOIウェハともいう)は、半導体基板と、半導体基板上の埋め込み酸化膜
(BOX(Buried Oxide)層ともいう)と、埋め込み酸化膜上の半導体膜(
以下SOI層という)とからなる。該SOI基板は、シリコン基板の所定の深さに酸素イ
オンを注入して高温処理によってBOX層とSOI層を形成したSIMOX(Separ
ation by IMplanted OXgen:SUMCO TECHXIV株式
会社の登録商標)基板や、陽極化成による多孔質シリコン層を用いたELTRAN(Ep
itaxial Layer TRANsfer:キヤノン株式会社の登録商標)基板、
熱酸化膜を形成した基板(デバイスウェハ)に水素イオンを注入して脆弱層を形成し、他
のシリコン基板(ハンドルウェハ)と貼り合わせ後に熱処理により脆弱層からハンドルウ
ェハを剥離してSOI層を形成したUNIBOND(SOITEC社の登録商標)基板等
を適宜用いることができる。
なお、一般的にはSOI基板はシリコン基板上にBOX層を介してシリコン薄膜からなる
SOI層が設けられたものを指すが、シリコンに限られず、他の単結晶半導体材料を用い
てもよい。また、SOI基板にはガラス基板等の絶縁基板上に絶縁層を介して半導体層が
設けられた構成のものが含まれるものとする。
半導体基板の替わりに、SOI基板を用いた場合には、下部のトランジスタのチャネル領
域に上記のSOI層を用いる。SOI基板を用いたトランジスタを用いることで、バルク
シリコン基板を用いた場合と比較して、BOX層の存在により寄生容量が小さい、α線等
の入射によるソフトエラーの確率が低い、寄生トランジスタの形成によるラッチアップが
生じない、素子が容易に絶縁分離できる等の多くの利点を有する。
また、SOI層は単結晶シリコン等の単結晶半導体からなる。従って、下部のトランジス
タにSOI層を用いることで、半導体装置の動作を高速化することができる。
図16において、トランジスタ1172は、例えば図7に示すトランジスタ242、図1
0に示すトランジスタ1072に相当する。トランジスタ1172は、nチャネル型トラ
ンジスタ(NMOSFET)、pチャネル型トランジスタ(PMOSFET)のいずれも
用いることができる。図16に示す例においては、トランジスタ1172は、STI10
85(Shallow Trench Isolation)によって共通の島として他
の素子と絶縁分離されている。STI1085を用いることにより、LOCOSによる素
子分離法で発生した素子分離部のバーズビークを抑制することができ、素子分離部の縮小
等が可能となる。一方で、構造の微細化小型化が要求されない半導体装置においてはST
I1085の形成は必ずしも必要ではなく、LOCOS等の素子分離手段を用いることも
できる。なお、トランジスタ1172のしきい値を制御するため、STI1085間には
ウェル1081が形成される。
図16におけるトランジスタ1172は、基板1080中に設けられたチャネル形成領域
と、チャネル形成領域を挟むように設けられた不純物領域1112(ソース領域及びドレ
イン領域ともいう)と、チャネル形成領域上に設けられたゲート絶縁膜1113、111
4と、ゲート絶縁膜1113、1114上にチャネル形成領域と重畳するように設けられ
たゲート電極1116、1118とを有する。ゲート電極は加工精度を高めるための第1
の材料からなるゲート電極1116と、配線として低抵抗化を目的とした第2の材料から
なるゲート電極1118を積層した構造とすることができるが、この構造に限らず、適宜
要求される仕様に応じて材料、積層数、形状等を調整することができる。なお、図におい
て、明示的にはソース電極やドレイン電極を有しない場合があるが、便宜上このような状
態を含めてトランジスタとよぶ場合がある。
また、基板1080中に設けられた不純物領域1112には、図示しないが、コンタクト
プラグが接続されている。ここでコンタクトプラグは、トランジスタ1172等のソース
電極やドレイン電極としても機能する。また、不純物領域1112とチャネル形成領域と
の間には、不純物領域1112と異なる不純物領域1111が設けられている。不純物領
域1111は、導入された不純物の濃度によって、LDD領域やエクステンション領域と
してチャネル形成領域近傍の電界分布を制御することができる機能を果たす。ゲート電極
1116、1118の側壁には絶縁膜1117を介してサイドウォール絶縁膜1115を
有する。絶縁膜1117やサイドウォール絶縁膜1115を用いることで、LDD領域や
エクステンション領域を形成することができる。
また、トランジスタ1172は、層間絶縁膜1088により被覆されている。層間絶縁膜
1088には保護膜としての機能を持たせることができ、外部からチャネル形成領域への
不純物の侵入を防止することができる。また、層間絶縁膜1088をCVD法による窒化
シリコン等の材料とすることで、チャネル形成領域に単結晶シリコンを用いた場合には加
熱処理によって水素化を行うことができる。また、層間絶縁膜1088に引張応力又は圧
縮応力を有する絶縁膜を用いることで、チャネル形成領域を構成する半導体材料に歪みを
与えることができる。nチャネル型のトランジスタの場合にはチャネル形成領域となるシ
リコン材料に引張応力を、pチャネル型のトランジスタの場合にはチャネル形成領域とな
るシリコン材料に圧縮応力を付加することで、各トランジスタの移動度を向上させること
ができる。
なお、図16に示すトランジスタ1172を、フィン型構造(トライゲート構造、Ωゲー
ト構造ともいう)のトランジスタとしてもよい。フィン型構造とは、半導体基板の一部を
板状の突起形状に加工し、突起形状の長尺方向を交差するようにゲート電極を設けた構造
である。ゲート電極は、ゲート絶縁膜を介して突起構造の上面及び側面を覆う。トランジ
スタ1172をフィン型構造のトランジスタとすることで、チャネル幅を縮小してトラン
ジスタの集積化を図ることができる。また、電流を多く流すことができ、加えて制御効率
を向上させることができるため、トランジスタのオフ時の電流及び閾値電圧を低減するこ
とができる。
キャパシタ1178は、間に誘電体膜として機能する絶縁膜1083を介して、基板10
80中に設けられた不純物領域1082と、電極1084及び電極1087との積層によ
り構成される。ここで、絶縁膜1083は、トランジスタ1172のゲート絶縁膜111
3、1114と同一の材料で形成され、電極1084及び電極1087は、トランジスタ
1172のゲート電極1116、1118と同一の材料で形成される。また、不純物領域
1082は、トランジスタ1172が有する不純物領域1112と同一のタイミングで形
成することができる。
図16におけるトランジスタ1171は、例えば図7に示すトランジスタ240、図10
に示すトランジスタ1071に相当する。トランジスタ1171は、下地絶縁膜1101
上に設けられた酸化物膜1173と、酸化物膜1173に接する一対の導電層1174と
、導電層1174の上面及び側面に接して設けられた導電層1175と、絶縁膜1176
を挟んで酸化物膜1173に重畳する導電層1177と、を有する。
トランジスタ1171は、必要な回路構成に応じて下層のトランジスタ1172等の半導
体材料を用いたトランジスタと電気的に接続する。図16においては、一例としてトラン
ジスタ1171のソース又はドレインがトランジスタ1172のゲートと電気的に接続し
ている構成を示している。
導電層1174は、トランジスタ1171のソース電極又はドレイン電極としての機能を
有していてもよい。一対の導電層1174としては、酸素と結合し易い導電材料を用いる
ことができる。例えば、Al、Cr、Cu、Ta、Ti、Mo、Wなどを用いることがで
きる。後のプロセス温度が比較的高くできることなどから、融点の高いWを用いることが
特に好ましい。なお、酸素と結合し易い導電材料には、酸素が拡散又は移動し易い材料も
含まれる。
酸素と結合し易い導電材料と酸化物層を接触させると、酸化物層中の酸素が、酸素と結合
し易い導電材料側に拡散又は移動する現象が起こる。トランジスタの作製工程には、いく
つかの加熱工程があることから、上記現象により、酸化物層のソース電極層及びドレイン
電極層と接触した近傍の領域に酸素欠損が発生し、当該領域はn型化する。したがって、
n型化した当該領域はトランジスタのソース又はドレインとして作用させることができる
チャネル長が短いトランジスタを形成する場合、上記酸素欠損の発生によってn型化した
領域がトランジスタのチャネル長方向に延在してしまうことがある。この場合、トランジ
スタの電気特性には、しきい値電圧のシフトやゲート電圧でオンオフの制御ができない状
態(導通状態)が現れる。そのため、チャネル長が短いトランジスタを形成する場合は、
ソース電極及びドレイン電極に酸素と結合し易い導電材料を用いることは好ましくない。
したがって、本発明の一態様では、ソース電極層及びドレイン電極層を積層とし、チャネ
ル長を定める一対の導電層1175には、酸素と結合しにくい導電材料を用いる。当該導
電材料としては、例えば、窒化タンタル、窒化チタンなどの導電性窒化物、又はルテニウ
ムなどを用いることが好ましい。なお、酸素と結合しにくい導電材料には、酸素が拡散又
は移動しにくい材料も含まれる。
上記酸素と結合しにくい導電材料を一対の導電層1175に用いることによって、酸化物
膜1173に形成されるチャネル形成領域に酸素欠損が形成されることを抑制することが
でき、チャネルのn型化を抑えることができる。したがって、チャネル長が短いトランジ
スタであっても良好な電気特性を得ることができる。
なお、上記酸素と結合しにくい導電材料のみでソース電極層及びドレイン電極層を形成す
ると、酸化物膜1173とのコンタクト抵抗が高くなりすぎることから、一対の導電層1
174を、酸化物膜1173上に形成し、導電層1174を覆うように導電層1175を
形成することが好ましい。
絶縁膜1176は、ゲート絶縁膜としての機能を有していてもよい。絶縁膜1176して
は、酸化アルミニウム、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、窒化酸化
シリコン、窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジ
ルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム及び酸化タンタルを一種以上
含む絶縁膜を用いることができる。また、絶縁膜1176は上記材料の積層であってもよ
い。
導電層1177は、ゲート電極としての機能を有していてもよい。導電層1177は、A
l、Ti、Cr、Co、Ni、Cu、Y、Zr、Mo、Ru、Ag、Ta及びWなどの導
電膜を用いることができる。また、導電層1177は、上記材料の積層であってもよい。
絶縁膜1102には、酸素の拡散又は移動が少ない材料を用いると良い。また、絶縁膜1
102は、膜中に水素の含有量が少ない材料を用いると良い。絶縁膜1102中の水素の
含有量としては、好ましくは5×1019/cm未満、さらに好ましくは5×1018
/cm未満とする。絶縁膜1102中の水素の含有量を上記数値とすることによって、
トランジスタのオフ電流を低くすることができる。例えば、絶縁膜1102としては、窒
化シリコン膜、窒化酸化シリコン膜を用いるとよい。
また、トランジスタ1171においてチャネル長は短く、5nm以上60nm未満、好ま
しくは10nm以上40nm以下とする。トランジスタ1171は、酸化物膜をチャネル
領域に用いているため、短チャネル効果を有さない、又は極めて少なく、かつスイッチン
グ素子としての良好な電気特性を示すトランジスタである。
トランジスタ1171は、オフ電流が小さいため、当該トランジスタを用いることにより
、長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要
としない、あるいは、リフレッシュ動作の頻度が極めて少ない記憶装置とすることが可能
となるため、消費電力を十分に低減することができる。
トランジスタ1171のソース又はドレインの一方は、トランジスタ1171上に設けら
れた絶縁膜1102、層間絶縁膜1104、層間絶縁膜1105を貫通するコンタクトプ
ラグ1103bを介して、トランジスタ1171よりも上方に形成された配線1107a
と接続する。
ここで、コンタクトプラグ(接続用導体部、埋め込みプラグ、あるいは単にプラグともい
う)1086a、1086b、1103a、1103b、1103c等は、それぞれ柱状
又は壁状の形状を有している。コンタクトプラグは層間絶縁膜に設けられた開口(ビア)
内に導電材料を埋め込むことで形成される。導電材料として、タングステン、ポリシリコ
ン等の埋め込み性の高い導電材料を用いることができる。また、図示しないが、当該材料
の側面及び底面を、チタン膜、窒化チタン膜又はこれらの積層膜等からなるバリア膜(拡
散防止膜)で覆うことができる。この場合、バリア膜も含めてコンタクトプラグという。
コンタクトプラグの底部は、例えばコンタクトプラグ1103b、1103cにおいては
導電層1174の上面と接続している。しかし、コンタクトプラグ1103b、1103
cと導電層1174との接続はこの接続構造に限らない。例えば、コンタクトプラグ11
03b、1103cが導電層1174を貫通して、コンタクトプラグ1103b、110
3cの底面が下地絶縁膜1101の上面と接していてもよい。この場合、コンタクトプラ
グ1103b、1103cと導電層1174とは、コンタクトプラグ1103b、110
3cの側面で接続する。これにより、導電層1174とコンタクトプラグ1103b、1
103cとの電気的な接触性が向上する。また、コンタクトプラグ1103b、1103
cはさらに下地絶縁膜1101の内部まで設けられていてもよい。
なお、図16においては、導電層1174と配線1107a、1107bとの電気的な接
続に、一つのコンタクトプラグを用いている。しかし、コンタクトプラグと導電層117
4又は配線との接触抵抗の低減を図る場合には、複数のコンタクトプラグを並べて用いて
も良く、又は径の大きいコンタクトプラグを用いても良い。
コンタクトプラグは、マスクを用いて形成するため任意の位置に自由に形成することが可
能である。あるいは、サイドウォール絶縁膜1119に接するようにコンタクトプラグを
設けることで、素子の微細化を図ることも可能である。
配線1094、1098、1107a、1107bは、それぞれ層間絶縁膜1091、1
096、1108中に埋め込まれている。配線1094、1098、1107a、110
7bは、例えば銅、アルミニウム等の低抵抗な導電性材料を用いることが好ましい。低抵
抗な導電性材料を用いることで、配線1094、1098、1107a、1107bを伝
播する信号のRC遅延を低減することができる。配線1094、1098、1107a、
1107bに銅を用いる場合には、銅のチャネル形成領域への拡散を防止するため、バリ
ア膜1093、1097、1106を形成する。バリア膜として、例えば窒化タンタル、
窒化タンタルとタンタルとの積層、窒化チタン、窒化チタンとチタンとの積層等による膜
を用いることができるが、配線材料の拡散防止機能、及び配線材料や下地膜等との密着性
が確保される程度においてこれらの材料からなる膜に限られない。バリア膜1093、1
097、1106は配線1094、1098、1107a、1107bとは別個の層とし
て形成しても良く、バリア膜となる材料を配線材料中に含有させ、加熱処理によって層間
絶縁膜1091、1096、1108に設けられた開口の内壁に析出させて形成しても良
い。
層間絶縁膜1091、1096、1108には、酸化シリコン、酸化窒化シリコン、窒化
酸化シリコン、BPSG(Boron Phosphorus Silicate Gl
ass)、PSG(Phosphorus Silicate Glass)、炭素を添
加した酸化シリコン(SiOC)、フッ素を添加した酸化シリコン(SiOF)、Si(
OCを原料とした酸化シリコンであるTEOS(Tetraethyl or
thosilicate)、HSQ(Hydrogen Silsesquioxane
)、MSQ(Methyl Silsesquioxane)、OSG(Organo
Silicate Glass)、有機ポリマー系の材料等の絶縁体を用いることができ
る。特に半導体装置の微細化を進める場合には、配線間の寄生容量が顕著になり信号遅延
が増大するため酸化シリコンの比誘電率(k=4.0乃至4.5)では高く、kが3.0
以下の材料を用いることが好ましい。また該層間絶縁膜に配線を埋め込んだ後にCMP処
理を行うため、層間絶縁膜には機械的強度が要求される。この機械的強度が確保できる限
りにおいて、これらを多孔質(ポーラス)化させて低誘電率化することができる。層間絶
縁膜1091、1096、1108は、スパッタリング法、CVD法、スピンコート法(
Spin On Glass:SOGともいう)を含む塗布法等により形成する。
層間絶縁膜1091、1096、1108上には、層間絶縁膜1092、1100、11
09を設けても良い。層間絶縁膜1092、1100、1109は、配線材料を層間絶縁
膜1091、1096、1108中に埋め込んだ後、CMP等による平坦化処理を行う際
のエッチングストッパとして機能する。
配線1094、1098、1107a、1107b上には、バリア膜1095、1099
、1110が設けられている。銅等の配線材料の拡散を防止することを目的とした膜であ
る。バリア膜1095、1099、1110は、配線1094、1098、1107a、
1107bの上面のみに限らず、層間絶縁膜1091、1096、1108上に形成して
もよい。バリア膜1095、1099、1110は、窒化シリコンやSiC、SiBON
等の絶縁性材料で形成することができる。但し、バリア膜1095、1099、1110
の膜厚が厚い場合には配線間容量を増加させる要因となるため、バリア性を有し、かつ低
誘電率の材料を選択することが好ましい。
配線1098は上部の配線部分と、下部のビアホール部分から構成される。下部のビアホ
ール部分は下層の配線1094と接続する。該構造の配線1098はいわゆるデュアルダ
マシン法等により形成することができる。また、上下層の配線間の接続はデュアルダマシ
ン法によらず、コンタクトプラグを用いて接続してもよい。
トランジスタ1172及びキャパシタ1178の上方には、配線1094が設けられてい
る。容量素子の上部電極にあたる電極1084、1087は、層間絶縁膜1088、10
89、1090を貫くコンタクトプラグ1086aを介して配線1094と電気的に接続
する。また、トランジスタ1172のゲート電極は、層間絶縁膜1088、1089、1
090を貫くコンタクトプラグ1086bを介して配線1094と電気的に接続する。他
方、酸化物膜をチャネルに用いたトランジスタ1171のソース又はドレインの一方は、
絶縁膜、層間絶縁膜を貫くコンタクトプラグ1103bを介して一旦上層の配線1107
aと電気的に接続され、該配線1107aは、絶縁膜、層間絶縁膜及び下地絶縁膜110
1を貫くコンタクトプラグ1103aを介して配線1098と電気的に接続する。さらに
配線1098は、下層の配線1094と電気的に接続する。これにより、トランジスタ1
171のソース又はドレインの一方は、キャパシタ1178の上部電極及びトランジスタ
1172のゲート電極と電気的に接続する。
なお、コンタクトプラグを用いた配線どうしの電気的接続は、図16に示す配線1098
と配線1107aとの接続のように複数本のコンタクトプラグを用いた接続でも良く、ま
た、電極1084、1087と配線1094との接続のように壁状のコンタクトプラグを
用いて接続しても良い。
上記の電気的接続の態様は一例であって、上記した配線とは異なる配線を用いて各素子の
接続を行っても良い。例えば図16で示す態様においては、トランジスタ1171とトラ
ンジスタ1172及びキャパシタ1178との間には、配線を二層設けているが、一層で
も良いし、三層以上設けてもよい。あるいは、配線を介さずに複数のプラグを上下に接続
して、直接素子どうしを電気的に接続してもよい。また、図16で示す態様においては、
配線1094、配線1098はダマシン法で形成しているが(配線1098は、いわゆる
デュアルダマシン法による。)、他の手法により形成した配線であってもよい。
なお、容量が不要の場合には、キャパシタ1178を設けない構成とすることもできる。
また、キャパシタ1178は、別途、トランジスタ1172の上方やトランジスタ117
1の上方に設けてもよい。
また、図示しないが、配線1098の不純物拡散防止膜として機能するバリア膜1099
と、下地絶縁膜1101との間に、酸素、水素、水等のブロッキング効果を有する酸化ア
ルミニウム、酸化窒化アルミニウム、酸化ガリウム、酸化窒化ガリウム、酸化イットリウ
ム、酸化窒化イットリウム、酸化ハフニウム、酸化窒化ハフニウム等の金属酸化膜を設け
ることが好ましい。
図16において、トランジスタ1171と、トランジスタ1172とは、少なくとも一部
が重畳するように設けられており、トランジスタ1171のソース領域又はドレイン領域
と酸化物膜の一部が重畳するように設けられているのが好ましい。また、トランジスタ1
171が、キャパシタ1178と重畳するように設けられていてもよい。このような平面
レイアウトを採用することにより、半導体装置の占有面積の低減を図ることができるため
、高集積化を図ることができる。
なお、図16では、トランジスタ1171とキャパシタ1178とが、異なる層に設けら
れた例を示すが、これに限定されない。例えば、トランジスタ1171及びキャパシタ1
178を同一平面に設けても構わない。このような構造とすることで、データ保持部の上
に同様の構成のデータ保持部を重畳させることができる。よって、半導体装置の集積度を
高めることができる。
以上のように、半導体装置の下部に設けられた半導体材料を用いたトランジスタ1172
は、複数のコンタクトプラグ及び複数の配線を介して、上部に設けられた本発明の一態様
に係る酸化物膜を用いたトランジスタ1171と電気的に接続する。半導体装置を以上の
ような構成とすることで、高速動作性能を有する半導体材料を用いたトランジスタと、オ
フ電流が極めて小さい本発明の一態様に係る酸化物膜を用いたトランジスタとを組み合わ
せ、低消費電力化が可能な高速動作の論理回路を有する半導体装置を作製することができ
る。
また、長期間に渡ってデータを保持することができ、さらにフラッシュメモリと比較して
書き込み時に高い電圧が不要であるため、消費電力が小さく、動作速度が速い記憶回路を
有する半導体装置を作製することができる。
このような半導体装置は、上記の構成に限らず、発明の趣旨を逸脱しない範囲において、
任意に変更が可能である。例えば、説明においては半導体材料を用いたトランジスタと、
本発明の一態様に係る酸化物膜を用いたトランジスタの間の配線層は2層として説明した
が、これを1層あるいは3層以上とすることもでき、また配線を用いることなく、コンタ
クトプラグのみによって両トランジスタを直接接続することもできる。この場合、例えば
シリコン貫通電極(Through Silicon Via:TSV)技術を用いるこ
ともできる。また、配線は銅等の材料を層間絶縁膜中に埋め込むことで形成する場合につ
いて説明したが、例えばバリア膜\配線材料層\バリア膜の三層構造としてフォトリソグ
ラフィ工程により配線パターンに加工したものを用いてもよい。
特に、半導体材料を用いたトランジスタ1172と本発明の一態様に係る酸化物膜を用い
たトランジスタ1171との間の階層に銅配線を形成する場合には、本発明の一態様に係
る酸化物膜を用いたトランジスタ1171の製造工程において付加する熱処理の影響を十
分考慮する必要がある。換言すれば、本発明の一態様に係る酸化物膜を用いたトランジス
タ1171の製造工程において付加する熱処理の温度を配線材料の性質に適合するように
留意する必要がある。例えば、トランジスタ1171の構成部材に対して高温で熱処理を
行った場合、銅配線では熱応力が発生し、これに起因したストレスマイグレーションなど
の不都合が生じるためである。
例えば、図16に示す構造のメモリを作製し、トランジスタ1171として、前述した酸
化物膜を用いたトランジスタを適用すると、当該トランジスタはオフ電流を極めて小さい
ため、ノード1079に蓄積された電荷がトランジスタ1171を介してリークすること
を抑制できる。そのため、長期間に渡ってデータを保持することができる。また、フラッ
シュメモリと比較して、書き込み時に高い電圧が不要であるため、消費電力を小さく、動
作速度を速くすることができる。
なお、MCU、記憶装置以外においても、図16に示す構造を用いることができる。
《5.二次電池、キャパシタ》
二次電池の一例として、以下にリチウムイオン二次電池に代表される非水系二次電池につ
いて説明する。
[5−1.正極]
まず、二次電池の正極について、図17を用いて説明する。
正極6000は、正極集電体6001と、正極集電体6001上に塗布法、CVD法、又
はスパッタリング法等により形成された正極活物質層6002などにより構成される。図
17(A)においては、シート状(又は帯状)の正極集電体6001の両面に正極活物質
層6002を設けた例を示しているが、これに限られず、正極活物質層6002は、正極
集電体6001の一方の面にのみ設けてもよい。また、図17(A)においては、正極活
物質層6002は、正極集電体6001上の全域に設けているが、これに限られず、正極
集電体6001の一部に設けても良い。例えば、正極集電体6001と正極タブとが接続
する部分には、正極活物質層6002を設けない構成とするとよい。
正極集電体6001には、金、白金、アルミニウム、チタン等の金属、及びこれらの合金
(ステンレスなど)など、導電性が高く、リチウム等のキャリアイオンと合金化しない材
料を用いることができる。また、シリコン、チタン、ネオジム、スカンジウム、モリブデ
ンなどの耐熱性を向上させる元素が添加されたアルミニウム合金を用いることができる。
正極集電体6001は、箔状、シート状、板状、網状、パンチングメタル状、エキスパン
ドメタル状等の形状を適宜用いることができる。正極集電体6001は、厚みが10μm
以上30μm以下のものを用いるとよい。
図17(B)は、正極活物質層6002の縦断面を示した模式図である。正極活物質層6
002は、粒状の正極活物質6003と、導電助剤としてのグラフェン6004と、バイ
ンダ6005(結着剤)とを含む。
導電助剤としては、後述するグラフェンの他、アセチレンブラック(AB)やグラファイ
ト(黒鉛)粒子などを用いることができるが、ここでは一例として、グラフェン6004
を用いた正極活物質層6002について説明する。
正極活物質6003は、原料化合物を所定の比率で混合し焼成した焼成物を、適当な手段
により粉砕、造粒及び分級した、平均粒径や粒径分布を有する二次粒子からなる粒状の正
極活物質である。このため、図17(B)においては、正極活物質6003を模式的に球
で示しているが、この形状に限られるものではない。
正極活物質6003としては、リチウムイオン等のキャリアイオンの挿入及び脱離が可能
な材料であればよい。
例えば、オリビン型構造のリチウム含有複合リン酸塩(一般式LiMPO(Mは、Fe
(II)、Mn(II)、Co(II)、Ni(II)の一以上))を用いることができ
る。一般式LiMPOの代表例としては、LiFePO、LiNiPO、LiCo
PO、LiMnPO、LiFeNiPO、LiFeCoPO、LiFe
MnPO、LiNiCoPO、LiNiMnPO(a+bは1以下、
0<a<1、0<b<1)、LiFeNiCoPO、LiFeNiMn
、LiNiCoMnPO(c+d+eは1以下、0<c<1、0<d<1、
0<e<1)、LiFeNiCoMnPO(f+g+h+iは1以下、0<f
<1、0<g<1、0<h<1、0<i<1)等のリチウム化合物を正極活物質として用
いることができる。
又は、一般式Li(2−j)MSiO(Mは、Fe(II)、Mn(II)、Co(I
I)、Ni(II)の一以上、0≦j≦2)等の複合酸化物を用いることができる。一般
式Li(2−j)MSiOの代表例としては、Li(2−j)FeSiO、Li(2
−j)NiSiO、Li(2−j)CoSiO、Li(2−j)MnSiO、Li
(2−j)FeNiSiO、Li(2−j)FeCoSiO、Li(2−j
FeMnSiO、Li(2−j)NiCoSiO、Li(2−j)Ni
MnSiO(k+lは1以下、0<k<1、0<l<1)、Li(2−j)Fe
CoSiO、Li(2−j)FeNiMnSiO、Li(2−j)Ni
CoMnSiO(m+n+qは1以下、0<m<1、0<n<1、0<q<1)
、Li(2−j)FeNiCoMnSiO(r+s+t+uは1以下、0<r
<1、0<s<1、0<t<1、0<u<1)等の化合物を正極活物質として用いること
ができる。
また、層状岩塩型の結晶構造を有する、コバルト酸リチウム(LiCoO)、LiNi
、LiMnO、LiMnO、LiNi0.8Co0.2等のNiCo系(
一般式は、LiNiCo1−x(0<x<1))、LiNi0.5Mn0.5
等のNiMn系(一般式は、LiNiMn1−x(0<x<1))、LiNi1/
Mn1/3Co1/3等のNiMnCo系(NMCともいう。一般式は、LiNi
MnCo1−x−y(x>0、y>0、x+y<1))などを用いることができ
る。
また、LiMn等のスピネル型の結晶構造を有する活物質、LiMVO等の逆ス
ピネル型の結晶構造を有する活物質等、その他種々の化合物を用いることができる。
なお、キャリアイオンが、リチウムイオン以外のアルカリ金属イオン、ベリリウムイオン
、又はマグネシウムイオンなどのアルカリ土類金属イオンの場合、正極活物質6003と
して、上記化合物や酸化物において、リチウムの代わりに、アルカリ金属(例えば、ナト
リウムやカリウム等)、アルカリ土類金属(例えば、カルシウム、ストロンチウム、バリ
ウム、ベリリウム、マグネシウム等)、ベリリウム、又はマグネシウムを用いてもよい。
なお、図示しないが、正極活物質6003の表面に炭素層を設けてもよい。炭素層を設け
ることで、電極の導電性を向上させることができる。正極活物質6003への炭素層の被
覆は、正極活物質の焼成時にグルコース等の炭水化物を混合することで形成することがで
きる。
また、導電助剤として正極活物質層6002に添加するグラフェン6004は、酸化グラ
フェンに還元処理を行うことによって形成することができる。
ここで、本明細書においてグラフェンは、単層のグラフェン、又は2層以上100層以下
の多層グラフェンを含むものである。単層グラフェンとは、π結合を有する1原子層の炭
素分子のシートのことをいう。また、酸化グラフェンとは、上記グラフェンが酸化された
化合物のことをいう。なお、酸化グラフェンを還元してグラフェンを形成する場合、酸化
グラフェンに含まれる酸素は全て脱離されずに、一部の酸素はグラフェンに残存する。グ
ラフェンに酸素が含まれる場合、酸素の割合は、酸素の割合は、XPSで測定した場合に
グラフェン全体の2atomic%以上20atomic%以下、好ましくは3atom
ic%以上15atomic%以下である。
ここで、グラフェンが多層グラフェンである場合、酸化グラフェンを還元したグラフェン
を有することで、グラフェンの層間距離は0.34nm以上0.5nm以下、好ましくは
0.38nm以上0.42nm以下、さらに好ましくは0.39nm以上0.41nm以
下である。通常のグラファイトは、単層グラフェンの層間距離が0.34nmであり、本
発明の一態様に係る二次電池に用いるグラフェンの方が、その層間距離が長いため、多層
グラフェンの層間におけるキャリアイオンの移動が容易となる。
酸化グラフェンは、例えばHummers法とよばれる酸化法を用いて作製することがで
きる。
Hummers法は、グラファイト粉末に、過マンガン酸カリウムの硫酸溶液、過酸化水
素水等を加えて酸化反応させて酸化グラファイトを含む分散液を作製する。酸化グラファ
イトは、グラファイトの炭素の酸化により、エポキシ基、カルボニル基、カルボキシル基
、ヒドロキシル基等の官能基が結合する。このため、複数のグラフェンの層間距離がグラ
ファイトと比較して長くなり、層間の分離による薄片化が容易となる。次に、酸化グラフ
ァイトを含む混合液に、超音波振動を加えることで、層間距離が長い酸化グラファイトを
劈開し、酸化グラフェンを分離するとともに、酸化グラフェンを含む分散液を作製するこ
とができる。そして、酸化グラフェンを含む分散液から溶媒を取り除くことで、粉末状の
酸化グラフェンを得ることができる。
なお、酸化グラフェンの作製は過マンガン酸カリウムの硫酸溶液を用いたHummers
法に限られず、例えば硝酸、塩素酸カリウム、硝酸ナトリウム、過マンガン酸カリウム等
を使用するHummers法、又はHummers法以外の酸化グラフェンの作製方法を
適宜用いてもよい。
また、酸化グラファイトの薄片化は、超音波振動の付加の他、マイクロ波やラジオ波、又
は熱プラズマの照射や、物理的応力の付加により行ってもよい。
作製した酸化グラフェンは、エポキシ基、カルボニル基、カルボキシル基、ヒドロキシル
基等を有する。酸化グラフェンはNMP(N−メチルピロリドン、1−メチル−2−ピロ
リドン、N−メチル−2−ピロリドンなどともいう。)に代表される極性溶媒の中におい
ては、官能基中の酸素がマイナスに帯電するため、NMPと相互作用する一方で異なる酸
化グラフェンどうしとは反発し、凝集しにくい。このため、極性溶媒中においては、酸化
グラフェンが均一に分散しやすい。
また、酸化グラフェンの一辺の長さ(フレークサイズともいう。)は一辺の長さが50n
m以上100μm以下、好ましくは800nm以上20μm以下とするとよい。
図17(B)に示す正極活物質層6002の断面図のように、複数の粒状の正極活物質6
003は、複数のグラフェン6004によって被覆されている。一枚のシート状のグラフ
ェン6004は、複数の粒状の正極活物質6003と接続する。特に、グラフェン600
4がシート状であるため、粒状の正極活物質6003の表面の一部を包むように面接触す
ることができる。正極活物質と点接触するアセチレンブラック等の粒状の導電助剤と異な
り、グラフェン6004は接触抵抗の低い面接触を可能とするものであるから、導電助剤
の量を増加させることなく、粒状の正極活物質6003とグラフェン6004との電子伝
導性を向上させるができる。
また、複数のグラフェン6004どうしも面接触している。これはグラフェン6004の
形成に、極性溶媒中での分散性が極めて高い酸化グラフェンを用いるためである。均一に
分散した酸化グラフェンを含有する分散媒から溶媒を揮発除去し、酸化グラフェンを還元
してグラフェンとするため、正極活物質層6002に残留するグラフェン6004は部分
的に重なり合い、互いに面接触する程度に分散していることで電子伝導の経路を形成して
いる。
また、グラフェン6004の一部は複数の正極活物質層6003の間に設けられる。また
、グラフェン6004は炭素分子の単層又はこれらの積層で構成される極めて薄い膜(シ
ート)であるため、個々の粒状の正極活物質6003の表面をなぞるようにその表面の一
部を覆って接触しており、正極活物質6003と接していない部分は複数の粒状の正極活
物質6003の間で撓み、皺となり、あるいは引き延ばされて張った状態を呈する。
従って、複数のグラフェン6004により正極6000中に電子伝導のネットワークを形
成している。このため正極活物質6003どうしの電気伝導の経路が維持されている。以
上のことから、酸化グラフェンを原料とし、ペースト後に還元したグラフェンを導電助剤
として用いることで、高い電子伝導性を有する正極活物質層6002を形成することがで
きる。
また、正極活物質6003とグラフェン6004との接触点を増やすために、導電助剤の
添加量を増加させなくてもよいため、正極活物質6003の正極活物質層6002におけ
る比率を増加させることができる。これにより、二次電池の放電容量を増加させることが
できる。
粒状の正極活物質6003の一次粒子の平均粒径は、500nm以下、好ましくは50n
m以上500nm以下のものを用いるとよい。この粒状の正極活物質6003の複数と面
接触するために、グラフェン6004は一辺の長さが50nm以上100μm以下、好ま
しくは800nm以上20μm以下であると好ましい。
また、正極活物質層6002に含まれるバインダ(結着剤)には、代表的なポリフッ化ビ
ニリデン(PVDF)の他、ポリイミド、ポリテトラフルオロエチレン、ポリビニルクロ
ライド、エチレンプロピレンジエンポリマー、スチレン−ブタジエンゴム、アクリロニト
リル−ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリ
エチレン、ニトロセルロース等を用いることができる。
以上に示した正極活物質層6002は、正極活物質6003、導電助剤としてのグラフェ
ン6004及びバインダを、正極活物質層6002の総量に対して、それぞれ正極活物質
を90wt%以上94wt%以下、グラフェンを1wt%以上5wt%以下、バインダを
1wt%以上5wt%以下の割合で含有することが好ましい。
[5−2.負極]
次に、二次電池の負極について、図18を用いて説明する。
負極6100は、負極集電体6101と、負極集電体6101上に塗布法、CVD法、又
はスパッタリング法等により形成された負極活物質層6102などにより構成される。図
18(A)においては、シート状(又は帯状)の負極集電体6101の両面に負極活物質
層6102を設けた例を示しているが、これに限られず、負極活物質層6102は、負極
集電体6101の一方の面にのみ設けてもよい。また、図18(A)においては、負極活
物質層6102は、負極集電体6101上の全域に設けているが、これに限られず、負極
集電体6101の一部に設けても良い。例えば、負極集電体6101と負極タブとが接続
する部分には、負極活物質層6102を設けない構成とするとよい。
負極集電体6101には、金、白金、鉄、銅、チタン等の金属、及びこれらの合金(ステ
ンレスなど)など、導電性が高く、リチウム等のキャリアイオンと合金化しない材料を用
いることができる。また、シリコンと反応してシリサイドを形成する金属元素で形成して
もよい。シリコンと反応してシリサイドを形成する金属元素としては、ジルコニウム、チ
タン、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン
、コバルト、ニッケル等がある。負極集電体6101は、箔状、シート状、板状、網状、
パンチングメタル状、エキスパンドメタル状等の形状を適宜用いることができる。負極集
電体6101は、厚みが10μm以上30μm以下のものを用いるとよい。
図18(B)は、負極活物質層6102の一部の断面を模式的に示した図である。ここで
は負極活物質層6102に、負極活物質6103とバインダ6105(結着剤)を有する
例を示すが、これに限られず、少なくとも負極活物質6103を有していればよい。
負極活物質6103は、金属の溶解・析出、又は金属イオンの挿入・脱離が可能な材料で
あれば、特に限定されない。負極活物質6103の材料としては、リチウム金属の他、蓄
電分野に一般的な炭素材である黒鉛を用いることができる。黒鉛は、低結晶性炭素として
軟質炭素や硬質炭素等が挙げられ、高結晶性炭素として、天然黒鉛、キッシュ黒鉛、熱分
解炭素、液晶ピッチ系炭素繊維、メソカーボンマイクロビーズ(MCMB)、液晶ピッチ
、石油又は石炭系コークス等が挙げられる。
また、負極活物質6103には上述の材料の他、キャリアイオンとの合金化、脱合金化反
応により充放電反応を行うことが可能な材料を用いることができる。キャリアイオンがリ
チウムイオンである場合、合金系材料としては、例えば、Mg、Ca、Al、Si、Ge
、Sn、Pb、As、Sb、Bi、Ag、Au、Zn、Cd、Hg及びIn等のうちの少
なくとも一つを含む材料を用いることができる。このような材料は黒鉛と比べて容量が大
きく、特にシリコンは理論容量が4200mAh/gと高い。このため、負極活物質61
03にシリコンを用いることが好ましい。
図18(B)においては、負極活物質6103を粒状の物質として表しているが、これに
限られず、負極活物質6103の形状としては、例えば板状、棒状、円柱状、粉状、鱗片
状等任意の形状とすることができる。また、板状の表面に凹凸形状を有するものや、表面
に微細な凹凸形状を有するもの、多孔質形状を有するものなど立体形状を有するものであ
ってもよい。
塗布法を用いて負極活物質層6102を形成する場合は、負極活物質6103に、導電助
剤(図示せず)や結着剤を添加して、負極ペーストを作製し、負極集電体6101上に塗
布して乾燥させればよい。
なお、負極活物質層6102にリチウムをプレドープしてもよい。プレドープの方法とし
ては、スパッタリング法により負極活物質層6102表面にリチウム層を形成してもよい
。また、負極活物質層6102の表面にリチウム箔を設けることで、負極活物質層610
2にリチウムをプレドープすることもできる。
また、負極活物質6103の表面に、グラフェン(図示せず)を形成することが好ましい
。例えば、負極活物質6103をシリコンとした場合、充放電サイクルにおけるキャリア
イオンの吸蔵・放出に伴う体積の変化が大きいため、負極集電体6101と負極活物質層
6102との密着性が低下し、充放電により電池特性が劣化してしまう。そこで、シリコ
ンを含む負極活物質6103の表面にグラフェンを形成すると、充放電サイクルにおいて
、シリコンの体積が変化したとしても、負極集電体6101と負極活物質層6102との
密着性の低下を抑制することができ、電池特性の劣化が低減されるため好ましい。
負極活物質6103の表面に形成するグラフェンは、正極の作製方法と同様に、酸化グラ
フェンを還元することによって形成することができる。該酸化グラフェンは、上述した酸
化グラフェンを用いることができる。
また、負極活物質6103の表面に、酸化物等の被膜6104を形成してもよい。充電時
において電解液の分解等により形成される固体電解質界面皮膜は、その形成時に消費され
た電荷量を放出することができず、不可逆容量を形成する。これに対し、酸化物等の被膜
6104をあらかじめ負極活物質6103の表面に設けておくことで、不可逆容量の発生
を抑制又は防止することができる。
このような負極活物質6103を被覆する被膜6104には、ニオブ、チタン、バナジウ
ム、タンタル、タングステン、ジルコニウム、モリブデン、ハフニウム、クロム、アルミ
ニウム若しくはシリコンのいずれか一の酸化膜、又はこれら元素のいずれか一とリチウム
とを含む酸化膜を用いることができる。このような被膜6104は、従来の電解液の分解
生成物により負極表面に形成される被膜に比べ、十分緻密な膜である。
例えば、酸化ニオブ(Nb)は、電気伝導度が10−9S/cmと低く、高い絶縁
性を示す。このため、酸化ニオブ膜は負極活物質と電解液との電気化学的な分解反応を阻
害する。一方で、酸化ニオブのリチウム拡散係数は10−9cm/secであり、高い
リチウムイオン伝導性を有する。このため、リチウムイオンを透過させることが可能であ
る。
負極活物質6103を被覆する被膜6104の形成には、例えばゾル−ゲル法を用いるこ
とができる。ゾル−ゲル法とは、金属アルコキシドや金属塩等からなる溶液を、加水分解
反応・重縮合反応により流動性を失ったゲルとし、このゲルを焼成して薄膜を形成する方
法である。ゾル−ゲル法は液相から薄膜を形成する方法であるから、原料を分子レベルで
均質に混合することができる。このため、溶媒の段階の金属酸化膜の原料に、黒鉛等の負
極活物質を加えることで、容易にゲル中に活物質を分散させることができる。このように
して、負極活物質6103の表面に被膜6104を形成することができる。
当該被膜6104を用いることで、二次電池の容量の低下を防止することができる。
[5−3.電解液]
二次電池に用いる電解液の溶媒としては、非プロトン性有機溶媒が好ましく、例えば、エ
チレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート
、クロロエチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン、γ−バレ
ロラクトン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチ
ルメチルカーボネート(EMC)、ギ酸メチル、酢酸メチル、酪酸メチル、1,3−ジオ
キサン、1,4−ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシド、ジ
エチルエーテル、メチルジグライム、アセトニトリル、ベンゾニトリル、テトラヒドロフ
ラン、スルホラン、スルトン等の1種、又はこれらのうちの2種以上を任意の組み合わせ
及び比率で用いることができる。
また、電解液の溶媒としてゲル化される高分子材料を用いることで、漏液等に対する安全
性が高まる。また、二次電池の薄型化及び軽量化が可能である。ゲル化される高分子材料
の代表例としては、シリコーンゲル、アクリルゲル、アクリロニトリルゲル、ポリエチレ
ンオキサイド、ポリプロピレンオキサイド、フッ素系ポリマー等がある。
また、電解液の溶媒として、難燃性及び難揮発性であるイオン液体(常温溶融塩)を一つ
又は複数用いることで、二次電池の内部短絡や、過充電等によって内部温度が上昇しても
、二次電池の破裂や発火などを防ぐことができる。
また、上記の溶媒に溶解させる電解質としては、キャリアにリチウムイオンを用いる場合
、例えばLiPF、LiClO、LiAsF、LiBF、LiAlCl、Li
SCN、LiBr、LiI、LiSO、Li10Cl10、Li12Cl
、LiCFSO、LiCSO、LiC(CFSO、LiC(C
SO、LiN(CFSO、LiN(CSO)(CFSO
)、LiN(CSO等のリチウム塩を一種、又はこれらのうちの二種以上を
任意の組み合わせ及び比率で用いることができる。
[5−4.セパレータ]
二次電池のセパレータには、セルロースや、ポリプロピレン(PP)、ポリエチレン(P
E)、ポリブテン、ナイロン、ポリエステル、ポリスルホン、ポリアクリロニトリル、ポ
リフッ化ビニリデン、テトラフルオロエチレン等の多孔性絶縁体を用いることができる。
また、ガラス繊維等の不織布や、ガラス繊維と高分子繊維を複合した隔膜を用いてもよい
[5−5.非水系二次電池]
次に、非水系二次電池の構造について、図19及び図20を用いて説明する。
[5−5−1.コイン型二次電池]
図19(A)は、コイン型(単層偏平型)のリチウムイオン二次電池の外観図であり、部
分的にその断面構造を併せて示した図である。
コイン型の二次電池950は、正極端子を兼ねた正極缶951と負極端子を兼ねた負極缶
952とが、ポリプロピレン等で形成されたガスケット953で絶縁シールされている。
正極954は、正極集電体955と、これと接するように設けられた正極活物質層956
により形成される。また、負極957は、負極集電体958と、これに接するように設け
られた負極活物質層959により形成される。正極活物質層956と負極活物質層959
との間には、セパレータ960と、電解液(図示せず)とを有する。
負極957は負極集電体958と負極活物質層959を有し、正極954は正極集電体9
55と正極活物質層956を有する。
正極954、負極957、セパレータ960、電解液には、それぞれ上述した部材を用い
ることができる。
正極缶951、負極缶952には、電解液に対して耐腐食性のあるニッケル、アルミニウ
ム、チタン等の金属、又はこれらの合金やこれらと他の金属との合金(例えば、ステンレ
ス鋼等)を用いることができる。特に、二次電池の充放電によって生じる電解液による腐
食を防ぐため、ニッケル等を被覆することが好ましい。正極缶951は正極954と、負
極缶952は負極957とそれぞれ電気的に接続する。
これら負極957、正極954及びセパレータ960を電解液に含浸させ、図19(A)
に示すように、正極缶951を下にして正極954、セパレータ960、負極957、負
極缶952をこの順で積層し、正極缶951と負極缶952とをガスケット953を介し
て圧着してコイン型の二次電池950を製造する。
[5−5−2.ラミネート型二次電池]
次に、ラミネート型の二次電池の一例について、図19(B)を参照して説明する。図1
9(B)では、説明の便宜上、部分的にその内部構造を露出して記載している。
図19(B)に示すラミネート型の二次電池970は、正極集電体971及び正極活物質
層972を有する正極973と、負極集電体974及び負極活物質層975を有する負極
976と、セパレータ977と、電解液(図示せず)と、外装体978と、を有する。外
装体978内に設けられた正極973と負極976との間にセパレータ977が設置され
ている。また、外装体978内は、電解液で満たされている。なお、図19(B)におい
ては、正極973、負極976、セパレータ977をそれぞれ一枚ずつ用いているが、こ
れらを交互に積層した積層型の二次電池としてもよい。
正極、負極、セパレータ、電解液(電解質及び溶媒)には、それぞれ上述した部材を用い
ることができる。
図19(B)に示すラミネート型の二次電池970において、正極集電体971及び負極
集電体974は、外部との電気的接触を得る端子(タブ)の役割も兼ねている。そのため
、正極集電体971及び負極集電体974の一部は、外装体978から外側に露出するよ
うに配置される。
ラミネート型の二次電池970において、外装体978には、例えばポリエチレン、ポリ
プロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、ア
ルミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金
属薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹
脂膜を設けた三層構造のラミネートフィルムを用いることができる。このような三層構造
とすることで、電解液や気体の透過を遮断するとともに、絶縁性を確保し、併せて耐電解
液性を有する。
[5−5−3.円筒型二次電池]
次に、円筒型の二次電池の一例について、図20を参照して説明する。円筒型の二次電池
980は図20(A)に示すように、上面に正極キャップ(電池蓋)981を有し、側面
及び底面に電池缶(外装缶)982を有している。これら正極キャップ981と電池缶(
外装缶)982とは、ガスケット(絶縁パッキン)990によって絶縁されている。
図20(B)は、円筒型の二次電池の断面を模式的に示した図である。中空円柱状の電池
缶982の内側には、帯状の正極984と負極986とがセパレータ985を間に挟んで
捲回された電池素子が設けられている。図示しないが、電池素子はセンターピンを中心に
捲回されている。電池缶982は、一端が閉じられ、他端が開いている。
正極984、負極986、セパレータ985には、上述した部材を用いることができる。
電池缶982には、耐腐食性のあるステンレス鋼やニッケル、アルミニウム、チタン等の
金属、又はこれらの合金やこれらと他の金属との合金を用いることができる。特に、二次
電池の充放電によって生じる電解液による腐食を防ぐため、ニッケル等を腐食性金属にめ
っきすることが好ましい。電池缶982の内側において、正極、負極及びセパレータが捲
回された電池素子は、対向する一対の絶縁板988、989により挟まれている。
また、電池素子が設けられた電池缶982の内部は、電解液(図示せず)が注入されてい
る。電解液には、上述した電解質及び溶媒を用いることができる。
円筒型の二次電池に用いる正極984及び負極986は捲回するため、集電体の両面に活
物質層を形成する。正極984には正極端子(正極集電リード)983が接続され、負極
986には負極端子(負極集電リード)987が接続される。正極端子983及び負極端
子987は、ともにアルミニウムなどの金属材料を用いることができる。正極端子983
は安全弁機構992に、負極端子987は電池缶982の底にそれぞれ抵抗溶接される。
安全弁機構992は、PTC(Positive Temperature Coeff
icient)素子991を介して正極キャップ981と電気的に接続されている。安全
弁機構992は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ981と正
極984との電気的な接続を切断するものである。また、PTC素子991は温度が上昇
した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限して異常
発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO)系半導
体セラミックス等を用いることができる。
[5−5−4.角型二次電池]
次に、角型の二次電池の一例について、図19(C)を参照して説明する。図19(C)
に示す捲回体993は、負極994と、正極995と、セパレータ996と、を有する。
捲回体993は、セパレータ996を挟んで負極994と、正極995とが重なり合って
積層され、該積層シートを捲回したものである。この捲回体993を角型の封止缶などで
覆うことにより角型の二次電池が形成される。なお、負極994、正極995及びセパレ
ータ996からなる積層の積層数は、必要な容量と素子体積に応じて適宜設計すればよい
円筒型の二次電池と同様に、負極994は端子997及び端子998の一方を介して負極
タブ(図示せず)に接続され、正極995は端子997及び端子998の他方を介して正
極タブ(図示せず)に接続される。その他、安全弁機構等の周辺構造は、円筒型の二次電
池に準ずる。
以上のように二次電池として、コイン型、ラミネート型、円筒型及び角型の二次電池を示
したが、その他様々な形状の二次電池を用いることができる。また、正極と負極とセパレ
ータとが複数積層された構造や、正極と負極とセパレータとが捲回された構造であっても
よい。
[5−6.リチウムイオンキャパシタ]
次に、リチウムイオンキャパシタについて説明する。
リチウムイオンキャパシタは、電気二重層キャパシタ(EDLC。Electric D
ouble Layer Capacitorの略)の正極に、炭素材料を用いたリチウ
ムイオン二次電池の負極を組み合わせたハイブリッドキャパシタであり、正極と負極の蓄
電原理が異なる非対称キャパシタである。正極が電気二重層を形成し物理的作用により充
放電を行うのに対して、負極はリチウムの化学的作用により充放電を行う。この負極活物
質である炭素材料等に予めリチウムを吸蔵させた負極を用いることで、従来の負極に活性
炭を用いた電気二重層キャパシタに比べ、エネルギー密度を飛躍的に向上させている。
リチウムイオンキャパシタは、リチウムイオン二次電池の正極活物質層に代えて、リチウ
ムイオン及びアニオンの少なくとも一つを可逆的に担持できる材料を用いればよい。この
ような材料として、例えば活性炭、導電性高分子、ポリアセン系有機半導体(PAS。P
olyAcenic Semiconductorの略)等が挙げられる。
リチウムイオンキャパシタは、充放電の効率が高く、急速充放電が可能であり、繰り返し
利用による寿命も長い。
このようなリチウムイオンキャパシタを、本発明の一態様に係る二次電池に置き換えて用
いることができる。これにより不可逆容量の発生を抑制し、サイクル特性を向上させた蓄
電装置を作製することができる。
《6.蓄電装置》
次に、半導体集積回路(IC)等の電気回路を有する蓄電装置について説明する。
図21は、上述した角型の二次電池に電気回路等を設けた蓄電装置の構成例を示す図であ
る。図21(A)及び図21(B)に示す蓄電装置6600は、電池缶6604の内部に
上述した捲回体6601を収納したものである。捲回体6601は、端子6602及び端
子6603を有し、電池缶6604の内部で電解液に含浸される。端子6603は電池缶
6604に接し、端子6602は、絶縁材などを用いることにより電池缶6604から絶
縁する構成としてもよい。電池缶6604は、例えばアルミニウムなどの金属材料や樹脂
材料を用いることができる。
さらに、図21(B)に示す蓄電装置6600に電気回路等を設けることができる。図2
1(C)及び図21(D)は、蓄電装置6600に、電気回路等を設けた回路基板660
6、アンテナ6609、アンテナ6610、ラベル6608を設けた例を示す図である。
回路基板6606は、電気回路6607、端子6605等を有する。回路基板6606と
しては、例えばプリント基板(PCB)を用いることができる。プリント基板を回路基板
6606として用いた場合、プリント基板上に抵抗素子、コンデンサ等の容量素子、コイ
ル(インダクタ)、半導体集積回路(IC)などの電子部品を実装し結線して電気回路6
607を形成することができる。電子部品としてはこれらの他に、サーミスタ等の温度検
出素子、ヒューズ、フィルタ、水晶発振器、EMC対策部品等、種々の部品を実装するこ
とができる。
ここで、上記の半導体集積回路(IC)には、上述した半導体装置を用いることができる
。これにより、電気回路6607の消費電力を大幅に低減することが可能となる。
これらの電子部品によって形成された電気回路6607は、例えば蓄電装置6600の過
充電監視回路、過放電監視回路、過電流に対する保護回路等として機能させることができ
る。また、電気回路6607として、MCU105や、メモリ106等を設けることがで
きる。
回路基板6606が有する端子6605は、端子6602、端子6603、及び電気回路
6607に接続される。図21(C)及び(D)においては5つの端子を示しているが、
これに限らず、任意の端子数とすればよい。端子6605を用いて蓄電装置6600の充
放電を行う他、蓄電装置6600を搭載する電気機器との信号の授受を行うことができる
アンテナ6609及びアンテナ6610は、例えば蓄電装置の外部との電力の授受、信号
の授受を行うために用いることができる。アンテナ6609及びアンテナ6610の一方
又は双方を上述した通信手段107に接続することで、電気回路6607により外部との
信号の授受を行うことができる。あるいは、アンテナ6609及びアンテナ6610の一
方又は双方を端子6605に電気的に接続することで、蓄電装置6600を搭載する電気
機器の制御回路により外部との電力の授受又は信号の授受を制御することもできる。
なお、図21(C)及び図21(D)は2種類のアンテナを設けた蓄電装置6600の例
であるが、アンテナは複数種設けてもよく、あるいはアンテナを設けない構成としてもよ
い。
図21(C)及び図21(D)においては、アンテナ6609及びアンテナ6610がコ
イル形状である場合を示すが、これに限られず、例えば線状、平板状であってもよい。ま
た、平面アンテナ、開口面アンテナ、進行波アンテナ、EHアンテナ、磁界アンテナ、誘
電体アンテナ等のアンテナを用いてもよい。
なお、無線による電力の授受(非接触電力伝送、無接点電力伝送あるいはワイヤレス給電
などともいう)には、電磁誘導方式、磁界共鳴方式、電波方式等を用いることができる。
アンテナ6609の線幅は、アンテナ6610の線幅よりも大きいことが好ましい。これ
により、アンテナ6609により受電する電力量を上げることができる。
また、アンテナ6609及びアンテナ6610と、蓄電装置6600との間に層6611
を有する。層6611は、例えば捲回体6601による電界又は磁界の遮蔽を防止するこ
とができる機能を有する。この場合、層6611には、例えば磁性体を用いることができ
る。あるいは、層6611を遮蔽層としてもよい。
なお、アンテナ6609及びアンテナ6610は、外部との電力の授受又は信号の授受と
は異なる用途として用いることができる。例えば、蓄電装置6600を搭載する電気機器
がアンテナを有さない機器である場合、アンテナ6609及びアンテナ6610を用いて
電気機器への無線通信を実現することができる。
《7.電気機器》
本発明の一態様に係る蓄電装置は、様々な電気機器の電源として用いることができる。
[7−1.電気機器の定義]
ここで電気機器とは、電気の力によって作用する部分を含む工業製品をいう。電気機器は
、家電等の民生用に限られず、業務用、産業用、軍事用等、種々の用途のものを広くこの
範疇とする。
[7−2.電気機器の一例]
本発明の一態様に係る蓄電装置を用いた電気機器としては、例えば、テレビやモニタ等の
表示装置、照明装置、デスクトップ型やノート型等のパーソナルコンピュータ、ワードプ
ロセッサ、DVD(Digital Versatile Disc)などの記録媒体に
記憶された静止画又は動画を再生する画像再生装置、CD(Compact Disc)
プレーヤやデジタルオーディオプレーヤ等の携帯型又は据置型の音響再生機器、携帯型又
は据置型のラジオ受信機、テープレコーダやICレコーダ(ボイスレコーダ)等の録音再
生機器、ヘッドホンステレオ、ステレオ、リモートコントローラ、置き時計や壁掛け時計
等の時計、コードレス電話子機、トランシーバ、携帯電話機、自動車電話、携帯型又は据
置型のゲーム機、歩数計、電卓、携帯情報端末、電子手帳、電子書籍、電子翻訳機、マイ
クロフォン等の音声入力機器、スチルカメラやビデオカメラ等の写真機、玩具、電気シェ
ーバ、電動歯ブラシ、電子レンジ等の高周波加熱装置、電気炊飯器、電気洗濯機、電気掃
除機、温水器、扇風機、毛髪乾燥機、加湿器や除湿器やエアコンディショナ等の空気調和
設備、食器洗い器、食器乾燥器、衣類乾燥器、布団乾燥器、電気冷蔵庫、電気冷凍庫、電
気冷凍冷蔵庫、DNA保存用冷凍庫、懐中電灯、電動工具、煙感知器、補聴器、心臓ペー
スメーカ、携帯型X線撮影装置、放射線測定器、電気マッサージ器や透析装置等の健康機
器や医療機器などが挙げられる。さらに、誘導灯、信号機、ガスメータや水道メータ等の
計量器、ベルトコンベア、エレベータ、エスカレータ、自動販売機、自動券売機、現金自
動支払機(CD。Cash Dispenserの略)や現金自動預金支払機(ATM。
AutoMated Teller Machineの略)、デジタルサイネージ(電子
看板)、産業用ロボット、無線用中継局、携帯電話の基地局、電力貯蔵システム、電力の
平準化やスマートグリッドのための蓄電装置等の産業機器が挙げられる。また、蓄電装置
からの電力を用いて電動機により推進する移動体(輸送体)なども、電気機器の範疇に含
まれるものとする。上記移動体として、例えば、電気自動車(EV)、内燃機関と電動機
を併せ持ったハイブリッド車(HEV)、プラグインハイブリッド車(PHEV)、これ
らのタイヤ車輪を無限軌道に変えた装軌車両、農業機械、電動アシスト自転車を含む原動
機付自転車、自動二輪車、電動車椅子、電動カート、小型又は大型船舶、潜水艦、固定翼
機や回転翼機等の航空機、ロケット、人工衛星、宇宙探査機や惑星探査機、宇宙船などが
挙げられる。
なお、上記電気機器は、消費電力のほぼ全てを賄うための主電源として、本発明の一態様
に係る蓄電装置を用いることができる。また、上記電気機器は、主電源や商用電源からの
電力の供給が停止した場合に、電気機器への電力の供給を行うことができる無停電電源と
して、本発明の一態様に係る蓄電装置を用いることができる。あるいは上記電気機器は、
主電源や商用電源からの電気機器への電力の供給と並行して、電気機器への電力の供給を
行うための補助電源として、本発明の一態様に係る蓄電装置を用いることができる。
[7−3.電力系のネットワークの一例]
上述した電気機器は、個々に蓄電装置を搭載する場合に限らず、複数の電気機器と蓄電装
置とこれらの電力系を制御する制御装置とを有線又は無線で接続した電力系のネットワー
ク(電力網)を形成してもよい。電力系のネットワークを制御装置により制御することに
よって、ネットワーク全体における電力の使用効率を向上させることができる。
図22(A)に、複数の家電機器、制御装置、及び蓄電装置等を住宅内で接続したHEM
S(家庭内エネルギー管理システム。Home Energy Management
Systemの略)の構成例を示す。このようなシステムによって、家全体の電力消費量
を容易に把握することが可能になる。また、複数の家電機器の運転を遠隔操作することが
できる。また、センサや制御装置を用いて家電機器を自動制御する場合には、電力の節約
にも貢献することができる。
住宅8000に設置された分電盤8003は、引込み線8002を介して電力系統800
1に接続される。分電盤8003は、引込み線8002から供給される商用電力である交
流電力を、複数の家電機器それぞれに供給するものである。制御装置8004は分電盤8
003と接続されるとともに、複数の家電機器や蓄電システム8005、太陽光発電シス
テム8006等と接続される。また制御装置8004は、住宅8000の屋外などに駐車
され、分電盤8003とは独立した電気自動車8012とも接続することができる。
制御装置8004は、分電盤8003と複数の家電機器とを繋ぎネットワークを構成する
ものであり、ネットワークに接続された複数の家電機器を制御するものである。
また、制御装置8004は、インターネット8011に接続され、インターネット801
1を経由して、管理サーバ8013と接続することができる。管理サーバ8013は、使
用者の電力の使用状況を受信してデータベースを構築することができ、当該データベース
に基づき、種々のサービスを使用者に提供することができる。また、管理サーバ8013
は、例えば時間帯に応じた電力の料金情報を使用者に随時提供することができ、当該情報
に基づいて、制御装置8004は住宅8000内における最適な使用形態を設定すること
もできる。
複数の家電機器は、例えば、図22(A)に示す表示装置8007、照明装置8008、
空気調和設備8009、電気冷蔵庫8010であるが、勿論これに限られず、上述した電
気機器など住宅内に設置可能なあらゆる電気機器を指す。
例えば、表示装置8007は、表示部に液晶表示装置、有機EL(Electro Lu
minescence)素子などの発光素子を各画素に備えた発光装置、電気泳動表示装
置、DMD(Digital Micromirror Device)、PDP(Pl
asma Display Panel)、FED(Field Emission D
isplay)などの半導体表示装置が組み込まれ、TV放送受信用の他、パーソナルコ
ンピュータ用、広告表示用など、情報表示用表示装置として機能するものが含まれる。
また、照明装置8008は、電力を利用して人工的に光を得る人工光源を含むものであり
、人工光源としては、白熱電球、蛍光灯などの放電ランプ、LED(Light Emi
tting Diode)や有機EL素子などの発光素子を用いることができる。図22
(A)に示す照明装置8008は天井に設置されたものであるが、この他、壁面、床、窓
等に設けられた据付け型であってもよく、卓上型であってもよい。
また、空気調和設備8009は、温度、湿度、空気清浄度等の室内環境の調整を行う機能
を有する。図22(A)では、一例としてエアコンディショナを示す。エアコンディショ
ナは、圧縮機や蒸発器を一体とした室内機と、凝縮器を内蔵した室外機(図示せず)を備
えるものや、これらを一体としたもの等で構成される。
また、電気冷蔵庫8010は、食料品等を低温で保管するための電気機器であり、0℃以
下で凍らせる目的の冷凍庫を含む。圧縮器により圧縮したパイプ内の冷媒が気化する際に
熱を奪うことにより、庫内を冷却するものである。
これら複数の家電機器は、それぞれに蓄電装置を有していてもよく、また蓄電装置を有さ
ずに、蓄電システム8005の電力や商用電源からの電力を利用してもよい。家電機器が
蓄電装置を内部に有する場合には、停電などにより商用電源から電力の供給が受けられな
い場合であっても、蓄電装置を無停電電源として用いることで、当該家電機器の利用が可
能となる。
以上のような家電機器のそれぞれの電源供給端子の近傍に、電流センサ等の電力検出手段
を設けることができる。電力検出手段により検出した情報を制御装置8004に送信する
ことによって、使用者が家全体の電力使用量を把握することができる他、該情報に基づい
て、制御装置8004が複数の家電機器への電力の配分を設定し、住宅8000内におい
て効率的なあるいは経済的な電力の使用を行うことができる。
また、商用電源の供給元が供給可能な総電力量のうち電力使用率が低い時間帯において、
商用電源から蓄電システム8005に充電することができる。また、太陽光発電システム
8006によって、日中に蓄電システム8005に充電することができる。なお、充電す
る対象は、蓄電システム8005に限られず、制御装置8004に接続された電気自動車
8012に搭載された蓄電装置でもよく、複数の家電機器が有する蓄電装置であってもよ
い。
このようにして、種々の蓄電装置に充電された電力を制御装置8004が効率的に配分し
て使用することで、住宅8000内において効率的なあるいは経済的な電力の使用を行う
ことができる。
以上のように、電力系をネットワーク化して制御する例として、家庭内規模の電力網を示
したがこれに限らず、スマートメーター等の制御機能や通信機能を組み合わせた都市規模
、国家規模の電力網(スマートグリッドという)を構築することもできる。また、工場や
事業所の規模で、エネルギー供給源と消費施設を構成単位とするマイクログリッドを構築
することもできる。
[7−4.電気機器の一例(電気自動車の例)]
次に、電気機器の一例として移動体の例について、図22(B)及び(C)を用いて説明
する。本発明の一態様に係る蓄電装置を、移動体の制御用の蓄電装置に用いることができ
る。
図22(B)は、電気自動車の内部構造の一例を示している。電気自動車8020には、
充放電の可能な蓄電装置8024が搭載されている。蓄電装置8024の電力は、電子制
御ユニット8025(ECUともいう。Electronic Control Uni
tの略)により出力が調整されて、インバータユニット8026を介して走行モータユニ
ット8027に供給される。インバータユニット8026は、蓄電装置8024から入力
された直流電力を3相交流電力に変換するとともに、変換した交流電力の電圧、電流及び
周波数を調整して走行モータユニット8027に出力することができる。
従って、運転者がアクセルペダル(図示せず)を踏むと、走行モータユニット8027が
作動し、走行モータユニット8027で生じたトルクが出力軸8028及び駆動軸802
9を介して後輪(駆動輪)8030に伝達される。これに追従して前輪8023も併せて
稼働することで、電気自動車8020を駆動走行させることができる。
各ユニットには、例えば電圧センサ、電流センサ、温度センサ等の検出手段が設けられ、
電気自動車8020の各部位における物理量が適宜監視される。
電子制御ユニット8025は、図示しないRAM、ROM等のメモリやCPUを有する処
理装置である。電子制御ユニット8025は、電気自動車8020の加速、減速、停止等
の操作情報、走行環境や各ユニットの温度情報、制御情報、蓄電装置の充電状態(SOC
)などの入力情報に基づき、インバータユニット8026や走行モータユニット8027
、蓄電装置8024に制御信号を出力する。当該メモリには、各種のデータやプログラム
が格納される。
走行モータユニット8027は、交流電動機の他、直流電動機やこれらの電動機と内燃機
関とを組み合わせて用いることができる。
なお、本発明の一態様に係る蓄電装置を具備していれば、上記で示した移動体に特に限定
されないことは言うまでもない。
電気自動車8020に搭載された蓄電装置8024は、プラグイン方式や非接触給電方式
等により外部の充電設備から電力供給を受けて、充電することができる。図22(C)に
、地上設置型の充電装置8021から電気自動車8020に搭載された蓄電装置8024
に、ケーブル8022を介して充電を行っている状態を示す。充電に際しては、充電方法
やコネクタの規格等はCHAdeMO(登録商標)等の所定の方式で適宜行えばよい。充
電装置8021は、商用施設に設けられた充電ステーションでもよく、また家庭の電源で
あってもよい。例えば、図22(B)に示す、蓄電装置8024と接続する接続プラグ8
031を充電装置8021と電気的に接続させるプラグイン技術によって、外部からの電
力供給により電気自動車8020に搭載された蓄電装置8024を充電することができる
。充電は、AC/DCコンバータ等の変換装置を介して、一定の電圧値を有する直流定電
圧に変換して行うことができる。
また、図示しないが、受電装置を移動体に搭載し、地上の送電装置から電力を非接触で供
給して充電することもできる。この非接触給電方式の場合には、道路や外壁に送電装置を
組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給
電の方式を利用して、移動体どうしで電力の送受信を行ってもよい。さらに、移動体の外
装部に太陽電池を設け、停車時や走行時に蓄電装置8024の充電を行ってもよい。この
ような非接触での電力の供給には、電磁誘導方式や磁界共鳴方式を用いることができる。
なお、移動体が鉄道用電気車両の場合、架線や導電軌条からの電力供給により、搭載する
蓄電装置に充電することができる。
蓄電装置8024として、本発明の一態様に係る蓄電装置を搭載することで、蓄電装置の
サイクル特性が良好となり、利便性を向上させることができる。また、蓄電装置8024
の特性の向上により、蓄電装置8024自体を小型軽量化できれば、車両の軽量化に寄与
するため、燃費を向上させることができる。また、移動体に搭載した蓄電装置8024が
比較的大容量であることから、屋内等の電力供給源として用いることもできる。この場合
、電力需要のピーク時に商用電源を用いることを回避することができる。
[7−5.電気機器の一例(携帯情報端末の例)]
さらに、電気機器の一例として携帯情報端末の例について、図23を用いて説明する。
図23(A)は、携帯情報端末8040の正面及び側面を示した斜視図である。携帯情報
端末8040は、一例として、移動電話、電子メール、文章閲覧及び作成、音楽再生、イ
ンターネット通信、コンピュータゲーム等の種々のアプリケーションの実行が可能である
。携帯情報端末8040は、筐体8041の正面に表示部8042、カメラ8045、マ
イクロフォン8046、スピーカ8047を有し、筐体8041の左側面には操作用のボ
タン8043、底面には接続端子8048を有する。
表示部8042には、表示モジュール又は表示パネルが用いられる。表示モジュール又は
表示パネルとして、有機発光素子(OLED)に代表される発光素子を各画素に備えた発
光装置、液晶表示装置、電気泳動方式や電子粉流体方式等により表示を行う電子ペーパ、
DMD(Digital Micromirror Device)、PDP(Plas
ma Display Panel)、FED(Field Emission Dis
play)、SED(Surface Conduction Electron−em
itter Display)、LED(Light Emitting Diode)
ディスプレイ、カーボンナノチューブディスプレイ、ナノ結晶ディスプレイ、量子ドット
ディスプレイ等が用いることができる。
図23(A)に示す携帯情報端末8040は、筐体8041に表示部8042を一つ設け
た例であるが、これに限らず、表示部8042を携帯情報端末8040の背面に設けても
よいし、折り畳み型の携帯情報端末として、二以上の表示部を設けてもよい。
また、表示部8042には、指やスタイラス等の指示手段により情報の入力が可能なタッ
チパネルが入力手段として設けられている。これにより、表示部8042に表示されたア
イコン8044を指示手段により簡単に操作することができる。また、タッチパネルの配
置により携帯情報端末8040にキーボードを配置する領域が不要となるため、広い領域
に表示部を配置することができる。また、指やスタイラスで情報の入力が可能となること
から、ユーザフレンドリなインターフェイスを実現することができる。タッチパネルとし
ては、抵抗膜方式、静電容量方式、赤外線方式、電磁誘導方式、表面弾性波方式等、種々
の方式を採用することができるが、本発明の一態様に係る表示部8042は湾曲するもの
であるため、特に抵抗膜方式、静電容量方式を用いることが好ましい。また、このような
タッチパネルは、上述の表示モジュール又は表示パネルと一体として組み合わされた、い
わゆるインセル方式のものであってもよい。
また、タッチパネルは、イメージセンサとして機能させることができるものであってもよ
い。この場合、例えば、表示部8042に掌や指で触れ、掌紋、指紋等を撮像することで
、本人認証を行うことができる。また、表示部8042に近赤外光を発光するバックライ
ト又は近赤外光を発光するセンシング用光源を用いれば、指静脈、掌静脈などを撮像する
こともできる。
また、表示部8042にタッチパネルを設けずにキーボードを設けてもよく、さらにタッ
チパネルとキーボードの双方を設けてもよい。
操作用のボタン8043には、用途に応じて様々な機能を持たせることができる。例えば
、ボタン8043をホームボタンとし、ボタン8043を押すことで表示部8042にホ
ーム画面を表示する構成としてもよい。また、ボタン8043を所定の時間押し続けるこ
とで、携帯情報端末8040の主電源をオフするようにしてもよい。また、スリープモー
ドの状態に移行している場合、ボタン8043を押すことで、スリープモード状態から復
帰させるようにしてもよい。その他、押し続ける期間や、他のボタンと同時に押す等によ
り、種々の機能を起動させるスイッチとして用いることができる。
また、ボタン8043を音量調整ボタンやミュートボタンとし、音出力のためのスピーカ
8047の音量の調整等を行う機能を持たせてもよい。スピーカ8047からは、オペレ
ーティングシステム(OS)の起動音等特定の処理時に設定した音、音楽再生アプリケー
ションソフトからの音楽等各種アプリケーションにおいて実行される音ファイルによる音
、電子メールの着信音等様々な音を出力する。なお、図示しないが、音出力をスピーカ8
047とともに、あるいはスピーカ8047に替えてヘッドフォン、イヤフォン、ヘッド
セット等の装置に音を出力するためのコネクタを設けてもよい。
このようにボタン8043には、種々の機能を与えることができる。図23(A)では、
左側面にボタン8043を2つ設けた携帯情報端末8040を図示しているが、勿論、ボ
タン8043の数や配置位置等はこれに限定されず、適宜設計することができる。
マイクロフォン8046は、音声入力や録音に用いることができる。また、カメラ804
5により取得した画像を表示部8042に表示させることができる。
携帯情報端末8040の操作には、上述した表示部8042に設けられたタッチパネルや
ボタン8043の他、カメラ8045や携帯情報端末8040に内蔵されたセンサ等を用
いて使用者の動作(ジェスチャー)を認識させて操作を行うこともできる(ジェスチャー
入力という)。あるいは、マイクロフォン8046を用いて、使用者の音声を認識させて
操作を行うこともできる(音声入力という)。このように、人間の自然な振る舞いにより
電気機器に入力を行うNUI(Natural User Interface)技術を
実装することで、携帯情報端末8040の操作性をさらに向上させることができる。
接続端子8048は、外部機器との通信や電力供給のための信号又は電力の入力端子であ
る。例えば、携帯情報端末8040に外部メモリドライブするために、接続端子8048
を用いることができる。外部メモリドライブとして、例えば外付けHDD(ハードディス
クドライブ)やフラッシュメモリドライブ、DVD(Digital Versatil
e Disk)ドライブやDVD−R(DVD−Recordable)ドライブ、DV
D−RW(DVD−ReWritable)ドライブ、CD(Compact Disc
)ドライブ、CD−R(Compact Disc Recordable)ドライブ、
CD−RW(Compact Disc ReWritable)ドライブ、MO(Ma
gneto Optical Disc)ドライブ、FDD(Floppy Disk
Drive)ドライブ、又は他の不揮発性のソリッドステートドライブ(Solid S
tate Drive:SSD)デバイスなどの記録メディアドライブが挙げられる。ま
た、携帯情報端末8040は表示部8042上にタッチパネルを有しているが、これに替
えて筐体8041上にキーボードを設けてもよく、またキーボードを外付けしてもよい。
図23(A)では、底面に接続端子8048を1つ設けた携帯情報端末8040を図示し
ているが、接続端子8048の数や配置位置等はこれに限定されず、適宜設計することが
できる。
図23(B)は、携帯情報端末8040の背面及び側面を示した斜視図である。携帯情報
端末8040は、筐体8041の表面に太陽電池8049とカメラ8050を有し、また
、充放電制御回路8051、蓄電装置8052、DCDCコンバータ8053等を有する
。なお、図23(B)では充放電制御回路8051の一例として蓄電装置8052、DC
DCコンバータ8053を有する構成について示しており、蓄電装置8052には本発明
の一態様に係る蓄電装置を用いる。
携帯情報端末8040の背面に装着された太陽電池8049によって、電力を表示部、タ
ッチパネル、又は映像信号処理部等に供給することができる。なお、太陽電池8049は
、筐体8041の片面又は両面に設けることができる。携帯情報端末8040に太陽電池
8049を搭載させることで、屋外などの電力の供給手段がない場所においても、携帯情
報端末8040の蓄電装置8052の充電を行うことができる。
また、太陽電池8049としては、単結晶シリコン、多結晶シリコン、微結晶シリコン、
非晶質シリコン又はこれらの積層からなるシリコン系の太陽電池や、InGaAs系、G
aAs系、CIS系、CuZnSnS、CdTe−CdS系の太陽電池、有機色素を
用いた色素増感太陽電池、導電性ポリマーやフラーレン等を用いた有機薄膜太陽電池、p
in構造におけるi層中にシリコン等による量子ドット構造を形成した量子ドット型太陽
電池等を用いることができる。
ここで、図23(B)に示す充放電制御回路8051の構成、及び動作についての一例を
、図23(C)に示すブロック図を用いて説明する。
図23(C)には、太陽電池8049、蓄電装置8052、DCDCコンバータ8053
、コンバータ8057、スイッチ8054、スイッチ8055、スイッチ8056、表示
部8042について示しており、蓄電装置8052、DCDCコンバータ8053、コン
バータ8057、スイッチ8054、スイッチ8055、スイッチ8056が、図23(
B)に示す充放電制御回路8051に対応する箇所となる。
外光により太陽電池8049で発電した電力は、蓄電装置8052を充電するために必要
な電圧とするために、DCDCコンバータ8053で昇圧又は降圧される。そして、表示
部8042の動作に太陽電池8049からの電力が用いられる際には、スイッチ8054
をオンにし、コンバータ8057で表示部8042に必要な電圧に昇圧又は降圧する。ま
た、表示部8042での表示を行わない際には、スイッチ8054をオフにし、スイッチ
8055をオンにして蓄電装置8052の充電を行う。
なお、発電手段の一例として太陽電池8049を示したが、これに限定されず、圧電素子
(ピエゾ素子)や熱電変換素子(ペルティエ素子)などの他の発電手段を用いて蓄電装置
8052の充電を行ってもよい。また、携帯情報端末8040の蓄電装置8052への充
電方法はこれに限られず、例えば上述した接続端子8048と電源とを接続して充電を行
ってもよい。また、無線で電力を送受信して充電する非接触電力伝送モジュールを用いて
もよく、以上の充電方法を組み合わせてもよい。
ここで、蓄電装置8052の充電状態(SOC。State Of Chargeの略)
が、表示部8042の左上(破線枠内)に表示される。これにより、使用者は、蓄電装置
8052の充電状態を把握することができ、これに応じて携帯情報端末8040を節電モ
ードと選択することもできる。使用者が省電力モードを選択する場合には、例えば上述し
たボタン8043やアイコン8044を操作し、携帯情報端末8040に搭載される表示
モジュール又は表示パネルや、CPU等の演算装置、メモリ等の構成部品を省電力モード
に切り換えることができる。具体的には、これらの構成部品のそれぞれにおいて、任意の
機能の使用頻度を低減し、停止させる。省電力モードでは、また、充電状態に応じて設定
によって自動的に省電力モードに切り替わる構成とすることもできる。また、携帯情報端
末8040に光センサ等の検出手段を設け、携帯情報端末8040の使用時における外光
の光量を検出して表示輝度を最適化することで、蓄電装置8052の電力の消費を抑える
ことができる。
また、太陽電池8049等による充電時には、図23(A)に示すように、表示部804
2の左上(破線枠内)にそれを示す画像等の表示を行ってもよい。
また、本発明の一態様に係る蓄電装置を具備していれば、図23に示した電気機器に限定
されないことは言うまでもない。
[7−6.電気機器の一例(蓄電システムの例)]
さらに、電気機器の一例として蓄電システムの例について、図24を用いて説明する。こ
こで説明する蓄電システム8100は、上述した蓄電システム8005として家庭で用い
ることができる。また、ここでは一例として家庭用の蓄電システムについて説明するが、
これに限られず、業務用として又はその他の用途で用いることができる。
図24(A)に示すように、蓄電システム8100は、系統電源8103と電気的に接続
するためのプラグ8101を有する。また、蓄電システム8100は、家庭内に設けられ
た分電盤8104と電気的に接続する。
また、蓄電システム8100は、動作状態等を示すための表示パネル8102などを有し
ていてもよい。表示パネルはタッチスクリーンを有していてもよい。また、表示パネルの
他、主電源のオンオフを行うためのスイッチや蓄電システムの操作を行うためのスイッチ
等を有していてもよい。
なお、図示しないが、蓄電システム8100を操作するために、蓄電システム8100と
は別に、例えば室内の壁に操作スイッチを設けてもよい。あるいは、蓄電システム810
0と家庭内に設けられたパーソナルコンピュータ、サーバ等と接続し、間接的に蓄電シス
テム8100を操作してもよい。さらに、スマートフォン等の情報端末機やインターネッ
ト等を用いて蓄電システム8100を遠隔操作してもよい。これらの場合、蓄電システム
8100とその他の機器とは有線により又は無線により通信を行う機構を、蓄電システム
8100に設ければよい。
図24(B)は、蓄電システム8100の内部を模式的に示した図である。蓄電システム
8100は、複数の蓄電装置群8106とBMU(Battery Managemen
t Unit)8107とPCS(Power Conditioning Syste
m)8108とを有する。
蓄電装置群8106は、上述した蓄電装置8105を複数並べて接続したものである。系
統電源8103からの電力を、蓄電装置群8106に蓄電することができる。複数の蓄電
装置群8106のそれぞれは、BMU8107と電気的に接続されている。
BMU8107は、蓄電装置群8106が有する複数の蓄電装置8105の状態を監視及
び制御し、また蓄電装置8105を保護することができる機能を有する。具体的には、B
MU8107は、蓄電装置群8106が有する複数の蓄電装置8105のセル電圧、セル
温度データ収集、過充電及び過放電の監視、過電流の監視、セルバランサ制御、電池劣化
状態の管理、電池残量((充電率)State Of Charge:SOC)の算出演
算、駆動用蓄電装置の冷却ファンの制御、又は故障検出の制御等を行う。なお、これらの
機能の一部又は全部は上述のように、蓄電装置8105内に含めてもよく、あるいは蓄電
装置群ごとに当該機能を付与してもよい。また、BMU8107はPCS8108と電気
的に接続する。
ここで、BMU8107を構成する電子回路には、上述した酸化物半導体を有するトラン
ジスタを用いた電子回路を有するとよい。この場合、BMU8107の消費電力を大幅に
低減することが可能となる。
PCS8108は、交流(AC)電源である系統電源8103と電気的に接続され、直流
−交流変換を行う。例えば、PCS8108は、インバーターや、系統電源8103の異
常を検出して動作を停止する系統連系保護装置などを有する。蓄電システム8100の充
電時には、例えば系統電源8103の交流の電力を直流に変換してBMU8107へ送電
し、蓄電システム8100の放電時には、蓄電装置群8106に蓄えられた電力を屋内な
どの負荷に交流に変換して供給する。なお、蓄電システム8100から負荷への電力の供
給は、図24(A)に示すように分電盤8104を介してもよく、あるいは蓄電システム
8100と負荷とを有線又は無線により直接行ってもよい。
なお、蓄電システム8100への充電は上述する系統電源8103からに限らず、例えば
屋外に設置した太陽発電システムから電力を供給してもよいし、電気自動車に搭載した蓄
電システムから供給してもよい。
100 蓄電装置
101 二次電池
102 端子
103 端子
104 センサ
105 MCU
106 メモリ
107 通信手段
160 酸化物積層膜
161 酸化物層
162 酸化物層
163 酸化物層
164 酸化物層
201 電流曲線
202 電圧曲線
211 充電モード
212 定電流充電モード
213 定電圧充電モード
214 充電モード
221 放電モード
222 急速放電モード
231 待機モード
233 不揮発性記憶部
240 トランジスタ
241 容量素子
242 トランジスタ
243 トランジスタ
244 トランジスタ
245 セレクタ
246 インバーター
247 容量素子
248 フリップフロップ
400 基板
401 ゲート電極
402 ゲート絶縁膜
403 n型化領域
404 酸化物膜
406 絶縁膜
408 絶縁膜
409 ゲート絶縁膜
410 ゲート電極
421 トランジスタ
422 トランジスタ
423 トランジスタ
701 ユニット
702 ユニット
703 ユニット
704 ユニット
705 回路
710 CPU
711 バスブリッジ
712 メモリ
713 メモリインターフェイス
715 クロック生成回路
720 コントローラ
721 割り込みコントローラ
722 I/Oインターフェイス
730 パワーゲートユニット
731 スイッチ回路
732 スイッチ回路
740 クロック生成回路
741 水晶発振回路
742 発振子
743 水晶振動子
745 タイマー回路
746 I/Oインターフェイス
750 I/Oポート
751 コンパレータ
752 I/Oインターフェイス
761 バスライン
762 バスライン
763 バスライン
764 データバスライン
770 接続端子
771 接続端子
772 接続端子
773 接続端子
774 接続端子
775 接続端子
776 接続端子
780 レジスタ
783 レジスタ
784 レジスタ
785 レジスタ
786 レジスタ
787 レジスタ
950 二次電池
951 正極缶
952 負極缶
953 ガスケット
954 正極
955 正極集電体
956 正極活物質層
957 負極
958 負極集電体
959 負極活物質層
960 セパレータ
970 二次電池
971 正極集電体
972 正極活物質層
973 正極
974 負極集電体
975 負極活物質層
976 負極
977 セパレータ
978 外装体
980 二次電池
981 正極キャップ
982 電池缶
983 正極端子
984 正極
985 セパレータ
986 負極
987 負極端子
988 絶縁板
989 絶縁板
991 PTC素子
992 安全弁機構
993 捲回体
994 負極
995 正極
996 セパレータ
997 端子
998 端子
1050 メモリセル
1051 ビット線
1052 ワード線
1053 容量線
1054 センスアンプ
1055 トランジスタ
1056 キャパシタ
1071 トランジスタ
1072 トランジスタ
1073 キャパシタ
1074 ソース線
1075 ソース線
1076 ワード線
1077 ドレイン線
1078 容量線
1079 ノード
1080 基板
1081 ウェル
1082 不純物領域
1083 絶縁膜
1084 電極
1085 STI
1087 電極
1088 層間絶縁膜
1089 層間絶縁膜
1090 層間絶縁膜
1091 層間絶縁膜
1092 層間絶縁膜
1093 バリア膜
1094 配線
1095 バリア膜
1096 層間絶縁膜
1097 バリア膜
1098 配線
1099 バリア膜
1100 層間絶縁膜
1101 下地絶縁膜
1102 絶縁膜
1104 層間絶縁膜
1105 層間絶縁膜
1106 バリア膜
1108 層間絶縁膜
1109 層間絶縁膜
1110 バリア膜
1111 不純物領域
1112 不純物領域
1113 ゲート絶縁膜
1114 ゲート絶縁膜
1115 サイドウォール絶縁膜
1116 ゲート電極
1117 絶縁膜
1118 ゲート電極
1119 サイドウォール絶縁膜
1171 トランジスタ
1172 トランジスタ
1173 酸化物膜
1174 導電層
1175 導電層
1176 絶縁膜
1177 導電層
1178 キャパシタ
1196 レジスタ
3004 論理回路
6000 正極
6001 正極集電体
6002 正極活物質層
6003 正極活物質
6004 グラフェン
6005 バインダ
6100 負極
6101 負極集電体
6102 負極活物質層
6103 負極活物質
6104 被膜
6105 バインダ
6600 蓄電装置
6601 捲回体
6602 端子
6603 端子
6604 電池缶
6605 端子
6606 回路基板
6607 電気回路
6608 ラベル
6609 アンテナ
6610 アンテナ
6611 層
8000 住宅
8001 電力系統
8002 引込み線
8003 分電盤
8004 制御装置
8005 蓄電システム
8006 太陽光発電システム
8007 表示装置
8008 照明装置
8009 空気調和設備
8010 電気冷蔵庫
8011 インターネット
8012 電気自動車
8013 管理サーバ
8020 電気自動車
8021 充電装置
8022 ケーブル
8023 前輪
8024 蓄電装置
8025 電子制御ユニット
8026 インバータユニット
8027 走行モータユニット
8028 出力軸
8029 駆動軸
8031 接続プラグ
8040 携帯情報端末
8041 筐体
8042 表示部
8043 ボタン
8044 アイコン
8045 カメラ
8046 マイクロフォン
8047 スピーカ
8048 接続端子
8049 太陽電池
8050 カメラ
8051 充放電制御回路
8052 蓄電装置
8053 DCDCコンバータ
8054 スイッチ
8055 スイッチ
8056 スイッチ
8057 コンバータ
8100 蓄電システム
8101 プラグ
8102 表示パネル
8103 系統電源
8104 分電盤
8105 蓄電装置
8106 蓄電装置群
8107 BMU
8108 PCS
104a 温度センサ
104b クーロンカウンタ
104c 電圧計
104d 電流計
106a 記憶領域
106b 記憶領域
106c 記憶領域
1086a コンタクトプラグ
1086b コンタクトプラグ
1103a コンタクトプラグ
1103b コンタクトプラグ
1103c コンタクトプラグ
1107a 配線
1107b 配線
3400a メモリセルアレイ
3400n メモリセルアレイ
405a ソース電極
405b ドレイン電極

Claims (2)

  1. 複数の動作状態を有する二次電池と、
    前記二次電池の状態を測定する測定手段と、
    前記二次電池の前記動作状態を判定する判定手段と、
    前記動作状態に応じた記憶領域を有する記憶手段と、を有し、
    前記判定手段は、前記測定手段の情報をもとに前記動作状態を判定し、前記動作状態の開始時と終了時の情報を、前記記憶領域に記憶し、
    前記記憶手段は、複数のメモリセルを有し、
    前記複数のメモリセルは、トランジスタとキャパシタと、をそれぞれ有し、
    前記トランジスタは酸化物半導体膜を有し、
    前記酸化物半導体膜は第1乃至第4の酸化物層を有し、
    前記第1の酸化物層上の前記第2の酸化物層と、
    前記第2の酸化物層上の前記第3の酸化物層と、
    前記第1の酸化物層乃至前記第3の酸化物層のそれぞれの側面に接する前記第4の酸化物層を有し、
    前記酸化物半導体膜上に接する絶縁膜を有し、
    前記トランジスタのチャネル幅方向の断面から見て、前記酸化物半導体膜は曲面を有することを特徴とする蓄電システム。
  2. 第1の動作状態と第2の動作状態を有する二次電池と、
    前記二次電池の状態を測定する測定手段と、
    前記二次電池が前記第1の動作状態か前記第2の動作状態かを判定する判定手段と、
    前記二次電池の前記第1の動作状態及び前記第2の動作状態に基づく情報を記憶する記憶手段と、を有し、
    前記記憶手段は、第1の記憶領域と第2の記憶領域とを有し、
    前記判定手段は、前記測定手段の情報をもとに前記二次電池が前記第1の動作状態と前記第2の動作状態とのいずれかであるかを判定し、
    前記判定手段が前記第1の動作状態と判定した場合は、前記第1の記憶領域に前記測定手段からの情報が保存され、
    前記判定手段が前記第2の動作状態と判定した場合は、前記第2の記憶領域に前記測定手段からの情報が保存され、
    前記第1の動作状態は、定電流充電及び定電圧充電を含む充電動作であり、
    前記第2の動作状態は、急速放電を含む放電動作であり、
    前記第1の動作状態の開始時と終了時それぞれの電池残量、電圧、電流、及び温度、並びに前記開始時から前記終了時までの時間は、前記第1の記憶領域に保存され、
    前記第2の動作状態の開始時と終了時それぞれの電池残量、電圧、電流、及び温度、並びに前記開始時から前記終了時までの時間は、前記第2の記憶領域に保存され、
    前記急速放電中の電流最大値は、前記第2の記憶領域に保存され、
    前記第1の記憶領域及び前記第2の記憶領域は、それぞれ複数のメモリセルを有し、
    前記複数のメモリセルは、トランジスタとキャパシタと、をそれぞれ有し、
    前記トランジスタは酸化物半導体膜を有し、
    前記酸化物半導体膜は第1乃至第4の酸化物層を有し、
    前記第1の酸化物層上の前記第2の酸化物層と、
    前記第2の酸化物層上の前記第3の酸化物層と、
    前記第1の酸化物層乃至前記第3の酸化物層のそれぞれの側面に接する前記第4の酸化物層を有し、
    前記酸化物半導体膜上に接する絶縁膜を有し、
    前記トランジスタのチャネル幅方向の断面から見て、前記酸化物半導体膜は曲面を有することを特徴とする蓄電システム。
JP2018073997A 2012-12-28 2018-04-06 蓄電システム Active JP6608988B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012288513 2012-12-28
JP2012288513 2012-12-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013266419A Division JP2014143190A (ja) 2012-12-28 2013-12-25 蓄電装置、および蓄電システム

Publications (2)

Publication Number Publication Date
JP2018142544A JP2018142544A (ja) 2018-09-13
JP6608988B2 true JP6608988B2 (ja) 2019-11-20

Family

ID=51016444

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013266419A Withdrawn JP2014143190A (ja) 2012-12-28 2013-12-25 蓄電装置、および蓄電システム
JP2018073997A Active JP6608988B2 (ja) 2012-12-28 2018-04-06 蓄電システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013266419A Withdrawn JP2014143190A (ja) 2012-12-28 2013-12-25 蓄電装置、および蓄電システム

Country Status (4)

Country Link
US (1) US9614258B2 (ja)
JP (2) JP2014143190A (ja)
TW (2) TWI670886B (ja)
WO (1) WO2014104266A1 (ja)

Families Citing this family (496)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US11998198B2 (en) 2004-07-28 2024-06-04 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US20080078802A1 (en) 2006-09-29 2008-04-03 Hess Christopher J Surgical staples and stapling instruments
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US11980366B2 (en) 2006-10-03 2024-05-14 Cilag Gmbh International Surgical instrument
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8840603B2 (en) 2007-01-10 2014-09-23 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8827133B2 (en) 2007-01-11 2014-09-09 Ethicon Endo-Surgery, Inc. Surgical stapling device having supports for a flexible drive mechanism
US8590762B2 (en) 2007-03-15 2013-11-26 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configurations
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
RU2493788C2 (ru) 2008-02-14 2013-09-27 Этикон Эндо-Серджери, Инк. Хирургический режущий и крепежный инструмент, имеющий радиочастотные электроды
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US11986183B2 (en) 2008-02-14 2024-05-21 Cilag Gmbh International Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US9331750B2 (en) 2008-03-17 2016-05-03 Powermat Technologies Ltd. Wireless power receiver and host control interface thereof
JP5483030B2 (ja) 2008-03-17 2014-05-07 パワーマット テクノロジーズ リミテッド 誘導伝送システム
US8981598B2 (en) 2008-07-02 2015-03-17 Powermat Technologies Ltd. Energy efficient inductive power transmission system and method
US11979201B2 (en) 2008-07-02 2024-05-07 Powermat Technologies Ltd. System and method for coded communication signals regulating inductive power transmissions
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
JP2012517287A (ja) 2009-02-06 2012-08-02 エシコン・エンド−サージェリィ・インコーポレイテッド 被駆動式手術用ステープラの改良
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US8740038B2 (en) 2010-09-30 2014-06-03 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a releasable portion
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9263909B2 (en) * 2011-09-28 2016-02-16 Toyota Jidosha Kabushiki Kaisha Control device and control method for nonaqueous secondary battery
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US8995218B2 (en) 2012-03-07 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN104334098B (zh) 2012-03-28 2017-03-22 伊西康内外科公司 包括限定低压强环境的胶囊剂的组织厚度补偿件
CN104379068B (zh) 2012-03-28 2017-09-22 伊西康内外科公司 包括组织厚度补偿件的保持器组件
RU2014143258A (ru) 2012-03-28 2016-05-20 Этикон Эндо-Серджери, Инк. Компенсатор толщины ткани, содержащий множество слоев
KR101627960B1 (ko) * 2012-06-07 2016-06-07 미쓰비시덴키 가부시키가이샤 전기차 제어장치
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US20140001234A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Coupling arrangements for attaching surgical end effectors to drive systems therefor
CN104487005B (zh) 2012-06-28 2017-09-08 伊西康内外科公司 空夹仓闭锁件
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
BR112014032776B1 (pt) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
CN102968098B (zh) * 2012-11-05 2014-12-10 清华大学 一种对集群内电动汽车充电功率的分布式优化方法
JP2014143185A (ja) 2012-12-28 2014-08-07 Semiconductor Energy Lab Co Ltd 蓄電装置及びその充電方法
MX368026B (es) 2013-03-01 2019-09-12 Ethicon Endo Surgery Inc Instrumento quirúrgico articulable con vías conductoras para la comunicación de la señal.
BR112015021082B1 (pt) 2013-03-01 2022-05-10 Ethicon Endo-Surgery, Inc Instrumento cirúrgico
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
BR112015026109B1 (pt) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc Instrumento cirúrgico
US20150053737A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. End effector detection systems for surgical instruments
CN106028966B (zh) 2013-08-23 2018-06-22 伊西康内外科有限责任公司 用于动力外科器械的击发构件回缩装置
US20150191307A1 (en) * 2014-01-03 2015-07-09 Pierre TRUDEL Solar powered frac sand making silo
KR102211363B1 (ko) * 2014-02-11 2021-02-03 삼성에스디아이 주식회사 에너지 저장 시스템과 그의 구동방법
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
JP6462004B2 (ja) 2014-02-24 2019-01-30 エシコン エルエルシー 発射部材ロックアウトを備える締結システム
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
BR112016021943B1 (pt) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc Instrumento cirúrgico para uso por um operador em um procedimento cirúrgico
CN106456159B (zh) 2014-04-16 2019-03-08 伊西康内外科有限责任公司 紧固件仓组件和钉保持器盖布置结构
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
CN106456158B (zh) 2014-04-16 2019-02-05 伊西康内外科有限责任公司 包括非一致紧固件的紧固件仓
US9844369B2 (en) 2014-04-16 2017-12-19 Ethicon Llc Surgical end effectors with firing element monitoring arrangements
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
BR112016023698B1 (pt) 2014-04-16 2022-07-26 Ethicon Endo-Surgery, Llc Cartucho de prendedores para uso com um instrumento cirúrgico
US10020403B2 (en) 2014-05-27 2018-07-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9647471B2 (en) * 2014-10-17 2017-05-09 Trion Energy Solutions Corp. Battery management system and method
US20160005749A1 (en) * 2014-07-01 2016-01-07 Qualcomm Incorporated Series ferroelectric negative capacitor for multiple time programmable (mtp) devices
WO2016018281A1 (en) * 2014-07-30 2016-02-04 Hewlett-Packard Development Company, L.P. Current behavior of elements
BR112017004361B1 (pt) 2014-09-05 2023-04-11 Ethicon Llc Sistema eletrônico para um instrumento cirúrgico
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
US9660470B2 (en) * 2014-09-08 2017-05-23 Nokia Technologies Oy Flexible, hybrid energy generating and storage power cell
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
CN107427300B (zh) 2014-09-26 2020-12-04 伊西康有限责任公司 外科缝合支撑物和辅助材料
JP6412390B2 (ja) * 2014-09-30 2018-10-24 能美防災株式会社 火災警報器
WO2016055903A1 (en) 2014-10-10 2016-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, circuit board, and electronic device
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
BR112017012996B1 (pt) 2014-12-18 2022-11-08 Ethicon Llc Instrumento cirúrgico com uma bigorna que é seletivamente móvel sobre um eixo geométrico imóvel distinto em relação a um cartucho de grampos
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
KR102581808B1 (ko) 2014-12-18 2023-09-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 센서 장치, 및 전자 기기
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US20160196743A1 (en) * 2015-01-07 2016-07-07 Marco Garcia Automatic Responsive Sign Assembly
DE102015002076B3 (de) 2015-02-18 2016-05-19 Audi Ag Batteriezelle für eine Batterie eines Kraftfahrzeugs, Batterie sowie Kraftfahrzeug
US10159483B2 (en) 2015-02-27 2018-12-25 Ethicon Llc Surgical apparatus configured to track an end-of-life parameter
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
JP2020121162A (ja) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
JP6213511B2 (ja) * 2015-03-25 2017-10-18 トヨタ自動車株式会社 電動車両及びその制御方法
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
TWI568288B (zh) * 2015-07-24 2017-01-21 臺灣塑膠工業股份有限公司 建築整合型無線感測系統
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10433846B2 (en) 2015-09-30 2019-10-08 Ethicon Llc Compressible adjunct with crossing spacer fibers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
JP6264362B2 (ja) * 2015-12-01 2018-01-24 トヨタ自動車株式会社 電動車両の電池システム
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
BR112018016098B1 (pt) 2016-02-09 2023-02-23 Ethicon Llc Instrumento cirúrgico
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10371129B2 (en) * 2016-02-26 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and sensor system
CN113253592B (zh) 2016-02-26 2022-11-08 株式会社半导体能源研究所 连接部件、电源装置、电子设备及系统
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10314582B2 (en) 2016-04-01 2019-06-11 Ethicon Llc Surgical instrument comprising a shifting mechanism
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11179150B2 (en) * 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
CN105912087B (zh) * 2016-04-29 2019-01-18 北京小米移动软件有限公司 一种移动终端
TWI562505B (en) * 2016-05-17 2016-12-11 Chung Hsin Electric & Machinery Mfg Corp Micro grid stabilization device
US10644516B2 (en) * 2016-05-19 2020-05-05 Microsoft Technology Licensing, Llc Charging multiple user apparatuses
US20170373195A1 (en) * 2016-06-27 2017-12-28 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device
US10729177B2 (en) * 2016-07-31 2020-08-04 Altria Client Services Llc Electronic vaping device, battery section, and charger
US10485706B2 (en) * 2016-08-29 2019-11-26 3M Innovative Properties Company Electronic hearing protector with switchable electrical contacts
DE102016220110A1 (de) * 2016-10-14 2018-04-19 Phoenix Contact E-Mobility Gmbh Temperaturüberwachtes Ladesystem zur Übertragung von elektrischen Ladeströmen
US10184987B2 (en) * 2016-11-18 2019-01-22 Semiconductor Components Industries, Llc Methods and apparatus for reporting a relative state of charge of a battery
KR20180057275A (ko) * 2016-11-22 2018-05-30 삼성전자주식회사 배터리 제어 방법 및 장치
US20180168609A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Firing assembly comprising a fuse
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
JP7010956B2 (ja) 2016-12-21 2022-01-26 エシコン エルエルシー 組織をステープル留めする方法
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10736629B2 (en) 2016-12-21 2020-08-11 Ethicon Llc Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
MX2019007295A (es) 2016-12-21 2019-10-15 Ethicon Llc Sistema de instrumento quirúrgico que comprende un bloqueo del efector de extremo y un bloqueo de la unidad de disparo.
US10667811B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Surgical stapling instruments and staple-forming anvils
BR112019011947A2 (pt) 2016-12-21 2019-10-29 Ethicon Llc sistemas de grampeamento cirúrgico
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US20180168618A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling systems
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
JP6983893B2 (ja) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC 外科用エンドエフェクタ及び交換式ツールアセンブリのためのロックアウト構成
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
JP6593369B2 (ja) * 2017-02-21 2019-10-23 株式会社村田製作所 半導体チップが実装されたモジュール、及び半導体チップ実装方法
DE102017113162A1 (de) * 2017-06-14 2018-12-20 Phoenix Contact E-Mobility Gmbh Verfahren zum Erfassen eines Steckvorgangs
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11367739B2 (en) 2017-06-27 2022-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic component
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
WO2019048981A1 (ja) * 2017-09-06 2019-03-14 株式会社半導体エネルギー研究所 半導体装置、バッテリーユニット、バッテリーモジュール
CN109493808B (zh) * 2017-09-12 2020-11-17 元太科技工业股份有限公司 显示装置
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10522744B2 (en) 2017-10-10 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. High thermal stability by doping of oxide capping layer for spin torque transfer (STT) magnetic random access memory (MRAM) applications
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
JP7073676B2 (ja) 2017-11-01 2022-05-24 トヨタ自動車株式会社 移動体の救助システム、サーバ、及び移動体の救助方法
JP2019088040A (ja) * 2017-11-01 2019-06-06 トヨタ自動車株式会社 移動体の救助システム、及び移動体の救助方法
JP7073675B2 (ja) 2017-11-01 2022-05-24 トヨタ自動車株式会社 移動体の救助システム、及び移動体の救助方法
US10325639B2 (en) 2017-11-20 2019-06-18 Taiwan Semiconductor Manufacturing Company, Ltd. Initialization process for magnetic random access memory (MRAM) production
JP6551756B2 (ja) * 2017-12-06 2019-07-31 Toto株式会社 リモコン装置および水まわりシステム
JP6558651B2 (ja) * 2017-12-06 2019-08-14 Toto株式会社 リモコン装置
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US20190192147A1 (en) 2017-12-21 2019-06-27 Ethicon Llc Surgical instrument comprising an articulatable distal head
US10665773B2 (en) 2018-01-26 2020-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride capping layer for spin torque transfer (STT)-magnetoresistive random access memory (MRAM)
CN112005383A (zh) 2018-03-12 2020-11-27 株式会社半导体能源研究所 金属氧化物以及包含金属氧化物的晶体管
USD854780S1 (en) 2018-04-30 2019-07-30 The J. M. Smucker Company Sandwich
KR20210020934A (ko) * 2018-06-15 2021-02-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP7399857B2 (ja) * 2018-07-10 2023-12-18 株式会社半導体エネルギー研究所 二次電池の保護回路
US10522746B1 (en) 2018-08-07 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Dual magnetic tunnel junction devices for magnetic random access memory (MRAM)
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10797225B2 (en) 2018-09-18 2020-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Dual magnetic tunnel junction (DMTJ) stack design
WO2020084386A1 (ja) 2018-10-25 2020-04-30 株式会社半導体エネルギー研究所 二次電池の充電制御回路及び異常検知システム
JP7222657B2 (ja) * 2018-10-25 2023-02-15 株式会社半導体エネルギー研究所 二次電池の残量計測回路
WO2020104892A1 (ja) 2018-11-22 2020-05-28 株式会社半導体エネルギー研究所 半導体装置及び充電制御システム
US11714138B2 (en) 2018-11-22 2023-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power storage device, and electronic device
CN109274160A (zh) * 2018-11-28 2019-01-25 中车株洲电力机车有限公司 一种蓄电池均衡方法、系统及轨道交通车辆
CN113169546A (zh) 2018-12-19 2021-07-23 株式会社半导体能源研究所 二次电池的过放电防止电路及二次电池模块
WO2020128722A1 (ja) 2018-12-19 2020-06-25 株式会社半導体エネルギー研究所 ヒステリシスコンパレータ、半導体装置、及び蓄電装置
US10950782B2 (en) 2019-02-14 2021-03-16 Headway Technologies, Inc. Nitride diffusion barrier structure for spintronic applications
KR102586460B1 (ko) * 2019-03-07 2023-10-06 현대자동차주식회사 배터리 사용 습관 및 배터리 방전 경향 예측 시스템
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
JP6698909B1 (ja) * 2019-04-09 2020-05-27 三菱電機株式会社 車載電子制御装置
US11218011B2 (en) * 2019-04-26 2022-01-04 StoreDot Ltd. Fast charging and power boosting lithium-ion batteries
US11461531B2 (en) * 2019-04-29 2022-10-04 Silicon Space Technology Corporation Learning-based analyzer for mitigating latch-up in integrated circuits
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
EP3751296A1 (en) * 2019-06-12 2020-12-16 LEM International SA Dc meter for electrical vehicle charging station
US11264560B2 (en) 2019-06-21 2022-03-01 Headway Technologies, Inc. Minimal thickness, low switching voltage magnetic free layers using an oxidation control layer and magnetic moment tuning layer for spintronic applications
US11264566B2 (en) 2019-06-21 2022-03-01 Headway Technologies, Inc. Magnetic element with perpendicular magnetic anisotropy (PMA) and improved coercivity field (Hc)/switching current ratio
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US12004740B2 (en) 2019-06-28 2024-06-11 Cilag Gmbh International Surgical stapling system having an information decryption protocol
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
KR102213405B1 (ko) * 2019-08-22 2021-02-08 (주)파인디어칩 사용자 입출력 인터페이스 집적회로
US20220368149A1 (en) * 2019-11-01 2022-11-17 Semiconductor Energy Laboratory Co., Ltd. Power storage device and operation method of power storage device
TWI744721B (zh) * 2019-11-19 2021-11-01 廣達電腦股份有限公司 電池裝置及其控制方法
KR20210062364A (ko) * 2019-11-21 2021-05-31 에스케이하이닉스 주식회사 메모리 장치 및 그것의 동작 방법
JP2021086816A (ja) * 2019-11-29 2021-06-03 パナソニックIpマネジメント株式会社 電池情報管理装置、電池情報管理方法、および電池情報管理システム
CN110995929B (zh) * 2019-12-05 2022-05-06 北京小米移动软件有限公司 终端控制方法、装置、终端及存储介质
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US12035913B2 (en) 2019-12-19 2024-07-16 Cilag Gmbh International Staple cartridge comprising a deployable knife
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
TWI741632B (zh) * 2020-06-03 2021-10-01 龍華科技大學 電池智能分流模組之電阻溫度係數預測方法、電流量測補償校正方法及其裝置
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
JP7465754B2 (ja) * 2020-08-07 2024-04-11 本田技研工業株式会社 蓄電装置
CN112103574A (zh) * 2020-08-12 2020-12-18 吴幼健 带记忆装置的蓄电池
TWI749728B (zh) * 2020-08-24 2021-12-11 和碩聯合科技股份有限公司 可攜式電子裝置
JP7317777B2 (ja) * 2020-09-08 2023-07-31 株式会社東芝 管理方法、管理装置及び管理システム
JP2022049155A (ja) * 2020-09-16 2022-03-29 キオクシア株式会社 メモリシステムおよび容量値の測定方法
US11680978B2 (en) * 2020-09-30 2023-06-20 Taiwan Semiconductor Manufacturing Co., Ltd. GaN reliability built-in self test (BIST) apparatus and method for qualifying dynamic on-state resistance degradation
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US12053175B2 (en) 2020-10-29 2024-08-06 Cilag Gmbh International Surgical instrument comprising a stowed closure actuator stop
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
EP4047380A1 (de) * 2021-02-18 2022-08-24 FRONIUS INTERNATIONAL GmbH Verfahren und system zur analyse eines elektrischen energiespeichers sowie energieversorgungssystem
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11980362B2 (en) 2021-02-26 2024-05-14 Cilag Gmbh International Surgical instrument system comprising a power transfer coil
US12108951B2 (en) 2021-02-26 2024-10-08 Cilag Gmbh International Staple cartridge comprising a sensing array and a temperature control system
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US12102323B2 (en) 2021-03-24 2024-10-01 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising a floatable component
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11998201B2 (en) 2021-05-28 2024-06-04 Cilag CmbH International Stapling instrument comprising a firing lockout
US12119680B2 (en) 2021-06-21 2024-10-15 Vinpower Inc. Charging apparatus having backup function
TWI783537B (zh) * 2021-06-21 2022-11-11 美商偉寶科技股份有限公司 具資料備份功能的充電設備
US12040641B2 (en) * 2021-06-22 2024-07-16 Appleton Grp Llc Systems and methods for situational suppression of overcurrent protection
DE102021207358A1 (de) 2021-07-12 2023-01-12 Robert Bosch Gesellschaft mit beschränkter Haftung Temperatursensor eines Batteriemoduls und Batteriemodul mit einem solchen
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11980363B2 (en) 2021-10-18 2024-05-14 Cilag Gmbh International Row-to-row staple array variations
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US12089841B2 (en) 2021-10-28 2024-09-17 Cilag CmbH International Staple cartridge identification systems
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US11854587B2 (en) 2021-12-03 2023-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Low power wake up for memory
CN113960362B (zh) * 2021-12-22 2022-03-11 深圳市聚能优电科技有限公司 储能ems的预警方法、系统、设备及存储介质
US12003132B2 (en) * 2022-05-17 2024-06-04 Hamilton Sundstrand Corporation Hybrid electric secondary power and battery charging architecture and control system
US12068608B2 (en) 2022-07-08 2024-08-20 Toyota Motor North America, Inc. Determining energy sources to a location

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274950B1 (en) * 1994-03-03 2001-08-14 American Power Conversion Battery communication system
TW269727B (en) 1995-04-03 1996-02-01 Electrosource Inc Battery management system
JP4566392B2 (ja) 2000-11-16 2010-10-20 レノボ シンガポール プライヴェート リミテッド 温度制御に伴うアクションレベルを決定する電池、電池パック、コンピュータ装置、電気機器、および電池の温度制御方法
JP4794760B2 (ja) 2001-07-04 2011-10-19 パナソニック株式会社 電池パック
JP4215442B2 (ja) 2002-04-02 2009-01-28 三洋電機株式会社 二次電池装置
US7019420B2 (en) * 2003-06-30 2006-03-28 Symbol Technologies, Inc. Battery pack with built in communication port
US7299373B2 (en) * 2003-07-01 2007-11-20 Symbol Technologies, Inc. Systems and methods for a controllable release of power supply in a mobile device
JP2006228490A (ja) * 2005-02-16 2006-08-31 Sanyo Electric Co Ltd 電池パックおよび電池パック充電システムおよび電池パック充放電システム
JP5023650B2 (ja) * 2006-10-13 2012-09-12 ソニー株式会社 電池パック及び電池パックの制御方法
JP5195049B2 (ja) 2008-06-06 2013-05-08 トヨタ自動車株式会社 リチウムイオン二次電池およびその製造方法
KR102443297B1 (ko) 2009-09-24 2022-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 반도체 장치
WO2011052396A1 (en) 2009-10-29 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2011181147A (ja) * 2010-03-02 2011-09-15 Renesas Electronics Corp 連想記憶装置
WO2011149118A1 (ko) * 2010-05-24 2011-12-01 연세대학교 산학협력단 액상 공정을 이용한 산화물 반도체 박막의 형성 방법, 결정화 방법, 이를 이용한 반도체 소자 형성 방법
TWI570920B (zh) * 2011-01-26 2017-02-11 半導體能源研究所股份有限公司 半導體裝置及其製造方法
TWI536502B (zh) * 2011-05-13 2016-06-01 半導體能源研究所股份有限公司 記憶體電路及電子裝置
JP6012263B2 (ja) * 2011-06-09 2016-10-25 株式会社半導体エネルギー研究所 半導体記憶装置
KR101283486B1 (ko) 2011-08-23 2013-07-12 주식회사 엘지화학 이차 전지의 안전성 향상 장치 및 방법
US9190854B2 (en) * 2012-06-15 2015-11-17 Broadcom Corporation Charger external power device gain sampling

Also Published As

Publication number Publication date
TW201440285A (zh) 2014-10-16
US9614258B2 (en) 2017-04-04
JP2014143190A (ja) 2014-08-07
TWI648896B (zh) 2019-01-21
TW201921796A (zh) 2019-06-01
JP2018142544A (ja) 2018-09-13
US20140184165A1 (en) 2014-07-03
TWI670886B (zh) 2019-09-01
WO2014104266A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP6608988B2 (ja) 蓄電システム
KR102393022B1 (ko) 축전 장치의 제어 시스템, 축전 시스템, 및 전기 기기
JP6705923B2 (ja) 蓄電装置及び蓄電システム
JP6674008B2 (ja) 蓄電装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191024

R150 Certificate of patent or registration of utility model

Ref document number: 6608988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250