JP6603638B2 - モータ駆動制御装置およびモータ駆動制御方法 - Google Patents

モータ駆動制御装置およびモータ駆動制御方法 Download PDF

Info

Publication number
JP6603638B2
JP6603638B2 JP2016171243A JP2016171243A JP6603638B2 JP 6603638 B2 JP6603638 B2 JP 6603638B2 JP 2016171243 A JP2016171243 A JP 2016171243A JP 2016171243 A JP2016171243 A JP 2016171243A JP 6603638 B2 JP6603638 B2 JP 6603638B2
Authority
JP
Japan
Prior art keywords
motor
voltage
mode
phase
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016171243A
Other languages
English (en)
Other versions
JP2018038213A (ja
Inventor
英俊 土方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MinebeaMitsumi Inc
Original Assignee
MinebeaMitsumi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MinebeaMitsumi Inc filed Critical MinebeaMitsumi Inc
Priority to JP2016171243A priority Critical patent/JP6603638B2/ja
Priority to PCT/JP2017/028892 priority patent/WO2018043077A1/ja
Priority to DE112017004395.6T priority patent/DE112017004395T5/de
Publication of JP2018038213A publication Critical patent/JP2018038213A/ja
Priority to US16/282,518 priority patent/US10790768B2/en
Application granted granted Critical
Publication of JP6603638B2 publication Critical patent/JP6603638B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/24Arrangements for stopping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors of the kind having motors rotating step by step
    • H02P8/14Arrangements for controlling speed or speed and torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors of the kind having motors rotating step by step
    • H02P8/24Arrangements for stopping

Description

本発明は、モータの回転停止位置を制御するのに好適なモータ駆動制御装置およびモータ駆動制御方法に関する。
従来、ステッピングモータを1相励磁で、逆起電圧のゼロクロスをトリガに転流する位置センサレス駆動を行うと、駆動電圧と負荷に応じた負荷電流と回転速度でモータが回転する。このモータの駆動を停止すると、モータの慣性により、オーバーランが発生し、位置精度が悪化する。
モータを停止するため、駆動回路(Hブリッジ回路)の全てのスイッチング素子(FET)をオフすると、逆起電圧が周期的に変化し、モータが慣性で回転していることが観測される。
モータの停止と同時に、2相励磁でホールド電流を高く設定して、徐々に電流を減少させ、2相励磁の安定点で停止するように制御するホールド電流減衰制御方法では、モータの回転速度が低速で慣性が小さい場合は位置精度の確保が可能であるが、モータの回転速度が高速で慣性が大きい場合、制御中に電流が周期的に変化し、モータが慣性で回転していることが観測できる。
このため、上記のホールド電流減衰制御中に、過大な電流が発生した場合、逆方向に電圧を印加する高速減衰(Fast Decay)制御を用いて、電流を消費するようにすると、ホールド電流減衰制御よりも位置精度の確保が可能であるが、電気角の1象限を超えるモータの慣性の場合、位置精度を確保できない。
例えば、特許文献1には、回転速度が速い場合でも、ロータの停止位置を正確に制御することができるステッピングモータの制御方法が開示されている。
特開2005−229743号公報
特許文献1の制御方法は、1相励磁のオープン制御であり、停止直前の回転速度は任意であるが固定されている。1相励磁のオープン制御は、負荷に応じた最適な回転速度にはならず、また、負荷によってモータの振動がおさまる時間がばらつく。位置センサレス駆動は、駆動電圧あるいは負荷により停止直前の回転速度が安定しないため、停止直前の1ステップで保持時間を延長する場合、慣性によるオーバーランが発生することも含め、停止位置を正確に制御することが困難となるおそれがある。つまり、回転状態によっては、所望の停止位置に短時間で制御するには不十分である。
そこで、本発明は、モータ駆動制御装置およびモータ駆動制御方法について、モータの回転停止位置を短時間で正確に制御することを課題とする。
前記した課題を解決するため、本発明のモータ駆動制御装置は、モータに設けられたモータコイルの逆起電圧のゼロクロスを検知するゼロクロス検知手段と、このモータを1相励磁方式かつ位置センサレスで駆動制御し、前記ゼロクロス検知手段によって検知された前記逆起電圧のゼロクロスに基づいて転流し、駆動電圧と負荷に応じた回転速度によって前記モータの駆動制御を行うと共に、前記モータの駆動を停止する際には、算出された減速開始ステップから所望の位置で停止可能な所定回転速度以下に低下するまで、ステップ毎の転流時間の延長制御を行う制御手段と、前記モータコイルに接続されたハーフブリッジを組み合わせたHブリッジ回路と、前記モータコイルに流れるモータ電流を検知する電流検知手段と、を備え、前記制御手段は、前記減速開始ステップから前記モータが停止するまでの間に、前記電流検知手段によって検知された前記モータ電流が所定の電流値を超過した場合、前記Hブリッジ回路に対して、当該Hブリッジ回路をループする電流を流す低速減衰モードをPWM周期毎に指定する。
その他の手段については、発明を実施するための形態のなかで説明する。
本発明によれば、モータ駆動制御装置およびモータ駆動制御方法について、モータの回転停止位置を短時間で正確に制御することが可能となる。
本実施形態および比較例のモータ制御システムの全体ブロック図である。 本実施形態および比較例のモータ駆動制御装置の詳細ブロック図である。 Hブリッジ回路の動作モードの第1説明図である。 Hブリッジ回路の動作モードの第2説明図である。 比較例のHブリッジ回路のX相とY相の電流/電圧を説明する波形図である。 比較例のHブリッジ回路の転流順序を説明する波形図である。 比較例におけるX相の第1象限の処理を説明するフローチャートである。 比較例におけるX相の第2象限の処理を説明するフローチャートである。 本実施形態におけるHブリッジ回路のX相とY相の電流/電圧を説明する波形図である。 本実施形態におけるHブリッジ回路の転流順序を説明する波形図である。 本実施形態におけるX相の第1象限の処理を説明するフローチャートである。 本実施形態における通電側PWMサイクルの処理を説明するフローチャートである。 本実施形態における逆起側PWMサイクルの処理を説明するフローチャートである。 本実施形態における第1減速例を説明するグラフである。 本実施形態における第2減速例を説明するグラフである。
以降、本発明を実施するための形態を、各図を参照して詳細に説明する。
図1は、本実施形態および比較例のモータ制御システムの全体ブロック図である。
図1において、ステッピングモータ120は、バイポーラ型2相ステッピングモータであり、永久磁石を有し回動自在に設けられた回転子126と、回転子126の周囲の周回方向4等分位置に設けられた固定子とを有している。これらの固定子は、X相の固定子122XP,122XNと、Y相の固定子122YP,122YNとからなる。これらの固定子には各々巻線が巻回されている。固定子122YP,122YNに巻回された巻線は直列に接続されており、両巻線を合わせて「固定子巻線124Y」という。同様に、固定子122XP,122XNに巻回された巻線は直列に接続されており、両巻線を合わせて「固定子巻線124X」という。固定子巻線124Y,124Xは、モータコイルの一例である。
上位装置130は、ステッピングモータ120の回転速度を指令する速度指令信号を出力する。モータ制御装置100は、この速度指令信号に応じてステッピングモータ120を駆動制御するものである。モータ制御装置100には、固定子巻線に接続されたハーフブリッジを組み合わせたHブリッジ回路20X,20Yが設けられており、それぞれ固定子巻線124X,124Yに対して、X相電圧VMX,Y相電圧VMYを印加する。
Hブリッジ回路20Xは、接続点Mout0を介してX相の固定子122XNの巻線(モータコイルの一例)と接続され、更に接続点Mout1を介してX相の固定子122XPの巻線(モータコイルの一例)と接続される。コイル電流IMout1−0は、接続点Mout1から接続点Mout0へ流れる電流である。
Hブリッジ回路20Yは、接続点Mout2を介してY相の固定子122YPの巻線(モータコイルの一例)と接続され、更に接続点Mout3を介してY相の固定子122YNの巻線(モータコイルの一例)と接続される。コイル電流IMout3−2は、接続点Mout3から接続点Mout2へ流れる電流である。
(モータ制御装置100)
次に、図2を参照し、モータ制御装置100の詳細を説明する。なお、図1には2系統の固定子巻線124X,124Yと、2系統のHブリッジ回路20X,20Yを示したが、図2では、これらをまとめて1系統の固定子巻線124と、1系統のHブリッジ回路20として示している。
モータ制御装置100の内部に設けられたCPU(Central Processing Unit)101(制御手段の一例)は、ROM(Read Only Memory)103に記憶された制御プログラムに基づいて、バス106を介して各部を制御する。RAM(Random Access Memory)102は、CPU101のワークメモリとして使用される。タイマ(timer)104は、CPU101の制御の下、リセットされたタイミングからの経過時間を測定する。I/Oポート(I/O port)105は、図1に示した上位装置130、その他外部装置との間で信号を入出力する。ブリッジ制御部107は、CPU101からの指令に基づいて、ブリッジ制御回路110の各部を制御する。
ここで、ブリッジ制御回路110は、一体の集積回路として構成されている。その内部においてPWM(Pulse Width Modulation)信号発生器113は、ブリッジ制御部107による制御に基づいて、PWM信号を生成しHブリッジ回路20に供給する。Hブリッジ回路20には、FET(Field-Effect Transistor)2,4,6,8と、FET15,17とが含まれている。なお、図中においてこれらFETの下側の端子がソース端、上側の端子がドレイン端になる。PWM信号とは、これらFETにゲート電圧として印加されるオン(ON)/オフ(OFF)信号である。
FET2,4は直列に接続され、その直列回路に対して、直流電源140およびアース線142が接続され、所定の電圧MVddが印加される。同様に、FET6,8も直列に接続され、その直列回路に対して電圧MVddが印加される。ダイオード12,14,16,18は、還流用の寄生ダイオードであり、FET2,4,6,8に対して並列に接続されている。FET15,17は、電流検出用に設けられているものであり、それぞれFET4,8と共にカレントミラー回路を形成している。これにより、FET4,8に流れる電流に比例する電流が、それぞれFET15,17に流れる。
FET2,4の接続点Mout0における電圧VMout0は、モータの固定子巻線124の一端に印加される。また、FET6,8の接続点Mout1における電圧VMout1は、固定子巻線124の他端に印加される。従って、固定子巻線124には、両者の差であるモータ電圧VMが印加される。このモータ電圧VMとは、実際には図1に示したX相電圧VMXおよびY相電圧VMYである。
電流検出部116(電流検知手段の一例)は、固定子巻線に流れるモータ電流を検知する。具体的には、電流検出部116は、FET15,17に流れる電流値を電流方向に応じて測定することにより、固定子巻線124に流れる電流の電流測定値Icoilを出力する。D/Aコンバータ115は、ブリッジ制御部107から、電流基準値Irefのデジタル値を受信し、これをアナログ値に変換する。比較器114は、アナログ値の電流測定値Icoilと電流基準値Irefとを比較し、前者が後者以上になると“1”信号を出力すると共に、それ以外の場合は“0”信号を出力する。
また、電圧VMout0,VMout1は、BEMF(逆起電力)検出部118(ゼロクロス検知手段の一例)にも供給される。BEMF検出部118は、ステッピングモータ120の固定子に設けられた固定子巻線124Y,124Xの逆起電圧のゼロクロスを検知する。すなわち、BEMF検出部118は、モータ電圧VMが逆起電圧である場合、Hブリッジ回路20から電圧が印加されていない期間に電圧方向の切り替わり(ゼロクロス)に応じてフラグZCを出力する。
CPU101は、ステッピングモータ120を1相励磁方式かつ位置センサレスで駆動制御し、BEMF検出部118によって検知された逆起電圧のゼロクロスに基づいて転流し、駆動電圧と負荷に応じた回転速度によってステッピングモータ120の駆動制御を行うとともに、後述するように、ステッピングモータ120の駆動を停止する際には、算出された減速開始ステップから所望の位置で停止可能な所定回転速度以下に低下するまで、ステップ毎の転流時間の延長制御を行う。
(Hブリッジ回路20の動作モード)
図3(a)〜(d)と図4(e),(f)とは、Hブリッジ回路の動作モードの説明図である。これら説明図を参照し、Hブリッジ回路20の動作モードを説明する。
図3(a)は、斜めに対向する2つのFETがオン(ON)状態にされて、固定子巻線124に流れるモータ電流の絶対値を増加させてゆく場合を示している。図3(a)に示した例では、FET4,6がオン状態であり、FET2,8がオフ(OFF)状態である。この図3(a)では、モータ電流の絶対値の増加を、黒色の矢印で示している。この状態では、FET6→固定子巻線124→FET4を介して破線で示す方向にモータ電流が流れると共に、当該モータ電流が増加してゆく。この動作モードのことを、チャージモードという。
また、図3(a)の状態から、電流を低速に減衰させる場合には、図3(b)に示すように、FET6をターンオフずる。FET4はオン状態を維持し、FET2,8はオフ状態を維持する。すると、図示の破線のように、FET4、ダイオード18(FET8の寄生ダイオード)および固定子巻線124をループする電流が流れる。この電流は、FET4、ダイオード18(FET8の寄生ダイオード)および固定子巻線124のインピーダンスによって減衰してゆくが、その減衰速度は低速である。この動作モードのことを、非同期の低速減衰モードという。この図3(b)では、モータ電流の減衰を、白抜きの矢印で示している。
また、低速減衰モードのバリエーションとして、図3(c)に示すように、更にFET8をターンオンしてもよい。すると、図示の破線のように、FET4,8および固定子巻線124をループするモータ電流が流れる。この電流は、FET4,8および固定子巻線124のインピーダンスによって減衰してゆくが、減衰速度は更に低速である。この動作モードのことを、同期の低速減衰モードいう。この図3(c)では、モータ電流の減衰を、白抜きの矢印で示している。
ところで、いずれかのFETのゲート電圧をオフにしたとしても、当該FETの寄生容量によって、そのFETはしばらくの間はオン状態に留まる。このため、例えばFET4のオンかつFET2のオフ状態から、FET4のオフかつFET2のオン状態に瞬時に切り替えようとすると、瞬間的に直列接続されたFET2,4がオン状態になり、電圧MVddとアース電位との間が短絡し、FET2,4が破壊される。このような事態を防止するため、Hブリッジ回路20は、図3(d)に示す貫通防止モードに設定される。
図3(d)は、FET2,4,6,8をオフ状態にした貫通防止モードである。図3(a)のチャージモードから図3(d)の貫通防止モードに切り替えられると、固定子巻線124には逆起電力が発生する。そのため、ダイオード18→固定子巻線124→ダイオード12(FET2の寄生ダイオード)を介して破線で示す方向にモータ電流が流れる。
図3(d)の貫通防止モードでは、ダイオード12,18の順方向電圧降下に応じた電力損失が生じるため、モータ電流の減衰速度は最も大きくなる。
ここで、FET2をターンオンすると、図4(e)に示すフライバック対応モードに遷移する。フライバック対応モードとは、ダイオード18→固定子巻線124→FET2を介して破線で示す方向にモータ電流が流れるモードである。フライバック対応モードにおいて、モータ電流の減衰速度は貫通防止モードよりも、やや緩やかになる。
フライバック対応モードで固定子巻線124にチャージされたエネルギが全て放出されたのち、FET2がターンオフされると、図4(f)に示す逆起電圧/フリーモードに遷移する。
逆起電圧モードとは、FET2,4,6,8がオフ状態であり、Hブリッジ回路20に電流が流れなくなり、かつ逆起電圧が発生しているモードである。フリーモードとは、FET2,4,6,8がオフ状態であり、Hブリッジ回路20に電流が流れなくなり、かつ逆起電圧がゼロクロスした後のモードである。
2相ステッピングモータの1相励磁駆動は、後記する図6のように、X+相→Y+相→X−相→Y−相の順で転流して第1象限から第4象限まで順に移行し、1相毎にコイルを通電する。なお、ステッピングモータ120を逆方向に回す場合は、X+相→Y−相→X−相→Y+相の順に転流する。
コイル電流が最大電流以内の通常の場合、Hブリッジ回路20は、チャージモード→貫通防止モード→フライバック対応モード→フリーモードの順で遷移する。
CPU101は、Hブリッジ回路20の電流制限時の動作モードとして、チャージモードと低速減衰モードとを繰り返させる制御を行う。また、CPU101は、Hブリッジ回路20の電流制限時の動作モードとして、PWM周期毎のチャージモードと低速減衰モードとの繰り返しの後、貫通防止モード、フライバック対応モード、フリーモードの順で遷移させる。
すなわち、電流制限時において、Hブリッジ回路20は、PWM周期毎にチャージモードと低速減衰モードとを繰り返したのち、貫通防止モード→フライバック対応モード→フリーモードの順で遷移する。低速減衰モードを使用することで電流の減衰は、高速減衰モードより小さくなる。よって、モータの回転駆動力および保持力が維持され、チャージモードと低速減衰モードの繰り返しによる電流リップルが小さくなる。
低速減衰モードは、非同期の低速減衰モードだけで対応する場合と、非同期の低速減衰モードの後に同期の低速減衰モードに移行する場合が可能である。
フライバック対応モードは、キックバック電圧を寄生ダイオード経由で電源に回生する場合(貫通防止モード)と、この経路の上側(ハイサイド側)FETをオンして電源に回生する場合(フライバック対応モード)が可能である。
図5は、比較例のHブリッジ回路20のX相とY相の電流/電圧を説明する波形図である。図6は、比較例のHブリッジ回路20の転流順序を説明する波形図である。以下、これら図5と図6とを参照しつつ、各象限の動作について説明する。
《第1象限:時刻t10》
第1象限の時刻t10において、X相のHブリッジ回路20Xはチャージモードに移行し、Y相のHブリッジ回路20Yはフライバック対応モードに移行する。図6に示すように、ステッピングモータ120はX+相であり、電圧MVddとなるのは電圧VMout1である。
図5に示すように、X相のHブリッジ回路20Xは、チャージモードにおいて、電圧VMout1が電圧MVdd、電圧VMout0がGND(グランド)に切り替わる。X相の固定子巻線124Xに電圧MVddが印加され、X相のコイル電流IMout1−0が次第に増加する。
なお、X相のコイル電流IMout1−0の絶対値が予め設定した最大電流を超過した場合、Hブリッジ回路20Xは、PWM周期毎にチャージモードから低速減衰モードに切り替わることで、コイル電流IMout1−0の絶対値を最大電流未満に維持する。
Y相のHブリッジ回路20Yには、直前の第4象限で印加された電圧の逆方向に発生するフライバックパルス(キックバック)が発生する。Hブリッジ回路20Yは、フライバック電圧が立ち下がり、更にコイル電流IMout3−2が0になると、フリーモードに移行する。Hブリッジ回路20Yがフリーモードに移行するのは、時刻t11である。
フリーモードにおいて、Y相のHブリッジ回路20Yには、キックバックの逆方向に逆起電圧が出現する。CPU101は、この逆起電圧のゼロクロスをトリガに転流させて、次の第2象限に移行する。キックバックの発生時間および逆起電圧は、モータの駆動電圧、モータの駆動負荷、および回転速度で変化する。
なお、貫通防止モードは、ハーフブリッジの上下のFETが同時にオンしないように各モード間で必要な場合に挿入されている。これにより、貫通電流を防止できる。
《第2象限:時刻t14》
第2象限の時刻t14において、X相のHブリッジ回路20Xはフライバック対応モードに移行し、Y相のHブリッジ回路20Yはチャージモードに移行する。図6に示すように、ステッピングモータ120はY+相であり、電圧MVddとなるのは電圧VMout3である。
図5に示すように、X相のHブリッジ回路20Xには、直前の第1象限で印加された電圧の逆方向に発生するフライバックパルス(キックバック)が発生する。Hブリッジ回路20Xは、フライバック電圧が立ち下がり、更にコイル電流IMout1−0が0になると、フリーモードに移行する。Hブリッジ回路20Xがフリーモードに移行するのは、時刻t15である。
フリーモードにおいて、X相のHブリッジ回路20Xは、キックバックの逆方向に逆起電圧が出現する。CPU101は、この逆起電圧のゼロクロスをトリガに転流させて、次の第3象限に移行する。キックバックの発生時間および逆起電圧は、モータの駆動電圧、モータの駆動負荷、および回転速度で変化する。
なお、貫通防止モードは、ハーフブリッジの上下のFETが同時にオンしないように各モード間で必要な場合に挿入されている。これにより、貫通電流を防止できる。
Y相のHブリッジ回路20Yは、チャージモードにおいて、電圧VMout3が電圧MVdd、電圧VMout2がGNDに切り替わる。Y相の固定子巻線124Yに電圧MVddが印加され、Y相のコイル電流IMout3−2が次第に増加する。
なお、Y相のコイル電流IMout3−2の絶対値が予め設定した最大電流を超過した場合、Hブリッジ回路20Yは、PWM周期毎にチャージモードから低速減衰モードに切り替わることで、コイル電流IMout3−2の絶対値を最大電流未満に維持する。
《第3象限:時刻t18》
第3象限の時刻t18において、X相のHブリッジ回路20Xは、コイル電流IMout1−0が第1象限とは逆方向に流れるチャージモードに移行する。Y相のHブリッジ回路20Yは、コイル電流IMout3−2が第1象限とは逆方向に流れるフライバック対応モードに移行する。図6に示すように、ステッピングモータ120はX−相であり、電圧MVddとなるのは電圧VMout0である。
図5に示すように、X相のHブリッジ回路20Xは、電圧VMout1がGND、電圧VMout0が電圧MVddに切り替わる。X相の固定子巻線124Xに、第1象限とは逆方向に電圧が印加され、X相のコイル電流IMout1−0が第1象限とは逆方向に次第に増加する。
Y相のHブリッジ回路20Yには、直前の第2象限で印加された電圧の逆方向に発生するフライバックパルス(キックバック)が発生する。Hブリッジ回路20Yは、フライバック電圧が立ち下がり、更にコイル電流IMout3−2が0になると、フリーモードに移行する。Hブリッジ回路20Yがフリーモードに移行するのは、時刻t19である。
フリーモードにおいて、Y相のHブリッジ回路20Yには、キックバックの逆方向に逆起電圧が出現する。CPU101は、この逆起電圧のゼロクロスをトリガに転流させて、次の第4象限に移行する。キックバックの発生時間および逆起電圧は、モータの駆動電圧、モータの駆動負荷、および回転速度で変化する。
この第3象限の動作は、電流の流れる方向以外は、第1象限と同様である。
《第4象限:時刻t22》
第4象限の時刻t22において、X相のHブリッジ回路20Xはフライバック対応モードに移行する。Y相のHブリッジ回路20Yはチャージモードに移行する。図6に示すように、ステッピングモータ120はY−相であり、電圧MVddとなるのは電圧VMout2である。
図5に示すように、X相のHブリッジ回路20Xには、直前の第3象限で印加された電圧の逆方向に発生するフライバックパルス(キックバック)が発生する。Hブリッジ回路20Xは、フライバック電圧が立ち下がり、更にコイル電流IMout1−0が0になると、フリーモードに移行する。Hブリッジ回路20Xがフリーモードに移行するのは、時刻t23である。
フリーモードにおいて、X相のHブリッジ回路20Xは、キックバックの逆方向に逆起電圧が出現する。CPU101は、この逆起電圧のゼロクロスをトリガに転流させて、次の第3象限に移行する。キックバックの発生時間および逆起電圧は、モータの駆動電圧、モータの駆動負荷、および回転速度で変化する。
Y相のHブリッジ回路20Yは、チャージモードにおいて、電圧VMout3がGND、電圧VMout2が電圧MVddに切り替わる。Y相の固定子巻線124Yに、第2象限とは逆方向に電圧MVddが印加され、Y相のコイル電流IMout3−2が第2象限とは逆方向に次第に増加する。
第4象限の動作は、電流の流れる方向以外は、第2象限と同様である。
《以降の象限》
Hブリッジ回路20X,20Yは、上記した第1〜第4象限と同様な動作を、順々に切り替えながら動作する。
図7は、比較例におけるX相の第1象限の処理を説明するフローチャートである。
第1象限において、CPU101は、PWM周期毎の最大デューティを設定し、遅延タイマに値を設定(処理S10)し、X相のHブリッジ回路20Xは、通電期間に移行する。この通電期間において、X相のHブリッジ回路20Xは、チャージモードに移行する。
CPU101は、接続点Mout1のハイサイド(HS)側であるFET2をターンオンし、更に接続点Mout0のロウサイド(LS)側であるFET8をターンオンする(処理S11)。続いて、CPU101は、通電タイマを開始する(処理S12)。
CPU101は、Y相に係る最大時間が経過したか否かを判定する(処理S13)。CPU101は、Y相に係る最大時間が経過していないと判定したならば(処理S13→No)、Y相の逆起電圧のゼロクロスを判定する(処理S14)。CPU101は、Y相の逆起電圧がゼロクロスしていないと判定したならば(処理S14→No)、処理S13に戻る。
CPU101は、Y相の逆起電圧のゼロクロスを判定した場合(処理S14→Yes)、遅延タイマを減算する(処理S15)。CPU101は、この遅延タイマが0になっていないと判定したならば(処理S16→No)、処理S13に戻る。
CPU101は、この遅延タイマが0になると共に(処理S16→Yes)、接続点Mout1のハイサイド(HS)側であるFET2と、接続点Mout0のロウサイド(LS)側であるFET8とをターンオフして、通電期間を終了する(処理S17)。
また、CPU101は、処理S13において、Y相に係る最大時間が経過したと判定したならば(処理S13→Yes)、Y相の逆起電圧のゼロクロスの判定や遅延タイマのカウント値に係わらず、処理S17を実行して通電期間を終了する。
通電期間の終了後、CPU101は、通電タイマを終了して、この通電タイマの値をもとに速度計算し(処理S18)、X相の第1象限における処理を終了する。
Y相の第2象限の処理は、X相の第1象限における処理と同様である。X相の第3象限における処理は、固定子巻線124X(図1参照)に印加する電圧の方向が異なる他は、X相の第1象限における処理と同様である。
Y相の第4象限における処理は、固定子巻線124Y(図1参照)に印加する電圧の方向が異なる他は、X相の第1象限における処理と同様である。
図8は、比較例におけるX相の第2象限の処理を説明するフローチャートである。
第2象限にて最初、CPU101は、タイマに最大時間を設定する(処理S30)。X相のHブリッジ回路20Xは、フライバック期間に移行する。フライバック期間において、X相のHブリッジ回路20Xは、フライバックモードに移行する。
Hブリッジ回路20Xは、フライバック期間において、フライバック対応モードが終了したならば(処理S32→No)、逆起電圧期間に移行する。逆起電圧期間において、X相のHブリッジ回路20Xは、逆起電圧モードに移行する。フライバック対応モードの終了は、フライバック電圧の立ち下がり、フライバック電圧のゼロクロス、コイル電流のゼロクロスのうちいずれかで検出可能である。
続いて、Hブリッジ回路20Xは、逆起電圧期間において、逆起電圧モードが終了したならば(処理S33→No)、フリー期間に移行する。フリー期間において、X相のHブリッジ回路20Xは、フリーモードに移行する。逆起電圧モードの終了は、逆起電圧のゼロクロスで検出可能である。過負荷により逆起電圧が0Vを超えない場合、逆起電圧モードの終了は、逆起電圧のピークからの遅延時間(逆起電圧モードの開始からピークまでの時間のほぼ2倍等)の経過、逆起電圧のピークの次の電圧上昇で検出可能である。
CPU101は、フリー期間において、Y相による第2象限の終了を判定したならば(処理S32→Yes)、X相の第2象限の処理を終了する。
処理S32,S33の条件が成立した場合と、処理S34の条件が不成立の場合、CPU101は、処理S31に戻り、最大時間の超過を判定する。CPU101は、タイマが最大時間を超過したならば(処理S31→Yes)、動作モードに係わらず、X相の第2象限の処理を終了する。
X相の第2象限の処理は、Y相の第3象限の処理と同様である。X相の第4象限の処理は、X相の第2象限の処理とはゼロクロスする電圧の方向が異なる他は、同様な処理である。
Y相の第3象限の処理は、Y相の第1象限の処理とはゼロクロスする電圧の方向が異なる他は、同様な処理である。
図9は、本実施形態におけるHブリッジ回路20のX相とY相の電流/電圧を説明する波形図である。図10は、本実施形態におけるHブリッジ回路20の転流順序を説明する波形図である。以下、これら図9と図10とを参照しつつ、各象限の動作について説明する。
《第1象限:時刻t40》
第1象限の時刻t40において、X相のHブリッジ回路20Xはチャージモードに移行し、Y相のHブリッジ回路20Yはフライバック対応モードに移行する。図10に示すように、ステッピングモータ120はX+相であり、電圧MVddとなるのは電圧VMout1である。
図9に示すように、X相のHブリッジ回路20Xは、チャージモードにおいて、電圧VMout1が電圧MVdd、電圧VMout0がGNDに切り替わる。X相の固定子巻線124Xに電圧MVddが印加され、X相のコイル電流IMout1−0が次第に増加する。
なお、X相のコイル電流IMout1−0の絶対値が予め設定した最大電流を超過した場合、Hブリッジ回路20Xは、PWM周期毎にチャージモードから低速減衰モードに切り替わることで、コイル電流IMout1−0の絶対値を最大電流未満に維持する。
Y相のHブリッジ回路20Yには、直前の第4象限で印加された電圧の逆方向に発生するフライバックパルス(キックバック)が発生する。Hブリッジ回路20Yは、フライバック電圧が立ち下がり、更にコイル電流IMout3−2が0になると、フリーモードに移行する。Hブリッジ回路20Yがフリーモードに移行するのは、時刻t41である。
フリーモードにおいて、Y相のHブリッジ回路20Yには、キックバックの逆方向に逆起電圧が出現する。CPU101は、この逆起電圧のゼロクロスをトリガに転流させて、次の第2象限に移行する。キックバックの発生時間および逆起電圧は、モータの駆動電圧、モータの駆動負荷、および回転速度で変化する。
なお、貫通防止モードは、ハーフブリッジの上下のFETが同時にオンしないように各モード間で必要な場合に挿入されている。これにより、貫通電流を防止できる。
《第2象限:時刻t44》
第2象限の時刻t44において、X相のHブリッジ回路20Xはフライバック対応モードに移行し、Y相のHブリッジ回路20Yはチャージモードに移行する。図10に示すように、ステッピングモータ120はY+相であり、電圧MVddとなるのは電圧VMout3である。
図9に示すように、X相のHブリッジ回路20Xには、直前の第1象限で印加された電圧の逆方向に発生するフライバックパルス(キックバック)が発生する。Hブリッジ回路20Xは、フライバック電圧が立ち下がり、更にコイル電流IMout1−0が0になると、フリーモードに移行する。Hブリッジ回路20Xがフリーモードに移行するのは、時刻t45である。
フリーモードにおいて、X相のHブリッジ回路20Xは、キックバックの逆方向に逆起電圧が出現する。CPU101は、この逆起電圧のゼロクロスをトリガに転流させて、次の第3象限に移行する。キックバックの発生時間および逆起電圧は、モータの駆動電圧、モータの駆動負荷、および回転速度で変化する。
なお、貫通防止モードは、ハーフブリッジの上下のFETが同時にオンしないように各モード間で必要な場合に挿入されている。これにより、貫通電流を防止できる。
Y相のHブリッジ回路20Yは、チャージモードにおいて、電圧VMout3が電圧MVdd、電圧VMout2がGNDに切り替わる。Y相の固定子巻線124Yに電圧MVddが印加され、Y相のコイル電流IMout3−2が次第に増加する。
なお、Y相のコイル電流IMout3−2の絶対値が予め設定した最大電流を超過した場合、Hブリッジ回路20Yは、PWM周期毎にチャージモードから低速減衰モードに切り替わることで、コイル電流IMout3−2の絶対値を最大電流未満に維持する。
以下、減速開始ステップから減速停止ステップまでは、減速停止制御中である。ここで、減速ステップ数は4である。減速停止ステップにおいて、ステッピングモータ120は最終停止速度となる。なお、減速開始ステップは、駆動ステップ数と減速ステップ数により算出される。
《第3象限:時刻t48:減速開始ステップ》
第3象限の時刻t48において、X相のHブリッジ回路20Xは第1象限とは逆方向のチャージモードに移行する。Y相のHブリッジ回路20Yは、コイル電流IMout3−2が第1象限とは逆方向に流れるフライバック対応モードに移行する。この第3象限は、ステッピングモータ120の減速を開始するステップである。図10に示すように、ステッピングモータ120はX−相であり、電圧MVddとなるのは電圧VMout0である。
図9に示すように、X相のHブリッジ回路20Xは、チャージモードにおいて、電圧VMout1がGND、電圧VMout0が電圧MVddに切り替わる。X相の固定子巻線124Xに、第1象限とは逆方向に電圧が印加され、X相のコイル電流IMout1−0が第1象限とは逆方向に次第に増加する。第3象限の動作は、電流の流れる方向以外は、第1象限と同様である。
Y相のHブリッジ回路20Yには、直前の第2象限で印加された電圧の逆方向に発生するフライバックパルス(キックバック)が発生する。Hブリッジ回路20Yは、フライバック電圧が立ち下がり、更にコイル電流IMout3−2が0になると、フリーモードに移行する。Hブリッジ回路20Yがフリーモードに移行するのは、時刻t49である。
フリーモードにおいて、Y相のHブリッジ回路20Yには、キックバックの逆方向に逆起電圧が出現する。キックバックの発生時間および逆起電圧は、モータの駆動電圧、モータの駆動負荷、および回転速度で変化する。
CPU101は、以下に述べるように、減速開始ステップから停止するまでの間に、電流検出部116によって検知されたモータ電流が所定の電流値を超過した場合、Hブリッジ回路20X,20Yに対して、PWM周期毎に低速減衰モードを指定する。
CPU101は、タイマで測定された直前のステップの時間と、予め設定した最大速度と、減速ステップ数から、この減速ステップ番目のステップの時間を計算する。CPU101は、逆起電圧のゼロクロスの代りに、この時間をトリガにして転流させて、次の第4象限に移行する。
減速に伴い、X相のコイル電流IMout1−0の絶対値が急峻に増加する場合がある。この場合、Hブリッジ回路20Xは、PWM周期毎に電流制御で低速減衰モードに移行することで、過電流を防止する。ここでは、時刻t50以降、コイル電流IMout1−0の絶対値が、やや増加しているが、Hブリッジ回路20Xは、低速減衰モードに移行していない。
なお、貫通防止モードは、ハーフブリッジの上下のFETが同時にオンしないように各モード間で必要な場合に挿入されている。これにより、貫通電流を防止できる。
《第4象限:時刻t52:減速の第2ステップ》
第4象限の時刻t52において、X相のHブリッジ回路20Xは、第2象限とは逆方向のフライバック対応モードに移行する。Y相のHブリッジ回路20Yは、第2象限とは逆方向のチャージモードに移行する。この第4象限は、ステッピングモータ120の減速の第2ステップである。図10に示すように、ステッピングモータ120はY−相であり、電圧MVddとなるのは電圧VMout2である。
図9に示すように、Y相のHブリッジ回路20Yは、チャージモードにおいて、電圧VMout3がGND、電圧VMout2が電圧MVddに切り替わる。Y相の固定子巻線124Yに、第2象限とは逆方向に電圧MVddが印加され、Y相のコイル電流IMout3−2が第2象限とは逆方向に次第に増加する。第4象限の動作は、電流の流れる方向以外は、第2象限と同様である。
X相のHブリッジ回路20Xには、直前の第3象限で印加された電圧の逆方向に発生するフライバックパルス(キックバック)が発生する。Hブリッジ回路20Xは、フライバック電圧が立ち下がり、更にコイル電流IMout1−0が0になると、フリーモードに移行する。Hブリッジ回路20Xがフリーモードに移行するのは、時刻t53である。
フリーモードにおいて、X相のHブリッジ回路20Xは、キックバックの逆方向に逆起電圧が出現する。キックバックの発生時間および逆起電圧は、モータの駆動電圧、モータの駆動負荷および回転速度で変化する。
CPU101は、以下に述べるように、減速開始ステップから停止するまでの間に、電流検出部116によって検知されたモータ電流が所定の電流値を超過した場合、Hブリッジ回路20X,20Yに対して、PWM周期毎に低速減衰モードを指定する。
CPU101は、タイマで測定された直前のステップの時間と、予め設定した最大速度と、減速ステップ数から、この減速ステップ番目のステップの時間を計算する。CPU101は、逆起電圧のゼロクロスの代りに、この時間をトリガにして転流させて、次の第1象限に移行する。
減速に伴い、Y相のコイル電流IMout3−2の絶対値が急峻に増加する場合がある。この場合、Hブリッジ回路20Yは、PWM周期毎に電流制御で低速減衰モードに移行することで、過電流を防止する。ここでは、時刻t54以降、コイル電流IMout3−2の絶対値が、やや増加しているが、Hブリッジ回路20Yは、低速減衰モードに移行していない。
なお、貫通防止モードは、ハーフブリッジの上下のFETが同時にオンしないように各モード間で必要な場合に挿入されている。これにより、貫通電流を防止できる。
《第1象限:時刻t56:減速の第3ステップ》
第1象限の時刻t56において、X相のHブリッジ回路20Xはチャージモードに移行する。Y相のHブリッジ回路20Yは、フライバック対応モードに移行する。この第1象限は、ステッピングモータ120の減速の第3ステップである。図10に示すように、ステッピングモータ120はX+相であり、電圧MVddとなるのは電圧VMout1である。
図9に示すように、X相のHブリッジ回路20Xは、チャージモードにおいて、電圧VMout0が電圧MVdd、電圧VMout1がGNDに切り替わる。X相の固定子巻線124Xに電圧MVddが印加され、X相のコイル電流IMout1−0が次第に増加する。
Y相のHブリッジ回路20Yには、直前の第4象限で印加された電圧の逆方向に発生するフライバックパルス(キックバック)が発生する。Hブリッジ回路20Yは、フライバック電圧が立ち下がり、更にコイル電流IMout3−2が0になると、フリーモードに移行する。Hブリッジ回路20Yがフリーモードに移行するのは、時刻t57である。
フリーモードにおいて、Y相のHブリッジ回路20Yには、キックバックの逆方向に逆起電圧が出現する。キックバックの発生時間および逆起電圧は、モータの駆動電圧、モータの駆動負荷、および回転速度で変化する。
ここまでの第1象限の動作は、電流の流れる方向以外は、第3象限と同様である。
CPU101は、以下に述べるように、減速開始ステップから停止するまでの間に、電流検出部116によって検知されたモータ電流が所定の電流値を超過した場合、Hブリッジ回路20X,20Yに対して、PWM周期毎に低速減衰モードを指定する。
CPU101は、タイマで測定された直前の象限ステップの時間と、予め設定した最大速度と、減速ステップ数とから、この減速ステップ番目のステップの時間を計算する。CPU101は、逆起電圧のゼロクロスの代りに、この時間をトリガにして転流させて、次の第4象限に移行する。
減速に伴い、X相のコイル電流IMout1−0の絶対値が急峻に増加する場合がある。この場合、Hブリッジ回路20Xは、PWM周期毎に電流制御で低速減衰モードに移行することで、過電流を防止する。ここでは、時刻t58以降、コイル電流IMout1−0の絶対値が、やや増加しているが、Hブリッジ回路20Xは、低速減衰モードに移行していない。
なお、貫通防止モードは、ハーフブリッジの上下のFETが同時にオンしないように各モード間で必要な場合に挿入されている。これにより、貫通電流を防止できる。
《第2象限:時刻t60:減速停止ステップ》
第2象限の時刻t60において、X相のHブリッジ回路20Xは、フライバック対応モードに移行する。Y相のHブリッジ回路20Yは、チャージモードに移行する。この第2象限は、ステッピングモータ120の減速停止ステップである。図10に示すように、ステッピングモータ120はY+相であり、電圧MVddとなるのは電圧VMout3である。
図9に示すように、Y相のHブリッジ回路20Yは、チャージモードにおいて、電圧VMout3が電圧MVdd、電圧VMout2がGNDに切り替わる。Y相の固定子巻線124Yに、電圧MVddが印加され、Y相のコイル電流IMout3−2が次第に増加する。第2象限の動作は、電流の流れる方向以外は、第4象限と同様である。
X相のHブリッジ回路20Xには、直前の第3象限で印加された電圧の逆方向に発生するフライバックパルス(キックバック)が発生する。Hブリッジ回路20Xは、フライバック電圧が立ち下がり、更にコイル電流IMout1−0が0になると、フリーモードに移行する。Hブリッジ回路20Xがフリーモードに移行するのは、時刻t61である。
フリーモードにおいて、X相のHブリッジ回路20Xは、キックバックの逆方向に逆起電圧が出現する。キックバックの発生時間および逆起電圧は、モータの駆動電圧、モータの駆動負荷および回転速度で変化する。
CPU101は、以下に述べるように、減速開始ステップから停止するまでの間に、電流検出部116によって検知されたモータ電流が所定の電流値を超過した場合、Hブリッジ回路20X,20Yに対して、PWM周期毎に低速減衰モードを指定する。
CPU101は、タイマで測定された直前の象限ステップの時間と、予め設定した最大速度と、減速ステップ数とから、この減速ステップ番目のステップの時間を計算する。CPU101は、逆起電圧のゼロクロスの代りに、この時間をトリガにして転流させて、次の第3象限に移行する。
減速に伴い、Y相のコイル電流IMout3−2の絶対値が急峻に増加する場合がある。この場合、Hブリッジ回路20Yは、PWM周期毎に電流制御で低速減衰モードに移行することで、過電流を防止する。ここでは、時刻t62以降、コイル電流IMout3−2の絶対値が、閾値を超えて増加したので、Hブリッジ回路20Yは、周期的に低速減衰モードに移行する。
これにより、ステッピングモータ120は最終停止速度となり、所望の回転位置に停止させることができる。
なお、コイル電流がモータの駆動と最終的な位置保持に影響のない範囲で、オン・デューティを100%から徐々に減らして減速することも可能である。オン・デューティとは、PWM周期毎のFETのオン時間である。この場合、停止制御で減速中は、逆起電圧のゼロクロスをトリガにして転流するとよい。脱調検出は、キックバック時間の偏差や逆起電圧で判別可能である。
図11は、本実施形態におけるX相の第1象限の処理を説明するフローチャートである。本実施形態は、停止制御開始位置以降の処理が図7に示した比較例とは異なる。CPU101は、停止制御開始位置以降で停止制御タイマを設定し、更に(停止制御開始位置+1)以降では、Y相の逆起電圧ゼロクロスの代りに、停止制御タイマで動作する。
第1象限において、CPU101は、PWM周期毎の最大デューティを設定し、遅延タイマに値を設定(処理S50)し。X相のHブリッジ回路20Xは、通電期間に移行する。この通電期間において、X相のHブリッジ回路20Xは、チャージモードに移行する。
CPU101は、接続点Mout1のハイサイド(HS)側であるFET2をターンオンし、更に接続点Mout0のロウサイド(LS)側であるFET8をターンオンする(処理S51)。続いて、CPU101は、通電タイマを開始する(処理S52)。
CPU101は、モータの回転位置が(停止制御開始位置+1)以上であるか判定する(処理S53)。(停止制御開始位置+1)以上ならば(処理S53→Yes)、CPU101は、停止制御を開始する。CPU101は、停止制御タイマを減算して(処理S58)、このタイマ値が0になるまで処理S59と処理S58を繰り返したのち、処理S60に進む。
モータの回転位置が(停止制御開始位置+1)未満ならば(処理S53→No)、CPU101は、処理S54に進み、通常の第1象限の処理を行う。
処理S54にて、CPU101は、Y相に係る最大時間が経過したか否かを判定する。CPU101は、Y相に係る最大時間が経過していないと判定したならば(処理S54→No)、Y相の逆起電圧のゼロクロスを判定する(処理S55)。CPU101は、Y相の逆起電圧がゼロクロスしていないと判定したならば(処理S55→No)、処理S54に戻る。
CPU101は、Y相の逆起電圧のゼロクロスを判定した場合(処理S55→Yes)、遅延タイマを減算する(処理S56)。CPU101は、この遅延タイマが0になっていないと判定したならば(処理S57→No)、処理S54に戻る。
CPU101は、この通電タイマが0になると共に(処理S57→Yes)、処理S60に進み、接続点Mout1のハイサイド(HS)側であるFET2と、接続点Mout0のロウサイド(LS)側であるFET8とをターンオフして、通電期間を終了する。
また、CPU101は、処理S54において、Y相に係る最大時間が経過したと判定したならば(処理S54→Yes)、Y相の逆起電圧のゼロクロスの判定や遅延タイマのカウント値に係わらず、処理S60を実行して通電期間を終了する。
通電期間の終了後、CPU101は、通電タイマを終了して、この通電タイマの値をもとに速度計算する(処理S61)。更にCPU101は、停止制御開始位置以上ならば(処理S62→Yes)、停止制御タイマを設定する。そしてCPU101は、X相の第1象限における処理を終了する。
本実施形態のモータ駆動制御装置によるX相の第2象限の処理は、図8に示した比較例の処理と同様である。
図12は、本実施形態における通電側PWMサイクルの処理を説明するフローチャートである。
ここで「通電」は、PWM周期毎に実施される、1回以上の「通電側PWMサイクル」で構成される。通電側PWMサイクルの処理は、通常時を含む、停止制御時の最大電流制限を行うために常に必要となる。なお、1相励磁駆動では、PWMサイクルを使用しない方法が一般的である。
CPU101は、通電側PWMサイクルが開始し、かつ、この象限におけるPWMサイクルの初回のサイクルならば(処理S70→Yes)、コイル電流の閾値を設定し(処理S71)、処理S72に進む。CPU101は、この象限におけるPWMサイクルの初回のサイクルではないならば(処理S70→No)、処理S72に進む。
CPU101は、コイル電流が閾値を超過したならば(処理S72→Yes)、Hブリッジ回路20を低速減衰モードに移行し(処理S73)、処理S74に進む。
CPU101は、コイル電流が閾値を超過していないならば(処理S72→No)、、処理S74に進む。CPU101は、Hブリッジ回路20が低速減衰モードでないならば(処理S74→No)、チャージモードに移行し(処理S75)、Hブリッジ回路20が低速減衰モードであれば(処理S74→Yes)、通電側PWMサイクルの終了判定を行う(処理S76)。
CPU101は、これら処理S72〜S75を、通電側PWMサイクルが終了するまで繰り返す(処理S76→No)。
図13は、本実施形態における逆起側のPWMサイクルの処理を説明するフローチャートである。逆起とは、PWMサイクルのうち非通電側のことをいい、PWM周期毎に実施される。
CPU101は、逆起側PWMサイクルが開始し、かつ、この象限におけるPWMサイクルの初回のサイクルならば(処理S80→Yes)、Hブリッジ回路20をフライバック対応モードに移行し(処理S81)、処理S82に進む。CPU101は、この象限におけるPWMサイクルの初回のサイクルでないならば(処理S80→No)、処理S82に進む。
その後、Hブリッジ回路20は、フライバック対応モードであって(処理S82→Yes)、かつ、このフライバック対応モードが終了したならば(処理S83→Yes)、逆起電圧モードに移行して処理S85に進む。Hブリッジ回路20は、フライバック対応モードでないならば(処理S82→Yes)、処理S85に進む。Hブリッジ回路20は、フライバック対応モードであり(処理S82→Yes)、かつ、このフライバック対応モードが継続しているならば(No)、処理S88に進む。
処理S85において、Hブリッジ回路20は、逆起電圧モードでないか(処理S85→No)、または逆起電圧モードが終了したならば(処理S86→Yes)、フリーモードに移行し(処理S87)、処理S88に進む。Hブリッジ回路20は、逆起電圧モードであり(処理S85→Yes)、かつ逆起電圧モードが継続しているならば(処理S86→No)、処理S88に進む。
CPU101とHブリッジ回路20とは、これら処理S82〜S87を、通電側PWMサイクルが終了するまで繰り返す(処理S88→No)。
《各種減速制御方法》
本実施形態のモータ制御装置100において、CPU101は、ステッピングモータ120の駆動を停止する際に、算出された減速開始ステップから所望の位置で停止可能な所定回転速度以下に低下するまで、ステップ毎の転流時間の延長制御を行う。具体的にいうと、CPU101は、ステッピングモータ120の駆動を停止する際に、ステッピングモータ120の停止位置精度が確保できる速度まで、下記の減速ステップに従って相切替(転流)時間が長くなる減速制御を行い、少ないステップ数で位置精度を確保する。
《時間増加による減速制御方法》
CPU101は、減速開始ステップからステッピングモータ120が所定回転速度以下になるまで、逆起電圧のゼロクロスに基づいた転流を中止して、ステップ毎の転流時間を長くする制御を行う。具体的にいうと、CPU101は、減速直前時間の1相励磁の時間を測定し、相切替(転流)時間を徐々に延ばして時間制御することで、モータ回転速度を減速する。この減速方式は、減速ステップ数と時間増加率の調整で位置精度の確保が可能である。時間増加とは、例えば、ステップ毎の転流時間を一定の割合で増加する(例:各ステップで25%ずつ時間を延ばす)ことが考えられる。これを、以下の式(1)に示す。
Figure 0006603638
これにより、各ステップの時間は1.25→1.56→1.95→2.44倍になり、平均速度は80%→64%→51.2%→41.0%になる。この減速方式によれば、少ないステップ数で、減速開始直後に急峻に速度を低下させ、減速終了直前に緩やかに速度を低下させることができる。
《最終速度指定+速度減少一定による減速制御方法》
減速開始ステップ直前における1相励磁の時間を測定して、速度を式(2)で算出する。
Figure 0006603638

更に、減速ステップ数と最終ステップ時間を指定して、ステップ間の平均速度の減少が一定になるように式(3)で算出する。
Figure 0006603638

この速度減少を式(4)に代入すると、各ステップにおける速度が算出可能である。
Figure 0006603638

この減速方式によれば、運動エネルギの主になる速度の指定により、効率的にオーバーランしない設定が可能である。
《最終速度指定+時間増加一定による減速制御方法》
各ステップの時間増加比率が一定になるように、減速ステップ数と最終ステップの時間を指定する方法である。この減速制御方法による速度と時間との関係を、図14に示す。
この減速制御方法では、減速開始直後の平均速度低下が大きく、減速終了直前の平均速度低下が小さいという特徴がある。
《最終速度指定+減速度一定による減速制御方法》
減速度が一定になるように、減速ステップ数と最終ステップの速度を指定する方法である。このとき、速度は時間の一次関数になる。この減速制御方法による速度と時間との関係を、図15に示す。
《最終速度指定+速度テーブルによる減速制御方法》
減速開始ステップ直前の1相励磁の時間を測定し、減速ステップ数と最終ステップ時間を指定して、速度テーブル(台形・S字、直線部あり・なし)で比率計算した減速度で計算した速度から、転流時間を指定して減速する。この減速方法によれば、減速開始時直後と減速終了直前の速度が緩やかになり、負荷への影響が最も小さくなる。
上記の減速制御方法に加えて更に、1相励磁のPWM周期毎のデューティを意図的に徐々に下げるデューティ制御を併用することにより、モータ回転速度を減速してもよい。例えば、デューティを10%ずつ減らすことで、90%→80%→70%→60%になる。この場合、逆起電圧のゼロクロスをトリガに転流を行うと、例えば、モータの回転により負荷が増加する場合に、負荷の持ち上げ時に必要な電流が不足する可能性があるため、相切替(転流)時間を徐々に延ばす時間制御を併用するとよい。このデューティ制御による速度の減速への影響は、モータと電圧・負荷により異なる。
(本実施形態の効果)
(1) ステップ毎の転流時間の延長制御またはステップ間のゼロクロス間隔の延長制御を行うことにより、変動する電圧あるいはモータの回転により変動する負荷に対して、1相励磁かつ位置センサレスで駆動しているモータを停止させた際の停止位置精度を高めることができる。
(2) 本実施形態による減速制御方法によれば、モータの停止位置をオーバーランさせずに、所望の位置で停止させることができる。
(3) 本実施形態による減速制御方法によれば、駆動電圧あるいは負荷によらず、少ないステップ数かつ短時間で、モータの回転停止位置を正確に制御することができる。
(4) コイル電流が閾値を超過した場合、CPU101は、PWM周期で低速減衰モードを指定する。これにより、コイル電流の減衰を抑制でき、駆動力と保持力は維持できる。また、電磁ノイズの発生を抑制できる。
(5) コイル電流が閾値を超過した場合に、CPU101は、チャージモードと低速減衰モードとを繰り返すように制御する。これにより、電流リップルが小さくなる。
(変形例)
本発明は、上記実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で、変更実施が可能であり、例えば、次の(a)〜(c)のようなものがある。
(a) モータの種類は、ステッピングモータに限定されず、ブラシレスDCモータも含む。
(b) コイル電流がモータの駆動と最終的な位置保持に影響のない範囲で、オン・デューティを100%から徐々に減らして減速することも可能である。なお、オン・デューティとは、PWM周期毎のFETのオン時間のことをいう。
(c) CPU101は、停止制御タイマによらず、通電タイマに停止制御値を設定してステップ毎の転流時間の延長制御を行ってもよい。
100 モータ制御装置
101 CPU (制御手段の一例)
107 ブリッジ制御部
110 ブリッジ制御回路
113 PWM信号発生器
114 比較器
115 D/Aコンバータ
116 電流検出部 (電流検知手段の一例)
118 BEMF検出部 (ゼロクロス検知手段の一例)
120 ステッピングモータ
122XN,122XP,122YN,122YP 固定子
124,124X,124Y 固定子巻線 (モータコイルの一例)
126 回転子
130 上位装置
140 直流電源
142 アース線
20,20X,20Y Hブリッジ回路
2,4,6,8,15,17 FET
12,14,16,18 ダイオード
Icoil 電流測定値
Iref 電流基準値
VM モータ電圧
Mout0,Mout1,Mout2,Mout3 接続点
VMout0,VMout1,VMout2,VMout3 電圧
MVdd 電圧
IMout1−0,IMout3−2 コイル電流

Claims (6)

  1. モータに設けられたモータコイルの逆起電圧のゼロクロスを検知するゼロクロス検知手段と、
    前記モータを1相励磁方式かつ位置センサレスで駆動制御し、前記ゼロクロス検知手段によって検知された前記逆起電圧のゼロクロスに基づいて転流し、駆動電圧と負荷に応じた回転速度によって前記モータの駆動制御を行うと共に、前記モータの駆動を停止する際には、算出された減速開始ステップから所望の位置で停止可能な所定回転速度以下に低下するまで、ステップ毎の転流時間の延長制御を行う制御手段と、
    前記モータコイルに接続されたハーフブリッジを組み合わせたHブリッジ回路と、
    前記モータコイルに流れるモータ電流を検知する電流検知手段と、を備え、
    前記制御手段は、前記減速開始ステップから前記モータが停止するまでの間に、前記電流検知手段によって検知された前記モータ電流が所定の電流値を超過した場合、前記Hブリッジ回路に対して、当該Hブリッジ回路をループする電流を流す低速減衰モードをPWM周期毎に指定する、
    ことを特徴とするモータ駆動制御装置。
  2. 前記制御手段は、電流制限時の動作モードとして、チャージモードと前記低速減衰モードとを繰り返させる制御を行う、
    ことを特徴とする請求項1に記載のモータ駆動制御装置。
  3. 前記制御手段は、電流制限時の動作モードとして、PWM周期毎の前記チャージモードと前記低速減衰モードとの繰り返しの後、貫通防止モード、フライバック対応モード、フリーモードの順で遷移させる、
    ことを特徴とする請求項2に記載のモータ駆動制御装置。
  4. 前記制御手段は、前記減速開始ステップから前記モータが前記所定回転速度以下になるまで、前記逆起電圧のゼロクロスに基づいた転流を中止して、前記ステップ毎の転流時間を長くする制御を行う、
    ことを特徴とする請求項1から3のうち何れか1項に記載のモータ駆動制御装置。
  5. 前記制御手段は、前記ステップ毎の転流時間を一定の割合で増加させる、
    ことを特徴とする請求項2に記載のモータ駆動制御装置。
  6. モータに設けられたモータコイルの逆起電圧のゼロクロスを検知し、
    前記モータを1相励磁方式かつ位置センサレスで駆動制御し、検知された前記逆起電圧のゼロクロスに基づいて転流し、駆動電圧と負荷に応じた回転速度によって前記モータの駆動制御を行うと共に、前記モータの駆動を停止する際には、算出された減速開始ステップから所望の位置で停止可能な所定回転速度以下に低下するまで、ステップ毎の転流時間の延長制御を行
    前記減速開始ステップから停止するまでの間に、電流検知手段によって検知されたモータ電流が所定の電流値を超過した場合、Hブリッジ回路に対して、ループする電流を流す低速減衰モードをPWM周期毎に指定する、
    ことを特徴とするモータ駆動制御方法。
JP2016171243A 2016-09-01 2016-09-01 モータ駆動制御装置およびモータ駆動制御方法 Active JP6603638B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016171243A JP6603638B2 (ja) 2016-09-01 2016-09-01 モータ駆動制御装置およびモータ駆動制御方法
PCT/JP2017/028892 WO2018043077A1 (ja) 2016-09-01 2017-08-09 モータ駆動制御装置およびモータ駆動制御方法
DE112017004395.6T DE112017004395T5 (de) 2016-09-01 2017-08-09 Motorantriebsteuervorrichtung und Motorantriebsteuerverfahren
US16/282,518 US10790768B2 (en) 2016-09-01 2019-02-22 Motor driving control device and motor driving control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016171243A JP6603638B2 (ja) 2016-09-01 2016-09-01 モータ駆動制御装置およびモータ駆動制御方法

Publications (2)

Publication Number Publication Date
JP2018038213A JP2018038213A (ja) 2018-03-08
JP6603638B2 true JP6603638B2 (ja) 2019-11-06

Family

ID=61300944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016171243A Active JP6603638B2 (ja) 2016-09-01 2016-09-01 モータ駆動制御装置およびモータ駆動制御方法

Country Status (4)

Country Link
US (1) US10790768B2 (ja)
JP (1) JP6603638B2 (ja)
DE (1) DE112017004395T5 (ja)
WO (1) WO2018043077A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7158910B2 (ja) * 2018-06-20 2022-10-24 ミネベアミツミ株式会社 ステッピングモータの制御装置及びステッピングモータの制御方法
DE102018126954A1 (de) * 2018-10-29 2020-04-30 Trinamic Motion Control Gmbh & Co. Kg Verfahren und Schaltungsanordnung zur sensorlosen Lasterfassung bei Schrittmotoren
US10824130B2 (en) 2019-01-31 2020-11-03 Texas Instruments Incorporated Stepper motor
JP7269824B2 (ja) * 2019-08-07 2023-05-09 ミネベアミツミ株式会社 モータ駆動制御装置、モータユニット、およびモータ駆動制御方法
JP2021192325A (ja) * 2020-06-05 2021-12-16 株式会社東芝 磁気ディスク装置
CN112087171B (zh) * 2020-08-26 2022-02-11 湖南英迈智能科技有限公司 电流平滑方法及装置
JP2023082798A (ja) * 2021-12-03 2023-06-15 ミネベアミツミ株式会社 モータ駆動制御装置、モータユニット、およびモータ駆動制御方法
DE102022107474A1 (de) 2022-03-30 2023-10-05 Audi Aktiengesellschaft Endpositionserkennung von Aktuatoren
JP2023173629A (ja) * 2022-05-26 2023-12-07 ミネベアミツミ株式会社 モータ駆動制御装置、モータユニット、およびモータ駆動制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793168A (en) * 1996-08-23 1998-08-11 Micro Linear Corporation Active deceleration circuit for a brushless DC motor
JP2005229743A (ja) 2004-02-13 2005-08-25 Mitsubishi Material Cmi Kk ステッピングモータの制御方法
BG66313B1 (bg) * 2007-07-26 2013-03-29 БлаговестNachev Blagovest НАЧЕВ Метод за управление на синхронен електродвигател
JP5406010B2 (ja) * 2009-12-28 2014-02-05 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー モータ駆動回路
KR101234778B1 (ko) * 2011-10-05 2013-02-20 이상현 센서리스 bldc 모터의 감속장치 및 방법
JP2013102656A (ja) * 2011-11-10 2013-05-23 Panasonic Corp インバータ制御装置と電動圧縮機および電気機器
CN106452224B (zh) * 2016-10-31 2019-04-23 合肥杰发科技有限公司 用于电机的控制芯片、控制系统及控制方法

Also Published As

Publication number Publication date
DE112017004395T5 (de) 2019-05-16
US20190190415A1 (en) 2019-06-20
JP2018038213A (ja) 2018-03-08
US10790768B2 (en) 2020-09-29
WO2018043077A1 (ja) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6603638B2 (ja) モータ駆動制御装置およびモータ駆動制御方法
US7847498B2 (en) Brushless motor driving device, brushless motor starting method, and method of detecting rotor stop position of brushless motor
US9093931B2 (en) Driving apparatus and stop position detection method
US11114962B2 (en) Semiconductor device, motor drive system, and motor control program
JP6322134B2 (ja) モータ制御装置およびモータ制御方法
CN107979307B (zh) 无刷dc电动机的聚合式电动机驱动控制
JP6204386B2 (ja) モータ電流制御装置およびモータ電流制御方法
JP2009033928A (ja) モータ起動装置及びモータ起動方法
US11005400B2 (en) Motor current control device and motor current control method
JP6272798B2 (ja) モータ駆動制御装置およびモータ駆動制御方法
WO2018088442A1 (ja) 電動機の界磁位置検出方法
JP2015109792A (ja) Bldcモータにおける相電流調整
CN103563241A (zh) 无刷电机控制装置、以及无刷电机控制方法
JP2011211799A (ja) モータ駆動装置
JP2010088267A (ja) ブラシレスモータの制御装置及び制御方法
JP2018170880A (ja) 電動機駆動装置、方法、及びプログラム
US10218295B2 (en) Motor drive controller and method for controlling motor
JP5087411B2 (ja) モータ駆動装置
JP6173107B2 (ja) ブラシレスモータの駆動装置、及び駆動方法
JP2017131000A (ja) 3相ブラシレスモータのセンサレス駆動方法
JP7456834B2 (ja) モータ制御装置、モータシステム及びモータ制御方法
JP2018207612A (ja) モータ駆動制御装置及びモータの駆動制御方法
WO2019244552A1 (ja) ステッピングモータの制御装置及びステッピングモータの制御方法
US11942890B2 (en) Semiconductor device, motor drive system, and method of starting motor
JP4056750B2 (ja) ブラシレスdcモータの起動方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191011

R150 Certificate of patent or registration of utility model

Ref document number: 6603638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150