TW201440285A - 蓄電裝置及蓄電系統 - Google Patents

蓄電裝置及蓄電系統 Download PDF

Info

Publication number
TW201440285A
TW201440285A TW102146660A TW102146660A TW201440285A TW 201440285 A TW201440285 A TW 201440285A TW 102146660 A TW102146660 A TW 102146660A TW 102146660 A TW102146660 A TW 102146660A TW 201440285 A TW201440285 A TW 201440285A
Authority
TW
Taiwan
Prior art keywords
oxide
film
transistor
power storage
secondary battery
Prior art date
Application number
TW102146660A
Other languages
English (en)
Other versions
TWI648896B (zh
Inventor
Minoru Takahashi
Kei Takahashi
Jun Koyama
Junpei Momo
Tamae Moriwaka
Original Assignee
Semiconductor Energy Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Lab filed Critical Semiconductor Energy Lab
Publication of TW201440285A publication Critical patent/TW201440285A/zh
Application granted granted Critical
Publication of TWI648896B publication Critical patent/TWI648896B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Semiconductor Memories (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本發明的一個方式的目的之一是提供容易進行工作情況的分析的蓄電裝置。二次電池包括作為測定單元的感測器、作為判斷單元的微控制單元以及作為儲存單元的記憶體。藉由感測器測定二次電池的電池剩餘電量、電壓、電流以及溫度等的情況。微控制單元可以對測定結果進行運算處理,來判斷二次電池的工作情況。另外,微控制單元根據二次電池的工作情況,將測定結果儲存於記憶體。

Description

蓄電裝置及蓄電系統
本發明的一個方式係關於一種物體(包括製品(product)、機器(machine)、產品(manufacture)及物質組成(composition of matter))以及方法(process:包括單純方法及生產方法)。尤其是,本發明的一個方式係關於一種蓄電系統、蓄電裝置、半導體裝置或其他電子裝置、它們的驅動方法或者它們的製造方法。
注意,蓄電裝置是指具有蓄電功能的所有元件及裝置。另外,半導體裝置指的是能夠藉由利用半導體特性工作的所有裝置,因此,電晶體、半導體電路、記憶體裝置、攝像裝置、顯示裝置、電光裝置及電子裝置等都可能是半導體裝置。另外,蓄電裝置也可能是半導體裝置。
近年來,對鋰離子二次電池及鋰離子電容器等的蓄電裝置進行了開發。
伴隨於此,作為鋰離子二次電池的正極活性 物質,對能夠穩定地供應鋰的材料進行了開發。
例如,作為鋰供應源,已知鈷酸鋰(LiCoO2)等包含鋰(Li)及鈷(Co)的化合物等(參照專利文獻1)。
〔專利文獻1〕日本專利申請公開第2009-295514號公報
蓄電裝置被要求實現進一步的大容量、長壽命以及高可靠性等的電池性能。為了實現電池性能的提高,需要對蓄電裝置的使用環境或工作情況進行分析。
例如,當使用附屬於可攜式電腦或可攜式資訊終端等電子裝置的供應電力的蓄電裝置時,有時蓄電裝置的工作情況的資料儲存於電子裝置中的記憶單元。此時,會發生如下問題:當電子裝置被損壞或者將電子裝置和蓄電裝置分開時,如果只有蓄電裝置就不能獲得這之前儲存了的蓄電裝置的使用環境或工作狀態的資料。
本發明的一個方式的目的之一是提供容易進行工作情況的分析的蓄電裝置等。
本發明的一個方式的目的之一是提供新穎的蓄電裝置等。
本發明的一個方式的目的之一是提供不容易破裂的蓄電裝置等。
本發明的一個方式的目的之一是提供不容易起火的蓄電裝置等。
本發明的一個方式的目的之一是提供不容易劣化的蓄電裝置等。
本發明的一個方式的目的之一是提供容易進行工作情況的分析的的蓄電系統等。
本發明的一個方式的目的之一是提供新穎的蓄電系統等。
尤其是,本發明的一個方式有時可以解決上述課題中至少一個。此外,本發明的一個方式並不需要解決所有上述課題。另外,即使是上述課題中不包含的課題,只要是從說明書、圖式或申請專利範圍等的記載自然可知的課題,就可以從說明書、圖式、申請專利範圍等的記載中作為課題而抽出。
對二次電池附加作為測定單元的感測器、作為判斷單元的微控制單元(下面,也稱為MCU(Micro Controller Unit))以及作為儲存單元的記憶體。藉由感測器測定二次電池的電池剩餘電量、電壓、電流以及溫度等的情況。MCU對測定結果進行運算處理,來判斷二次電池的工作狀態(以下面,也稱為“工作模式”)。另外,MCU根據二次電池的工作狀態,將測定結果儲存於記憶體。作為感測器的一個例子,可以舉出測定二次電池的溫度的溫度感測器、測定二次電池的電壓的電壓感測器、測定二次電池的電荷積累量的庫倫計量器等。
另外,MCU每過一定時間對從感測器獲得的資訊(資料)進行運算處理,來判斷二次電池處於如何工作模式。記憶體根據工作模式具有多個記憶區域,將從感測器獲得的資料儲存在對應於MCU判斷的工作模式的記憶區域。注意,根據工作模式,也有可能有不儲存資料的情況。
作為記憶體,較佳為使用即使在不供應電力的情況下也可以保持資料的記憶體(下面,也稱為非揮發性記憶體)。藉由使用非揮發性記憶體,即使在二次電池處於不正常工作的情況也可以讀出儲存的資料。另外,較佳為由使用氧化物半導體的記憶元件構成非揮發性記憶體。使用氧化物半導體的記憶元件即使在100℃至200℃的環境下也可以保持儲存的資料。
另外,MCU具有揮發性記憶部及非揮發性記憶部。揮發性記憶部具有一個或多個揮發性記憶元件,非揮發性記憶部具有一個或多個非揮發性記憶元件。非揮發性記憶元件至少與沒有電力供應時的上述揮發性記憶元件相比資料的保持時間長。藉由使用具有非揮發性記憶部的MCU,可以容易實現每過一定時間重複進行工作和停止的間歇工作。另外,較佳為由使用氧化物半導體的記憶元件構成非揮發性記憶部。藉由將使用氧化物半導體的記憶元件用於非揮發性記憶部,可以降低MCU的功耗。此外,也可以將MCU的非揮發性記憶部中的至少一部分用作上述記憶體。
本發明的一個方式包括二次電池、感測器、MCU以及具有氧化物半導體的記憶體,其中MCU藉由感測器與二次電池連接,記憶體與MCU連接。
本發明的一個方式包括二次電池、感測器以及MCU,其中MCU藉由感測器與二次電池連接,MCU包括具有氧化物半導體的記憶體。
本發明的一個方式包括具有多個工作狀態的二次電池、測定二次電池的電池剩餘電量、電壓以及電流的資料的測定單元、判斷二次電池的工作狀態的判斷單元以及具有對應於二次電池的工作狀態的記憶區域的記憶單元,其中將資料儲存於對應於工作狀態的記憶區域。
本發明的一個方式包括具有多個工作狀態的二次電池、測定二次電池的狀態的測定單元、判斷二次電池的工作狀態的判斷單元以及具有對應於二次電池的工作狀態的記憶區域的記憶單元,其中判斷單元根據測定單元的資料判斷工作狀態,並將工作狀態的開始時和結束時的資料儲存於對應於工作狀態的所述記憶區域。
根據本發明的一個方式,可以提供一種容易進行工作情況的分析的蓄電裝置。
根據本發明的一個方式,可以提供一種新穎的蓄電裝置。
100‧‧‧蓄電裝置
101‧‧‧二次電池
102‧‧‧端子
103‧‧‧端子
104‧‧‧感測器
104a‧‧‧溫度感測器
104b‧‧‧庫倫計量器
104c‧‧‧電壓計
104d‧‧‧電流計
105‧‧‧MCU
106‧‧‧記憶體
106a‧‧‧記憶區域
106b‧‧‧記憶區域
106c‧‧‧記憶區域
107‧‧‧通信單元
160‧‧‧氧化物疊層膜
161‧‧‧氧化物層
162‧‧‧氧化物層
163‧‧‧氧化物層
164‧‧‧氧化物層
201‧‧‧電流曲線
202‧‧‧電壓曲線
211‧‧‧充電模式
212‧‧‧恆流充電模式
213‧‧‧恆壓充電模式
214‧‧‧充電模式
221‧‧‧放電模式
222‧‧‧急劇放電模式
231‧‧‧待命模式
233‧‧‧非揮發性記憶部
240‧‧‧電晶體
241‧‧‧電容元件
242‧‧‧電晶體
243‧‧‧電晶體
244‧‧‧電晶體
245‧‧‧選擇器
246‧‧‧反相器
247‧‧‧電容元件
248‧‧‧正反器
400‧‧‧基板
401‧‧‧閘極電極
402‧‧‧閘極絕緣膜
403‧‧‧n型化區域
404‧‧‧氧化物膜
405a‧‧‧源極電極
405b‧‧‧汲極電極
406‧‧‧絕緣膜
408‧‧‧絕緣膜
409‧‧‧閘極絕緣膜
410‧‧‧閘極電極
421‧‧‧電晶體
422‧‧‧電晶體
423‧‧‧電晶體
701‧‧‧單元
702‧‧‧單元
703‧‧‧單元
704‧‧‧單元
705‧‧‧電路
710‧‧‧CPU
711‧‧‧匯流排橋
712‧‧‧記憶體
713‧‧‧記憶體介面
715‧‧‧時脈生成電路
720‧‧‧控制器
721‧‧‧中斷控制器
722‧‧‧I/O介面
730‧‧‧電源閘單元
731‧‧‧開關電路
732‧‧‧開關電路
740‧‧‧時脈生成電路
741‧‧‧水晶振盪電路
742‧‧‧振盪單元
743‧‧‧石英晶體振盪器
745‧‧‧計時器電路
746‧‧‧I/O介面
750‧‧‧I/O埠
751‧‧‧比較器
752‧‧‧I/O介面
761‧‧‧匯流排線
762‧‧‧匯流排線
763‧‧‧匯流排線
764‧‧‧資料匯流排線
770‧‧‧連接端子
771‧‧‧連接端子
772‧‧‧連接端子
773‧‧‧連接端子
774‧‧‧連接端子
775‧‧‧連接端子
776‧‧‧連接端子
780‧‧‧暫存器
783‧‧‧暫存器
784‧‧‧暫存器
785‧‧‧暫存器
786‧‧‧暫存器
787‧‧‧暫存器
950‧‧‧二次電池
951‧‧‧正極包殼
952‧‧‧負極包殼
953‧‧‧墊片
954‧‧‧正極
955‧‧‧正極集電器
956‧‧‧正極活性物質層
957‧‧‧負極
958‧‧‧負極集電器
959‧‧‧負極活性物質層
960‧‧‧隔離體
970‧‧‧二次電池
971‧‧‧正極集電器
972‧‧‧正極活性物質層
973‧‧‧正極
974‧‧‧負極集電器
975‧‧‧負極活性物質層
976‧‧‧負極
977‧‧‧隔離體
978‧‧‧外包裝體
980‧‧‧二次電池
981‧‧‧正極蓋
982‧‧‧電池包殼
983‧‧‧正極端子
984‧‧‧正極
985‧‧‧隔離體
986‧‧‧負極
987‧‧‧負極端子
988‧‧‧絕緣板
989‧‧‧絕緣板
991‧‧‧PTC元件
992‧‧‧安全閥機構
993‧‧‧捲繞體
994‧‧‧負極
995‧‧‧正極
996‧‧‧隔離體
997‧‧‧端子
998‧‧‧端子
1050‧‧‧記憶體單元
1051‧‧‧位元線
1052‧‧‧字線
1053‧‧‧電容線
1054‧‧‧傳感放大器
1055‧‧‧電晶體
1056‧‧‧電容器
1071‧‧‧電晶體
1072‧‧‧電晶體
1073‧‧‧電容器
1074‧‧‧源極線
1075‧‧‧源極線
1076‧‧‧字線
1077‧‧‧汲極線
1078‧‧‧電容線
1079‧‧‧節點
1080‧‧‧基板
1081‧‧‧阱
1082‧‧‧雜質區域
1083‧‧‧絕緣膜
1084‧‧‧電極
1085‧‧‧STI
1086a‧‧‧接觸插頭
1086b‧‧‧接觸插頭
1087‧‧‧電極
1088‧‧‧層間絕緣膜
1089‧‧‧層間絕緣膜
1090‧‧‧層間絕緣膜
1091‧‧‧層間絕緣膜
1092‧‧‧層間絕緣膜
1093‧‧‧障壁膜
1094‧‧‧佈線
1095‧‧‧障壁膜
1096‧‧‧層間絕緣膜
1097‧‧‧障壁膜
1098‧‧‧佈線
1099‧‧‧障壁膜
1100‧‧‧層間絕緣膜
1101‧‧‧基底絕緣膜
1102‧‧‧絕緣膜
1103a‧‧‧接觸插頭
1103b‧‧‧接觸插頭
1103c‧‧‧接觸插頭
1104‧‧‧層間絕緣膜
1105‧‧‧層間絕緣膜
1106‧‧‧障壁膜
1107a‧‧‧佈線
1107b‧‧‧佈線
1108‧‧‧層間絕緣膜
1109‧‧‧層間絕緣膜
1110‧‧‧障壁膜
1111‧‧‧雜質區域
1112‧‧‧雜質區域
1113‧‧‧閘極絕緣膜
1114‧‧‧閘極絕緣膜
1115‧‧‧側壁絕緣膜
1116‧‧‧閘極電極
1117‧‧‧絕緣膜
1118‧‧‧閘極電極
1119‧‧‧側壁絕緣膜
1171‧‧‧電晶體
1172‧‧‧電晶體
1173‧‧‧氧化物膜
1174‧‧‧導電層
1175‧‧‧導電層
1176‧‧‧絕緣膜
1177‧‧‧導電層
1178‧‧‧電容器
1196‧‧‧暫存器
3004‧‧‧邏輯電路
3400a‧‧‧記憶體單元陣列
3400n‧‧‧記憶體單元陣列
6000‧‧‧正極
6001‧‧‧正極集電器
6002‧‧‧正極活性物質層
6003‧‧‧正極活物質
6004‧‧‧石墨烯
6005‧‧‧黏結劑
6100‧‧‧負極
6101‧‧‧負極集電器
6102‧‧‧負極活性物質層
6103‧‧‧負極活物質
6104‧‧‧覆膜
6105‧‧‧黏結劑
6600‧‧‧蓄電裝置
6601‧‧‧捲繞體
6602‧‧‧端子
6603‧‧‧端子
6604‧‧‧電池包殼
6605‧‧‧端子
6606‧‧‧電路基板
6607‧‧‧電路
6608‧‧‧簽條
6609‧‧‧天線
6610‧‧‧天線
6611‧‧‧層
8000‧‧‧住宅
8001‧‧‧電力系統
8002‧‧‧引入線
8003‧‧‧配電盤
8004‧‧‧控制裝置
8005‧‧‧蓄電系統
8006‧‧‧太陽能發電系統
8007‧‧‧顯示裝置
8008‧‧‧照明設備
8009‧‧‧空調系統
8010‧‧‧電冷藏箱
8011‧‧‧網際網路
8012‧‧‧電動汽車
8013‧‧‧管理伺服器
8020‧‧‧電動汽車
8021‧‧‧充電裝置
8022‧‧‧電纜
8023‧‧‧前輪
8024‧‧‧蓄電裝置
8025‧‧‧電子控制單元
8026‧‧‧逆變器單元
8027‧‧‧驅動電動機單元
8028‧‧‧輸出軸
8029‧‧‧驅動軸
8031‧‧‧連接插頭
8040‧‧‧可攜式資訊終端
8041‧‧‧外殼
8042‧‧‧顯示部
8043‧‧‧按鈕
8044‧‧‧圖示
8045‧‧‧相機
8046‧‧‧麥克風
8047‧‧‧揚聲器
8048‧‧‧連接端子
8049‧‧‧太陽能電池
8050‧‧‧相機
8051‧‧‧充放電控制電路
8052‧‧‧蓄電裝置
8053‧‧‧DCDC轉換器
8054‧‧‧開關
8055‧‧‧開關
8056‧‧‧開關
8057‧‧‧轉換器
8100‧‧‧蓄電系統
8101‧‧‧插頭
8102‧‧‧顯示面板
8103‧‧‧系統電源
8104‧‧‧配電盤
8105‧‧‧蓄電裝置
8106‧‧‧蓄電裝置群
8107‧‧‧BMU
8108‧‧‧PCS
在圖式中:圖1A和圖1B是說明蓄電裝置的結構實例的方塊圖;圖2A和圖2B是說明二次電池的各工作模式的圖;圖3A和圖3B是說明蓄電裝置的工作例子的流程圖;圖4是說明蓄電裝置的工作例子的流程圖;圖5是說明蓄電裝置的工作例子的流程圖;圖6是說明MCU的結構實例的方塊圖;圖7是說明具有非揮發性記憶部的暫存器的一個例子的電路圖;圖8A和圖8B是說明記憶體裝置的一個例子的圖;圖9是說明記憶體裝置的一個例子的圖;圖10A和圖10B是記憶體裝置的電路圖及示出記憶體單元的電特性的圖;圖11A至圖11C是示出電晶體的結構實例的圖;圖12A和圖12B是示出電晶體的結構實例的圖;圖13A和圖13B是示出氧化物疊層膜的結構實例的圖;圖14A和圖14B是能帶結構的示意圖;圖15A至圖15C是示出氧化物疊層膜的剖面結構實例的一部分的圖;圖16是示出半導體裝置的剖面結構的一個例子的圖; 圖17A和圖17B是說明二次電池的正極的圖;圖18A和圖18B是說明二次電池的負極的圖;圖19A至圖19C是說明二次電池的結構實例的圖;圖20A和圖20B是說明二次電池的結構實例的圖;圖21A至圖21D是說明蓄電裝置的結構實例的圖;圖22A至圖22C是說明HEMS的結構實例的圖;圖23A至圖23C是說明電子裝置的一個例子的圖;圖24A和圖24B是說明電子裝置的一個例子的圖。
下面,參照圖式對本發明的一個實施方式進行詳細說明。但是,本發明不侷限於以下說明,所屬發明所屬之技術領域的普通技術人員可以很容易地理解一個事實就是其方式和詳細內容可以被變換為各種形式。此外,本發明的一個方式不應該被解釋為僅限定在以下所示的本發明的一個實施方式所記載的內容中。
在以下說明的本發明的結構中,在不同圖式之間共同使用同一符號表示同一部分或具有同樣功能的部分並省略其重複說明。另外,當表示具有相同功能的部分時有時使用相同的陰影線,而不特別附加元件符號。
在本說明書所說明的各圖式中,各結構的大小、膜的厚度或區域有時為了明確起見而被誇大。因此,本發明並不一定限定於圖式中的比例。
在本說明書等中,為了方便起見,附加了第 一、第二等序數詞,而其並不表示製程順序或疊層順序。此外,本說明書等中,這些序數詞不表示用來特定發明的事項的固有名稱。
注意,在本說明書等中,“電極”或“佈線”不在功能上限定其構成要素。例如,有時將“電極”用作“佈線”的一部分,反之亦然。再者,“電極”或“佈線”還包括多個“電極”或“佈線”被形成為一體的情況等。
另外,電晶體的“源極”和“汲極”的功能在使用極性不同的電晶體的情況下或在電路工作中電流方向變化的情況下,有時互相調換。因此,在本說明書中,“源極”和“汲極”可以被互相調換。
另外,當明確地記載為“X和Y連接”時,包括如下情況:X和Y電連接;X和Y在功能上連接;X和Y直接連接。在此,X和Y為目標物(例如,裝置、元件、電路、佈線、電極、端子、導電層、絕緣層等)。因此,還包括圖式或文章所示的連接關係以外的連接關係,而不侷限於規定的連接關係例如圖式或文章所示的連接關係。
另外,在本說明書等中,“連接”包括電連接的情況、在功能上連接的情況以及直接連接的情況。並且,本發明的一個實施方式所示的各構成要素的連接關係不侷限於圖式或文章中所示的連接關係。
另外,在本說明書等中,有時即使不指定主 動元件(電晶體、二極體等)、被動元件(電容元件、電阻元件等)等所具有的所有元件的連接位置,所屬發明所屬之技術領域的普通技術人員也能夠構成發明的一個方式。就是說,即使未特定連接位置,有時也可以判斷其為本發明的一個方式是明確的,並且作為本發明的一個方式記載在本說明書等中。尤其是,在端子的連接位置有多個的情況下,不需要將該端子的連接位置限於特定的部分。因此,有時藉由僅指定主動元件(電晶體、二極體等)、被動元件(電容元件、電阻元件等)等所具有的端子的一部分的連接位置,就能夠構成發明的一個方式。
另外,在本說明書等中,當至少指定某個電路的連接位置時,有時所屬發明所屬之技術領域的普通技術人員能夠特定發明。或者,當至少指定某個電路的功能時,有時所屬發明所屬之技術領域的普通技術人員能夠特定發明。也就是說,只要指定功能,有時就可以判斷其為本發明的一個方式是明確的,並且作為本發明的一個方式記載在本說明書中。另外,即使未特定功能,也只要特定電路的連接位置,作為發明的一個方式被公開的該電路就可以構成發明的一個方式。或者,當指定電路的功能而不指定連接位置時,作為本發明的一個方式公開的該電路可以構成發明的一個方式。
另外,在本說明書等中,有時將二次電池用的正極和負極一併稱為“電極”,此時“電極”表示正極和負極中的至少一方。
注意,在本說明書的電路符號中,為了能夠明確地辨別作為形成通道的半導體層使用氧化物半導體的電晶體,有時將作為形成通道的半導體層使用氧化物半導體的電晶體的電路符號表示為“OS”。
在本說明書中,“平行”是指兩條直線形成的角度為-10°以上且10°以下,因此也包括角度為-5°以上且5°以下的情況。另外,“垂直”及“正交”是指兩條直線形成的角度為80°以上且100°以下,因此也包括角度為85°以上且95°以下的情況。
另外,關於在說明書中的圖式或文章中未規定的內容,可以構成規定為不包括該內容的發明。或者,在作為某一值記載以上限值和下限值等表示的數值範圍時,藉由任意縮小該數值範圍或者去除該數值範圍中的一點,可以以去除該數值範圍的一部的方式規定發明。由此,例如,可以規定為本發明的技術範圍內不包括現有技術。
另外,本發明的實施方式所示的內容可以適當地組合而使用。
《1.蓄電裝置》 [1-1.蓄電裝置100的結構實例]
圖1A是示出蓄電裝置100的結構實例的方塊圖。圖1A所示的蓄電裝置100包括與端子102及端子103連接的二次電池101、感測器104、MCU105以及記憶體106。
藉由端子102及端子103進行給二次電池101的充電或從二次電池101到未圖示的負載的電力供應(放電)。二次電池101與用來檢測出二次電池101的情況的感測器104連接。感測器104與MCU105連接。MCU105對從感測器104得到的資料進行運算處理來判斷二次電池101處於任何工作模式。
記憶體106具有一個或多個記憶區域。在圖1A中,例示出記憶區域106a、記憶區域106b以及記憶區域106c作為多個記憶區域。MCU105將從感測器104得到的資料儲存於記憶體106具有的記憶區域。藉由將多個記憶區域設置在記憶體106中,可以使工作模式對應於記憶區域儲存資料。
作為記憶體106,較佳為使用非揮發性記憶體。藉由使用非揮發性記憶體,即使在不供應電力的情況下也可以保持儲存了的資料。由此,即使在二次電池處於不正常工作的情況也可以讀出儲存了的資料。另外,較佳為使用氧化物半導體的記憶元件構成非揮發性記憶體。
另外,MCU105具有揮發性記憶部及非揮發性記憶部。藉由使用具有非揮發性記憶部的MCU,可以容易實現每隔一定時間重複進行工作和停止的間歇工作。另外,較佳為由使用氧化物半導體的記憶元件構成非揮發性記憶部。藉由將使用氧化物半導體的記憶元件用於非揮發性記憶部,可以降低MCU的功耗。此外,也可以將MCU105的非揮發性記憶部中的至少一部分用作記憶體 106。
[1-2.蓄電裝置100的變形例]
圖1B示出蓄電裝置100的變形例。圖1B所示的蓄電裝置100示出使用溫度感測器104a、庫倫計量器104b、電壓計104c以及電流計104d作為感測器104的結構實例。
另外,圖1B所示的蓄電裝置100例示出將記憶體106設置在MCU105的內部的結構。另外,圖1B所示的蓄電裝置100採用設置與MCU105連接的通信單元107而可以藉由通信單元107進行與外部設備(未圖示)的資料的發送和接收的結構。
作為使用通信單元107進行與外部設備(未圖示)的資料的發送和接收,既可以藉由使用100BASE-TX、1000BASE-TX、PLC(Power Line Communication)等通信標準的有線通信進行,又可以藉由使用IEEE802.11a、IEEE802.11b、IEEE802.11g、IEEE802.11n、IEEE802.15.1等通信標準的無線通訊進行。
此外,為了防止通信時的不正當訪問或由於干擾導致的工作故障,較佳為將通信內容加密。作為將通信內容加密的標準,可以使用AES(Advanced Encryption Standard:高級加密標準)方式、TKIP(Temporal Key Integrity Protocol:臨時金鑰完整協定)方式、WEP(Wired Equivalent Privacy:有線等效加密)方式等。
另外,藉由端子102及端子103,給感測器104、MCU105、記憶體106以及通信單元107供應電力。就是說,當電力從外部電源供應到端子102及端子103時,電力從外部電源被供應,除此以外,電力從二次電池101被供應。
另外,在圖1A和圖1B中說明具有記憶體106及MCU105的情況,但是本實施方式不侷限於此。根據情況,也可以不設置記憶體106或MCU105。
[1-3.蓄電裝置100的工作模式]
蓄電裝置100的工作模式大致分為三種:將電荷儲存於二次電池101的充電工作(充電模式211);給連接於二次電池101的負載供應電力的放電工作(放電模式221);不進行充電工作也不進行放電工作的待命工作(待命模式231)。
在圖2A和圖2B中,例示出二次電池101的各工作模式下的電流及電壓的隨時變化。圖2A示出充電模式211下的二次電池101的電流及電壓的隨時變化。圖2B示出放電模式221下及待命模式231下的二次電池101的電流及電壓的隨時變化。
在圖2A和圖2B中,橫軸表示時間,縱軸表示電流或電壓的大小(絕對值)。電流曲線201表示隨時變化的電流的大小,電壓曲線202表示隨時變化的電壓的大小。
將從外部電源供應的電力藉由端子102及端子103供應到二次電池101,來進行二次電池101的充電。另外,二次電池101的充電方法有兩種:將當進行充電時給二次電池101供應的電流(充電電流)設定為恆定的恆流充電模式212;將當進行充電時給二次電池101供應的電壓(充電電壓)設定為恆定的恆壓充電模式213。尤其是,在被進行充電的二次電池101的輸出電壓小的情況下,當在恆壓充電模式213下進行充電時,忽然給二次電池101供應大電流有可能導致二次電池101的破裂或起火。因此,較佳為利用恆流充電模式212進行二次電池101的充電。
另外,充電模式211可分為恆流充電模式212、恆壓充電模式213以及補充充電模式214。
在此,說明利用恆流充電模式212的充電工作。恆流充電模式212以充電電流為恆定的方式給二次電池101供應電力。當充電開始時,二次電池101的內部電阻上升。由此,因以將充電電流的值為恆定的方式充電所以電壓上升。直到充電電壓上升到預先設定的電壓Vcns為止進行使用恆流充電模式212的充電。
接著,說明使用恆壓充電模式213的充電工作。當充電電壓過大時,二次電壓有可能劣化或損壞。因此,在結束使用恆流充電模式212的充電之後,將充電電壓設定為恆電壓Vcns給二次電池101供應電力。藉由進行使用恆壓充電模式213的充電,可以在防止充電電壓的 上升的情況下對二次電池101進行充電。
另外,當將充電電壓設定為恆定進行充電時,隨著二次電池101的內部電阻上升,充電電流下降。直到充電電流下降到預先設定的電流Icutoff為止進行利用恆壓充電模式213的充電。
另外,補充充電模式214是當充電電壓為電壓Vcns的50%以上時進行的充電工作,與恆流充電模式212同樣地,以充電電流為恆定的方式進行。
放電模式221是二次電池101給藉由端子102及端子103與二次電池101連接的負載供應電力的工作。二次電池101給負載供應的電流(輸出電流)的大小根據負載變動。另外,隨著電力的供應,二次電池101輸出的電壓下降。
另外,由於負載的損壞或端子102及端子103的短路等,有時輸出電流急劇增大。急劇的放電容易損害二次電池101,這可能會成為二次電池101的充電容量的減少或電池使用壽命的降低的原因之一。如上述那樣,將上述輸出電流大的放電模式稱為急劇放電模式222。
另外,將由於自然放電等的電壓的降低以外的不給二次電池101供應電力或者來自二次電池101沒有輸出電力的情況稱為待命模式。
[1-4.蓄電裝置100的工作例子]
藉由感測器104及MCU105,可以一直監視二次電池 101的工作情況。例如,藉由溫度感測器104a,可以測定二次電池101的溫度。另外,藉由電壓計104c,可以測定二次電池101的充放電電壓。此外,藉由電流計104d,可以測定二次電池101的充放電電流。
庫倫計量器104b將在端子102或端子103與二次電池101之間流過的電流藉由檢測電阻轉換為電壓,根據該電壓算出流過檢測電阻的電荷量。根據庫倫計量器104b的測定結果,可以估計出二次電池101的電荷積累量(電池剩餘電量)。另外,根據每規定時間的電池剩餘電量的變化,可以算出電流值。由此,也可以不設置電流計104d,將庫倫計量器104b用作電流計。
另外,為了對應急劇放電模式,將藉由感測器104及MCU105的測定週期設定為1ms以下,較佳為100μs以下。
在充電模式211下,藉由測定二次電池101的電池剩餘電量、電壓變化及溫度變化,可以推測二次電池101的狀態。此外,在放電模式221下,當發生超過額定電流的電力供應工作時,容易產生電池特性或電池使用壽命的劣化。
另外,利用感測器104及MCU105監視二次電池101的溫度,例如,將二次電池101為規定溫度以上時的溫度資料儲存於記憶體106的記憶區域106c。
尤其是,藉由儲存待命模式231或通常的放電模式(急劇放電模式222以外的放電模式221)下的二 次電池101的溫度,可以在後面推測二次電池101的保管溫度或使用溫度。並且,藉由監視二次電池101的溫度,可以防止起火等的事故。
另外,至少在恆流充電模式212、恆壓充電模式213及急劇放電模式222下,藉由至少將如下三種資料儲存於記憶體106,可以高效率地進行二次電池101的故障分析,該三種資料為:各模式開始時和結束時的電池剩餘電量、電壓、電流以及溫度等的表示二次電池101的情況的電池資料;各模式的從開始到結束的時間;急劇放電模式222的期間中流過的最大電流值。
作為本發明的一個方式的蓄電裝置100的工作例子,說明如下工作:根據在感測器104得到的資料MCU105判斷工作模式,在設置於記憶體106中的記憶區域儲存在感測器104得到的資料。
下面,參照圖3A至圖5的流程圖,說明將充電模式211時的工作記錄儲存於記憶區域106a並將放電模式221時的工作記錄儲存於記憶區域106b的工作例子。具體地,說明如下兩種工作例子:一種工作為將在恆流充電模式212及恆壓充電模式213下的開始時和結束時的電池資料以及從開始到結束的時間儲存於記憶體106中的記憶區域106a;另一種工作為將在急劇放電模式222下的開始時和結束時的電池資料、從開始到結束的時間以及急劇放電模式222期間中的最大電流值儲存於記憶體106中的記憶區域106b。
在此,當判斷為恆流充電模式時將模式旗標的值設定為1,當判斷為恆壓充電模式時將模式旗標的值設定為2,當判斷為急劇放電模式時將模式旗標的值設定為3,當判斷為上述以外的工作模式時將模式旗標的值設定為0。
[1-4-1.恆流充電模式的判斷及電池資料的儲存工作]
在此,說明由MCU105的恆流充電模式212的判斷及電池資料的儲存工作。首先,將MCU105中設定的用來判斷工作模式的模式旗標的值設定為0(步驟S301,參照圖3A)。
接著,根據庫倫計量器104b的測定結果,MCU105判斷與上次測定時相比二次電池101的電池剩餘電量是否增加(步驟S302)。
當與上次測定時相比電池剩餘電量增加時,接著,判斷與上次測定時相比電壓是否變大(步驟S303)。
當與上次測定時相比電壓變大時,確認模式旗標是不是2(步驟S304,參照圖4)。當模式旗標不是2時,接著,確認模式旗標不是1(步驟S306)。在此,當模式旗標不是1時,判斷工作模式轉換為恆流充電模式212,並在記憶體106的記憶區域106a中儲存電池剩餘電量、電壓、電流以及溫度等的電池資料。並且,將模式旗標設定為1(步驟S307)。
接著,開始測量時間(步驟S308)。然後,在一定時間停止測定工作。此時的停止時間可以由記憶體106的儲存電容等決定。在此,將停止時間設定為1分鐘(步驟S309)。
在停止一定時間之後,再次返回步驟S302,判斷與上次測定時相比二次電池101的電池剩餘電量是否增加(參照圖3A)。
當與上次測定時相比二次電池101的電池剩餘電量增加時,接著,判斷與上次測定時相比電壓是否變大(步驟S303)。當與上次測定時相比電壓變大時,確認模式旗標是不是2(步驟S304,參照圖4)。當模式旗標不是2時,接著,確認模式旗標不是1(步驟S306)。
當模式旗標是1時,不進行步驟S307及步驟S308並在一定時間停止測定工作(步驟S309)。
在停止測定工作一定時間之後,再次返回步驟S302,判斷與上次測定時相比二次電池101的電池余量是否增加(參照圖3A)。
在充電結束之後,二次電池101的電池剩餘電量沒有增加。當電池剩餘電量沒有增加時,接著判斷電池剩餘電量是否減少(步驟S319,參照圖5)。當電池剩餘電量沒有減少時,確認模式旗標是不是0(步驟S316,參照圖3B)。當模式旗標不是0時,結束測量時間(步驟S317),在記憶體106的記憶區域106a中儲存電池剩餘電量、電壓、電流以及溫度等的電池資料及經過時間 (步驟S318)。然後,停止測定工作一定時間(步驟S327),再次返回步驟S302。
藉由上述步驟,可以將處於恆流充電模式212的判斷、恆流充電模式212開始時和結束時的電池剩餘電量、電壓、電流以及溫度的資料以及恆流充電模式212的從開始到結束的時間儲存於記憶體106。
[1-4-2.恆壓充電模式的判斷及電池資料的儲存工作]
在此,說明由MCU105進行的恆壓充電模式213的判斷及電池資料的儲存工作。首先,將模式旗標的值設定為0(步驟S301,參照圖3A)。
接著,根據庫倫計量器104b的測定結果,MCU105判斷與上次測定時相比二次電池101的電池剩餘電量是否增加(步驟S302)。
當與上次測定時相比二次電池的電池剩餘電量增加時,接著,判斷與上次測定時相比電壓是否變大(步驟S303)。
當與上次測定時相比電壓沒有變大時,確認模式旗標是不是1(步驟S310,參照圖4)。當模式旗標不是1時,接著,確認模式旗標不是2(步驟S312)。在此,當模式旗標不是2時,判斷工作模式轉換為恆壓充電模式213,在記憶體106的記憶區域106a中儲存電池剩餘電量、電壓、電流以及溫度等的電池資料。並且,將模式旗標設定為2(步驟S313)。
接著,開始測量時間(步驟S314)。然後,在一定時間停止測定工作(步驟S315)。
在停止一定時間之後,再次返回步驟S302,判斷與上次測定時相比二次電池101的電池剩餘電量是否增加(參照圖3A)。
當與上次測定時相比電池剩餘電量增加時,接著,判斷與上次測定時相比電壓是否變大(步驟S303)。當與上次測定時相比電壓沒有變大時,確認模式旗標是不是1(步驟S310,參照圖4)。當模式旗標不是1時,接著,確認模式旗標不是2(步驟S312)。
當模式旗標是2時,不進行步驟S313及步驟S314並再次在一定時間停止測定工作(步驟S315)。
在一定時間停止測定工作之後,再次返回步驟S302,判斷與上次測定時相比二次電池101的電池剩餘電量是否增加(參照圖3A)。
當充電結束時,二次電池101的電池剩餘電量沒有增加。當電池余量沒有增加時,接著判斷電池剩餘電量是否減少(步驟S319,參照圖5)。當電池剩餘電量沒有減少時,確認模式旗標是不是0(步驟S316,參照圖3B)。當模式旗標不是0時,結束測量時間(步驟S317、參照圖3B),在記憶體106的記憶區域106a中儲存電池剩餘電量、電壓、電流以及溫度等的電池資料及經過時間(步驟S318)。然後,停止測定工作一定時間(步驟S327),再次返回步驟S302。
藉由上述步驟,可以將處於恆壓充電模式213的判斷、恆壓充電模式213開始時和結束時的電池剩餘電量、電壓、電流和溫度的資料以及恆壓充電模式213的從開始到結束的時間儲存於記憶體106。
[1-4-3.從恆流充電模式轉換為恆壓充電模式的儲存工作]
接著,說明由MCU105進行的從恆流充電模式212轉換為恆壓充電模式213時的判斷及電池資料的儲存工作。
在此,已由MCU105判斷出二次電池101在恆流充電模式212下工作。就是說,已儲存恆流充電模式212開始時的電池資料,已開始測量時間,模式旗標是1。
在結束步驟S309之後,再次返回步驟S302,判斷與上次測定時相比二次電池101的電池剩餘電量是否增加(參照圖3A)。
當與上次測定時相比電池剩餘電量增加時,接著,判斷與上次測定時相比電壓是否變大(步驟S303)。
此時,當二次電池101的工作模式已轉換為恆壓充電模式213時,與上次測定時相比電壓沒有變大。因此,接著進行步驟S310,確認模式旗標是不是1(參照圖4)。
由於模式旗標是1,所以結束測量時間(步驟S326),將電池剩餘電量、電壓、電流以及溫度等的電池 資料以及恆流充電模式212的從開始到結束的時間儲存於記憶體106中的記憶區域106a(步驟S311)。另外,使模式旗標是2。在步驟S311中儲存的電池資料既是恆流充電模式212結束時的電池資料,又是恆壓充電模式213開始時的電池資料。
接著,再次開始測量時間(步驟S314)。此後的工作與上述的由MCU105進行的恆壓充電模式213的判斷及電池資料的儲存工作相同,所以省略該工作的說明。
另外,雖然在圖2A中,為了確定恆流充電模式212的經過時間,在從恆流充電模式212轉換為恆壓充電模式213時暫時結束測量時間,但是也可以在不結束測量時間的情況下算出各工作模式的經過時間。
[1-4-4.從恆壓充電模式轉換為恆流充電模式時的儲存工作]
接著,說明由MCU105進行的從恆壓充電模式213轉換為恆流充電模式212時的判斷及電池資料的儲存工作。
首先,已由MCU105判斷出二次電池101在恆壓充電模式213下工作。就是說,已儲存恆壓充電模式213開始時的電池資料,已開始測量時間,模式旗標是2。
在結束步驟S315之後,再次返回步驟S302,判斷與上次測定時相比二次電池101的電池剩餘電量是否 增加(參照圖3A)。
當與上次測定時相比電池剩餘電量增加時,接著,判斷與上次測定時相比電壓是否變大(步驟S303)。
此時,當二次電池101的工作模式已轉換為恆流充電模式212時,與上次測定時相比電壓變大。因此,接著進行步驟S304,確認模式旗標是不是2(參照圖4)。
由於模式旗標是2,所以結束對時間的測量(步驟S325),將電池剩餘電量、電壓、電流以及溫度等的電池資料以及恆壓充電模式213的從開始到結束的時間儲存於記憶體106中的記憶區域106a(步驟S305)。並且,將模式旗標設定為1。在步驟S305中儲存的電池資料既是恆壓充電模式213結束時的電池資料,又是恆流充電模式212開始時的電池資料。
接著,再次開始對時間的測量(步驟S308)。此後的工作與上述的由MCU105進行的恆流充電模式212的判斷及電池資料的儲存工作相同,所以省略該工作的說明。
[1-4-5.急劇放電模式的判斷及電池資料的儲存工作]
在此,說明由MCU105進行的急劇放電模式222的判斷及電池資料的儲存工作。首先,將模式旗標的值設定為0(步驟S301,參照圖3A)。
接著,根據庫倫計量器104b的測定結果,MCU105判斷與上次測定時相比二次電池101的電池剩餘電量是否增加(步驟S302)。
當與上次測定時相比電池剩餘電量沒有增加時,接著,判斷電池剩餘電量是否減少(步驟S319,參照圖5)。
當二次電池101在放電模式下工作時,二次電池101的電池剩餘電量減少。當二次電池101的電池剩餘電量減少時,接著判斷電流值是否比額定電流大(步驟S320)。
當電流值比額定電流大時,接著,確認模式旗標是不是3(步驟S321)。
在此,當模式旗標不是3時,判斷工作模式已轉換為急劇放電模式222,在記憶體106的記憶區域106b中儲存電池剩餘電量、電壓、電流以及溫度等的電池資料。並且,將模式旗標設定為3(步驟S322)。
接著,開始對時間的測量(步驟S323)。然後,在一定時間停止測定工作(步驟S324)。此時的停止時間可以為估計的急劇放電的時間的二分之一至十分之一左右。一般地說,在很多情況下進行急劇放電的時間為1ms至幾ms,所以在此將停止時間設定為100μs。
在停止一定時間之後,再次返回步驟S319,判斷與上次測定時相比二次電池101的電池剩餘電量是否減少。另外,也可以返回步驟S302,而不返回步驟 S319。
在步驟S319中,當與上次測定時相比電池剩餘電量減少時,在步驟S320中,判斷電流值是否比額定電流大。
當電流值比額定電流大時,接著,確認模式旗標是不是3(步驟S321)。當模式旗標是3時,不進行步驟S322及步驟S323並再次在一定時間停止測定工作(步驟S324)。
在停止一定時間之後,再次返回步驟S319,判斷與上次測定時相比二次電池101的電池剩餘電量是否減少。另外,也可以返回步驟S302,而不返回步驟S319。
在放電工作結束之後,二次電池101的電池剩餘電量沒有減少。當電池剩餘電量沒有減少時,確認模式旗標是不是0(步驟S316,參照圖3B)。另外,當即使二次電池101的電池剩餘電量減少但不電流值比額定電流大時也進行步驟S316,並確認模式旗標是不是0。
由於模式旗標是3,所以結束對時間的測量(步驟S317),在記憶體106的記憶區域106b中儲存電池剩餘電量、電壓、電流、溫度和急劇放電模式222期間中的最大電流值等的電池資料及經過時間(步驟S327)。並且,將模式旗標設定為0。然後,返回步驟S302。
藉由如上步驟,可以將處於急劇放電模式222 的判斷、急劇放電模式222開始時和結束時的電池剩餘電量、電壓、電流、溫度和急劇放電模式222期間中的最大電流值等的電池資料以及急劇放電模式222的從開始到結束的時間儲存於記憶體106。
[1-4-6.補充充電模式的判斷及電池資料的儲存工作]
補充充電模式214是當充電電壓為電壓Vcns的50%以上時進行的恆流充電模式212,所以在上述工作例子中補充充電模式214被看作恆流充電模式212而將電池資料等儲存。
[1-4-7.通常的放電模式及待命模式的判斷及電池資料的儲存工作]
當處於通常的放電模式(急劇放電模式222以外的放電模式221)時模式旗標是0。由此,電池剩餘電量減少,但是在步驟S316中判斷為模式旗標相等於0,所以不進行電池資料的儲存工作而返回步驟S302。
另外,在待命模式231下,即使由於自然放電等原因電池容量減少也不會流過比額定電流大的電流,由此不進行電池資料的儲存工作。
此外,在上述工作例子中,不進行通常的放電模式及待命模式231下的電池資料的儲存工作,可是也可以根據需要儲存通常的放電模式及待命模式231下的電池資料等。
此外,在上述工作例子中,雖然例示出根據工作模式將電池資料等儲存於記憶體106的不同記憶區域中的結構,但是本發明的一個方式不侷限於此,也可以將不同工作模式的電池資料等儲存於相同的記憶區域中。
《2. MCU》 [2-1. MCU105的結構實例]
接著,參照圖6對可用於MCU105的電路705的結構實例進行說明。圖6是電路705的方塊圖。
電路705包括CPU(Central Processing Unit:中央處理器)710、匯流排橋711、記憶體712、記憶體介面713、控制器720、中斷控制器721、I/O介面(輸入輸出介面)722及電源閘單元730。
電路705還包括水晶振盪電路741、計時器電路745、I/O介面746、I/O埠750、比較器751、I/O介面752、匯流排線761、匯流排線762、匯流排線763及資料匯流排線764。再者,電路705作為與外部裝置的連接部至少包括連接端子770至連接端子776。注意,各連接端子770至連接端子776表示由一個端子或多個端子構成的端子群。另外,具有石英晶體振盪器743的振盪單元742藉由連接端子772及連接端子773與電路705連接。
CPU710具有暫存器785,藉由匯流橋711與匯流排線761至匯流排線763及資料匯流排線764連接。
記憶體712是可用作CPU710的主記憶體的 記憶體裝置,例如使用隨機存取記憶體(RAM:Random Access Memory)。記憶體712是儲存由CPU710處理的指令、為了執行指令所需要的資料以及被CPU710處理的資料的裝置。根據由CPU710處理的指令,對記憶體712寫入資料且從記憶體712讀出資料。另外,也可以將記憶體712的一部分用作記憶體106。
在電路705中,在低功耗模式中停止給記憶體712的電力供應。因此,記憶體712較佳為使用在不被供應電力的情況下也能夠保持資料的記憶體構成。
記憶體介面713是與外部記憶體裝置進行輸入輸出的介面。根據由CPU710處理的指令,藉由記憶體介面713對與連接端子776連接的外部記憶體裝置寫入資料並從外部記憶體裝置讀出資料。
時脈生成電路715是生成CPU710所使用的時脈信號MCLK(以下,簡稱為“MCLK”)的電路,並具有RC振盪器等。MCLK也被輸出到控制器720及中斷控制器721。
控制器720是控制電路705的電路,例如可以進行電路705的電源控制、時脈生成電路715以及水晶振盪電路741的控制等。
連接端子770是外部中斷信號輸入用端子,藉由連接端子770不可遮罩中斷信號NMI被輸入到控制器720。當不可遮罩中斷信號NMI被輸入到控制器720時,控制器720立刻將不可遮罩中斷信號NMI輸出到 CPU710,使CPU710執行中斷處理。
另外,中斷信號INT藉由連接端子770輸入到中斷控制器721。來自週邊電路(745、750、751)的中斷信號(T0IRQ、P0IRQ、C0IRQ)也不經過匯流排線(761至764)輸入到中斷控制器721。
中斷控制器721具有判斷中斷要求的優先次序的功能。當中斷控制器721檢測出中斷信號時,中斷控制器721判定該中斷要求是否有效。如果是有效的中斷要求,則中斷控制器721將中斷信號IRQ輸出到控制器720。
另外,中斷控制器721藉由I/O介面722連接於匯流排線761及資料匯流排線764。
當中斷信號INT輸入到控制器720時,控制器720將中斷信號INT2輸出到CPU710而使CPU710執行中斷處理。
此外,中斷信號T0IRQ有時不藉由中斷控制器721直接輸入到控制器720。當中斷信號T0IRQ輸入到控制器720時,控制器720將不可遮罩中斷信號NMI2輸出到CPU710而使CPU710執行中斷處理。
控制器720的暫存器780設置在控制器720內,中斷控制器721的暫存器786設置在I/O介面722中。
下面,說明電路705所具有的週邊電路。電路705作為週邊電路包括計時器電路745、I/O埠750及 比較器751。這些週邊電路只是一個例子,根據電路705被使用的情況而可以設置所需要的電路。
計時器電路745具有使用從時脈生成電路740輸出的時脈信號TCLK(以下簡稱為“TCLK”)測量時間的功能。另外,計時器電路745每隔規定的時間間隔將中斷信號T0IRQ輸出到控制器720及中斷控制器721。計時器電路745藉由I/O介面746連接於匯流排線761及資料匯流排線764。
TCLK是具有比MCLK低的頻率的時脈信號。例如,將MCLK的頻率設定為幾MHz左右(例如,8MHz),將TCLK設定為幾十kHz左右(例如,32kHz)。時脈生成電路740包括內置在電路705中的水晶振盪電路741和連接於連接端子772及連接端子773的振盪單元742。作為振盪單元742的振盪器使用石英晶體振盪器743。另外,藉由使用CR振盪器等構成時脈生成電路740,可以將時脈生成電路740的所有模組內藏於電路705中。
I/O埠750是用來與藉由連接端子774連接的外部設備(例如,感測器104)之間輸入及輸出資訊的介面,並是數位信號的輸入輸出介面。I/O埠750根據被輸入的數位信號將中斷信號P0IRQ輸出到中斷控制器721。
作為對從連接端子775輸入的類比信號進行處理的週邊電路,設置有比較器751。比較器751藉由比較從連接端子775輸入的類比信號的電位(或電流)和參 考信號的電位(或電流)的大小來產生0或1的值的數位信號。再者,比較器751根據該數位信號,生成中斷信號C0IRQ。中斷信號C0IRQ輸出到中斷控制器721。
I/O埠750及比較器751藉由共同使用的I/O介面752連接於匯流排線761及資料匯流排線764。在此,由於I/O埠750的I/O介面及比較器751的I/O介面有可以共同使用的電路,而使用一個I/O介面752構成,但是也可以分開設置I/O埠750及比較器751的I/O介面。
此外,週邊電路的暫存器設置在對應的輸入輸出介面中。計時器電路745的暫存器787設置在I/O介面746中,I/O埠750的暫存器783及比較器751的暫存器784分別設置在I/O介面752中。
電路705包括用來停止對內部電路供應電力的電源閘單元730。藉由使用電源閘單元730只對在工作時需要的電路供應電力,可以降低電路705整體的功耗。
如圖6所示,電路705中的由虛線圍繞的單元701、單元702、單元703、單元704的電路藉由電源閘單元730連接於連接端子771。連接端子771是高電源電位VDD(以下簡稱為“VDD”)供應用的電源端子。例如,連接端子771連接於二次電池101。另外,也可以將轉換器設置在連接端子771和二次電池101之間。
在本發明的一個方式中,單元701包括計時器電路745及I/O介面746,單元702包括I/O埠750、 比較器751及I/O介面752,單元703包括中斷控制器721及I/O介面722,單元704包括CPU710、記憶體712、匯流排橋711及記憶體介面713。
電源閘單元730由控制器720控制。電源閘單元730包括用來停止對單元701至704供應VDD的開關電路731及開關電路732。
開關電路731及開關電路732的導通/關閉由控制器720控制。明確而言,控制器720根據CPU710的要求輸出使電源閘單元730所包括的開關電路的一部分或全部變為關閉狀態的信號(電力供應的停止)。此外,控制器720以不可遮罩中斷信號NMI或來自計時器電路745的中斷信號T0IRQ為觸發信號輸出使電源閘單元730所包括的開關電路變為導通狀態的信號(電力供應的開始)。
注意,雖然在圖6中示出電源閘單元730設置有兩個開關電路(開關電路731及開關電路732)的結構,但是不侷限於此,設置當切斷電源時需要的數量的開關電路,即可。
另外,雖然在本發明的一個方式中,以能夠獨立地控制給單元701的電力供應的方式設置有開關電路731,以能夠獨立地控制給單元702至單元704的電力供應的方式設置有開關電路732,但是不侷限於這種電力供應路徑。例如,也可以設置與開關電路732不同的開關電路而獨立地控制記憶體712的電力供應。另外,也可以在 一個電路中設置多個開關電路。
另外,不藉由電源閘單元730而一直從連接端子771對控制器720供應VDD。此外,為了減少雜訊的影響,從與VDD的電源電路不同的外部電源電路分別對時脈生成電路715的振盪電路及水晶振盪電路741供應電源電位。
藉由具備控制器720及電源閘單元730等,可以以三種工作模式使電路705工作。第一工作模式是通常工作模式,電路705中的所有電路處於活動狀態。在此,將第一工作模式稱為“Active模式”。
第二、第三工作模式是低功耗模式,即,使電路的一部分活動的模式。在第二工作模式中,控制器720、計時器電路745及其相關電路(水晶振盪電路741及I/O介面746)處於活動狀態。在第三工作模式中,只有控制器720處於活動狀態。在此,將第二工作模式稱為“Noff1模式”,將第三工作模式稱為“Noff2模式”。
在Noff1模式中控制器720和週邊電路的一部分(在定時工作時需要的電路)工作,在Noff2模式中只有控制器720進行工作。
此外,與工作模式無關地時脈生成電路715的振盪器及水晶振盪電路741一直被供應電源。藉由從控制器720或外部輸入使能信號(enable signal)來停止時脈生成電路715及水晶振盪電路741的振盪,從而使時脈生成電路715及水晶振盪電路741處於非活動狀態。
另外,由於在Noff1、Noff2模式時電源閘單元730停止電力供應,所以I/O埠750及I/O介面752成為非活動狀態,但是為了使連接於連接端子774的外部設備正常地工作,對I/O埠750及I/O介面752的一部分供應電力。具體地,電力被供應於I/O埠750的輸出緩衝器及I/O埠750用暫存器783。
注意,在本說明書中,“電路處於非活動狀態”除了電力供應被切斷而使電路停止的狀態之外還包括在Active模式(通常工作模式)時主要功能停止的狀態或比Active模式功耗低的工作狀態。
另外,在電路705中,為了實現從Noff1模式及Noff2模式恢復到Active模式的工作的高速化,暫存器784至暫存器787還包括在電源切斷時保存資料的備份保持部。換言之,暫存器784至暫存器787包括揮發性資料保持部(也稱為“揮發性記憶部”)和非揮發性資料保持部(也稱為“非揮發性記憶部”)。在Active模式中,暫存器784至暫存器787訪問揮發性記憶部來進行資料的寫入及讀出。
另外,因為控制器720一直被供應電力,所以在控制器720的暫存器780中沒有設置非揮發性記憶部。此外,如上所述,即使在Noff1/Noff2模式中,為了使I/O埠750的輸出緩衝器工作,使暫存器783工作。由此,暫存器783一直被供應電力,因此沒有設置非揮發性記憶部。
另外,揮發性記憶部具有一個或多個揮發性記憶元件,非揮發性記憶部具有一個或多個非揮發性記憶元件。此外,揮發性記憶元件的存取速度比非揮發性記憶元件的存取速度快。
雖然對用於構成上述揮發性記憶元件的電晶體的半導體材料沒有特別的限制,但是較佳為採用具有與用於構成後面說明的非揮發性記憶元件的電晶體的半導體材料不同能帶間隙的材料。作為這種半導體材料,例如可以使用矽、鍺、矽鍺或砷化鎵等,較佳為使用單晶半導體。從提高資料的處理速度的觀點來看,例如,較佳為使用利用單晶矽的電晶體等的開關速度快的電晶體。
非揮發性記憶元件與保持對應於揮發性記憶元件的資料的電荷的節點電連接,為了在電源切斷期間備份揮發性記憶元件的資料使用該非揮發性記憶元件。因此至少使非揮發性記憶元件構成為與沒有電力供應時的上述揮發性記憶元件相比資料的保持時間長。
在從Active模式轉為Noff1、Noff2模式時,在電源切斷之前暫存器784至暫存器787的揮發性記憶部的資料寫入到非揮發性記憶部而將揮發性記憶部的資料重設到初始值,然後電源被切斷。
在從Noff1或Noff2模式恢復到Active模式時,當再次開始對暫存器784至暫存器787供應電力時,首先將揮發性記憶部的資料重設到初始值。然後,將非揮發性記憶部的資料寫入到揮發性記憶部。
因此,即使在低功耗模式時,也在暫存器784至暫存器787中保持有電路705處理所需要的資料,從而可以將電路705從低功耗模式迅速地恢復到Active模式。
[2-2. 暫存器的結構實例]
在圖7中,以暫存器1196為例示出能夠用於暫存器784至暫存器787且可以保持1比特的資料的具有揮發性記憶部和非揮發性記憶部的電路結構的一個例子。
圖7所示的暫存器1196具有作為揮發性記憶部的正反器248、非揮發性記憶部233和選擇器245。
對正反器248供應重設信號RST、時脈信號CLK以及資料信號D。正反器248具有根據時脈信號CLK保持被輸入的資料信號D的資料的功能以及輸出作為資料信號Q的對應於資料信號D的高電位H或低電位L的功能。
對非揮發性記憶部233供應寫入控制信號WE、讀出控制信號RD、以及資料信號D。
非揮發性記憶部233具有根據寫入控制信號WE儲存被輸入的資料信號D的資料,並且根據讀出控制信號RD將所儲存的資料作為資料信號D輸出的功能。
選擇器245根據讀出控制信號RD選擇資料信號D或從非揮發性記憶部233輸出的資料信號,並將其輸入到正反器248。
另外,如圖7所示那樣,在非揮發性記憶部233中設置有電晶體240及電容元件241。
電晶體240為n通道型電晶體。電晶體240的源極和汲極中的一個連接到正反器248的輸出端子。電晶體240具有根據寫入控制信號WE控制從正反器248輸出的資料信號的保持的功能。
作為電晶體240,較佳為使用關態電流(off-state current)極小的電晶體。例如,作為電晶體240,可以使用在形成通道的半導體層中包含氧化物半導體的電晶體(下面,也稱為“OS電晶體”)。
構成電容元件241的一對電極中的一個以及電晶體240的源極和汲極中的另一個與節點M1連接。另外,對構成電容元件241的一對電極中的另一個供應VSS。電容元件241具有將根據所儲存的資料信號D的資料的電荷保持於節點M1的功能。作為電晶體240,較佳為使用關態電流極小的電晶體。藉由將關態電流極小的電晶體用於電晶體240,即使停止電源電壓的供應,也可以保持節點M1的電荷,而保持資料。另外,藉由將關態電流極小的電晶體用於電晶體240,可以將電容元件241變小或省略電容元件241。
電晶體244為p通道型電晶體。對電晶體244的源極和汲極中的一方供應VDD。另外,對電晶體244的閘極輸入讀出控制信號RD。
電晶體243為n通道型電晶體。電晶體243 的源極和汲極中的一個以及電晶體244的源極和汲極中的另一個與節點M2連接。此外,電晶體243的閘極與電晶體244的閘極連接,並被輸入讀出控制信號RD。
電晶體242為n通道型電晶體。電晶體242的源極和汲極中的一個連接到電晶體243的源極和汲極中的另一個,並且源極和汲極中的另一個被供應VSS。另外,正反器248輸出的高電位H為使電晶體242成為導通狀態的電位,正反器248輸出的低電位L為使電晶體242成為關閉狀態的電位。
反相器246的輸入端子與節點M2連接。此外,反相器246的輸出端子連接到選擇器245的輸入端子。
構成電容元件247的一個電極連接到節點M2,對另一個電極供應VSS。電容元件247具有保持根據對反相器246輸入的資料信號的資料的電荷的功能。
在具有上述結構的圖7所示的暫存器1196中,當進行從正反器248到非揮發性記憶部233的資料備份時藉由作為寫入控制信號WE輸入使電晶體240處於導通狀態的信號,對節點M1供應對應於正反器248的資料信號Q的電荷。然後,藉由作為寫入控制信號WE輸入使電晶體240處於關閉狀態的信號,保持供應給節點M1的電荷。此外,在作為讀出控制信號RD的電位供應VSS的期間,電晶體243處於關閉狀態,電晶體244處於導通狀態,而節點M2的電位成為VDD。
在進行從非揮發性記憶部233到正反器248的資料的恢復時,作為讀出控制信號RD供應VDD。於是,電晶體244變為關閉狀態而電晶體243變為導通狀態,對應於保持在節點M1中的電荷的電位供應至節點M2。當在節點M1中保持有對應於資料信號Q的高電位H的電荷時,電晶體242處於導通狀態並對節點M2供應VSS,並且從反相器246輸出的VDD藉由選擇器245輸入到正反器248。另外,當在節點M1中保持有對應於資料信號Q的低電位L的電荷時,電晶體242處於關閉狀態且保持作為讀出控制信號RD的電位被供應VSS時的節點M2的電位(VDD),並且從反相器246輸出的VSS藉由選擇器245輸入到正反器248。
如上所述,藉由在暫存器1196設置揮發性記憶部及非揮發性記憶部233,可以在停止對CPU的電力供應之前將資料從揮發性記憶部備份於非揮發性記憶部233,當再次開始對CPU的電力供應時能夠將資料從非揮發性記憶部233快速地恢復到揮發性記憶部。
如此,藉由進行資料備份及恢復,不需要進行每當切斷電源時進行的從揮發性記憶部被初期化的狀態重新起動CPU,因此在對CPU再次開始電力供應之後CPU能夠快速地開始有關測量的運算處理。
此外,從提高資訊的讀出速度之觀點來看,作為電晶體242較佳為採用與用於上述揮發性記憶元件的電晶體相同的電晶體。
另外,在暫存器1196中,雖然對電晶體242的源極和汲極中的另一方及電容元件241的另一個電極都供應VSS,但是電晶體242的源極和汲極中的另一方及電容元件241的另一電極也可以為相同電位,又可以為不同電位。此外,電容元件241不是必須要設置的,例如在電晶體242的寄生電容大的情況下,該寄生電容可以代替電容元件241。
節點M1具有與用作非揮發性記憶元件的浮動閘極型電晶體的浮動閘極相等的功能。但是,藉由電晶體240的導通/關閉工作能夠直接進行資料的寫入,因此不需要利用高電壓對浮動閘極內注入電荷且從浮動閘極電極抽出電荷。就是說,在非揮發性記憶部233中不需要在習知的浮動閘極型電晶體中進行寫入及擦除時所需要的高電壓。因此,藉由使用非揮發性記憶部233,可以降低資料備份時所需要的功耗。
由於同樣的理由,能夠抑制起因於資料的寫入工作及擦除工作的工作速度的降低,所以能夠實現非揮發性記憶部233的工作的高速化。此外,由於同樣的理由,不存在習知的浮動閘極型電晶體被指出的閘極絕緣膜(穿隧絕緣膜)的劣化的問題。就是說,這意味著非揮發性記憶部233與習知的浮動閘極型電晶體不同,不存在原理上的寫入次數的限制。由此,非揮發性記憶部233足以用作如暫存器等的被要求多次寫入次數及高速工作的記憶體裝置。
另外,使用OS電晶體形成的非揮發性記憶元件即使在100℃至200℃的環境下也能夠保持資料。因此,非揮發性記憶部233較佳為使用OS電晶體形成。
另外,在上述說明中非揮發性記憶部233不侷限於圖7所示的結構。例如,可以使用相變化記憶體(PCM:Phase Change Memory)、電阻式記憶體(ReRAM:Resistance Random Access Memory)、磁阻隨機存取記憶體(MRAM:Magnetoresistive Random Access Memory)、鐵電隨機存取記憶體(FeRAM:Ferroelectric Random Access Memory)、以及快閃記憶體等。
此外,揮發性記憶元件也可以構成暫存器如緩衝暫存器及通用暫存器等。此外,在揮發性記憶部中也可以設置由SRAM(Static Random Access Memory:靜態隨機存取記憶體)等構成的快取記憶體。這些暫存器及快取記憶體可以在上述非揮發性記憶部233中備份資料。
《3. 記憶體裝置》
接著,說明可用於構成蓄電裝置100的記憶體106的記憶體裝置的一個例子。
[3-1. DOSRAM]
圖8A和圖8B例示出DOSRAM(Dynamic Oxide Semiconductor Random Access Memory:氧化物半導體動態隨機存取記憶體)作為可用於記憶體106的記憶體裝置的一個例子。DOSRAM是一種將OS電晶體用於記憶體單 元的選擇電晶體(作為切換元件的電晶體)的記憶體裝置。
圖8A是記憶體單元1050的電路圖。另外,圖8B是將記憶體單元1050配置為矩陣狀的記憶體單元陣列的電路圖。
記憶體單元1050包括電晶體1055及電容器1056。另外,電晶體1055的閘極與字線1052電連接。電晶體1055的源極與位元線1051電連接。電晶體1055的汲極與電容器1056的一端電連接。電容器1056的另一端與電容線1053電連接。
記憶體單元陣列包括多個記憶體單元1050、多個位元線1051、多個字線1052、多個電容線1053以及多個傳感放大器1054。
另外,位元線1051及字線1052配置為格子狀,在每個位元線1051和字線1052的交點配置一個記憶體單元1050。位元線1051與傳感放大器1054連接,傳感放大器1054具有將位元線1051的電位作為資料讀出的功能。
圖9是記憶體裝置的透視圖。在圖9所示的記憶體裝置中,上部作為記憶體電路具有包括多個記憶體單元的多個層的記憶體單元陣列(記憶體單元陣列3400a至記憶體單元陣列3400n(n是2以上的自然數)),下部具有用來使記憶體單元陣列3400a至記憶體單元陣列3400n工作所需要的邏輯電路3004。
由於電晶體1055的洩漏電流,保持於電容器1056的電壓隨著時間的推移越來越降低。當初從V0充電至V1的電壓隨著時間的推移降低到讀出data1的極限的VA。以該期間為保持期間T_1。即,當使用2值記憶單元時,需要在保持期間T_1中進行更新。
例如,當電晶體1055的關態電流不足夠小時,保持於電容器1056的電壓的隨時變化大,所以保持期間T_1變短。因此,需要頻繁進行更新工作。當增加更新工作的頻率時,會增高記憶體裝置的功耗。
於是,使用OS電晶體作為電晶體1055。OS電晶體是一種關態電流極小的電晶體。藉由使用OS電晶體作為電晶體1055,可以將保持期間T_1變得極長。就是說,可以減少更新工作的頻率,所以可以降低功耗。例如,當使用關態電流為1×10-21A至1×10-25A的電晶體1055形成記憶體單元時,可以在不供應電力的情況下保持資料數日至數十年。另外,也可以將記憶體單元1050用於MCU105所具有的非揮發性記憶部。
藉由使用OS電晶體,可以獲得一種積體度高且功耗少的記憶體裝置。
另外,使用OS電晶體形成的記憶體裝置即使在100℃至200℃的環境下也能夠保持資料。
[3-2. NOSRAM]
接著,說明NOSRAM(Non-volatile Oxide Semiconductor Random Access Memory:氧化物半導體非揮發性隨機存取記憶體)作為與圖8A和圖8B以及圖9所示的記憶體裝置不同的記憶體裝置的一個例子。NOSRAM是指將OS電晶體用於記憶體單元的選擇電晶體(作為切換元件的電晶體)並將使用矽材料等的電晶體用於記憶體單元的輸出電晶體的記憶體。
圖10A是包括記憶體單元及佈線的記憶體裝置的電路圖。另外,圖10B是表示圖10A所示的記憶體單元的電特性的圖。
記憶體單元包括電晶體1071、電晶體1072以及電容器1073。在此,電晶體1071的閘極與字線1076電連接。電晶體1071的源極與源極線1074電連接。電晶體1071的汲極與電晶體1072的閘極及電容器1073的一端電連接,將該部分記作節點1079。電晶體1072的源極與源極線1075電連接。電晶體1072的汲極與汲極線1077電連接。電容器1073的另一端與電容線1078電連接。
另外,圖10A和圖10B所示的記憶體裝置是利用根據節點1079的電位電晶體1072的外觀上的臨界電壓發生變動的現象的記憶體裝置。例如,圖10B是說明電容線1078的電壓VCL與流過電晶體1072的汲極電流Id_2的關係的圖。
另外,藉由電晶體1071可以調整節點1079的電位。例如,將源極線1074的電位設定為高電源電位 VDD。此時,藉由將字線1076的電位設定為電晶體1071的臨界電壓Vth加高電源電位VDD的電位以上,可以將節點1079的電位設定為HIGH。另外,藉由將字線1076的電位設定為電晶體1071的臨界電壓Vth以下,可以將節點1079的電位設定為LOW。
由此,電晶體1072具有以LOW表示的VCL-Id_2曲線和以HIGH表示的VCL-Id_2曲線中的任一電特性。即,當節點1079的電位為LOW時,VCL=0V時Id_2較小,所以儲存資料0;而當節點1079的電位為HIGH時,VCL=0V時Id_2較大,所以儲存資料1。如上那樣,可以在節點1079中儲存資料。
藉由使用關態電流小的電晶體作為電晶體1071,可以將資料的保持期間變長。具體地,由於OS電晶體是關態電流極小的電晶體,藉由使用OS電晶體作為電晶體1071,可以在極長的期間保持節點1079的電位。另外,藉由使用電晶體1072讀出資料,可以在不使儲存於節點1079的資料消失的情況下讀出資料,所以可以反復讀出資料。例如,當使用關態電流為1×10-21A至1×10-25A的電晶體1071形成記憶體單元時,可以在不供應電力的情況下保持資料數日至數十年。另外,也可以將NOSRAM用於MCU105所具有的非揮發性記憶部。
另外,使用OS電晶體形成的記憶體裝置即使在100℃至200℃的環境下也能夠保持資料。
藉由使用OS電晶體,可以獲得一種積體度高 且功耗少的記憶體裝置。
[3-3. 記憶容量]
記憶體106的記憶容量由二次電池101的電池容量、充放電電壓、充放電電流、預料的使用溫度、預料的工作時間以及測定各資料時的解析度決定,即可。
在充電模式下,測定電池容量時的解析度為最大電池容量的10%以下,較佳為1%以下,更佳為0.1%以下。另外,測定電壓及電流時的解析度為最小讀數值的二分之一以下,較佳為十分之一以下。另外,測定溫度時的解析度為10℃以下,較佳為5℃以下。工作時間的解析度在充電模式下為10分以下,較佳為1分以下。
另外,在急劇充電模式下在短時間中流過大電流,所以將測定電流時的解析度設定為額定電流的三分之二以下,較佳為二分之一以下。另外,將工作時間的解析度設定為10ms以下,較佳為1ms以下,更佳為100μs以下。
例如,在如下條件下的每一次充電模式的記憶容量如表1所示可以算出。該條件是:最大電池容量為3000mAh;充放電電壓為0V至6.0V;充放電電流為0A至3.0A;預料的使用溫度為0℃至200℃;預料的工作時間為480分(8小時)。
另外,每一次急劇放電模式的記憶容量如表2所示可以算出。此外,在表2中,將急劇放電模式的最大工作時間設定為50ms,將急劇放電模式的最大放電電流設定為30A。
從表1可知,每一次充電模式的用來記錄開始時和結束時的電池資料及工作時間所需要的記憶容量為 75bit。另外,從表2可知,每一次急劇放電模式的用來記錄開始時和結束時的電池資料及工作時間所需要的記憶容量為67bit。
另外,假定每一天記錄5次的充電模式及5次的急劇放電模式,可以估計出3年的記錄所需要的容量為(75×5+67×5)×365×3=777450bit、即大約為760kbit。
《4. 半導體裝置》
在此,說明可用於MCU及記憶體等的半導體裝置的結構實例。
[4-1. 電晶體的結構實例]
說明可用於MCU及記憶體等的電晶體的結構實例。
對可用於MCU及記憶體等的電晶體的結構沒有特別的限制,可以採用任意結構。例如,可以使用下面說明的底閘極結構的交錯型及平面型的電晶體。另外,電晶體既可以採用形成有一個通道形成區域的單閘極結構,又可以採用形成有兩個通道形成區域的雙閘極結構或形成有三個通道形成區域的三閘極結構等多閘極結構。此外,還可以採用在通道形成區域的上下隔著閘極絕緣層設置有兩個閘極電極層的結構(在本說明書中,將它稱為雙閘(dual gate)結構)。
[4-1-1. 底閘極結構]
圖11A至圖11C示出底閘極型電晶體的一種的底閘極頂接觸結構的電晶體421的結構實例。圖11A是電晶體421的平面圖,圖11B是沿著圖11A的點劃線A1-A2的剖面圖,圖11C是沿著圖11A的點劃線B1-B2的剖面圖。
電晶體421包括:設置在具有絕緣表面的基板400上的閘極電極401;設置在閘極電極401上的閘極絕緣膜402;隔著閘極絕緣膜402與閘極電極401重疊的氧化物膜404;與氧化物膜404接觸地設置的源極電極405a及汲極電極405b。另外,以覆蓋源極電極405a及汲極電極405b並與氧化物膜404接觸的方式設置有絕緣膜406。此外,作為基板400,可以使用形成有其他元件的元件形成基板。
另外,也可以在氧化物膜404中的與源極電極405a及汲極電極405b接觸的區域具有n型化區域403。
[4-1-2. 頂閘極結構]
圖12A示出頂閘極結構的電晶體422。
電晶體422包括:設置在具有絕緣表面的基板400上的絕緣膜408;設置在絕緣膜408上的氧化物膜404;與氧化物膜404接觸地設置的源極電極405a及汲極電極405b;設置在氧化物膜404、源極電極405a及汲極電極405b上的閘極絕緣膜409;以及隔著閘極絕緣膜409 與氧化物膜404重疊的閘極電極410。
另外,也可以在氧化物膜404中的與源極電極405a及汲極電極405b接觸的區域具有n型化區域403。
[4-1-3. 雙閘結構]
圖12B示出具有隔著閘極絕緣膜配置在通道形成區域上下的兩個閘極電極的雙閘結構的電晶體423。
電晶體423包括:設置在具有絕緣表面的基板400上的閘極電極401;設置在閘極電極401上的閘極絕緣膜402;隔著閘極絕緣膜402與閘極電極401重疊的氧化物膜404;與氧化物膜404接觸地設置的源極電極405a及汲極電極405b;覆蓋源極電極405a及汲極電極405b並與氧化物膜404接觸的閘極絕緣膜409;以及隔著閘極絕緣膜409與氧化物膜404重疊的閘極電極410。
另外,也可以在氧化物膜404中的與源極電極405a及汲極電極405b接觸的區域具有n型化區域403。
[4-2. 電晶體的構成要素]
說明電晶體的各構成要素。
[4-2-1. 導電層]
作為閘極電極401及閘極電極410,例如可以使用具 有Al、Cr、Cu、Ta、Ti、Mo、W等的層。
作為源極電極405a及汲極電極405b,例如可以使用具有Al、Cr、Cu、Ta、Ti、Mo、W等的層。
[4-2-2. 絕緣層]
作為閘極絕緣膜402、絕緣膜406、閘極絕緣膜409,例如可以使用氧化矽膜、氧氮化矽膜、氮氧化矽膜、氮化矽膜、氧化鎵膜、氧化鋁膜或氧氮化鋁膜。
[4-2-3. 氧化物膜]
接著,說明可用於氧化物膜404的材料。
[4-2-3-1. 單層膜]
作為氧化物膜404,例如可以使用In類金屬氧化物、Zn類金屬氧化物、In-Zn類金屬氧化物或In-Ga-Zn類金屬氧化物等的膜。
另外,也可以使用包含其他金屬元素代替包含在In-Ga-Zn類金屬氧化物中的Ga的一部分或全部的金屬氧化物。作為上述其他金屬元素,例如可以使用與鎵相比能夠結合於更多的氧原子的金屬元素諸如鈦、鋯、鉿、鍺和錫中的任何一種或多種。另外,作為上述其他金屬元素,可以使用鑭、鈰、鐠、釹、釤、銪、釓、鋱、鏑、鈥、鉺、銩、鐿及鎦中的任何一種或多種。這些金屬元素具有穩定劑的功能。這些金屬元素的添加量是足以使該金 屬氧化物用作半導體的添加量。藉由使用與鎵相比能夠結合於更多的氧原子的金屬元素且對金屬氧化物供應氧,可以減少金屬氧化物中的氧缺陷。
可以使利用二次離子質譜分析(SIMS:Secondary Ion Mass Spectrometry)測量的氧化物膜中的氫濃度為2×1020atoms/cm3以下,較佳為5×1019atoms/cm3以下,更佳為1×1019atoms/cm3以下,進一步佳為5×1018atoms/cm3以下。
另外,可以使利用SIMS測量的氧化物膜中的氮濃度小於5×1019atoms/cm3,較佳為5×1018atoms/cm3以下,更佳為1×1018atoms/cm3以下,進一步佳為5×1017atoms/cm3以下。
另外,可以使利用SIMS測量的氧化物膜中的碳濃度小於5×1019atoms/cm3,較佳為5×1018atoms/cm3以下,更佳為1×1018atoms/cm3以下,進一步佳為5×1017atoms/cm3以下。
另外,可以使利用SIMS測量的氧化物膜中的矽濃度小於5×1019atoms/cm3,較佳為5×1018atoms/cm3以下,更佳為1×1018atoms/cm3以下,進一步佳為5×1017atoms/cm3以下。
另外,可以使氧化物膜中的根據熱脫附譜分析法(TDS:Thermal Desorption Spectroscopy)分析的m/z=2(氫分子等)的氣體分子(原子)、m/z=18的氣體分子(原子)、m/z=28的氣體分子(原子)及m/z=44的 氣體分子(原子)的釋放量分別為1×1019個/cm3以下,較佳為1×1018個/cm3以下。
作為氧化物膜404,例如可以使用氧化物半導體膜。
下面,說明氧化物半導體膜的結構。
氧化物半導體膜大致分為單晶氧化物半導體膜和非單晶氧化物半導體膜。非單晶氧化物半導體膜包括非晶氧化物半導體膜、微晶氧化物半導體膜、多晶氧化物半導體膜及CAAC-OS(C-Axis Aligned Crystalline Oxide Semiconductor:c軸配向結晶氧化物半導體)膜等。
非晶氧化物半導體膜具有無序的原子排列並不具有結晶成分。其典型例子是在微小區域中也不具有結晶部而膜整體具有完全的非晶結構的氧化物半導體膜。
微晶氧化物半導體膜例如包括1nm以上且小於10nm的尺寸的微晶(也稱為奈米晶)。因此,微晶氧化物半導體膜的原子排列的有序度比非晶氧化物半導體膜高。因此,微晶氧化物半導體膜的缺陷態密度低於非晶氧化物半導體膜。
CAAC-OS膜是包含多個結晶部的氧化物半導體膜之一,大部分的結晶部的尺寸為能夠容納於一邊短於100nm的立方體內的尺寸。因此,有時包括在CAAC-OS膜中的結晶部的尺寸為能夠容納於一邊短於10nm、短於5nm或短於3nm的立方體內的尺寸。CAAC-OS膜的缺陷態密度低於微晶氧化物半導體膜。下面,對CAAC-OS膜 進行詳細的說明。
在CAAC-OS膜的穿透式電子顯微鏡(TEM:Transmission Electron Microscope)影像中,觀察不到結晶部與結晶部之間的明確的邊界,即晶界(grain boundary)。因此,在CAAC-OS膜中,不容易發生起因於晶界的電子移動率的降低。
根據從大致平行於樣本面的方向觀察的CAAC-OS膜的TEM影像(剖面TEM影像)可知在結晶部中金屬原子排列為層狀。各金屬原子層具有反映形成CAAC-OS膜的面(也稱為被形成面)或CAAC-OS膜的頂面的凸凹的形狀並以平行於CAAC-OS膜的被形成面或頂面的方式排列。
另一方面,根據從大致垂直於樣本面的方向觀察的CAAC-OS膜的TEM影像(平面TEM影像)可知在結晶部中金屬原子排列為三角形狀或六角形狀。但是,在不同的結晶部之間金屬原子的排列沒有規律性。
由剖面TEM影像及平面TEM影像可知,CAAC-OS膜的結晶部具有配向性。
使用X射線繞射(XRD:X-Ray Diffraction)裝置對CAAC-OS膜進行結構分析。例如,當利用out-of-plane法分析包括InGaZnO4的結晶的CAAC-OS膜時,在繞射角(2θ)為31°附近時常出現峰值。由於該峰值來源於InGaZnO4結晶的(009)面,由此可知CAAC-OS膜中的結晶具有c軸配向性,並且c軸朝向大致垂直於CAAC-OS 膜的被形成面或頂面的方向。
另一方面,當利用從大致垂直於c軸的方向使X線入射到樣本的in-plane法分析CAAC-OS膜時,在2θ為56°附近時常出現峰值。該峰值來源於InGaZnO4結晶的(110)面。在此,將2θ固定為56°附近並在以樣本面的法線向量為軸(φ軸)旋轉樣本的條件下進行分析(φ掃描)。當該樣本是InGaZnO4的單晶氧化物半導體膜時,出現六個峰值。該六個峰值來源於相等於(110)面的結晶面。另一方面,當該樣本是CAAC-OS膜時,即使在將2θ固定為56°附近的狀態下進行φ掃描也不能觀察到明確的峰值。
由上述結果可知,在具有c軸配向的CAAC-OS膜中,雖然a軸及b軸的方向在結晶部之間不同,但是c軸都朝向平行於被形成面或頂面的法線向量的方向。因此,在上述剖面TEM影像中觀察到的排列為層狀的各金屬原子層相當於與結晶的ab面平行的面。
注意,結晶部在形成CAAC-OS膜或進行加熱處理等晶化處理時形成。如上所述,結晶的c軸朝向平行於CAAC-OS膜的被形成面或頂面的法線向量的方向。由此,例如,當CAAC-OS膜的形狀因蝕刻等而發生改變時,結晶的c軸不一定平行於CAAC-OS膜的被形成面或頂面的法線向量。
此外,CAAC-OS膜中的晶化度不一定均勻。例如,當CAAC-OS膜的結晶部是由CAAC-OS膜的頂面 近旁的結晶成長而形成時,有時頂面附近的晶化度高於被形成面附近的晶化度。另外,當對CAAC-OS膜添加雜質時,被添加了雜質的區域的晶化度改變,所以有時CAAC-OS膜中的晶化度根據區域而不同。
注意,當利用out-of-plane法分析包括InGaZnO4結晶的CAAC-OS膜時,除了在2θ為31°附近的峰值之外,有時還在2θ為36°附近觀察到峰值。2θ為36°附近的峰值意味著CAAC-OS膜的一部分中含有不具有c軸配向的結晶。較佳的是,在CAAC-OS膜中在2θ為31°附近時出現峰值而在2θ為36°附近時不出現峰值。
在將CAAC-OS膜用於氧化物膜的電晶體中,起因於可見光或紫外光的照射的電特性的變動小。因此,該電晶體具有高可靠性。
氧化物半導體膜可以藉由濺射法形成。當作為濺射用靶材使用In-Ga-Zn-O化合物靶材時,例如較佳為使用以2:2:1、8:4:3、3:1:1、1:1:1、4:2:3、3:1:2、3:1:4的莫耳數比混合InOx粉末、GaOy粉末及ZnOz粉末形成的In-Ga-Zn-O化合物靶材。x、y、z是任意的正數。另外,濺射用靶材也可以是多晶。
此外,也可以使用磁控管並由磁場使濺射用靶材附近的等離子空間高密度化。因為在磁控管濺射裝置中,例如在濺射用靶材的前方形成磁場,所以在濺射靶材的後方配置有磁石組裝體。該磁場當濺射用靶材的濺射時 俘獲電離的電子或因濺射而產生的二次電子。藉由這樣俘獲的電子提高了與成膜室內的稀有氣體等的惰性氣體的碰撞概率,其結果是,電漿密度得到提高。由此,例如可以在不使元件形成層的溫度顯著增高的情況下提高沈積速度。
當藉由濺射法形成CAAC-OS膜時,例如較佳為減少在濺射裝置的成膜室中存在的雜質(氫、水、二氧化碳及氮等)。此外,較佳為減少成膜氣體中的雜質。例如,藉由作為氧氣體或氬氣體等的成膜氣體使用高度純化到露點為-40℃以下,較佳為-80℃以下,更佳為-100℃以下的氣體,可以抑制雜質混入到CAAC-OS膜。
當藉由濺射法形成CAAC-OS膜時,較佳為增高成膜氣體中的氧的比例並使電力最佳化來抑制成膜時的電漿損傷。例如,將成膜氣體中的氧的比例設定為30vol.%以上,較佳為100vol.%。
當藉由濺射法形成CAAC-OS膜時,較佳為藉由除了進行成膜時的基板加熱(150℃至450℃)之外,在成膜之後還進行加熱處理,以去除膜中的氫或水而減少氧化物膜中的雜質濃度。
如上述製程所示,藉由當進行成膜時不使膜包含氫或水等,減少氧化物膜404所包含的雜質濃度。此外,也可以在形成氧化物膜404之後進行加熱處理來去除包含在氧化物膜中的氫或水等,由此可以降低雜質濃度。
當在形成氧化物膜404之後進行加熱處理 時,對用於加熱處理的加熱裝置沒有特別的限制,也可以具備利用來自電阻發熱體等發熱體的熱傳導或熱輻射加熱被處理物的裝置。例如,可以使用電爐或如LRTA(Lamp Rapid Thermal Anneal:燈快速熱退火)裝置、GRTA(Gas Rapid Thermal Anneal:氣體快速熱退火)裝置等的RTA(Rapid Thermal Anneal:快速熱退火)裝置。LRTA裝置是利用從燈如鹵素燈、金屬鹵化物燈、氙弧燈、碳弧燈、高壓鈉燈或高壓汞燈等發出的光(電磁波)的輻射加熱被處理物的裝置。GRTA裝置是使用高溫的氣體進行加熱處理的裝置。
藉由進行加熱處理,可以從氧化物膜404釋放氫(水、包含羥基的化合物)等雜質。由此,可以降低氧化物膜404中的雜質而使氧化物膜404高度純化。此外,由於尤其可以使不穩定的載體源的氫從氧化物膜404脫離,所以可以提高使用氧化物膜404的電晶體的可靠性。
藉由之後對氧化物膜404供應氧填充氧缺陷,可以使氧化物膜404處於i型(本質半導體)或無限趨近於i型的狀態。此外,無限趨近於i型的氧化物膜的載體密度低於1×1017/cm3,低於1×1015/cm3或低於1×1013/cm3
對氧化物膜404供應氧的處理可以利用離子摻雜裝置或電漿處理裝置。另外,作為離子摻雜裝置,也可以利用具有質量分離功能的離子摻雜裝置。作為用來添 加氧的氣體,可以使用16O218O2等氧氣體、一氧化二氮氣體或臭氧氣體等。
另外,藉由在包含氧化氣體的氛圍下進行加熱處理,可以對氧化物膜404供應氧以在釋放雜質的同時填充氧化物膜404的氧缺陷。另外,也可以在進行惰性氣體的氛圍下的加熱處理之後,在包含10ppm以上、1%以上或10%以上的氧化氣體氛圍下進行加熱處理來填充氧化物膜404的氧缺陷。
藉由使氧化物膜404實現高度純化而使氧化物膜404處於i型(本質半導體)或無限趨近於i型的狀態,可以抑制使用氧化物膜404的電晶體的臨界電壓向負方向變動。並且,可以提高電晶體的可靠性。由此,可以提高半導體裝置的可靠性。
[4-2-3-2. 疊層膜]
另外,氧化物膜404也可以是疊層膜。下面,說明氧化物疊層膜。例如,也可以使氧化物膜404為包括非晶氧化物半導體膜、微晶氧化物半導體膜和CAAC-OS膜中的兩種以上的疊層膜。
圖13A示出氧化物疊層膜的結構實例。
圖13A所示的層疊結構包括在絕緣膜408和閘極絕緣膜409之間氧化物疊層膜160。另外,氧化物疊層膜160包括氧化物層161、氧化物層162以及氧化物層163。此外,如圖13B所示,也可以不設置氧化物層 161。
氧化物層161及氧化物層163是包含構成氧化物層162的金屬元素中的一種以上的氧化物層。
氧化物層162使用可用於上述氧化物膜404的氧化物形成。
氧化物層161包含以In-M-Zn氧化物(Al、Ti、Ga、Ge、Y、Zr、Sn、La、Ce或Hf等的金屬)表示的其M的原子數比比氧化物層162高的氧化物層。具體地,作為氧化物層161,使用包含其原子數比比氧化物層162高1.5倍以上、較佳為2倍以上、更佳為3倍以上的上述元素的氧化物層。上述元素比銦與氧更堅固地鍵合,所以具有能夠抑制氧缺損產生在氧化物層中的功能。就是說,與氧化物層162相比,氧化物層161是不容易產生氧缺損的氧化物層。
與氧化物層161同樣,氧化物層163包含以In-M-Zn氧化物(Al、Ti、Ga、Ge、Y、Zr、Sn、La、Ce或Hf等的金屬)表示的其M的原子數比比氧化物層162高的氧化物層。具體地,作為氧化物層163,使用包含其原子數比比氧化物層162高1.5倍以上、較佳為2倍以上、更佳為3倍以上的上述元素的氧化物層。
就是說,在氧化物層161、氧化物層162以及氧化物層163至少是包含銦、鋅及M(M為Al、Ti、Ga、Ge、Y、Zr、Sn、La、Ce或Hf等的金屬)的In-M-Zn氧化物的情況下,當將氧化物層161設定為 In:M:Zn=x1:y1:z1[原子數比]、將氧化物層162設定為In:M:Zn=x2:y2:z2[原子數比]以及將氧化物層163設定為In:M:Zn=x3:y3:z3[原子數比]時,較佳為y1/x1及y3/x3比y2/x2大。y1/x1及y3/x3為y2/x2的1.5倍以上,較佳為y2/x2的2倍以上,更佳為y2/x2的3倍以上。此時,當在氧化物層162中y2為x2以上時,可以使電晶體的電特性穩定。注意,當y2為x2的3倍以上時,電晶體的場效移動率變低,所以較佳為y2小於x2的3倍。
當氧化物層161為In-M-Zn氧化物時,In與M的原子數比較佳為如下:In原子的比率低於50atomic%且M原子的比率為50atomic%以上,更佳為如下:In原子的比率低於25atomic%且M原子的比率為75atomic%以上。另外,當氧化物層162為In-M-Zn氧化物時,In與M的原子數比較佳為如下:In原子的比率為25atomic%以上且M原子的比率低於75atomic%,更佳為如下:In原子的比率為34atomic%以上且M原子的比率低於66atomic%以上。另外,當氧化物層163為In-M-Zn氧化物時,In與M的原子數比較佳為如下:In原子的比率低於50atomic%且M原子的比率為50atomic%以上,更佳為如下:In原子的比率低於25atomic%且M原子的比率為75atomic%以上。注意,上述In和M的原子的比率是將In和M的總和為100atomic%時的比率。
此外,氧化物層161及氧化物層163既可以為包含不同的構成元素的層,又可以為以相同的原子數比 包含相同的構成元素的層或以不同的原子數比包含相同的構成元素的層。
作為氧化物層161、氧化物層162以及氧化物層163,例如可以使用包含銦、鋅及鎵的氧化物半導體。具體地,作為氧化物層161,可以使用In:Ga:Zn=1:3:2[原子數比]的In-Ga-Zn氧化物、In:Ga:Zn=1:3:4[原子數比]的In-Ga-Zn氧化物、In:Ga:Zn=1:6:4[原子數比]的In-Ga-Zn氧化物、In:Ga:Zn=1:9:6[原子數比]的In-Ga-Zn氧化物或具有與上述相似的組成的氧化物。作為氧化物層162,可以使用In:Ga:Zn=1:1:1[原子數比]的In-Ga-Zn氧化物、In:Ga:Zn=3:1:2[原子數比]的In-Ga-Zn氧化物或具有與上述相似的組成的氧化物。作為氧化物層163,可以使用In:Ga:Zn=1:3:2[原子數比]的In-Ga-Zn氧化物、In:Ga:Zn=1:3:4[原子數比]的In-Ga-Zn氧化物、In:Ga:Zn=1:6:4[原子數比]的In-Ga-Zn氧化物、In:Ga:Zn=1:9:6[原子數比]的In-Ga-Zn氧化物或具有與上述相似的組成的氧化物。
將氧化物層161的厚度設定為3nm以上且100nm以下,較佳為3nm以上且50nm以下。另外,將氧化物層162的厚度設定為3nm以上且1500nm以下,較佳為3nm以上且100nm以下,更佳為3nm以上且50nm以下。
另外,作為氧化物層161及氧化物層163,使用其銦的原子數比比用於氧化物層162的材料小的材料。 可以利用飛行時間二次離子質譜分析法(也稱為TOF-SIMS)或X射線光電子能譜(也稱為XPS)比較氧化物層中的銦和鎵等的含有量。
氧化物層161及氧化物層163較佳為包含構成氧化物層162的金屬元素中的一種以上,並且,氧化物層161及氧化物層163較佳為使用導帶底端的能量比氧化物層162的導帶底端的能量近於真空能階0.05eV以上、0.07eV以上、0.1eV以上或0.15eV以上且2eV以下、1eV以下、0.5eV以下或0.4eV以下的氧化物半導體形成。
在上述結構中,當對電晶體的閘極電極施加電場時,在氧化物疊層膜160中的導帶底端的能量最小的氧化物層162中形成通道。就是說,藉由在氧化物層162和閘極絕緣膜409之間形成有氧化物層163,可以不使電晶體的通道接觸於閘極絕緣膜409。
在此,對氧化物疊層膜160的能帶結構進行說明。
氧化物疊層膜160的能帶結構例如可以藉由如下方法特定:利用光譜橢圓偏光計測量氧化物層161至氧化物層163的能隙及氧化物層161至氧化物層163的各介面的能隙,利用紫外線光電子能譜(UPS:Ultraviolet Photoelectron Spectroscopy)裝置測量氧化物層161至氧化物層163的各真空能階與價帶頂端之間的能量差,並且標繪出其中將真空能階與價帶頂端之間的能量差和各層的能隙之間的差算出的真空能階與導帶底端之間的能量差(電 子親和力)。在此,使氧化物層161及氧化物層163為能隙是3.15eV的In-Ga-Zn氧化物,使氧化物層162為能隙是2.8eV的In-Ga-Zn氧化物。並且,將氧化物層161與氧化物層162之間的介面附近的能隙設定為3eV,將氧化物層163與氧化物層162之間的介面附近的能隙設定為3eV。
圖14A示出藉由上述步驟特定的能帶結構的模式圖。在圖14A中,說明與氧化物層161及氧化物層163接觸地設置氧化矽膜的情況。在此,縱軸表示電子能量(eV),橫軸表示距離。另外,EcI1及EcI2表示氧化矽膜的導帶底端的能量,EcS1表示氧化物層161的導帶底端的能量,EcS2表示氧化物層162的導帶底端的能量,EcS3表示氧化物層163的導帶底端的能量。
如圖14A所示,在氧化物層161、氧化物層162以及氧化物層163中,導帶底端的能量連續地變化。這從由於氧化物層161、氧化物層162以及氧化物層163的組成相似,氧容易相互擴散上,也可以得到理解。
另外,雖然圖14A示出氧化物層161及氧化物層163是具有同樣的能隙的氧化物層的情況,但是也可以是具有不同能隙的氧化物層。例如,當EcS1具有比EcS3高的能量時,能帶結構的一部分為如圖14B所示。此外,雖然在圖14A和圖14B中沒有示出,但是也可以是EcS3具有比EcS1高的能量。
如圖14A和圖14B所示,氧化物層162成為 阱(well),在使用氧化物疊層膜160的電晶體中通道形成在氧化物層162中。另外,由於在氧化物疊層膜160中導帶底端的能量連續地變化,因此也可以稱為U字形阱(U-shaped well)。另外,也可以將具有上述結構的通道稱為埋入通道。
氧化物層161和氧化物層163為包含一種以上的構成氧化物層162的金屬元素的氧化物層,因此可以說氧化物疊層膜是主要成分相同而層疊的氧化物疊層膜。主要成分相同而層疊的氧化物疊層膜160不是簡單地將各層層疊,而以形成連續結合(在此,尤其是指各層之間的導帶底端的能量連續變化的U字形阱結構)的方式形成。這是因為:當在各層之間的介面混入有可能形成缺陷中心或再結合中心等缺陷能階的雜質時,能帶則失去連續性,因此載體在介面被俘獲或者再結合而消失。
為了形成連續結合,需要使用具備裝載閉鎖室的多室成膜裝置(濺射裝置)以不使各層暴露於大氣的方式連續地層疊。在濺射裝置中的各處理室中,較佳為使用低溫泵等吸附式真空泵進行高真空抽氣(抽空到1×10-4Pa至5×10-7Pa左右)來盡可能地去除有可能成為氧化物半導體的雜質的水等。或者,較佳為組合渦輪分子泵和冷阱來防止氣體從排氣系統倒流到處理室內。
為了獲得高純度本質氧化物半導體,不僅需要對室內進行高真空抽氣,而且需要進行濺射氣體的高度純化。藉由作為用作濺射氣體的氧氣體或氬氣體,使用露 點為-40℃以下,較佳為-80℃以下,更佳為-100℃以下的高純度氣體,能夠盡可能地防止水分等混入氧化物半導體。
氧化物層161及氧化物層163用作阻擋層,其可以抑制在接觸於氧化物疊層膜160的絕緣膜與氧化物疊層膜160之間的介面形成的陷阱能階影響到用作電晶體的載體的主要路徑(載體路徑)的氧化物層162。
例如,包含在氧化物半導體層中的氧缺陷作為存在於氧化物半導體的能隙內的深的能量位置的定域能階而明顯化。當載體被這種定域能階俘獲時,電晶體的可靠性下降,因此需要減少包含在氧化物半導體層中的氧缺陷。在氧化物疊層膜160中,藉由在氧化物層162之上及之下以與氧化物層162接觸的方式設置與氧化物層162相比不容易產生氧缺陷的氧化物層,可以減少氧化物層162中的氧缺陷。例如,可以使氧化物層162的利用恆定光電流法(也稱為CPM)測定出的起因於定域能階的吸收係數低於1×10-3/cm,較佳為低於1×10-4/cm。
另外,通道形成區域是指氧化物疊層膜160(氧化物層161、氧化物層162以及氧化物層163)中的重疊於閘極電極410的區域。注意,在氧化物疊層膜160中有可能形成n型化區域403的情況下,通道形成區域為氧化物疊層膜160中的重疊於閘極電極410且夾在n型化區域403之間的區域。如此,通道形成區域主要形成在氧化物疊層膜160中的重疊於閘極電極410的區域,依賴於 氧化物疊層膜160的半導體特性。因此,氧化物疊層膜160中的重疊於閘極電極410的區域在氧化物疊層膜160為i型的情況下是通道形成區域,而在氧化物疊層膜160為n型的情況下有可能不是通道形成區域。另外,通道是指通道形成區域中的電流主要流過的路徑。
另外,在氧化物層162接觸於其構成要素與氧化物層162不同的絕緣層(例如,包含氧化矽膜的基底絕緣層)的情況下,在兩層之間的介面會形成介面能階,該介面能階有可能形成通道。在此情況下,有可能出現具有不同臨界電壓的其他電晶體,而使電晶體的外觀上的臨界電壓發生變動。然而,由於在氧化物疊層膜160中,氧化物層161包含一種以上的構成氧化物層162的金屬元素,因此在氧化物層161與氧化物層162之間的介面不容易形成介面能階。因而,藉由設置氧化物層161,可以降低電晶體的臨界電壓等電特性的偏差。
另外,當在閘極絕緣膜409與氧化物層162之間的介面形成通道時,在該介面產生介面散射而使電晶體的場效移動率下降。然而,在氧化物疊層膜160中,氧化物層163包含一種以上的構成氧化物層162的金屬元素,因此在氧化物層162與氧化物層163之間的介面不容易產生載體散射,因此,可以提高電晶體的場效移動率。
另外,氧化物層161及氧化物層163還用作阻擋層,該阻擋層抑制接觸於氧化物疊層膜160的絕緣層的構成元素混入氧化物層162而形成因雜質所引起的能 階。
例如,當作為接觸於氧化物疊層膜160的絕緣層,使用包含矽的絕緣層時,有時該絕緣層中的矽或者有可能混入該絕緣層的碳混入氧化物層161或氧化物層163的從介面深入到幾nm左右的區域。當矽、碳等雜質混入氧化物半導體層時,形成雜質能階,該雜質能階有可能作為施體生成電子而使氧化物半導體層n型化。
另一方面,在氧化物層161及氧化物層163的厚度大於幾nm的情況下,混入了的矽、碳等雜質不到達氧化物層162,因此雜質能階的影響得到抑制。
在此,包含在氧化物層162中的矽的濃度為3×1018/cm3以下,較佳為3×1017/cm3以下。此外,包含在氧化物層162中的碳的濃度為3×1018/cm3以下,較佳為3×1017/cm3以下。尤其是,為了防止多量的第14族元素的矽或碳混入氧化物層162,較佳為由氧化物層161和氧化物層163夾持或覆蓋用作載體路徑的氧化物層162。換言之,包含在氧化物層162中的矽及碳的濃度較佳為低於包含在氧化物層161及氧化物層163中的矽及碳的濃度。
另外,氧化物層中的雜質濃度可以藉由利用二次離子質譜分析法(SIMS:Secondary Ion Mass Spectrometry)而測定。
另外,當氧化物半導體層包含氫或水分等雜質時,形成施體而使氧化物半導體層n型化,因此從實現阱結構的角度來看,在氧化物疊層膜160的上方設置防止 氫或水分從外部混入的保護絕緣層(氮化矽層等)是有效的。
另外,圖15A至圖15C示出電晶體的通道寬度方向的氧化物疊層膜160的剖面結構實例的一部分。氧化物疊層膜160包括絕緣膜408上的氧化物層161、設置在氧化物層161上的氧化物層162、設置在氧化物層162上的氧化物層163、以與氧化物層161的側面、氧化物層162的側面以及氧化物層163的側面接觸的方式設置的氧化物層164。此時,氧化物層162被氧化物層161、氧化物層163以及氧化物層164包圍。另外,氧化物層164與閘極絕緣膜409接觸,並且,以接觸於閘極絕緣膜409的方式設置有閘極電極410。
圖15A所示的氧化物疊層膜160具有由任意的一個或者多個曲率半徑定義的曲面。此時,與閘極絕緣膜409接觸的氧化物層164的表面的至少一部分為曲面。另外,如圖15A所示,閘極電極410也可以接觸於絕緣膜408。
氧化物層164例如包含可用於氧化物層161的材料。氧化物層164例如當利用乾蝕刻法等對氧化物層161、氧化物層162以及氧化物層163進行蝕刻時,由氧化物層161的反應生成物附著到氧化物層162及氧化物層163的側面而形成。
注意,有時不能嚴格地區別氧化物層161、氧化物層163和氧化物層164。因此,也可以換句話說為氧 化物層162被氧化物包圍。
另外,氧化物疊層膜160也可以採用圖15B所示的結構。圖15B所示的氧化物疊層膜160的端部具有傾斜(錐角)區域。藉由在端部設置傾斜(錐角)區域,可以提高閘極絕緣膜409的覆蓋性。另外,如圖15C所示,上述錐角區域的一部分也可以削掉。
在上述所示的電晶體中,氧化物半導體膜和以與氧化物半導體膜接觸的方式設置在氧化物半導體膜之上及之下的氧化物層的疊層構成的氧化物疊層膜的剖面具有曲面或傾斜區域。當氧化物疊層膜的剖面具有曲面或傾斜區域時,可以提高形成在氧化物疊層膜上的膜的覆蓋性。由此,可以均勻地形成位於氧化物疊層膜上的膜,以抑制雜質元素從膜密度低的區域或沒有形成膜的區域混入氧化物疊層膜,而抑制電晶體的電特性劣化,可以提供具有穩定電特性的電晶體。
如上所述,藉由以接觸於氧化物半導體的方式形成氧化物,來形成包括氧化物半導體和氧化物的氧化物疊層膜,可以抑制氫、水分等雜質或來自接觸於氧化物半導體的絕緣膜的雜質混入氧化物半導體膜而形成載體。
[4-3. 使用電晶體的半導體裝置的結構實例]
說明使用上述電晶體的半導體裝置的結構實例。
圖16是半導體裝置的剖面結構的一個例子。圖16所示的半導體裝置包括電晶體1172、隔著絕緣膜等 設置在電晶體1172上的電晶體1171以及電容器1178。
在本實施方式中示出如下半導體裝置:作為下部的電晶體1172使用半導體材料,作為上部的電晶體1171使用氧化物膜,作為該半導體材料使用半導體基板。
圖16示出一種半導體裝置的剖面結構的一個例子,該半導體裝置包括在其下部具有使用半導體材料的電晶體並在其上部具有使用根據本發明的一個方式的氧化物膜的電晶體。在此,作為半導體材料及根據本發明的一個方式的氧化物膜,使用不同材料。例如,作為半導體材料,可以採用氧化物或氧化物半導體以外的半導體材料。作為氧化物或氧化物半導體以外的半導體材料,例如可以使用矽、鍺、矽鍺或砷化鎵等,較佳為使用單晶半導體。使用單晶半導體的電晶體容易進行高速工作。另一方面,使用氧化物膜的電晶體可用於利用關態電流充分低,即幾yA/μm至幾zA/μm左右的特性的電路。據此,也可以使用圖16所示的半導體裝置例如構成低功耗的邏輯電路。作為半導體材料,上述以外還可以使用有機半導體材料等。
另外,雖未圖示,但是也可以使用SOI(Silicon On Insulator:絕緣體上矽)基板代替上述半導體基板。
SOI基板(也稱為SOI片)包括半導體基板、半導體基板上的埋氧化膜(也稱為BOX(Buried Oxide) 層)以及埋氧化膜上的半導體膜(以下稱為SOI層)。作為該SOI基板可以適當地使用:對矽基板的指定的深度注入氧離子並進行高溫處理來形成BOX層和SOI層的SIMOX(Separation by implanted oxgen:注氧隔離,SUMCO TECHXIV公司在日本註冊的商標)基板;使用利用陽極化(anodization)形成的多孔矽層的ELTRAN(Epitaxial layer transfer:磊晶層轉移,佳能公司在日本註冊的商標)基板;對形成有熱氧化膜的基板(裝置晶片(device wafer))注入氫離子來形成脆弱層,將其與其他的矽基板(基材晶片(handle wafer))貼合之後,利用加熱處理將基材晶片從脆弱層剝離來形成SOI層來形成的UNIBOND(SOITEC公司在日本註冊的商標)基板等。
另外,一般而言SOI基板是指在矽基板上隔著BOX層設置有由矽薄膜構成的SOI層的基板,但是不侷限於矽,也可以使用其他的單晶半導體材料。注意,SOI基板包括在玻璃基板等絕緣基板上隔著絕緣層設置有半導體層的基板。
當使用SOI基板代替半導體基板時,作為下部的電晶體的通道區域使用上述SOI層。與使用塊狀矽(bulk silicon)基板相比,使用SOI基板的電晶體具有許多優點:由於設置有BOX層,因此寄生電容小;因α線等的入射而產生軟差錯的概率低;不產生因寄生電晶體的形成所引起的閂鎖效應;可以容易對元件絕緣分離;等。
另外,SOI層由單晶矽等單晶半導體構成。因此,藉由將SOI層用於下部的電晶體,可以使半導體裝置的工作高速化。
在圖16中,電晶體1172例如相當於圖7所示的電晶體242、圖10A和圖10B所示的電晶體1072。電晶體1172可以使用n通道型電晶體(NMOSFET)和p通道型電晶體(PMOSFET)中的任一種。在圖16所示的例子中,電晶體1172藉由STI(Shallow Trench Isolation:淺溝槽隔離)1085與其他的元件絕緣分離。藉由使用STI1085,可以抑制因LOCOS元件分離法而發生的元件分離部的“鳥嘴”,由此可以縮小元件分離部等。另一方面,對於不要求結構的微型化或小型化的半導體裝置不需要必須形成STI1085,而可以使用LOCOS等的元件分離法。另外,為了控制電晶體1172的臨界值,在STI1085之間形成有阱1081。
圖16所示的電晶體1172包括:設置在基板1080中的通道形成區域;以夾著通道形成區域的方式設置的雜質區域1112(也稱為源極區及汲極區);設置在通道形成區域上的閘極絕緣膜1113、1114;在閘極絕緣膜1113、1114上以與通道形成區域重疊的方式設置的閘極電極1116、1118。閘極電極可以具有如下疊層結構:由用來提高加工精度的第一材料構成的閘極電極1116與由用來用作佈線且實現低電阻化的第二材料構成的閘極電極1118的疊層結構,但是,不侷限於該結構,根據被要 求的規格也可以適當地調節材料、層數、形狀等。注意,雖然有時在圖式中未示出源極電極或汲極電極,但是為了方便起見有時將這種狀態也稱為電晶體。
另外,設置在基板1080中的雜質區域1112連接到接觸插頭(未圖示)。這裡,接觸插頭還用作電晶體1172等的源極電極及汲極電極。另外,雜質區域1112與通道形成區域之間設置有與雜質區域1112不同的雜質區域1111。該雜質區域1111根據被引入的雜質的濃度而成為LDD區或擴展區,具有控制通道形成區域附近的電場分佈的功能。在閘極電極1116、1118的側壁上隔著絕緣膜1117設置有側壁絕緣膜1115。藉由使用絕緣膜1117及側壁絕緣膜1115,可以形成LDD區或擴展區。
另外,電晶體1172被層間絕緣膜1088覆蓋。層間絕緣膜1088可以用作保護膜,來防止雜質從外部進入通道形成區域。另外,藉由利用CVD法使用氮化矽等材料形成層間絕緣膜1088,這樣當作為通道形成區域使用單晶矽時可以利用加熱處理進行氫化。另外,藉由作為層間絕緣膜1088使用具有拉應力或壓應力的絕緣膜,可以使構成通道形成區域的半導體材料彎曲。當採用n通道電晶體時對構成通道形成區域的矽材料施加拉應力,當採用p通道電晶體時對構成通道形成區域的矽材料施加壓應力,由此可以提高各電晶體的移動率。
另外,圖16所示的電晶體1172也可以具有鰭型結構(也稱為三閘極(tri-gate)結構、Ω閘結構)。 在鰭型結構中,將半導體基板的一部分加工為板狀的突起形狀,並且以與突起形狀的長邊方向交叉的方式設置閘極電極。閘極電極隔著閘極絕緣膜覆蓋突起部分的頂面及側面。藉由使電晶體1172具有鰭型結構,可以縮小通道寬度,由此實現電晶體的積體化。另外,可以流過較多的電流,並且可以提高控制效率,由此可以降低電晶體處於關閉狀態時的電流及臨界電壓。
隔著在其間用作介電膜的絕緣膜1083由在基板1080中設置的雜質區域1082、電極1084以及電極1087的疊層構成電容器1178。在此,絕緣膜1083使用與電晶體1172的閘極絕緣膜1113、1114相同的材料形成,電極1084及電極1087使用與電晶體1172的閘極電極1116、1118相同的材料形成。另外,雜質區域1082可以與電晶體1172所包括的雜質區域1112以相同的時機形成。
圖16所示的電晶體1171例如相當於圖7所示的電晶體240、圖10A和圖10B所示的電晶體1071。電晶體1171包括設置在基地絕緣膜1101上的氧化物膜1173、接觸於氧化物膜1173的一對導電層1174、接觸於導電層1174的頂面及側面的導電層1175以及隔著絕緣膜1176重疊於氧化物膜1173的導電層1177。
根據需要的電路結構,電晶體1171與下層的電晶體1172等使用半導體材料的電晶體電連接。在圖16中,作為一個例子示出電晶體1171的源極或汲極與電晶 體1172的閘極電連接的結構。
導電層1174可以用作電晶體1171的源極電極或汲極電極。作為一對導電層1174可以使用容易與氧鍵合的導電材料。例如,可以使用Al、Cr、Cu、Ta、Ti、Mo和W等。由於可以在後面以較高的溫度進行處理,因此特別佳為使用熔點高的W。此外,容易與氧鍵合的導電材料包括氧容易擴散或移動的材料。
當使容易與氧鍵合的導電材料與氧化物層接觸時,發生氧化物層中的氧擴散或移動到容易與氧鍵合的導電材料一側的現象。因為在電晶體的製程中有幾個加熱製程,所以因上述現象而在氧化物層中的與源極電極或汲極電極接觸的區域附近發生氧缺陷,而使該區域n型化。因此,可以將該n型化的區域用作電晶體的源極或汲極。
當形成通道長度短的電晶體時,有時因上述氧缺陷的發生而使n型化的區域在電晶體的通道長度方向上延伸。此時,電晶體的電特性發生變化,例如臨界電壓的漂移或不能由閘極電壓控制開關的狀態(導通狀態)。因此,當形成通道長度短的電晶體時,不宜將容易與氧鍵合的導電材料用於源極電極及汲極電極。
因此,在本發明的一個方式中,使源極電極層及汲極電極層具有疊層結構,作為決定通道長度的一對導電層1175使用不容易與氧鍵合的導電材料。作為該導電材料,例如較佳為使用氮化鉭、氮化鈦等導電氮化物或者釕等。此外,不容易與氧鍵合的導電材料包括氧不容易 擴散或移動的材料。
藉由將上述不容易與氧鍵合的導電材料用於一對導電層1175,可以抑制在形成於氧化物膜1173中的通道形成區域中形成氧缺陷,而可以抑制通道的n型化。因此,即使是通道長度短的電晶體,也可以得到良好的電特性。
此外,當只使用上述不容易與氧鍵合的導電材料形成源極電極層及汲極電極層時,與氧化物膜1173之間的接觸電阻過高,因此較佳為在氧化物膜1173上形成一對導電層1174,並且,以覆蓋一對導電層1174的方式形成導電層1175。
絕緣膜1176可以具有閘極絕緣膜的功能。作為絕緣膜1176,可以使用包含氧化鋁、氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿和氧化鉭中的一種以上的絕緣膜。此外,絕緣膜1176也可以是上述材料的疊層。
導電層1177可以具有閘極電極的功能。作為導電層1177,可以使用Al、Ti、Cr、Co、Ni、Cu、Y、Zr、Mo、Ru、Ag、Ta和W等的導電膜。此外,導電層1177也可以是上述材料的疊層。
作為絕緣膜1102,較佳為使用氧不容易擴散或移動的材料。此外,作為絕緣膜1102,較佳為使用氫含量少的材料。將絕緣膜1102中的氫含量較佳為設定為 小於5×1019/cm3,更佳為小於5×1018/cm3。藉由將絕緣膜1102中的氫含量設定為上述數值,可以降低電晶體的關態電流。例如,作為絕緣膜1102,較佳為使用氮化矽膜、氮氧化矽膜。
另外,電晶體1171的通道長度短,將它設定為5nm以上且低於60nm,較佳為設定為10nm以上且40nm以下。電晶體1171的通道區域使用氧化物膜,因此該電晶體不呈現或很少呈現表示短通道效應,且呈現作為切換元件的良好的電特性。
電晶體1171的關態電流小,所以藉由使用該電晶體,可以長期保持儲存內容。換言之,因為可以形成不需要更新工作或更新工作的頻率極低的記憶體裝置,所以可以充分降低功耗。
電晶體1171的源極和汲極中的一個藉由設置在電晶體1171上的穿過絕緣膜1102、層間絕緣膜1104及層間絕緣膜1105的接觸插頭1103b連接到設置在電晶體1171上的佈線1107a。
在此,接觸插頭(也稱為連接用導電部、埋入式插頭或者簡單地稱為插頭)1086a、1086b、1103a、1103b、1103c等都具有柱狀或者壁狀形狀。接觸插頭藉由將導電材料填埋於設置在層間絕緣膜中的開口(通孔)中來形成。導電材料可以使用鎢、多晶矽等埋入性高的導電材料。另外,雖然未圖示,也可以將鈦膜、氮化鈦膜或者由鈦膜、氮化鈦膜的疊層膜等構成的障壁膜(擴散防止 膜)覆蓋上述材料的側面及底面。在此情況下,也將障壁膜當作接觸插頭的一部分。
關於接觸插頭的底部,例如接觸插頭1103b、1103c的底部與導電層1174的頂面連接。但是,接觸插頭1103b、1103c的底部與導電層1174的連接關係不侷限於該連接結構。例如,接觸插頭1103b、1103c也可以穿過導電層1174,接觸插頭1103b、1103c的底面與基底絕緣膜1101的頂面接觸。此時,接觸插頭1103b、1103c的側面與導電層1174連接。由此,提高導電層1174與接觸插頭1103b、1103c的電連接性。另外,接觸插頭1103b、1103c也可以還設置在基底絕緣膜1101的內部。
另外,在圖16中,使用一個接觸插頭而使導電層1174與佈線1107a或佈線1107b電連接。但是,當想要降低接觸插頭與導電層1174或佈線的接觸電阻時,既可以使用多個並排設置的接觸插頭,又可以使用徑大的接觸插頭。
由於使用遮罩形成接觸插頭,因此可以在任意的位置自由地形成。或者,藉由以接觸於側壁絕緣膜1119的方式設置接觸插頭,可以實現元件的微型化。
佈線1094、1098、1107a及1107b分別填埋於層間絕緣膜1091、1096、1108中。佈線1094、1098、1107a及1107b較佳為使用例如銅、鋁等低電阻導電材料。藉由使用低電阻導電材料,可以降低在佈線1094、1098、1107a及1107b中被傳輸的信號的RC延遲。當佈 線1094、1098、1107a及1107b使用銅時,為了防止銅擴散到通道形成區域,形成障壁膜1093、1097及1106。障壁膜例如可以使用氮化鉭、氮化鉭與鉭的疊層、氮化鈦、氮化鈦與鈦的疊層等。注意,如果能確保佈線材料的擴散防止功能以及與佈線材料或基底膜等之間的密著性,就不侷限於由上述材料構成的膜。障壁膜1093、1097及1106也可以是與佈線1094、1098、1107a、1107b不同的層,可以藉由使佈線材料含有成為障壁膜的材料且利用加熱處理使其析出在設置於層間絕緣膜1091、1096及1108中的開口的內壁來形成障壁膜1093、1097及1106。
作為層間絕緣膜1091、1096及1108,可以使用氧化矽、氧氮化矽、氮氧化矽、BPSG(Boron Phosphorus Silicate Glass;硼磷矽玻璃)、PSG(Phosphorus Silicate Glass;磷矽玻璃)、添加有碳的氧化矽(SiOC)、添加有氟的氧化矽(SiOF)、作為以Si(OC2H5)4為原料的氧化矽的TEOS(Tetraethyl orthosilicate:四乙氧基矽烷)、HSQ(Hydrogen Silsesquioxane:氫矽倍半環氧乙烷)、MSQ(Methyl Silsesquioxane:甲基矽倍半環氧乙烷)、OSG(Organo Silicate Glass:有機矽酸鹽玻璃)、有機聚合物類材料等的絕緣體。尤其是,當進行半導體裝置的微型化時,由於佈線之間的寄生電容變為明顯而信號延遲增大,所以氧化矽的相對介電常數(k=4.0至4.5)高,因此較佳為使用k為3.0以下的材料。另外,由於在將佈線填埋於該層間絕 緣膜中之後進行CMP處理,所以要求層間絕緣膜具有機械強度。只要確保該機械強度,就可以使它們多孔(porous)化而實現低介電常數化。層間絕緣膜1091、1096及1108藉由濺射法、CVD法、包括旋塗法(Spin On Glass:旋塗玻璃,也稱為SOG)的塗敷法等形成。
在層間絕緣膜1091、1096及1108上也可以設置層間絕緣膜1092、1100及1109。層間絕緣膜1092、1100及1109用作在將佈線材料填埋於層間絕緣膜1091、1096及1108中之後藉由CMP等進行平坦化處理時使用的蝕刻停止膜。
在佈線1094、1098、1107a及1107b上設置有障壁膜1095、1099及1110。障壁膜1095、1099及1110是用來防止銅等佈線材料的擴散的膜。障壁膜1095、1099及1110不侷限於只設置在佈線1094、1098、1107a及1107b的頂面,而也可以設置在層間絕緣膜1091、1096、1108上。障壁膜1095、1099及1110可以使用氮化矽或SiC、SiBON等絕緣材料形成。注意,當障壁膜1095、1099及1110的厚度大時,有可能導致佈線間電容的增加,因此較佳為選擇具有阻擋性及低介電常數的材料。
佈線1098包括上部的佈線部分和下部的導通孔(via hole)部分。下部的導通孔部分與下層的佈線1094連接。具有上述結構的佈線1098可以藉由所謂的雙鑲嵌法等形成。另外,也可以不採用雙鑲嵌法,而使用接 觸插頭來連接上層的佈線與下層的佈線。
在電晶體1172及電容器1178的上方設置有佈線1094。用作電容元件的上電極的電極1084、1087藉由穿過層間絕緣膜1088、1089、1090的接觸插頭1086a電連接到佈線1094。另外,電晶體1172的閘極電極藉由穿過層間絕緣膜1088、1089、1090的接觸插頭1086b電連接到佈線1094。另外,氧化物膜用於通道的電晶體1171的源極和汲極中的一個藉由穿過絕緣膜、層間絕緣膜的接觸插頭1103b電連接到上層的佈線1107a,該佈線1107a藉由穿過絕緣膜、層間絕緣膜及基底絕緣膜1101的接觸插頭1103a電連接到佈線1098。佈線1098還電連接到下層的佈線1094。因此,電晶體1171的源極和汲極中的一個電連接到電容器1178的上電極及電晶體1172的閘極電極。
另外,當利用接觸插頭電連接佈線與佈線時,既可以如圖16所示的佈線1098與佈線1107a之間的連接那樣利用多個接觸插頭進行連接,又可以如電極1084及1087與佈線1094之間的連接那樣利用壁狀接觸插頭進行連接。
上述電連接的方式只是一個例子,也可以使用與上述不同的佈線連接各元件。例如,在圖16所示的方式中,在電晶體1171、電晶體1172以及電容器1178之間設置有兩層的佈線,但是也可以設置單層的佈線或三層以上的佈線。或者,以不藉由佈線的方式在豎直方向上 連接多個插頭直接電連接元件。另外,在圖16所示的方式中,雖然佈線1094和佈線1098利用鑲嵌法形成(佈線1098利用所謂的雙鑲嵌法形成),但是也可以利用其它的方法形成。
另外,在不需要電容的情況下,也可以不設置電容器1178。另外,也可以將電容器1178另行設置在電晶體1172的上方或電晶體1171的上方。
另外,雖然未圖示,但是較佳為在用作佈線1098的雜質擴散防止膜的障壁膜1099與基底絕緣膜1101之間設置對氧、氫、水等具有阻擋效果的氧化鋁、氧氮化鋁、氧化鎵、氧氮化鎵、氧化釔、氧氮化釔、氧化鉿、氧氮化鉿等的金屬氧化膜。
在圖16中,較佳的是,以至少部分重疊的方式設置電晶體1171和電晶體1172,並且以與氧化物層部分重疊的方式設置電晶體1171的源極區或汲極區。另外,也可以以與電容器1178重疊的方式設置電晶體1171。藉由採用這種平面佈局,可以降低半導體裝置所占的面積,由此可以實現高積體化。
另外,雖然圖16示出電晶體1171和電容器1178設置在不同的層的例子,但是不侷限於此。例如,也可以將電晶體1171及電容器1178設置在同一平面上。藉由採用上述結構,可以將具有相同結構的資料保持部重疊於資料保持部之上。由此,可以提高半導體裝置的積體度。
如上所述,設置在半導體裝置的下部的使用半導體材料的電晶體1172藉由多個接觸插頭及多個佈線電連接到設置在上部的根據本發明的一個方式的使用氧化物膜的電晶體1171。藉由採用上述半導體裝置的結構,其中組合使用具有高速工作性能的半導體材料的電晶體與關態電流極小的根據本發明的一個方式的使用氧化物膜的電晶體,可以製造包括以低功耗進行高速工作的邏輯電路的半導體裝置。
另外,可以長期保持資料並與快閃記憶體相比當寫入資料時不需要高電壓,所以可以製造功耗小的具有工作速度快的記憶體電路的半導體裝置。
上述半導體裝置不侷限於上述結構,可以在不脫離發明的精神的範圍內任意進行改變。例如,雖然說明了在使用半導體材料的電晶體與根據本發明的一個方式的使用氧化物膜的電晶體之間設置兩層的佈線層的結構,但是也可以設置單層或三層以上的佈線層,且也可以不使用佈線而只使用接觸插頭直接連接兩個電晶體。在此情況下,例如也可以使用矽穿孔(Through Silicon Via:TSV)技術。另外,雖然說明了將銅等材料填埋於層間絕緣膜中而形成佈線的情況,但是例如也可以利用光微影製程將其圖案化來獲得障壁膜、佈線材料層及障壁膜的三層結構的佈線。
尤其是,當在使用半導體材料的電晶體1172與根據本發明的一個方式的使用氧化物膜的電晶體1171 之間的層形成銅佈線時,需要充分考慮在根據本發明的一個方式的使用氧化物膜的電晶體1171的製程中進行的熱處理的影響。換言之,需要使在根據本發明的一個方式的使用氧化物膜的電晶體1171的製程中進行的熱處理的溫度適合佈線材料的性質。這是因為如下緣故:例如,當以高溫對電晶體1171的構成部件進行熱處理時,在銅佈線中產生熱應力,因此產生應力遷移等的問題。
例如,當製造圖16所示的結構的記憶體,作為電晶體1171使用上述的氧化物膜的電晶體時,該電晶體的關態電流極小,所以可以抑制儲存於節點1079的電荷藉由電晶體1171洩漏。由此,可以長期保持資料。另外,與快閃記憶體相比當寫入資料時不需要高電壓,從而可以實現功耗小,並且工作速度快。
另外,在MCU、記憶體裝置以外中也可以使用圖16所示的結構。
《5. 二次電池、電容器》
作為二次電池的一個例子,下面說明以鋰離子二次電池為代表的非水二次電池。
[5-1. 正極]
參照圖17A和圖17B說明二次電池的正極。
正極6000由如下要素構成:正極集電器6001以及藉由塗敷法、CVD法或濺射法等在正極集電器6001 上形成的正極活性物質層6002等。在圖17A中雖然示出在薄片狀(或帶狀)的正極集電器6001的兩面設置有正極活性物質層6002的例子,但是並不侷限於此,正極活性物質層6002也可以只設置在正極集電器6001的一面。另外,在圖17A中雖然在正極集電器6001上的整個區域設置有正極活性物質層6002,但是並不侷限於此,正極活性物質層6002也可以只設置在正極集電器6001上的一部分。例如,可以採用在正極集電器6001與正極極耳連接的部分不設置正極活性物質層6002的結構。
作為正極集電器6001,可以使用金、鉑、鋁、鈦等金屬及這些金屬的合金(不鏽鋼等)等的導電性高且不與鋰離子等載體離子合金化的材料。另外,可以使用添加有矽、鈦、釹、鈧、鉬等提高耐熱性的元素的鋁合金。正極集電器6001可以適當地使用箔狀、薄片狀、板狀、網狀、沖孔金屬網狀、拉制金屬網狀等形狀。正極集電器6001的厚度較佳為10μm以上且30μm以下。
圖17B是示出正極活性物質層6002的縱向剖面的示意圖。正極活性物質層6002包含粒狀的正極活性物質6003、用作導電助劑的石墨烯6004以及黏結劑(binder)6005。
作為導電助劑,除了後面說明的石墨烯之外還可以使用乙炔黑(AB)或石墨(black lead)粒子等,但是在此,作為一個例子說明使用石墨烯6004的正極活性物質層6002。
正極活性物質6003是由二次粒子構成的粒狀的正極活性物質,該二次粒子為:以指定的比率混合原料化合物並對其進行焙燒而形成燒成物,再以適當的方法對該燒成物進行粉碎、造粒及分級而形成的具有平均粒徑及粒徑分佈的二次粒子。因此,在圖17B中示意性地示出球狀的正極活性物質6003,但是不侷限於該形狀。
作為正極活性物質6003,使用鋰離子等載體離子能夠嵌入及脫嵌的材料即可。
例如,可以使用橄欖石型結構的含鋰複合磷酸鹽(通式LiMPO4(M為Fe(II)、Mn(II)、Co(II)、Ni(II)中的一種以上))。作為通式LiMPO4的典型例子,可以舉出LiFePO4、LiNiPO4、LiCoPO4、LiMnPO4、LiFeaNibPO4、LiFeaCobPO4、LiFeaMnbPO4、LiNiaCobPO4、LiNiaMnbPO4(a+b為1以下,0<a<1,0<b<1)、LiFecNidCoePO4、LiFecNidMnePO4、LiNicCodMnePO4(c+d+e為1以下,0<c<1,0<d<1,0<e<1)、LiFefNigCohMniPO4(f+g+h+i為1以下,0<f<1,0<g<1,0<h<1,0<i<1)等鋰化合物作為正極活性物質使用。
或者,也可以使用通式為Li(2-j)MSiO4(M為Fe(II)、Mn(II)、Co(II)、Ni(II)中的一種以上,0j2)等的複合氧化物。作為通式為Li(2-j)MSiO4的典型例子,可以舉出Li(2-j)FeSiO4、Li(2-j)NiSiO4、Li(2-j)CoSiO4、Li(2-j)MnSiO4、Li(2-j)FekNilSiO4、 Li(2-j)FekColSiO4、Li(2-j)FekMnlSiO4、Li(2-j)NikColSiO4、Li(2-j)NikMnlSiO4(k+l為1以下,0<k<1,0<l<1)、Li(2-j)FemNinCoqSiO4、Li(2-j)FemNinMnqSiO4、Li(2-j)NimConMnqSiO4(m+n+q為1以下,0<m<1,0<n<1,0<q<1)、Li(2-j)FerNisCotMnuSiO4(r+s+t+u為1以下,0<r<1,0<s<1,0<t<1,0<u<1)等化合物作為正極活性物質使用。
另外,還可以使用:具有層狀岩鹽型的結晶結構的鈷酸鋰(LiCoO2)、LiNiO2、LiMnO2、Li2MnO3;LiNi0.8Co0.2O2等NiCo類(通式為LiNixCo1-xO2(0<x<1));LiNi0.5Mn0.5O2等NiMn類(通式為LiNixMn1-xO2(0<x<1));以及LiNi1/3Mn1/3Co1/3O2等NiMnCo類(也稱為NMC。通式為LiNixMnyCo1-x-yO2(x>0,y>0,x+y<1))等。
另外,還可以使用LiMn2O4等具有尖晶石型的結晶結構的活性物質、LiMVO4等具有反尖晶石型的結晶結構的活性物質等或其他各種化合物。
在載體離子是鋰離子以外的鹼金屬離子或者鈹離子或鎂離子等的鹼土金屬離子的情況下,作為正極活性物質6003,也可以使用鹼金屬(例如,鈉、鉀等)、鹼土金屬(例如,鈣、鍶、鋇、鈹或鎂等)代替上述化合物或氧化物中的鋰。
此外,雖然未圖示,但是也可以在正極活性物質6003的表面設置碳層。藉由設置碳層可以提高電極 的導電性。藉由在焙燒正極活性物質時混合葡萄糖等碳水化合物,可以形成覆蓋正極活性物質6003的碳層的覆膜。
另外,藉由對氧化石墨烯進行還原處理,可以形成作為導電助劑添加於正極活性物質層6002的石墨烯6004。
在本說明書中,石墨烯包括單層石墨烯和兩層以上且一百層以下的多層石墨烯。單層石墨烯是指具有π鍵的單原子層的碳分子的薄片。另外,氧化石墨烯是指上述石墨烯被氧化的化合物。另外,在將氧化石墨烯還原而形成石墨烯時,包含在氧化石墨烯中的氧不一定都脫離,其中一部分殘留在石墨烯中。在石墨烯包含氧的情況下,利用XPS測定的氧的比率為石墨烯整體的2atomic%以上且20atomic%以下,較佳為3atomic%以上且15atomic%以下。
在此,在石墨烯為多層石墨烯的情況下,藉由包含將氧化石墨烯還原的石墨烯,使石墨烯之間的層間距離為0.34nm以上且0.5nm以下,較佳為0.38nm以上且0.42nm以下,更佳為0.39nm以上且0.41nm以下。在一般的石墨中,單層石墨烯之間的層間距離為0.34nm,但由於在根據本發明的一個方式的二次電池中使用的石墨烯的層間距離比上述單層石墨烯的層間距離長,所以在多層石墨烯的層間中的載體離子容易移動。
氧化石墨烯例如可以利用被稱為Hummers法 的氧化法來製造。
在Hummers法中,對石墨粉末添加過錳酸鉀的硫酸溶液、過氧化氫水等而使其起氧化反應,從而製造包含氧化石墨的分散液。由於石墨中的碳的氧化,環氧基、羰基、羧基、羥基等官能基鍵合到氧化石墨。由此,氧化石墨中的多個石墨烯的層間距離比石墨長,從而容易藉由層間的分離而進行氧化石墨烯的薄片化。接著,藉由對包含氧化石墨的混合液施加超聲波振動,可以劈開層間距離長的氧化石墨而使氧化石墨烯分離,同時可以製造包含氧化石墨烯的分散液。於是,藉由從包含氧化石墨烯的分散液去除溶劑,可以得到粉末狀的氧化石墨烯。
另外,氧化石墨烯的製造方法不侷限於使用過錳酸鉀的硫酸溶液的Hummers法,例如也可以適當地利用使用硝酸、氯酸鉀、硝酸鈉或過錳酸鉀等的Hummers法或者Hummers法以外的氧化石墨烯的製造方法。
另外,氧化石墨的薄片化除了施加超聲波振動以外,還可以藉由施加微波、無線電波、熱電漿的照射或者物理應力來進行。
製造出來的氧化石墨烯具有環氧基、羰基、羧基、羥基等。因為在以NMP(也稱為N-甲基吡咯烷酮、1-甲基-2-吡咯烷酮、N-甲基-2-吡咯烷酮等)為代表的極性溶劑中氧化石墨烯所具有的官能基中的氧帶負電,所以該氧化石墨烯與NMP相互起作用,並且與不同的氧化石墨烯相互排斥而不容易聚集。因此,在極性溶劑中, 氧化石墨烯容易均勻地分散。
另外,氧化石墨烯的一個邊長(也稱為鱗片尺寸)為50nm以上且100μm以下,較佳為800nm以上且20μm以下。
如圖17B的正極活性物質層6002的剖面圖所示,多個粒狀的正極活性物質6003被多個石墨烯6004覆蓋。一個薄片狀的石墨烯6004與多個粒狀的正極活性物質6003連接。尤其是,由於石墨烯6004為薄片狀,所以石墨烯6004可以以包圍粒狀的正極活性物質6003的表面的一部分的方式形成面接觸。與和正極活性物質形成點接觸的乙炔黑等粒狀導電助劑不同,石墨烯6004能夠實現接觸電阻低的面接觸,所以可以提高粒狀的正極活性物質6003與石墨烯6004之間的電子導電性,而無需增加導電助劑的量。
另外,多個石墨烯6004也彼此形成面接觸。這是因為在形成石墨烯6004時使用極性溶劑中的分散性極高的氧化石墨烯的緣故。由於使溶劑從包含均勻地分散的氧化石墨烯的分散介質中揮發而將其除去,並將氧化石墨烯還原而形成石墨烯,所以殘留在正極活性物質層6002中的石墨烯6004彼此部分重疊,並以彼此形成面接觸的方式分散,由此形成電子導電的路徑。
此外,石墨烯6004的一部分配置在正極活性物質6003的原子的三維空間之間。另外,由於石墨烯6004為由碳分子的單層或疊層構成的極薄的膜(薄 片),所以石墨烯6004沿著各個粒狀的正極活性物質6003的表面覆蓋並接觸於該表面的一部分,石墨烯6004的不與粒狀的正極活性物質6003接觸的部分在多個粒狀的正極活性物質6003之間彎曲、起皺或者被拉長而成為伸展的狀態。
因此,由多個石墨烯6004在正極6000中形成電子導電的網路。所以粒狀的正極活性物質6003之間的電子導電的路徑被保持。由此,藉由作為原料使用氧化石墨烯並將在形成漿料之後還原的石墨烯用作導電助劑,可以形成電子導電性高的正極活性物質層6002。
另外,因為不需要為了增加粒狀的正極活性物質6003與石墨烯6004之間的接觸點而增加導電助劑的添加量,所以可以增加在正極活性物質層6002中的正極活性物質6003所占的比率。由此,可以增加二次電池的放電容量。
粒狀的正極活性物質6003的一次粒子的平均粒徑為500nm以下,較佳為50nm以上且500nm以下。為了使石墨烯6004與多個該粒狀的正極活性物質6003形成面接觸,石墨烯6004的一個邊長較佳為50nm以上且100μm以下,更佳為800nm以上且20μm以下。
另外,作為包含在正極活性物質層6002中的黏結劑(binder),除了典型的聚偏氟乙烯(PVDF)之外,還可以使用聚醯亞胺、聚四氟乙烯、聚氯乙烯、三元乙丙聚合物、苯乙烯丁二烯橡膠、丙烯腈-丁二烯橡膠、 氟橡膠、聚醋酸乙烯酯、聚甲基丙烯酸甲酯、聚乙烯、硝酸纖維素等。
如上所示的正極活性物質層6002較佳為包含總重量的90wt%以上且94wt%以下的正極活性物質6003、1wt%以上且5wt%以下的用作導電助劑的石墨烯6004以及1wt%以上且5wt%以下的黏結劑。
[5-2. 負極]
接著,參照圖18A和圖18B說明二次電池的負極。
負極6100由如下要素構成:負極集電器6101以及藉由塗敷法、CVD法或濺射法等在負極集電器6101上形成的負極活性物質層6102等。在圖18A中雖然示出在薄片狀(或帶狀)的負極集電器6101的兩面設置有負極活性物質層6102的例子,但是並不侷限於此,負極活性物質層6102也可以只設置在負極集電器6101的一面。另外,在圖18A中雖然在負極集電器6101上的整個區域設置有負極活性物質層6102,但是並不侷限於此,負極活性物質層6102也可以只設置在負極集電器6101的一部分。例如,較佳為採用在負極集電器6101與負極極耳連接的部分不設置負極活性物質層6102的結構。
作為負極集電器6101,可以使用金、鉑、鐵、銅、鈦等金屬及這些金屬的合金(不鏽鋼等)等的導電性高且不與鋰離子等載體離子合金化的材料。另外,也可以使用與矽起反應而形成矽化物的金屬元素形成。作為 與矽起反應而形成矽化物的金屬元素,可以舉出鋯、鈦、鉿、釩、鈮、鉭、鉻、鉬、鎢、鈷、鎳等。負極集電器6101可以適當地使用箔狀、薄片狀、板狀、網狀、沖孔網金屬狀、拉制金屬網狀等的形狀。負極集電器6101較佳為具有10μm以上且30μm以下的厚度。
圖18B是示意性地示出負極活性物質層6102的一部分的剖面的圖。在此,雖然示出在負極活性物質層6102中具有負極活性物質6103和黏結劑(binder)6105的例子,但是並不侷限於此,只要在負極活性物質層6102中至少具有負極活性物質6103即可。
負極活性物質6103只要是能夠溶解且析出金屬或使金屬離子嵌入及脫嵌的材料,就沒有特別的限制。作為負極活性物質6103的材料,除了鋰金屬之外,還可以使用在蓄電方面上一般使用的碳材料的石墨。在石墨中,作為低結晶性碳可以舉出軟質碳、硬質碳等,作為高結晶性碳可以舉出天然石墨、集結石墨、熱分解碳、中間相瀝青基碳纖維、中間相碳微球(MCMB)、中間相瀝青、石油或煤類焦炭等。
另外,作為負極活性物質6103,除了上述材料之外,還可以使用能夠利用與載體離子的合金化或脫合金化反應進行充放電反應的材料。當載體離子是鋰離子時,例如可以使用包含Mg、Ca、Al、Si、Ge、Sn、Pb、As、Sb、Bi、Ag、Au、Zn、Cd、Hg及In等中的至少一種的材料。這種材料的容量比石墨大,尤其是,矽的理論 容量明顯地高,即4200mAh/g。因此,較佳為將矽用於負極活性物質6103。
在圖18B中,雖然將負極活性物質6103表示為粒狀的物質,但是並不侷限於此,作為負極活性物質6103的形狀例如可以為板狀、棒狀、圓柱狀、粉狀、鱗片狀等任意形狀。另外,也可以為在板狀的表面具有凹凸形狀的物質、在表面具有微小的凹凸形狀的物質或具有多孔形狀的物質等立體形狀的物質。
在利用塗敷法形成負極活性物質層6102的情況下,藉由對負極活性物質6103添加導電助劑(未圖示)或黏結劑來製造負極漿料,並將其塗敷於負極集電器6101上且進行乾燥即可。
另外,也可以對負極活性物質層6102進行鋰的預摻雜。作為預摻雜的方法,可以採用藉由濺射法在負極活性物質層6102的表面形成鋰層的方法。或者,也可以藉由在負極活性物質層6102的表面設置鋰箔,來對負極活性物質層6102進行鋰的預摻雜。
此外,較佳為在負極活性物質6103的表面形成石墨烯(未圖示)。例如,當作為負極活性物質6103採用矽時,負極活性物質6103的體積在充放電迴圈中伴隨載體離子的吸留及釋放而發生很大的變化,由此負極集電器6101與負極活性物質層6102之間的緊密性降低,充放電導致電池特性的惡化。於是,藉由在包含矽的負極活性物質6103的表面形成石墨烯,即使在充放電迴圈中矽 的體積發生變化,也可以抑制負極集電器6101與負極活性物質層6102之間的緊密性的降低,從而減少電池特性的惡化,所以是較佳的。
與正極的製造方法同樣,形成在負極活性物質6103表面的石墨烯可以藉由將氧化石墨烯還原來形成。作為該氧化石墨烯可以使用上述氧化石墨烯。
另外,也可以在負極活性物質6103的表面形成氧化物等的覆膜6104。在充電時由於電解液的分解等而形成的固體電解質介面覆膜不能將其形成時消耗的電荷量釋放出來,從而形成不可逆容量。針對於此,藉由將氧化物等的覆膜6104預先設置在負極活性物質6103的表面,可以抑制或防止產生不可逆容量。
作為這種覆蓋上述負極活性物質6103的覆膜6104,可以使用鈮、鈦、釩、鉭、鎢、鋯、鉬、鉿、鉻、鋁和矽中的一種的氧化膜或包含這些元素中的一種及鋰的氧化膜。與以往的因電解液的分解生成物而形成在負極表面上的覆膜相比,這種覆膜6104為充分緻密的膜。
例如,氧化鈮(Nb2O5)的導電率較低,即10-9S/cm,也就是說其具有高絕緣性。因此,氧化鈮膜妨礙負極活性物質與電解液之間的電化學分解反應。另一方面,氧化鈮的鋰擴散係數為10-9cm2/sec,也就是說其具有高鋰離子導電性。因此,其能夠使鋰離子透過。
作為覆蓋負極活性物質6103的覆膜6104的形成方法,例如可以使用溶膠-凝膠法。溶膠-凝膠法是一 種形成薄膜的方法,其中藉由加水分解反應及重縮合反應使含金屬醇鹽或金屬鹽等的溶液成為失去流動性的凝膠,再對該凝膠進行焙燒來形成薄膜。由於溶膠-凝膠法是從液相形成薄膜的方法,所以可以在分子水準上均勻地混合原料。由此,藉由對溶劑的步驟的金屬氧化膜的原料添加石墨等的負極活性物質,可以容易地在凝膠中分散活性物質。如此,在負極活性物質6103表面形成覆膜6104。
藉由使用該覆膜6104,可以防止二次電池的容量的降低。
[5-3. 電解液]
作為用於二次電池的電解液的溶劑,較佳為使用非質子有機溶劑。例如,可以以任意組合及比率使用碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸丁烯酯、碳酸氯苯基、碳酸伸乙烯酯、γ-丁內酯、γ-戊內酯、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、甲酸甲酯、醋酸甲酯、丁酸甲酯、1,3-二氧六環、1,4-二氧六環、二甲氧基乙烷(DME)、二甲亞碸、二乙醚、甲基二甘醇二甲醚(methyl diglyme)、乙腈、苯腈、四氫呋喃、環丁碸、磺內酯等中的一種或兩種以上。
此外,藉由作為電解液的溶劑使用凝膠化的高分子材料,對於漏液性等的安全性可以得到提高。並且,能夠實現二次電池的薄型化及輕量化。作為凝膠化的高分子材料的典型例子,可以舉出矽酮膠、丙烯酸樹脂 膠、丙烯腈膠、聚氧化乙烯、聚氧化丙烯、氟類聚合物等。
另外,藉由作為電解液的溶劑使用一種或多種具有阻燃性及難揮發性的離子液體(室溫熔融鹽),即使因二次電池的內部短路、過充電等而使內部溫度上升也可以防止二次電池的破裂或起火等。
此外,作為溶解於上述溶劑的電解質,當將鋰離子用於載體時,例如可以以任意組合及比率使用LiPF6、LiClO4、LiAsF6、LiBF4、LiAlCl4、LiSCN、LiBr、LiI、Li2SO4、Li2B10Cl10、Li2B12Cl12、LiCF3SO3、LiC4F9SO3、LiC(CF3SO2)3、LiC(C2F5SO2)3、LiN(CF3SO2)2、LiN(C4F9SO2)(CF3SO2)、LiN(C2F5SO2)2等鋰鹽中的一種或兩種以上。
[5-4. 隔離體]
作為二次電池的隔離體,可以使用纖維素、聚丙烯(PP)、聚乙烯(PE)、聚丁烯、尼龍、聚酯、聚碸、聚丙烯腈、聚偏氟乙烯或四氟乙烯等多孔絕緣體。另外,也可以使用玻璃纖維等不織布或玻璃纖維與高分子纖維複合的隔膜。
[5-5. 非水二次電池]
接著,參照圖19A至圖19C及圖20A和圖20B說明非水二次電池的結構。
[5-5-1. 硬幣型二次電池]
圖19A示出硬幣型(單層扁平型)的鋰離子二次電池的外觀,還示出其剖面結構的一部分。
在硬幣型二次電池950中,兼用作正極端子的正極包殼(positive electrode can)951和兼用作負極端子的負極包殼(negative electrode can)952由使用聚丙烯等形成的墊片953絕緣並密封。正極954由正極集電器955和以與其接觸的方式設置的正極活性物質層956形成。另外,負極957由負極集電器958和以與其接觸的方式設置的負極活性物質層959形成。在正極活性物質層956與負極活性物質層959之間設置有隔離體960和電解液(未圖示)。
負極957具有負極集電器958及負極活性物質層959,正極954具有正極集電器955及正極活性物質層956。
作為正極954、負極957、隔離體960以及電解液,分別可以使用上述材料。
作為正極包殼951、負極包殼952,可以使用具有抗蝕性的鎳、鋁、鈦等金屬、上述金屬的合金或上述金屬與其他金屬的合金(例如,不鏽鋼等)。尤其是為了防止因二次電池的充放電產生的由電解液導致的腐蝕,較佳為使用鎳等覆蓋正極包殼951及負極包殼952。正極包殼951與正極954電連接,負極包殼952與負極957電連 接。
將上述負極957、正極954及隔離體960浸漬到電解液中,如圖19A所示,將正極包殼951設置於下方,依次層疊正極954、隔離體960、負極957、負極包殼952,隔著墊片953將正極包殼951與負極包殼952壓合,來製造硬幣型二次電池950。
[5-5-2. 層壓型二次電池]
接下來,參照圖19B對層壓型二次電池的一個例子進行說明。圖19B為便於說明而露出其內部結構的一部分。
圖19B所示的層壓型二次電池970包括:包含正極集電器971及正極活性物質層972的正極973;包含負極集電器974及負極活性物質層975的負極976;隔離體977;電解液(未圖示);以及外包裝體978。在設置於外包裝體978內的正極973與負極976之間設置有隔離體977。此外,在外包裝體978內充滿電解液。另外,在圖19B中,使用一層正極973、一層負極976、一層隔離體977,但是也可以成為交替層疊上述三者的疊層型二次電池。
作為正極、負極、隔離體以及電解液(電解質和溶劑),分別可以使用上述材料。
在圖19B所示的層壓型二次電池970中,正極集電器971及負極集電器974還用作與外部電接觸的端子(極耳)。因此,正極集電器971及負極集電器974的 一部分露出到外包裝體978的外側。
在層壓型二次電池970中,作為外包裝體978,例如可以使用如下三層結構的層壓薄膜:在由聚乙烯、聚丙烯、聚碳酸酯、離聚物、聚醯胺等的材料構成的膜上設置鋁、不鏽鋼、銅、鎳等的撓性優良的金屬薄膜,並且在該金屬薄膜上作為外包裝體的外表面設置聚醯胺類樹脂、聚酯類樹脂等的絕緣性合成樹脂薄膜。藉由採用上述三層結構,可以遮斷電解液及氣體的透過,同時也確保絕緣性並具有耐電解液性。
[5-5-3. 圓筒型二次電池]
接下來,參照圖20A和圖20B對圓筒型二次電池的一個例子進行說明。如圖20A所示,圓筒型二次電池980在頂面具有正極蓋(電池蓋)981,並在側面及底面具有電池包殼(外裝包殼)982。上述正極蓋981與電池包殼(外裝包殼)982藉由墊片(絕緣墊片)990絕緣。
圖20B是示意性地示出圓筒型二次電池的剖面的圖。在中空圓柱狀電池包殼982的內側設置有電池元件,在該電池元件中,帶狀的正極984和帶狀的負極986夾著隔離體985被捲繞。雖然未圖示,但是電池元件以中心銷為中心被捲繞。電池包殼982的一端關閉且另一端開著。
作為正極984、負極986、隔離體985,可以使用上述材料。
作為電池包殼982,可以使用具有抗蝕性的不鏽鋼、鎳、鋁、鈦等金屬、上述金屬的合金或上述金屬與其他金屬的合金。尤其是為了防止因二次電池的充放電產生的由電解液導致的腐蝕,較佳為對腐蝕性金屬鍍上鎳等。在電池包殼982的內側,正極、負極及隔離體被捲繞的電池元件由對置的一對絕緣板988和絕緣板989夾持。
另外,在設置有電池元件的電池包殼982的內部中注入有電解液(未圖示)。作為電解液,可以使用上述電解質和溶劑。
因為用於圓筒型二次電池的正極984及負極986被捲繞,所以在集電器的兩個面形成活性物質。正極984與正極端子(正極集電導線)983連接,而負極986與負極端子(負極集電導線)987連接。正極端子983及負極端子987都可以使用鋁等金屬材料。將正極端子983電阻焊接到安全閥機構992,而將負極端子987電阻焊接到電池包殼982底。安全閥機構992與正極蓋981藉由PTC(Positive Temperature Coefficient:正溫度係數)元件991電連接。當電池的內壓的上升超過指定的臨界值時,安全閥機構992切斷正極蓋981與正極984的電連接。另外,PTC元件991是其電阻當溫度上升時增大的熱敏感電阻元件,並藉由電阻增大限制電流量而防止異常發熱。作為PTC元件,可以使用鈦酸鋇(BaTiO3)類半導體陶瓷等。
[5-5-4. 方型二次電池]
接下來,參照圖19C對方型二次電池的一個例子進行說明。圖19C所示的捲繞體993包括負極994、正極995、隔離體996。捲繞體993是夾著隔離體996使負極994和正極995彼此重疊來形成疊層片,並且將該疊層片捲繞而形成的。藉由由方型密封包殼等覆蓋該捲繞體993,形成方型二次電池。另外,由負極994、正極995以及隔離體996構成的疊層的疊層數目根據所需的容量和元件體積適當地設計,既可。
與圓筒型二次電池相同,負極994藉由端子997和端子998中的一個與負極極耳(未圖示)連接,正極995藉由端子997和端子998中的另一個與正極極耳(未圖示)連接。其他安全閥機構等的週邊結構參照圓筒型二次電池。
如上述那樣,作為二次電池示出硬幣型、層壓型、圓筒型以及方型二次電池,但是可以使用其他各種形狀的二次電池。此外,也可以採用層疊有多個正極、多個負極、多個隔離體的結構以及捲繞有正極、負極、隔離體的結構。
[5-6. 鋰離子電容器]
接著,說明鋰離子電容器。
鋰離子電容器是組合雙電層電容器(EDLC:Electric Double Layer Capacitor)的正極與使用碳材料的 鋰離子二次電池的負極而成的混合電容器,並是正極和負極的蓄電原理不同的非對稱電容器。正極形成雙電層而利用物理作用進行充放電,另一方面,負極利用鋰的化學作用進行充放電。在鋰離子電容器中,藉由作為負極活性物質的碳材料等使用預先吸留鋰的負極,與習知的作為負極使用活性炭的雙電層電容器相比,可以顯著提高能量密度。
鋰離子電容器使用能夠可逆地擔持鋰離子和陰離子中的至少一種的材料代替鋰離子二次電池的正極活性物質層,即可。作為這種材料,例如可以舉出活性炭、導電高分子、多並苯有機半導體(PAS:PolyAcenic Semiconductor)等。
鋰離子電容器的充放電效率高,能夠進行快速充放電且即使被反復利用使用壽命也長。
可以使用上述鋰離子電容器代替根據本發明的一個方式的二次電池。由此可以抑制不可逆容量的產生而製造提高了循環特性的蓄電裝置。
《6. 蓄電裝置》
接著,說明具有半導體積體電路(IC)等電路的蓄電裝置。
圖21A至圖21D是示出在上述方型二次電池中設置有電路等的蓄電裝置的結構實例的圖。圖21A和圖21B所示的蓄電裝置6600是在電池包殼6604內部收容有 上述捲繞體6601的蓄電裝置。捲繞體6601具有端子6602及端子6603,且在電池包殼6604內部浸滲在電解液中。端子6603與電池包殼6604接觸,端子6602可以藉由利用絕緣材料等與電池包殼6604絕緣。作為電池包殼6604,例如可以使用鋁等金屬材料或樹脂材料。
而且,可以在圖21B所示的蓄電裝置6600中設置電路等。圖21C及圖21D是例示出在蓄電裝置6600中設置有具備電路等的電路基板6606、天線6609、天線6610及簽條6608的圖。
電路基板6606包括電路6607及端子6605等。作為電路基板6606,例如可以使用印刷電路板(PCB)。當將印刷電路板用作電路基板6606時,可以藉由在印刷電路板上安裝且連接電阻元件或電容器等的電容元件、線圈(電感器)、半導體積體電路(IC)等的電子構件來形成電路6607。作為電子構件,除了這些還可以安裝熱敏電阻器等溫度檢測元件、熔絲、濾波器、水晶振盪器、EMC對策元件等各種構件。
在此,作為上述半導體積體電路(IC),可以使用上述半導體裝置。由此可以大幅度地減少電路6607的功耗。
由這些電子構件形成的電路6607例如可以用作蓄電裝置6600的過充電監視電路、過放電監視電路或防止過電流的保護電路等。另外,作為電路6607,可以設置MCU105、記憶體106等。
電路基板6606所包括的端子6605連接於端子6602、端子6603、及電路6607。在圖21C及圖21D中雖然示出五個端子,但是並不侷限於此,可以設定任意數目的端子。利用端子6605除了可以進行蓄電裝置6600的充放電,還可以進行與安裝有蓄電裝置6600的電子裝置之間的信號的發送和接收。
天線6609及天線6610例如可以用於與蓄電裝置外部的電力或信號的發送和接收。藉由使天線6609及天線6610中的一個或兩個電連接於上述通信單元107,可以由電路6607來進行與外部的信號的發送和接收。或者,藉由使天線6609及天線6610中的一個或兩個電連接於端子6605,可以由安裝有蓄電裝置6600的電子裝置的控制電路來控制與外部的電力或信號的發送和接收。
另外,在圖21C及圖21D中雖然示出設置有兩種天線的蓄電裝置6600的例子,但是也可以採用設置多種天線的結構,或者不設置天線的結構。
在圖21C及圖21D中雖然示出天線6609及天線6610為線圈形狀的情況,但是並不侷限於此,例如也可以為線狀或平板狀。另外,還可以使用平面天線、口徑天線、行波天線、EH天線、磁場天線或介質天線等天線。
此外,作為藉由無線的電力的發送和接收(也稱為非接觸電力傳輸、無觸點電力傳輸或無線供電 等),可以使用電磁感應方式、磁場共振方式或電波方式等。
較佳為天線6609的線寬度比天線6610的線寬度大。由此可以提高從天線6609接收的電力量。
另外,在天線6609、天線6610與蓄電裝置6600之間具有層6611。層6611例如具有可以防止捲繞體6601所引起的電場或磁場的遮蔽的功能。在這種情況下,例如可以將磁性體用於層6611。或者,也可以將層6611設置為遮蔽層。
另外,天線6609及天線6610可以用於與外部的電力或信號的發送和接收之外的用途。例如,當安裝有蓄電裝置6600的電子裝置是不具有天線的設備時,可以利用天線6609及天線6610實現對電子裝置的無線通訊。
《7. 電子裝置》
可以將根據本發明的一個方式的蓄電裝置用作各種電子裝置的電源。
[7-1. 電子裝置的定義]
在此,電子裝置是指包括利用電力驅動的部分的工業產品。電子裝置不侷限於家電等民用電子裝置,其廣泛地包括商用、工業用、軍事用等各種用途的電子裝置。
[7-2. 電子裝置的一個例子]
作為使用根據本發明的一個方式的蓄電裝置的電子裝置,可以舉出電視機、監視器等顯示裝置、照明設備、臺式或筆記本式等的個人電腦、文字處理機、再現儲存在DVD(Digital Versatile Disc:數位影音光碟)等儲存介質中的靜態影像或動態影像的影像再現裝置、CD(Compact Disc:光碟)播放機、數位聲訊播放機等可攜式或固定式聲音再現設備、可攜式或固定式無線電接收機、磁帶答錄機、IC答錄機(dictaphone)等錄音再現設備、頭戴式耳機音響、音響、遙控器、臺鐘、掛鐘等鐘錶、無繩電話子機、步話機、行動電話、車載電話、可攜式或固定式遊戲機、計步器、計算器、可攜式資訊終端、電子筆記本、電子書閱讀器、電子翻譯器、麥克風等聲音輸入器、相機、攝影機等影像拍攝裝置、玩具、電動剃鬚刀、電動刷牙器、微波爐等高頻加熱裝置、電鍋、洗衣機、吸塵器、熱水器、電扇、吹風機、加濕器、除濕器、空調器等空調設備、洗碗機、烘碗機、乾衣機、烘被機、電冰箱、電冷凍箱、電冷藏冷凍箱、DNA保存用冰凍器、手電筒、電動工具、煙塵探測器、助聽器、心臟起搏器、可攜式X射線拍攝裝置、輻射計數器、電動按摩器、透析裝置等健身器或醫療設備等。再者,還可以舉出引導燈、信號機、煤氣表、水錶等計量器具、傳送帶、自動扶梯、電梯、音頻再生裝置、自動售票機、自動取款機(CD:Cash Dispenser)、自動櫃員機(ATM:Automated Teller Machine)、數位看板(digital signage)、工業機器人、無線用基站、行動電話基站、儲電系統、用於使電力均勻化或智慧電網的蓄電裝置等工業設備。另外,利用來自蓄電裝置的電力藉由電動機推進的移動體(傳輸體)等也包括在電子裝置或電子裝置的範疇內。作為上述移動體,例如可以舉出電動汽車(EV)、兼具內燃機和電動機的混合動力汽車(HEV)、插電式混合動力汽車(PHEV)、使用履帶代替這些的車輪的履帶式車輛、農業機械、包括電動輔助自行車的電動自行車、摩托車、電動輪椅、電動搬運車、小型或大型船舶、潛水艇、固定翼機、旋轉翼機等飛機、火箭、人造衛星、太空探測器、行星探測器、太空船等。
另外,在上述電子裝置中,作為用來供應大部分的功耗的主電源,可以使用根據本發明的一個方式的蓄電裝置。或者,在上述電子裝置中,作為在來自主電源或商業電源的電力供應停止時能夠對蓄電裝置供應電力的不斷電供應系統,可以使用根據本發明的一個方式的蓄電裝置。或者,在上述電子裝置中,作為與來自主電源或商業電源的電力供應同時進行的將電力供應到電子裝置的輔助電源,可以使用根據本發明的一個方式的蓄電裝置。
[7-3. 電網的一個例子]
上述各個電子裝置既可以安裝蓄電裝置,也可以藉由有線或無線連接多個電子裝置、蓄電裝置以及控制它們的 電力系統的控制裝置而形成一種電力系統網路(電網)。藉由控制裝置來控制電網,可以提高網路整體的電力的使用功率。
圖22A示出在住宅中使多個家用電器、控制裝置以及蓄電裝置等連接的HEMS(家庭能源管理系統:Home Energy Management System)的例子。藉由利用這種系統,可以簡單地掌握家庭整體的用電量。另外,也可以遠端控制多個家用電器的工作。此外,當利用感測器或控制裝置自動控制家用電器時,這種系統還可以節電。
設置在住宅8000中的配電盤8003藉由引入線8002與電力系統8001連接。藉由配電盤8003,將由引入線8002供應的商業電力的交流電力供應到各家用電器。控制裝置8004除了與配電盤8003之外、還與多個家用電器、蓄電系統8005以及太陽能發電系統8006等連接。另外,控制裝置8004也可以與停在住宅8000的戶外等並與配電盤8003獨立的電動汽車8012連接。
藉由控制裝置8004使配電盤8003與多個家用電器連接而形成網路,並且藉由控制裝置8004來控制連接到網路的多個家用電器。
另外,控制裝置8004與網際網路8011連接,並可以藉由網際網路8011與管理伺服器8013連接。管理伺服器8013可以接受使用者的電力使用情況的資訊而創建資料庫,並且,可以根據該資料庫對使用者提供各種服務。另外,管理伺服器8013例如可以對用戶隨時提 供對應於時間段的電費資訊,並且控制裝置8004也可以根據該資訊設定住宅8000中的最適合的使用模式。
例如,多個家用電器是指圖22A所示的顯示裝置8007、照明設備8008、空調系統8009以及電冷藏箱8010,當然並不侷限於這些,其是指可以設置在住宅內的上述電子裝置等的所有電器。
例如,在顯示裝置8007的顯示部中,組裝有液晶顯示裝置、在每個像素中具備有機EL(Electro Luminescence)元件等發光元件的發光裝置、電泳顯示裝置、DMD(Digital Micromirror Device:數位微鏡裝置)、PDP(Plasma Display Panel:電漿顯示面板)、FED(Field Emission Display:場致發射顯示器)等的半導體顯示裝置,除了電視廣播接收用之外,用於個人電腦或廣告顯示等的資訊顯示用顯示裝置也包括在顯示裝置8007中。
另外,照明設備8008包括利用電力以人工獲得光的人工光源,作為人工光源,可以使用白熾燈泡、螢光燈等放電燈以及LED(Light Emitting Diode)或有機EL元件等發光元件。圖22A所示的照明設備8008設置在天花板,但是除此之外也可以是設置在牆壁、地板以及窗戶等的安裝型照明設備或臺式照明設備。
空調系統8009具有調整溫度、濕度以及空氣淨化度等的室內環境的功能。在圖22A中,作為一個例子示出空調器。空調器包括具備將壓縮機及蒸發器等合為一 體的室內機和內藏冷凝器的室外機(未圖示)的空調器或將室內機和室外機合為一體的空調器等。
另外,電冷藏箱8010是一種用來在低溫下保管食品等的電子裝置,其包括在零度以下使食品等冷凍的電冷凍箱。藉由在被壓縮機壓縮的管道中的冷卻介質汽化時的散熱,使箱內冷卻。
上述多個家用電器既可以分別具有蓄電裝置,也可以不具有蓄電裝置而利用來自蓄電系統8005的電力或來自商業電源的電力。在家用電器在其內部具有蓄電裝置的情況下,即使在由於停電等無法接受來自商業電源的電力供應時,藉由將蓄電裝置用作不斷電供應系統,也可以使用上述家用電器。
在上述各個家用電器的電源供應端子的附近,可以設置電流感測器等的電力檢測單元。藉由將利用電力檢測單元檢測出的資訊發送到控制裝置8004,除了使用者可以掌握住宅整體的用電量以外,控制裝置8004還可以根據該資訊設定對多個家用電器的電力分配,從而可以在住宅8000中高效率地或經濟地使用電力。
另外,在商業電源的供應源能夠供應的總電能中的電力使用率低的時間段中,可以從商業電源對蓄電系統8005進行充電。另外,藉由利用太陽能發電系統8006,白天可以對蓄電系統8005進行充電。注意,進行充電的目標不侷限於蓄電系統8005,也可以是安裝在與控制裝置8004連接的電動汽車8012中的蓄電裝置或多個 家用電器所具有的蓄電裝置。
如此,藉由利用控制裝置8004將儲存在各種進行了充電的蓄電裝置中的電力高效率地分配而使用,可以在住宅8000內高效率地或經濟地使用電力。
如上所述,雖然作為將電力系統網路化而控制的例子,示出家庭規模的電網,但是並不侷限於此,也可以構築將智慧電錶(smartmeter)等的控制功能和通信功能組合的城市規模、國家規模的智慧電網(smartgrid)。另外,還可以構築以能量供應源和消費設施為構成單位的工廠或企業規模的微電網(microgrid)。
[7-4. 電子裝置的一個例子]
接著,作為電子裝置的一個例子,參照圖22B和圖22C說明移動體的例子。可以將根據本發明的一個方式的蓄電裝置用於控制移動體的蓄電裝置。
圖22B示出電動汽車的內部結構的一個例子。電動汽車8020安裝有可以進行充放電的蓄電裝置8024。蓄電裝置8024的電力由電子控制單元8025(ECU:Electronic Control Unit)調整其輸出,藉由逆變器單元8026供應到驅動電動機單元8027。逆變器單元8026可以將從蓄電裝置8024輸入的直流電力轉換為三相交流電力,並可以調整轉換的交流電力的電壓、電流以及頻率然後輸出到驅動電動機單元8027。
因此,當駕駛員踏下加速踏板(未圖示) 時,驅動電動機單元8027開始工作,在驅動電動機單元8027產生的扭力(torque)藉由輸出軸8028及驅動軸8029傳送到後輪(驅動輪)8030。藉由隨著後輪的驅動,前輪8023也工作,可以使電動汽車8020驅動行駛。
在各單元中,例如設置有電壓感測器、電流感測器、溫度感測器等的檢測單元,藉由該單元適當地監視電動汽車8020的各部位的物理量。
電子控制單元8025是一種具有未圖示的RAM、ROM等的記憶體及CPU的處理裝置。根據電動汽車8020的加速、減速、停止等操作資訊、行駛環境及各單元的溫度資訊、控制資訊以及蓄電裝置的荷電狀態(SOC:State Of Charge)等的輸入資訊,電子控制單元8025對逆變器單元8026、驅動電動機單元8027以及蓄電裝置8024輸出控制信號。各種資料或程式儲存在該記憶體中。
驅動電動機單元8027除了交流電動機之外,還可以將直流電動機或上述電動機和內燃機組合而使用。
另外,只要具備根據本發明的一個方式的蓄電裝置,就不侷限於上述移動體。
安裝在電動汽車8020的蓄電裝置8024可以藉由利用外掛程式方式或非接觸供電方式等從外部的充電設備被供應電力,來進行充電。圖22C示出從地上設置型的充電裝置8021藉由電纜8022對安裝在電動汽車8020的蓄電裝置8024進行充電的情況。當進行充電時,作為 充電方法或連接器的規格等,根據CHAdeMO(在日本註冊的商標)等的規定的方式而適當地進行,即可。作為充電裝置8021,也可以使用設置在商業設施的充電站或家庭的電源。例如,圖22B所示那樣,藉由利用使連接到蓄電裝置8024的連接插頭8031與充電裝置8021電連接的插件技術從外部供應電力,可以對安裝在電動汽車8020的蓄電裝置8024進行充電。可以藉由AC/DC轉換器等轉換裝置轉換為具有固定電壓值的直流恆壓來進行充電。
另外,雖未圖示,但是也可以將受電裝置安裝在移動體並從地上的送電裝置非接觸地供應電力來進行充電。當利用非接觸供電方式時,藉由在公路或外壁中組裝送電裝置,不但停車中而且行駛中也可以進行充電。此外,也可以利用該非接觸供電方式,在移動體之間進行電力的發送及接收。再者,還可以在移動體的外部設置太陽能電池,當停車時或行駛時進行蓄電裝置8024的充電。可以利用電磁感應方式或磁場共振方式實現這樣的非接觸供電。
另外,當移動體為電動軌道車時,可以從架空電纜或導電軌供應電力來對安裝的蓄電裝置進行充電。
藉由作為蓄電裝置8024安裝根據本發明的一個方式的蓄電裝置,可以使蓄電裝置的循環特性良好,並可以提高方便性。另外,如果藉由提高蓄電裝置8024的特性而使蓄電裝置8024本身小型輕量化,就有助於實現車輛的輕量化,從而可以減少耗油量。另外,由於安裝在 移動體的蓄電裝置8024具有較大的容量,所以也可以將它用作室內等的電力供應源。此時,可以避免在電力需求高峰時使用商業電源。
[7-5. 電子裝置的一個例子(可攜式資訊終端的例子)]
並且,參照圖23A至圖23C說明作為電子裝置的一個例子的可攜式資訊終端的例子。
圖23A是示出可攜式資訊終端8040的正面及側面的透視圖。可攜式資訊終端8040例如可以執行行動電話、電子郵件及文章的閱讀和編輯、播放音樂、網路通信、電腦遊戲等各種應用軟體。可攜式資訊終端8040在外殼8041的正面包括顯示部8042、相機8045、麥克風8046以及揚聲器8047,在外殼8041的左側面包括操作用的按鈕8043,在其底面包括連接端子8048。
在顯示部8042中,使用顯示模組或顯示面板。作為顯示模組或顯示面板,使用在各像素中具備以有機發光元件(OLED)為代表的發光元件的發光裝置、液晶顯示裝置、利用電泳方式或電子粉流體方式等進行顯示的電子紙、DMD(Digital Micromirror Device:數位微鏡裝置)、PDP(Plasma Display Panel:電漿顯示面板)、FED(Field Emission Display:場致發射顯示器)、SED(Surface Conduction Electron-emitter Display:表面傳導電子發射顯示器)、LED(Light Emitting Diode:發光二極體)顯示器、碳奈米管顯示器、奈米晶顯示器以及量子 點顯示器等。
圖23A所示的可攜式資訊終端8040是在外殼8041上設置一個顯示部8042的例子,但是不侷限於此,既可以將顯示部8042設置在可攜式資訊終端8040的背面,又可以作為折疊型資訊終端設置兩個以上的顯示部。
在顯示部8042上作為輸入單元設置有使用手指或觸控筆等指示單元能夠輸入資訊的觸控面板。由此,可以使用指示單元簡單地操作顯示部8042上表示的圖示8044。此外,由於配置有觸控面板而不需要可攜式資訊終端8040上的作為鍵盤的區域,因此可以在較大的區域中配置顯示部。此外,因為可以使用觸控筆或手指輸入資訊,所以可以實現使用者友好介面(user-friendly interface)。作為觸控面板,可以採用各種方式諸如電阻膜式、電容式、紅外線式、電磁感應方式、表面聲波式等。但是,因為根據本發明的一個方式的顯示部8042可以彎曲,所以特別佳為採用電阻膜式、電容式。此外,上述觸控面板也可以採用所謂In-cell方式,該方式是與上述顯示模組或顯示面板合為一體化的方式。
另外,觸控面板也可以用作影像感測器。此時,例如藉由用手掌或手指觸摸顯示部8042,來拍攝掌紋、指紋等,而可以進行個人識別。另外,藉由將發射近紅外光的背光或發射近紅外光的傳感用光源用於顯示部8042,還可以拍攝手指靜脈、手掌靜脈等。
另外,既可以在顯示部8042上不設置觸控面 板而設置鍵盤,又可以設置觸控面板和鍵盤的兩者。
根據用途,可以使操作用的按鈕8043具有各種功能。例如,也可以採用如下結構:將按鈕8043作為主螢幕按鈕,當按按鈕8043時,在顯示部8042上顯示主螢幕。此外,也可以藉由按住按鈕8043指定的時間,將可攜式資訊終端8040的主電源關閉。也可以當可攜式資訊終端8040處於睡眠模式時,藉由按下按鈕8043,使其從睡眠模式復原。此外,根據按住的時間或與其他按鈕同時按下的動作,可以將主螢幕鍵用作啟動各種功能的開關。
另外,也可以將按鈕8043作為音量調整按鈕或靜音按鈕,例如使它具有調整用來輸出聲音的揚聲器8047的音量的功能。從揚聲器8047輸出各種聲音諸如為作業系統(OS)的啟動聲音等特定的處理時而設定的聲音、來自音樂播放應用軟體的音樂等基於在各種應用軟體中執行的音效檔的聲音以及電子郵件的鈴聲等。雖然未圖示,也可以與揚聲器8047一起或代替揚聲器8047設置用來對頭戴式耳機、耳機、耳麥等裝置輸出聲音的連接器。
如此,可以使按鈕8043具有各種功能。圖23A示出在左側面上設置兩個按鈕8043的可攜式資訊終端8040,但是,當然按鈕8043的個數、配置位置等不侷限於此,可以適當地設計。
可以將麥克風8046用於聲音的輸入或錄音。另外,可以將使用相機8045得到的影像顯示在顯示部 8042上。
當操作可攜式資訊終端8040時,除了設置在上述顯示部8042的觸控面板或按鈕8043以外,還可以使用內藏在相機8045或可攜式資訊終端8040中的感測器等而使感測器等識別用戶的動作來操作可攜式資訊終端8040(也稱為手勢輸入)。或者,也可以利用麥克風8046而使麥克風識別使用者的聲音來操作可攜式資訊終端8040(也稱為聲音輸入)。如此,藉由採用識別人類一般的動作而對電器進行輸入的NUI(Natural User Interface:自然使用者介面)技術,可以更簡單地操作可攜式資訊終端8040。
連接端子8048是一種用來與外部設備進行通信或供應電力的信號或電力的輸入端子。例如,為了使可攜式資訊終端8040與外部記憶體驅動器連接,可以利用連接端子8048。作為外部記憶體驅動器例如可以舉出:外置HDD(硬式磁碟機);快閃記憶體驅動器;儲存介質驅動器諸如DVD(Digital Versatile Disk:數位通用磁片)驅動器、DVD-R(DVD-Recordable:可記錄式DVD)驅動器、DVD-RW(DVD-ReWritable:可重寫式DVD)驅動器、CD(Compact Disc:光碟)驅動器、CD-R(Compact Disc Recordable:可錄式光碟)驅動器、CD-RW(Compact Disc ReWritable:可重寫式光碟)驅動器、MO(Magneto-Optical Disc:磁光碟)驅動器、FDD(Floppy Disk Drive:軟碟機)或上述以外的非揮發性的 固體狀態驅動機(Solid State Drive:SSD)設備等。此外,雖然可攜式資訊終端8040在顯示部8042上具有觸控面板,但是也可以在外殼8041上設置鍵盤代替該觸控面板,也可以外置鍵盤。
圖23A示出在底面上設置一個連接端子8048的可攜式資訊終端8040,但是,連接端子8048的個數、配置位置等不侷限於此,可以適當地設計。
圖23B是示出可攜式資訊終端8040的背面及側面的透視圖。可攜式資訊終端8040在外殼8041的背面上具有太陽能電池8049及相機8050,並且具有充放電控制電路8051、蓄電裝置8052以及DCDC轉換器8053等。另外,在圖23B中,作為充放電控制電路8051的一個例子示出具有蓄電裝置8052及DCDC轉換器8053的結構,作為蓄電裝置8052使用根據本發明的一個方式的蓄電裝置。
藉由利用安裝在可攜式資訊終端8040的背面上的太陽能電池8049,可以將電力供應到顯示部、觸控面板或影像信號處理部等。另外,可以將太陽能電池8049設置於外殼8041的一個表面上或兩個表面上。藉由在可攜式資訊終端8040中安裝太陽能電池8049,即使在室外等的沒有電力的供應單元的場所中,也可以對可攜式資訊終端8040的蓄電裝置8052進行充電。
另外,作為太陽能電池8049,可以使用如下太陽能電池:由單晶矽、多晶矽、微晶矽、非晶矽或上述 矽的疊層構成的矽類太陽能電池;InGaAs類、GaAs類、CIS類、Cu2ZnSnS4、CdTe-CdS類的太陽能電池;使用有機染料的染料敏化太陽能電池;使用導電聚合物或富勒烯等的有機薄膜太陽能電池;將由矽等構成的量子點結構形成在pin結構中的i層中的量子點型太陽能電池等。
在此,參照圖23C所示的方塊圖對圖23B所示的充放電控制電路8051的結構和工作的一個例子進行說明。
圖23C示出太陽能電池8049、蓄電裝置8052、DCDC轉換器8053、轉換器8057、開關8054、開關8055、開關8056以及顯示部8042,蓄電裝置8052、DCDC轉換器8053、轉換器8057、開關8054、開關8055以及開關8056對應於圖23B所示的充放電控制電路8051。
為了使利用外光由太陽能電池8049發電的電力成為用來給蓄電裝置8052充電的電壓,使用DCDC轉換器8053對該電力進行升壓或降壓。並且,當利用來自太陽能電池8049的電力使顯示部8042工作時使開關8054導通,並且,利用轉換器8057將其升壓或降壓到顯示部8042所需要的電壓。另外,當不進行顯示部8042上的顯示時,可以使開關8054成為關閉且使開關8055成為導通而給蓄電裝置8052充電。
另外,作為發電單元的一個例子示出太陽能電池8049,但是不侷限於此,也可以使用壓電元件 (piezoelectric element)或熱電轉換元件(珀爾帖元件(peltier element))等其他發電單元給蓄電裝置8052充電。此外,給可攜式資訊終端8040的蓄電裝置8052充電的方法不侷限於此,例如也可以使上述連接端子8048與電源連接而進行充電。此外,既可以使用以無線方式收發電力來進行充電的不接觸電力傳輸模組,又可以組合以上的充電方法。
在此,蓄電裝置8052的荷電狀態(State Of Charge:SOC)表示在顯示部8042的左上部分(圖23A中的虛線框內)。藉由利用該資訊,使用者可以掌握蓄電裝置8052的荷電狀態,根據該資訊,還可以選擇可攜式資訊終端8040的省電模式。當使用者選擇省電模式時,例如可以操作上述按鈕8043或圖示8044,將安裝在可攜式資訊終端8040的顯示模組或顯示面板、CPU等的算術裝置以及記憶體等的構成部件的模式切換為省電模式。具體地,降低各構成部件的任意的功能的使用頻率並使該功能停止。另外,可攜式資訊終端8040也可以構成為根據荷電狀態自動切換為省電模式的結構。另外,藉由在可攜式資訊終端8040中設置光感測器等的檢測單元並檢測出使用可攜式資訊終端8040時的外光的光量而使顯示亮度最佳化,可以抑制蓄電裝置8052的功耗。
另外,如圖23A所示,當由太陽能電池8049等進行充電時,也可以在顯示部8042的左上部分(虛線框內)顯示表示“充電中”的影像等。
另外,當然,只要具備根據本發明的一個方式的蓄電裝置,則不侷限於圖23A至23C所示的電子裝置。
[7-6. 電子裝置的一個例子(蓄電系統的例子)]
再者,作為電子裝置的一個例子,參照圖24A和圖24B說明蓄電系統的例子。將在此說明的蓄電系統8100可作為上述蓄電系統8005用於家庭。另外,在此作為一個例子說明家庭用的蓄電系統,但是不侷限於此,也可將它可用於商用或其他用途。
如圖24A所示,蓄電系統8100具有用來與系統電源8103電連接的插頭8101。另外,蓄電系統8100與設置在家庭內的配電盤8104電連接。
另外,蓄電系統8100也可以具有用來顯示工作狀態等的顯示面板8102等。顯示面板也可以具有觸控屏。另外,除了顯示面板以外,還可以具有用來使主電源導通或關閉的開關或者用來操作蓄電系統的開關等。
此外,雖然未圖示,但是為了操作蓄電系統8100,也可以另行設置的操作開關,例如將該操作開關設置在室內的牆上。或者,也可以連接蓄電系統8100和設置在家庭內的個人電腦及伺服器等來間接操作蓄電系統8100。另外,還可以使用智慧手機等資訊終端設備或網際網路等遠端控制蓄電系統8100。在這種情況下,將藉由有線或無線使蓄電系統8100與其他設備設置進行通信的 設備設置在蓄電系統8100中,既可。
圖24B是示意地表示蓄電系統8100的內部的圖。蓄電系統8100包括多個蓄電裝置群8106、BMU(Battery Management Unit)8107及PCS(Power Conditioning System)8108。
蓄電裝置群8106藉由排列並連接多個上述蓄電裝置8105而成。可以將來自系統電源8103的電力儲存於蓄電裝置群8106。多個蓄電裝置群8106都與BMU8107電連接。
BMU8107具有可以監視並控制蓄電裝置群8106所具有的多個蓄電裝置8105的狀態,並且可以保護蓄電裝置8105的功能。具體地,BMU8107具有如下功能:收集蓄電裝置群8106所具有的多個蓄電裝置8105的單元電壓(cell voltage)或單元溫度的資料;監視過充電或過放電;監視過充流;控制單元平衡器(cell balancer);管理電池劣化狀態;計算電池剩餘電量((充電率)State Of Charge:SOC);控制驅動用蓄電裝置的散熱風扇;或者控制檢測故障電路。另外,如上述那樣,在蓄電裝置8105中可以包含這些功能的一部分或全部,或者使每個蓄電裝置群具有有關功能。此外,BMU8107與PCS8108電連接。
在此,作為構成BMU8107的電路,較佳為使用包括上述的具有氧化物半導體的電晶體的電路。此時,可以大幅地降低BMU8107的功耗。
PCS8108與交流(AC)電源的系統電源8103電連接,進行直流-交流轉換。例如,PCS8108具有逆變器或檢測出系統電源8103的異常並使工作停止的系統聯繫保護裝置等。當給蓄電系統8100充電時,例如,將系統電源8103的交流的電力轉換為直流的電力並將該電力傳送至BMU8107,當進行蓄電系統8100的放電時,將儲存於蓄電裝置群8106的電力轉換為交流的電力並供應到室內等的負載。另外,從蓄電系統8100到負載的電力的供應既可以藉由圖24A所示的配電盤8104進行,又可以藉由有線或無線直接進行。
此外,給蓄電系統8100的充電不侷限於上述系統電源8103,例如既可以從設置在室外的太陽能發電系統供應電力,又可以從安裝在電動汽車的蓄電系統供應電力。
100‧‧‧蓄電裝置
101‧‧‧二次電池
102‧‧‧端子
103‧‧‧端子
104‧‧‧感測器
104a‧‧‧溫度感測器
104b‧‧‧庫倫計量器
104c‧‧‧電壓計
104d‧‧‧電流計
105‧‧‧MCU
106‧‧‧記憶體
106a‧‧‧記憶區域
106b‧‧‧記憶區域
106c‧‧‧記憶區域
107‧‧‧通信單元

Claims (13)

  1. 一種蓄電裝置,包括:二次電池;感測器;中央處理器(CPU);以及包含氧化物半導體的記憶體,其中,該中央處理器藉由該感測器與該二次電池連接,並且,該記憶體與該中央處理器連接。
  2. 根據申請專利範圍第1項之蓄電裝置,其中該感測器是溫度感測器、電壓計、電流計或庫倫計量器。
  3. 根據申請專利範圍第1項之蓄電裝置,還包括包含該中央處理器的微控制單元。
  4. 根據申請專利範圍第3項之蓄電裝置,其中該微控制單元包括氧化物半導體。
  5. 根據申請專利範圍第3項之蓄電裝置,還包括與該微控制單元連接的通信單元。
  6. 一種蓄電系統,包括:二次電池;感測器;微控制單元;以及記憶體,其中,該記憶體包括第一記憶區域及第二記憶區域,該二次電池在第一工作模式及第二工作模式下工作, 該感測器獲得該二次電池的資料,並且,該微控制單元根據該資料判斷該二次電池處於第一工作模式還是第二工作模式,並且在該二次電池處於第一工作模式的情況下,該微控制單元將資料儲存於該第一記憶區域,而在該二次電池處於第二工作模式的情況下,該微控制單元將資料儲存於該第二記憶區域。
  7. 根據申請專利範圍第6項之蓄電系統,其中該微控制單元包括氧化物半導體。
  8. 根據申請專利範圍第6項之蓄電系統,其中該記憶體包括氧化物半導體。
  9. 根據申請專利範圍第6項之蓄電系統,其中該感測器是溫度感測器、電壓計、電流計或庫倫計量器。
  10. 根據申請專利範圍第6項之蓄電系統,其中該第一工作模式是充電模式,並且該第二工作模式是放電模式。
  11. 根據申請專利範圍第6項之蓄電系統,其中該資料涉及該二次電池的電池剩餘電量、電壓、電流或溫度。
  12. 根據申請專利範圍第6項之蓄電系統,其中該記憶體包括第三記憶區域,並且該微控制單元將該二次電池的溫度的資料儲存於該第三記憶區域。
  13. 一種蓄電系統包括:獲得二次電池的資料的單元;以及判斷該資料屬於第一工作模式還是第二工作模式的的 單元,並在該資料屬於該第一工作模式的情況下將該資料儲存於第一記憶區域,而在該資料屬於該第二工作模式的情況下將該資料儲存於第二記憶區域。
TW102146660A 2012-12-28 2013-12-17 蓄電裝置及蓄電系統 TWI648896B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012288513 2012-12-28
JP2012-288513 2012-12-28

Publications (2)

Publication Number Publication Date
TW201440285A true TW201440285A (zh) 2014-10-16
TWI648896B TWI648896B (zh) 2019-01-21

Family

ID=51016444

Family Applications (2)

Application Number Title Priority Date Filing Date
TW107138592A TWI670886B (zh) 2012-12-28 2013-12-17 蓄電裝置及蓄電系統
TW102146660A TWI648896B (zh) 2012-12-28 2013-12-17 蓄電裝置及蓄電系統

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW107138592A TWI670886B (zh) 2012-12-28 2013-12-17 蓄電裝置及蓄電系統

Country Status (4)

Country Link
US (1) US9614258B2 (zh)
JP (2) JP2014143190A (zh)
TW (2) TWI670886B (zh)
WO (1) WO2014104266A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI568288B (zh) * 2015-07-24 2017-01-21 臺灣塑膠工業股份有限公司 建築整合型無線感測系統
TWI677780B (zh) * 2017-12-06 2019-11-21 日商Toto股份有限公司 遙控裝置以及用水場所系統
TWI683117B (zh) * 2016-11-18 2020-01-21 美商半導體組件工業公司 用於判定一電池之一相對充電狀態之方法及設備
TWI702484B (zh) * 2017-12-06 2020-08-21 日商Toto股份有限公司 遙控裝置
TWI741632B (zh) * 2020-06-03 2021-10-01 龍華科技大學 電池智能分流模組之電阻溫度係數預測方法、電流量測補償校正方法及其裝置
US11990778B2 (en) 2018-07-10 2024-05-21 Semiconductor Energy Laboratory Co., Ltd. Secondary battery protection circuit and secondary battery anomaly detection system

Families Citing this family (490)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US11998198B2 (en) 2004-07-28 2024-06-04 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US20080078802A1 (en) 2006-09-29 2008-04-03 Hess Christopher J Surgical staples and stapling instruments
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US11980366B2 (en) 2006-10-03 2024-05-14 Cilag Gmbh International Surgical instrument
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8840603B2 (en) 2007-01-10 2014-09-23 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8827133B2 (en) 2007-01-11 2014-09-09 Ethicon Endo-Surgery, Inc. Surgical stapling device having supports for a flexible drive mechanism
US8590762B2 (en) 2007-03-15 2013-11-26 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configurations
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
RU2493788C2 (ru) 2008-02-14 2013-09-27 Этикон Эндо-Серджери, Инк. Хирургический режущий и крепежный инструмент, имеющий радиочастотные электроды
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US11986183B2 (en) 2008-02-14 2024-05-21 Cilag Gmbh International Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US9331750B2 (en) 2008-03-17 2016-05-03 Powermat Technologies Ltd. Wireless power receiver and host control interface thereof
JP5483030B2 (ja) 2008-03-17 2014-05-07 パワーマット テクノロジーズ リミテッド 誘導伝送システム
US8981598B2 (en) 2008-07-02 2015-03-17 Powermat Technologies Ltd. Energy efficient inductive power transmission system and method
US11979201B2 (en) 2008-07-02 2024-05-07 Powermat Technologies Ltd. System and method for coded communication signals regulating inductive power transmissions
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
JP2012517287A (ja) 2009-02-06 2012-08-02 エシコン・エンド−サージェリィ・インコーポレイテッド 被駆動式手術用ステープラの改良
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US8740038B2 (en) 2010-09-30 2014-06-03 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a releasable portion
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9263909B2 (en) * 2011-09-28 2016-02-16 Toyota Jidosha Kabushiki Kaisha Control device and control method for nonaqueous secondary battery
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US8995218B2 (en) 2012-03-07 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN104334098B (zh) 2012-03-28 2017-03-22 伊西康内外科公司 包括限定低压强环境的胶囊剂的组织厚度补偿件
CN104379068B (zh) 2012-03-28 2017-09-22 伊西康内外科公司 包括组织厚度补偿件的保持器组件
RU2014143258A (ru) 2012-03-28 2016-05-20 Этикон Эндо-Серджери, Инк. Компенсатор толщины ткани, содержащий множество слоев
KR101627960B1 (ko) * 2012-06-07 2016-06-07 미쓰비시덴키 가부시키가이샤 전기차 제어장치
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US20140001234A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Coupling arrangements for attaching surgical end effectors to drive systems therefor
CN104487005B (zh) 2012-06-28 2017-09-08 伊西康内外科公司 空夹仓闭锁件
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
BR112014032776B1 (pt) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
CN102968098B (zh) * 2012-11-05 2014-12-10 清华大学 一种对集群内电动汽车充电功率的分布式优化方法
JP2014143185A (ja) 2012-12-28 2014-08-07 Semiconductor Energy Lab Co Ltd 蓄電装置及びその充電方法
MX368026B (es) 2013-03-01 2019-09-12 Ethicon Endo Surgery Inc Instrumento quirúrgico articulable con vías conductoras para la comunicación de la señal.
BR112015021082B1 (pt) 2013-03-01 2022-05-10 Ethicon Endo-Surgery, Inc Instrumento cirúrgico
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
BR112015026109B1 (pt) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc Instrumento cirúrgico
US20150053737A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. End effector detection systems for surgical instruments
CN106028966B (zh) 2013-08-23 2018-06-22 伊西康内外科有限责任公司 用于动力外科器械的击发构件回缩装置
US20150191307A1 (en) * 2014-01-03 2015-07-09 Pierre TRUDEL Solar powered frac sand making silo
KR102211363B1 (ko) * 2014-02-11 2021-02-03 삼성에스디아이 주식회사 에너지 저장 시스템과 그의 구동방법
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
JP6462004B2 (ja) 2014-02-24 2019-01-30 エシコン エルエルシー 発射部材ロックアウトを備える締結システム
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
BR112016021943B1 (pt) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc Instrumento cirúrgico para uso por um operador em um procedimento cirúrgico
CN106456159B (zh) 2014-04-16 2019-03-08 伊西康内外科有限责任公司 紧固件仓组件和钉保持器盖布置结构
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
CN106456158B (zh) 2014-04-16 2019-02-05 伊西康内外科有限责任公司 包括非一致紧固件的紧固件仓
US9844369B2 (en) 2014-04-16 2017-12-19 Ethicon Llc Surgical end effectors with firing element monitoring arrangements
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
BR112016023698B1 (pt) 2014-04-16 2022-07-26 Ethicon Endo-Surgery, Llc Cartucho de prendedores para uso com um instrumento cirúrgico
US10020403B2 (en) 2014-05-27 2018-07-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9647471B2 (en) * 2014-10-17 2017-05-09 Trion Energy Solutions Corp. Battery management system and method
US20160005749A1 (en) * 2014-07-01 2016-01-07 Qualcomm Incorporated Series ferroelectric negative capacitor for multiple time programmable (mtp) devices
WO2016018281A1 (en) * 2014-07-30 2016-02-04 Hewlett-Packard Development Company, L.P. Current behavior of elements
BR112017004361B1 (pt) 2014-09-05 2023-04-11 Ethicon Llc Sistema eletrônico para um instrumento cirúrgico
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
US9660470B2 (en) * 2014-09-08 2017-05-23 Nokia Technologies Oy Flexible, hybrid energy generating and storage power cell
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
CN107427300B (zh) 2014-09-26 2020-12-04 伊西康有限责任公司 外科缝合支撑物和辅助材料
JP6412390B2 (ja) * 2014-09-30 2018-10-24 能美防災株式会社 火災警報器
WO2016055903A1 (en) 2014-10-10 2016-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, circuit board, and electronic device
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
BR112017012996B1 (pt) 2014-12-18 2022-11-08 Ethicon Llc Instrumento cirúrgico com uma bigorna que é seletivamente móvel sobre um eixo geométrico imóvel distinto em relação a um cartucho de grampos
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
KR102581808B1 (ko) 2014-12-18 2023-09-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 센서 장치, 및 전자 기기
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US20160196743A1 (en) * 2015-01-07 2016-07-07 Marco Garcia Automatic Responsive Sign Assembly
DE102015002076B3 (de) 2015-02-18 2016-05-19 Audi Ag Batteriezelle für eine Batterie eines Kraftfahrzeugs, Batterie sowie Kraftfahrzeug
US10159483B2 (en) 2015-02-27 2018-12-25 Ethicon Llc Surgical apparatus configured to track an end-of-life parameter
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
JP2020121162A (ja) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
JP6213511B2 (ja) * 2015-03-25 2017-10-18 トヨタ自動車株式会社 電動車両及びその制御方法
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10433846B2 (en) 2015-09-30 2019-10-08 Ethicon Llc Compressible adjunct with crossing spacer fibers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
JP6264362B2 (ja) * 2015-12-01 2018-01-24 トヨタ自動車株式会社 電動車両の電池システム
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
BR112018016098B1 (pt) 2016-02-09 2023-02-23 Ethicon Llc Instrumento cirúrgico
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10371129B2 (en) * 2016-02-26 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and sensor system
CN113253592B (zh) 2016-02-26 2022-11-08 株式会社半导体能源研究所 连接部件、电源装置、电子设备及系统
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10314582B2 (en) 2016-04-01 2019-06-11 Ethicon Llc Surgical instrument comprising a shifting mechanism
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11179150B2 (en) * 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
CN105912087B (zh) * 2016-04-29 2019-01-18 北京小米移动软件有限公司 一种移动终端
TWI562505B (en) * 2016-05-17 2016-12-11 Chung Hsin Electric & Machinery Mfg Corp Micro grid stabilization device
US10644516B2 (en) * 2016-05-19 2020-05-05 Microsoft Technology Licensing, Llc Charging multiple user apparatuses
US20170373195A1 (en) * 2016-06-27 2017-12-28 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device
US10729177B2 (en) * 2016-07-31 2020-08-04 Altria Client Services Llc Electronic vaping device, battery section, and charger
US10485706B2 (en) * 2016-08-29 2019-11-26 3M Innovative Properties Company Electronic hearing protector with switchable electrical contacts
DE102016220110A1 (de) * 2016-10-14 2018-04-19 Phoenix Contact E-Mobility Gmbh Temperaturüberwachtes Ladesystem zur Übertragung von elektrischen Ladeströmen
KR20180057275A (ko) * 2016-11-22 2018-05-30 삼성전자주식회사 배터리 제어 방법 및 장치
US20180168609A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Firing assembly comprising a fuse
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
JP7010956B2 (ja) 2016-12-21 2022-01-26 エシコン エルエルシー 組織をステープル留めする方法
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10736629B2 (en) 2016-12-21 2020-08-11 Ethicon Llc Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
MX2019007295A (es) 2016-12-21 2019-10-15 Ethicon Llc Sistema de instrumento quirúrgico que comprende un bloqueo del efector de extremo y un bloqueo de la unidad de disparo.
US10667811B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Surgical stapling instruments and staple-forming anvils
BR112019011947A2 (pt) 2016-12-21 2019-10-29 Ethicon Llc sistemas de grampeamento cirúrgico
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US20180168618A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling systems
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
JP6983893B2 (ja) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC 外科用エンドエフェクタ及び交換式ツールアセンブリのためのロックアウト構成
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
JP6593369B2 (ja) * 2017-02-21 2019-10-23 株式会社村田製作所 半導体チップが実装されたモジュール、及び半導体チップ実装方法
DE102017113162A1 (de) * 2017-06-14 2018-12-20 Phoenix Contact E-Mobility Gmbh Verfahren zum Erfassen eines Steckvorgangs
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11367739B2 (en) 2017-06-27 2022-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic component
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
WO2019048981A1 (ja) * 2017-09-06 2019-03-14 株式会社半導体エネルギー研究所 半導体装置、バッテリーユニット、バッテリーモジュール
CN109493808B (zh) * 2017-09-12 2020-11-17 元太科技工业股份有限公司 显示装置
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10522744B2 (en) 2017-10-10 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. High thermal stability by doping of oxide capping layer for spin torque transfer (STT) magnetic random access memory (MRAM) applications
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
JP7073676B2 (ja) 2017-11-01 2022-05-24 トヨタ自動車株式会社 移動体の救助システム、サーバ、及び移動体の救助方法
JP2019088040A (ja) * 2017-11-01 2019-06-06 トヨタ自動車株式会社 移動体の救助システム、及び移動体の救助方法
JP7073675B2 (ja) 2017-11-01 2022-05-24 トヨタ自動車株式会社 移動体の救助システム、及び移動体の救助方法
US10325639B2 (en) 2017-11-20 2019-06-18 Taiwan Semiconductor Manufacturing Company, Ltd. Initialization process for magnetic random access memory (MRAM) production
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US20190192147A1 (en) 2017-12-21 2019-06-27 Ethicon Llc Surgical instrument comprising an articulatable distal head
US10665773B2 (en) 2018-01-26 2020-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride capping layer for spin torque transfer (STT)-magnetoresistive random access memory (MRAM)
CN112005383A (zh) 2018-03-12 2020-11-27 株式会社半导体能源研究所 金属氧化物以及包含金属氧化物的晶体管
USD854780S1 (en) 2018-04-30 2019-07-30 The J. M. Smucker Company Sandwich
KR20210020934A (ko) * 2018-06-15 2021-02-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US10522746B1 (en) 2018-08-07 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Dual magnetic tunnel junction devices for magnetic random access memory (MRAM)
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10797225B2 (en) 2018-09-18 2020-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Dual magnetic tunnel junction (DMTJ) stack design
WO2020084386A1 (ja) 2018-10-25 2020-04-30 株式会社半導体エネルギー研究所 二次電池の充電制御回路及び異常検知システム
JP7222657B2 (ja) * 2018-10-25 2023-02-15 株式会社半導体エネルギー研究所 二次電池の残量計測回路
WO2020104892A1 (ja) 2018-11-22 2020-05-28 株式会社半導体エネルギー研究所 半導体装置及び充電制御システム
US11714138B2 (en) 2018-11-22 2023-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power storage device, and electronic device
CN109274160A (zh) * 2018-11-28 2019-01-25 中车株洲电力机车有限公司 一种蓄电池均衡方法、系统及轨道交通车辆
CN113169546A (zh) 2018-12-19 2021-07-23 株式会社半导体能源研究所 二次电池的过放电防止电路及二次电池模块
WO2020128722A1 (ja) 2018-12-19 2020-06-25 株式会社半導体エネルギー研究所 ヒステリシスコンパレータ、半導体装置、及び蓄電装置
US10950782B2 (en) 2019-02-14 2021-03-16 Headway Technologies, Inc. Nitride diffusion barrier structure for spintronic applications
KR102586460B1 (ko) * 2019-03-07 2023-10-06 현대자동차주식회사 배터리 사용 습관 및 배터리 방전 경향 예측 시스템
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
JP6698909B1 (ja) * 2019-04-09 2020-05-27 三菱電機株式会社 車載電子制御装置
US11218011B2 (en) * 2019-04-26 2022-01-04 StoreDot Ltd. Fast charging and power boosting lithium-ion batteries
US11461531B2 (en) * 2019-04-29 2022-10-04 Silicon Space Technology Corporation Learning-based analyzer for mitigating latch-up in integrated circuits
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
EP3751296A1 (en) * 2019-06-12 2020-12-16 LEM International SA Dc meter for electrical vehicle charging station
US11264560B2 (en) 2019-06-21 2022-03-01 Headway Technologies, Inc. Minimal thickness, low switching voltage magnetic free layers using an oxidation control layer and magnetic moment tuning layer for spintronic applications
US11264566B2 (en) 2019-06-21 2022-03-01 Headway Technologies, Inc. Magnetic element with perpendicular magnetic anisotropy (PMA) and improved coercivity field (Hc)/switching current ratio
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US12004740B2 (en) 2019-06-28 2024-06-11 Cilag Gmbh International Surgical stapling system having an information decryption protocol
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
KR102213405B1 (ko) * 2019-08-22 2021-02-08 (주)파인디어칩 사용자 입출력 인터페이스 집적회로
US20220368149A1 (en) * 2019-11-01 2022-11-17 Semiconductor Energy Laboratory Co., Ltd. Power storage device and operation method of power storage device
TWI744721B (zh) * 2019-11-19 2021-11-01 廣達電腦股份有限公司 電池裝置及其控制方法
KR20210062364A (ko) * 2019-11-21 2021-05-31 에스케이하이닉스 주식회사 메모리 장치 및 그것의 동작 방법
JP2021086816A (ja) * 2019-11-29 2021-06-03 パナソニックIpマネジメント株式会社 電池情報管理装置、電池情報管理方法、および電池情報管理システム
CN110995929B (zh) * 2019-12-05 2022-05-06 北京小米移动软件有限公司 终端控制方法、装置、终端及存储介质
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US12035913B2 (en) 2019-12-19 2024-07-16 Cilag Gmbh International Staple cartridge comprising a deployable knife
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
JP7465754B2 (ja) * 2020-08-07 2024-04-11 本田技研工業株式会社 蓄電装置
CN112103574A (zh) * 2020-08-12 2020-12-18 吴幼健 带记忆装置的蓄电池
TWI749728B (zh) * 2020-08-24 2021-12-11 和碩聯合科技股份有限公司 可攜式電子裝置
JP7317777B2 (ja) * 2020-09-08 2023-07-31 株式会社東芝 管理方法、管理装置及び管理システム
JP2022049155A (ja) * 2020-09-16 2022-03-29 キオクシア株式会社 メモリシステムおよび容量値の測定方法
US11680978B2 (en) * 2020-09-30 2023-06-20 Taiwan Semiconductor Manufacturing Co., Ltd. GaN reliability built-in self test (BIST) apparatus and method for qualifying dynamic on-state resistance degradation
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US12053175B2 (en) 2020-10-29 2024-08-06 Cilag Gmbh International Surgical instrument comprising a stowed closure actuator stop
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
EP4047380A1 (de) * 2021-02-18 2022-08-24 FRONIUS INTERNATIONAL GmbH Verfahren und system zur analyse eines elektrischen energiespeichers sowie energieversorgungssystem
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11980362B2 (en) 2021-02-26 2024-05-14 Cilag Gmbh International Surgical instrument system comprising a power transfer coil
US12108951B2 (en) 2021-02-26 2024-10-08 Cilag Gmbh International Staple cartridge comprising a sensing array and a temperature control system
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US12102323B2 (en) 2021-03-24 2024-10-01 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising a floatable component
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11998201B2 (en) 2021-05-28 2024-06-04 Cilag CmbH International Stapling instrument comprising a firing lockout
US12119680B2 (en) 2021-06-21 2024-10-15 Vinpower Inc. Charging apparatus having backup function
TWI783537B (zh) * 2021-06-21 2022-11-11 美商偉寶科技股份有限公司 具資料備份功能的充電設備
US12040641B2 (en) * 2021-06-22 2024-07-16 Appleton Grp Llc Systems and methods for situational suppression of overcurrent protection
DE102021207358A1 (de) 2021-07-12 2023-01-12 Robert Bosch Gesellschaft mit beschränkter Haftung Temperatursensor eines Batteriemoduls und Batteriemodul mit einem solchen
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11980363B2 (en) 2021-10-18 2024-05-14 Cilag Gmbh International Row-to-row staple array variations
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US12089841B2 (en) 2021-10-28 2024-09-17 Cilag CmbH International Staple cartridge identification systems
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US11854587B2 (en) 2021-12-03 2023-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Low power wake up for memory
CN113960362B (zh) * 2021-12-22 2022-03-11 深圳市聚能优电科技有限公司 储能ems的预警方法、系统、设备及存储介质
US12003132B2 (en) * 2022-05-17 2024-06-04 Hamilton Sundstrand Corporation Hybrid electric secondary power and battery charging architecture and control system
US12068608B2 (en) 2022-07-08 2024-08-20 Toyota Motor North America, Inc. Determining energy sources to a location

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274950B1 (en) * 1994-03-03 2001-08-14 American Power Conversion Battery communication system
TW269727B (en) 1995-04-03 1996-02-01 Electrosource Inc Battery management system
JP4566392B2 (ja) 2000-11-16 2010-10-20 レノボ シンガポール プライヴェート リミテッド 温度制御に伴うアクションレベルを決定する電池、電池パック、コンピュータ装置、電気機器、および電池の温度制御方法
JP4794760B2 (ja) 2001-07-04 2011-10-19 パナソニック株式会社 電池パック
JP4215442B2 (ja) 2002-04-02 2009-01-28 三洋電機株式会社 二次電池装置
US7019420B2 (en) * 2003-06-30 2006-03-28 Symbol Technologies, Inc. Battery pack with built in communication port
US7299373B2 (en) * 2003-07-01 2007-11-20 Symbol Technologies, Inc. Systems and methods for a controllable release of power supply in a mobile device
JP2006228490A (ja) * 2005-02-16 2006-08-31 Sanyo Electric Co Ltd 電池パックおよび電池パック充電システムおよび電池パック充放電システム
JP5023650B2 (ja) * 2006-10-13 2012-09-12 ソニー株式会社 電池パック及び電池パックの制御方法
JP5195049B2 (ja) 2008-06-06 2013-05-08 トヨタ自動車株式会社 リチウムイオン二次電池およびその製造方法
KR102443297B1 (ko) 2009-09-24 2022-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 반도체 장치
WO2011052396A1 (en) 2009-10-29 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2011181147A (ja) * 2010-03-02 2011-09-15 Renesas Electronics Corp 連想記憶装置
WO2011149118A1 (ko) * 2010-05-24 2011-12-01 연세대학교 산학협력단 액상 공정을 이용한 산화물 반도체 박막의 형성 방법, 결정화 방법, 이를 이용한 반도체 소자 형성 방법
TWI570920B (zh) * 2011-01-26 2017-02-11 半導體能源研究所股份有限公司 半導體裝置及其製造方法
TWI536502B (zh) * 2011-05-13 2016-06-01 半導體能源研究所股份有限公司 記憶體電路及電子裝置
JP6012263B2 (ja) * 2011-06-09 2016-10-25 株式会社半導体エネルギー研究所 半導体記憶装置
KR101283486B1 (ko) 2011-08-23 2013-07-12 주식회사 엘지화학 이차 전지의 안전성 향상 장치 및 방법
US9190854B2 (en) * 2012-06-15 2015-11-17 Broadcom Corporation Charger external power device gain sampling

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI568288B (zh) * 2015-07-24 2017-01-21 臺灣塑膠工業股份有限公司 建築整合型無線感測系統
TWI683117B (zh) * 2016-11-18 2020-01-21 美商半導體組件工業公司 用於判定一電池之一相對充電狀態之方法及設備
TWI677780B (zh) * 2017-12-06 2019-11-21 日商Toto股份有限公司 遙控裝置以及用水場所系統
TWI702484B (zh) * 2017-12-06 2020-08-21 日商Toto股份有限公司 遙控裝置
US11990778B2 (en) 2018-07-10 2024-05-21 Semiconductor Energy Laboratory Co., Ltd. Secondary battery protection circuit and secondary battery anomaly detection system
TWI741632B (zh) * 2020-06-03 2021-10-01 龍華科技大學 電池智能分流模組之電阻溫度係數預測方法、電流量測補償校正方法及其裝置

Also Published As

Publication number Publication date
US9614258B2 (en) 2017-04-04
JP2014143190A (ja) 2014-08-07
TWI648896B (zh) 2019-01-21
TW201921796A (zh) 2019-06-01
JP2018142544A (ja) 2018-09-13
US20140184165A1 (en) 2014-07-03
TWI670886B (zh) 2019-09-01
JP6608988B2 (ja) 2019-11-20
WO2014104266A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP6608988B2 (ja) 蓄電システム
KR102393022B1 (ko) 축전 장치의 제어 시스템, 축전 시스템, 및 전기 기기
JP6705923B2 (ja) 蓄電装置及び蓄電システム
JP2024119975A (ja) 二次電池

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees