JP6575241B2 - 圧電型memsスイッチ及び圧電型memsスイッチの製造方法 - Google Patents

圧電型memsスイッチ及び圧電型memsスイッチの製造方法 Download PDF

Info

Publication number
JP6575241B2
JP6575241B2 JP2015173145A JP2015173145A JP6575241B2 JP 6575241 B2 JP6575241 B2 JP 6575241B2 JP 2015173145 A JP2015173145 A JP 2015173145A JP 2015173145 A JP2015173145 A JP 2015173145A JP 6575241 B2 JP6575241 B2 JP 6575241B2
Authority
JP
Japan
Prior art keywords
contact terminal
signal line
reinforcing member
contact
mems switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015173145A
Other languages
English (en)
Other versions
JP2017050175A (ja
Inventor
承太郎 秋山
承太郎 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015173145A priority Critical patent/JP6575241B2/ja
Publication of JP2017050175A publication Critical patent/JP2017050175A/ja
Application granted granted Critical
Publication of JP6575241B2 publication Critical patent/JP6575241B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、圧電型MEMSスイッチ及び圧電型MEMSスイッチの製造方法に関する。
従来からスイッチング装置として電気式微小機械装置(Micro Electromechanical System:MEMS)を用いたものが知られている。このようなスイッチング装置では、圧電素子によって移動する可撓性部材からなるビーム(梁)に取り付けられた接触端子を用いて信号線間の接続及び切断を行っている(例えば、特許文献1〜4参照)。
米国特許第8552621号 米国特許第8604670号 特開2009−266515号公報 特開2010−177143号公報
接触端子は信号線間の接続及び切断を切り替えるための端子であるため、信号線に対する接触を繰り返す。このとき、信号線と接触端子との接触時に生じる力を受けて両者に変形等が生じる可能性がある。変形等が生じた場合には、信号線と接触端子との接触が好適に行われなくなるため、接触不良が生じる可能性がある。
本発明は上述の課題に鑑みてなされたものであり、接触不良を低減可能な圧電型MEMSスイッチ及びその製造方法を提供することを目的とする。
上記目的を達成するため、本発明に係る圧電型MEMSスイッチは、圧電駆動素子における電圧印加により変形する可撓性部材と、前記可撓性部材に設けられ、前記可撓性部材の変形により信号線の接続と切断とを切り替える接点部を備えた接触端子と、前記接触端子を補強する補強部材と、を備えることを特徴とする。
上記の圧電型MEMSスイッチによれば、可撓性部材に設けられた接触端子が補強部材によって補強されていることで、接点部が信号線と接触する際に生じる力を分散させることができる。そのため、例えば、変形や破損等を防ぐことができるため、圧電型MEMSスイッチの接触不良を低減することができる。
ここで、前記接触端子は、接触端子本体と、前記接触端子本体における前記信号線に対向した位置に設けられる接点部と、を備え、前記補強部材は、前記接触端子本体において、前記接点部が設けられた側とは逆側に設けられる態様とすることができる。
また、上記の圧電型MEMSスイッチの製造方法は、前記可撓性部材となる可撓性部材層上に、犠牲層を形成する工程と、前記犠牲層上に前記接触端子となる接触端子層を形成する工程と、前記接触端子層上に前記補強部材となる補強部材層を形成する工程と、前記犠牲層を除去する工程と、を有することを特徴とする。
上記のように、接触端子本体において接点部が設けられた側とは逆側に補強部材を設けることにより、接点部における信号線との接触に緩衝することなく補強部材を設けることができ、接触不良を低減可能とすることができる。
また、前記接触端子は、接触端子本体と、前記接触端子本体における前記信号線に対向した位置に設けられる接点部と、を備え、前記補強部材は、前記接触端子本体において、前記接点部が設けられた側と同じ側に設けられる態様とすることができる。
また、上記の圧電型MEMSスイッチの製造方法は、前記可撓性部材となる可撓性部材層上に、犠牲層を形成する工程と、前記犠牲層上に前記補強部材となる補強部材層を形成する工程と、前記補強部材層上に前記接触端子となる接触端子層を形成する工程と、前記犠牲層を除去する工程と、を有することを特徴とする。
上記のように、接触端子本体において接点部が設けられた側と同じ側に補強部材を設けることにより、圧電型MEMSスイッチを大型化することなく、接触端子を補強することができ、接触不良を低減可能することができる。
また、上記の圧電型MEMSスイッチは、前記可撓性部材を補強する第2の補強部材をさらに備える態様とすることができる。
第2の補強部材を備えることにより、可撓性部材自体も補強することができるため、圧電型MEMSスイッチの接触不良をさらに低減可能とすることができる。
本発明によれば、接触不良を低減可能な圧電型MEMSスイッチ及びその製造方法が提供される。
圧電型MEMSスイッチの概略構成を説明するブロック図である。 圧電駆動素子の構成について説明する概略断面図である。 圧電型MEMSスイッチにおける接点部材の機能について説明する概略断面図である。 本実施形態に係る圧電型MEMSスイッチが適用される電子機器の一例の概略構成図である。 第1補強例の圧電型MEMSスイッチに係る第1ビーム及び第2ビームの周辺の拡大図である。 第1補強例の圧電型MEMSスイッチの製造方法を説明するフロー図である。 第1補強例の圧電型MEMSスイッチの製造方法を説明する概略断面図である。 第1補強例の圧電型MEMSスイッチの製造方法を説明する概略断面図である。 第2補強例の圧電型MEMSスイッチに係る第1ビーム及び第2ビームの周辺の拡大図である。 第2補強例の圧電型MEMSスイッチの製造方法を説明するフロー図である。 第2補強例の圧電型MEMSスイッチの製造方法を説明する概略断面図である。 第3補強例の圧電型MEMSスイッチに係る第1ビーム及び第2ビームの周辺の拡大図である。
以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。
図1は、圧電型MEMSスイッチ100の概略構成を示す図である。
圧電型MEMSスイッチ100は、所謂高周波スイッチ(RFスイッチ)の1つであり、圧電アクチュエータによって機械的にスイッチングを行う装置である。
図1に示すように、圧電型MEMSスイッチ100は、第1駆動部SP1と、第1信号線14と、接触端子15と、第1グランド(第1GND)16と、第2駆動部SP2と、第2信号線24と、第2グランド(第2GND)26と、を含んで構成される。第1駆動部SP1は、第1駆動素子11(圧電駆動素子)と、第1駆動回路12と、第1ビーム13(梁)とを含んで構成される。また、第2駆動部SP2は、第2駆動素子21と、第2駆動回路22と、第2ビーム23(梁)とを含んで構成される。また、圧電型MEMSスイッチ100を構成する上述の要素は、例えば筐体等の固定部材PKによって覆われた状態とされる。
第1信号線14及び第2信号線24はそれぞれCu等の導体から構成される。また、接触端子15は、例えばAu等の導体から構成される。圧電型MEMSスイッチ100では、外部からの入力信号を第1信号線14及び第2信号線24を介して導き、第2信号線24から出力信号として外部へ出力する。第1信号線14と第2信号線24との間は、接触端子15により接続及び切断が切り換えられる。
接触端子15が、第1信号線14に固定されている場合は、接触端子15が第2信号線24に対して接触することで、第1信号線14と第2信号線24との間が電気的に接続(ON)され、接触端子15が第2信号線24から離間することで、第1信号線14と第2信号線24との間が電気的に切断(OFF)される。接触端子15は、第1信号線14ではなく、第2信号線24に固定することもできる。
接触端子15が、第1信号線14及び第2信号線24の双方から離間している構造の場合、接触端子15の移動によって、接触端子15が第1信号線14及び第2信号線24の双方に対して接触することで、第1信号線14と第2信号線24との間が電気的に接続(ON)され、接触端子15が第1信号線14及び第2信号線24から離間することで、第1信号線14と第2信号線24との間が電気的に切断(OFF)される。
なお、第1信号線14と第1GND16とは、電磁気学的な影響が生じる程度に近接配置されており、所定の特性インピーダンスを有する高周波線路が形成される。また、第2信号線24と第2GND26とは、電磁気学的な影響が生じる程度に近接配置されており、所定の特性インピーダンスを有する高周波線路が形成される。第1GND16と、第2GND26とは、電気的に接続されており、同電位に固定されていることが好ましい。これらのグランドは、第1信号線14と第2信号線24を一続きの高周波線路、例えばCPW(Coplanar Waveguide)を形成する。なお、第1信号線14と第1GND16との間には容量C1が介在し、第2信号線24と第2GND26との間には容量C2が介在する。
接触端子15による第1信号線14と第2信号線24との間の接続及び切断の切り替えは、第1信号線14、接触端子15及び第2信号線24のうちの一部の物理的な移動によって行われる。第1駆動部SP1は、第1駆動素子11によって、第1ビーム13を変形させ、第1信号線14に接触端子15が固定されている場合には、これら双方を移動させ、第1信号線14に接触端子15が固定されていな場合には、接触端子15を移動させる機能を有している。
第2駆動部SP2は、第2駆動素子21によって、第2ビーム23を変形させることができるので、第2ビーム23に固定された第2信号線24は、必要に応じて、接触端子15の方向へ移動したり、離間することができる。なお、第2ビーム23を変形する必要が無い場合には、第2駆動素子21には第2駆動回路22から駆動信号は与えられず、第2ビーム23の変形が不要である場合は、第2駆動回路22は無くてもよい。
第1駆動部SP1では、制御回路CONTからの信号に基づいて第1駆動回路12からの電圧印加により、第1駆動素子11が変形する。第1ビーム13(可撓性部材)は、可撓性を有する部材により構成され第1駆動素子11の変形に伴って変形する。
同様に、第2駆動部SP2では、制御回路CONTからの信号に基づいて第2駆動回路22からの電圧印加により、第2駆動素子21が変形する。第2ビーム23は、可撓性を有する部材により構成され第2駆動素子21の変形に伴って変形する。
図2は、圧電駆動素子の構成について説明する概略断面図である。
以下では、XYZ三次元直交座標系を設定する。図1に示した第1ビーム13の厚み方向をZ軸方向とし、長手方向をX軸方向として、Z軸及びX軸の双方に垂直な幅方向をY軸方向とする。
図2に示すように、第1駆動部SP1の第1駆動素子11は、Pt等の下部電極11a、圧電体11b、及びPtなどの上部電極11cをZ方向に積層配置した構成を有する。この第1駆動素子11の下部電極11aと上部電極11cとの間に電圧を印加することにより、圧電体11bの厚さが増加し、面内寸法が減少する(面内方向では縮む)。
第1駆動素子11が、圧電素子である場合の材料について、補足説明する。
圧電体の材料としては、電気機械結合係数が大きく、伝搬損失およびパワーフロー角が小さく、遅延時間温度係数が小さい材料が好ましい。例えば、チタン酸ジルコン酸鉛(PZT)、チタン酸バリウム(BaTiO)などが好適である。各層の形成には、従来公知の成膜方法を適宜用いることができ、例えば、蒸着法、スパッタリング法、化学的気相成長(CVD)法、プラズマアシスト気相成膜(PCVD)法、めっき等を用いることができる。その他、圧電体の材料としては、ニオブ酸カリウムナトリウム(KNN)、ニオブ酸カリウム(KNbO)、チタン酸ビスマスナトリウム(BNT)、窒化アルミ(AlN)、酸化亜鉛(ZnO)、ビスマス鉄酸化物(例えば、BiFeO)、チタン酸鉛(PbTiO)、ニオブ酸リチウム(LiNbO)、タンタル酸リチウム(LiTaO)等を用いることができる。
第1駆動素子11の寸法について説明する。
第1駆動素子11のX軸方向の寸法は200μm(50μm〜500μm)、Y軸方向の寸法は250μm(50μm〜500μm)、Z軸方向の寸法は2μm(0.3μm〜3μm)である。なお、括弧内は、好適範囲を示している。この場合、第1駆動素子11の形態的なバランスが、小型化された圧電型MEMSスイッチに要求される駆動素子の微小変位(サブミクロンから数ミクロン)を制御しやすいものとなるという効果がある。
第2駆動部SP2の第2駆動素子21についても、第1駆動素子11と同様に、下部電極21a、圧電体21b、及び上部電極21cを含んで構成される。また、第2駆動素子21の構造、材料及び作用効果は、第1駆動素子11の場合と同一である。さらに、第2駆動素子21のXY平面内の形状は、第2ビーム23のXY平面内の形状と同一であり、これらが固着しているため、第2駆動素子21の変形の通りに、第2ビーム23は変形する。
図3は、第1ビーム13及び第2ビーム23の周辺構造を説明する概略構造図である。
本実施形態に係る圧電型MEMSスイッチ100では、第1ビーム13及び第2ビーム23はそれぞれX軸方向に延びる平板状の可撓性部材であり、長手方向がX軸方向に沿って整列し、同一のXY平面内に配置されている。第1ビーム13の−X方向の一端側及び第2ビーム23の+X方向の一端側がそれぞれ固定部材PKに対して固定されていて、第1ビーム13及び第2ビーム23において、互いに対向する先端部分は、自由端とされている。すなわち、第1ビーム13及び第2ビーム23は所謂片持ち梁構造を有する。
第1ビーム13には第1信号線14が取り付けられていると共に、第2ビーム23には第2信号線24が取り付けられている。第1信号線14及び第2信号線24は、それぞれ第1ビーム13及び第2ビーム23の延在方向(X軸方向)に沿って配置されている。また、第1ビーム13における自由端側の端部には接触端子15が取り付けられる。接触端子15は、第1信号線14と接続している。接触端子15は、第1ビーム13から接続する本体部15a(接触端子本体)と、本体部15aから突出する接点部15bとを含んで構成される。接点部15bは、本体部15aにおいて、第2信号線24と対向する位置に設けられる。接触端子15は導体により構成されて、第1駆動素子11及び第2駆動素子21が駆動していない状態では、本体部15aにおいて第1信号線14に対して接続する側の端部とは逆側の端部に設けられ、第2信号線24側へ突出する接点部15bが第2信号線24に対して離間した状態に配置される。なお、接触端子15の接点部15bは、接触端子15の本体部15aと同一の材料であってもよいし、本体部15aとは別の材料であってもよい。
第1駆動素子11は、第1ビーム13と固着しているため、第1駆動素子11の変形の通りに、第1ビーム13は変形する。また、第2駆動素子21は、第2ビーム23と固着しているため、第2駆動素子21の変形の通りに、第2ビーム23は変形する。
第1駆動素子11に対して電圧を印加することによって第1駆動素子11と連動して変形すると、第1ビーム13が変形し、接点部15bが下方へ移動する。同様に、第2駆動素子21に対して電圧を印加することによって第2駆動素子21と連動して変形すると、第2ビーム23が変形する。第1ビーム13の変形及び/又は第2駆動素子21の変形により、接点部15bが第2ビーム上の第2信号線24と接触する。これにより、接触端子15を介して第1信号線14と第2信号線24との間が電気的に接続される。
なお、接触端子15による第1信号線14と第2信号線24との間の接続及び切断の切り替えができる構成であれば、第1駆動部SP1及び第2駆動部SP2の構成は特に限定されない。例えば、第1駆動部SP1及び第2駆動部SP2の一方は駆動回路を備えず、駆動素子の圧電駆動によってビームが移動しない(すなわち、固定部材PKに対して固定される)構成であってもよい。この場合であっても、一方側のビームの変形によって、第1信号線14、第2信号線24、及び接触端子15の位置関係を変更することによって、接触端子15による第1信号線14と第2信号線24との間の接続及び切断の切り替えを実現することができる。
第1ビーム13及び第2ビーム23の材料について、補足説明する。
第1ビーム13及び第2ビーム23の材料は特に限定はされないが、歪応力曲線において線形性を示す材料、すなわち弾性を有する材料が好ましい。例えば、Fe−Ni−Cr合金、Cu−Sn−P合金、単結晶Si等を適宜用いることができる。なかでも単結晶Siは、歪応力曲線において広い線形領域を有するため、特に好適に用いることができる。第1ビーム13及び第2ビーム23の材質は、上述のように、可撓性を有する材料から適宜選択することができるが、上述の材料の他に、SiNx(窒化シリコン)、Al(アルミナ)、TiNx(窒化チタン)、SiO(酸化ケイ素)、AlN(窒化アルミ)、多結晶Si、アモルファスシリコン、ダイアモンド、DLC(ダイヤモンドライクカーボン)等を用いることができる。
第1ビーム13及び第2ビーム23の寸法について説明する。
第1ビーム13のX軸方向の寸法は250μm(50μm〜500μm)、Y軸方向の寸法は250μm(50μm〜500μm)、Z軸方向の寸法は3μm(0.5〜5μm)である。なお、括弧内は、好適範囲を示している。この場合、第1ビーム13の形態的なバランスが、小型化された圧電型MEMSスイッチに要求されるビームの微小変位(サブミクロンから数ミクロン)を制御しやすいものとなるという効果がある。また、第1ビーム13のXY平面内の形状は、偏向可能な可動領域(固定部材PKに固定された部分よりも先端側の領域)に関しては、概ね長方形であるが、この可動領域の形状としては、例えば、半円形、フォーク状形状、三角形が考えられる。
なお、上記の圧電型MEMSスイッチ100は、例えば、図4に示す電子機器に適用することができる。
図4は、本実施形態に係る圧電型MEMSスイッチが適用される電子機器の一例の概略構成図である。
図4に示す電子機器200は、無線通信を行う電子機器であり、ハウジングHに収容された複数の圧電型MEMSスイッチ100と、複数の圧電型MEMSスイッチ100に対してそれぞれ直列に接続されたフィルタ102と、アンテナ103と、スイッチ104と、処理回路105と、入力装置106と、ディスプレイ107と、制御回路CONTと、を含んで構成される。
アンテナ103からは、変調された高周波信号(RF信号)が入力される。電子機器200では、制御回路CONTからの制御によって複数の圧電型MEMSスイッチ100におけるON/OFFが切り替えられる。例えば、アンテナに含まれる複数の周波数帯域の信号から、単一の周波数帯域の信号を選択することができる。アンテナ103により受信された入力信号は、必要に応じて、アンプで増幅された後、ON状態が選択された圧電型MEMSスイッチ100、及び、当該圧電型MEMSスイッチ100に接続されたフィルタ102を通り、スイッチ104を経て処理回路105に入力し、処理回路105において入力信号に係る処理が行われる。それぞれのフィルタ102は、通過帯域の異なる周波数フィルタであり、選択された周波数の信号が、処理回路105に入力されることとなる。
処理回路105は、変調されていた入力信号を復調し、復調された信号から、文字又は画像情報を抽出し、制御回路CONTは、処理回路105から得られた文字又は画像情報をディスプレイ107上に表示することができる。なお、アンテナ103への入力信号は、映像信号又は音声信号とすることもできる。
また、入力装置106からユーザにより入力される情報が、制御回路CONTに対して送られて制御回路CONTによる複数の圧電型MEMSスイッチ100の制御に反映されると共に、処理回路105による処理の結果等が制御回路CONTを介して、ディスプレイ107に対して出力されて、ユーザに通知される。なお、電子機器は、携帯電子機器とすることができる。
本実施形態に係る圧電型MEMSスイッチ100は、上述したように、第1駆動素子11及び第2駆動素子21の圧電駆動により、接点部15bと第2信号線24との接触及び離間が繰り返されることにより、第2信号線24と接触端子15との接続及び切断が繰り返される。
ここで、本実施形態に係る圧電型MEMSスイッチ100では、第1ビーム13に取り付けられた接触端子15が補強部材によって補強されていることを特徴とする。接触端子15が補強されていることで、接点部15bが第2信号線24と接触する際に生じる力を分散させることができる。そのため、例えば、変形や破損等による圧電型MEMSスイッチの接触不良を低減可能とすることができる。
上述のように、圧電型MEMSスイッチ100における接触端子15を補強する場合、補強部材は接触端子15の本体部15aにおいて接点部15bと同じ側、又は、接点部15bとは逆側に設けられる。以下補強部材による補強について3つの補強例を参照しながら説明する。
(第1補強例)
図5は、第1補強例に係る第1ビーム13及び第2ビーム23の周辺の拡大図である。
図5では、第1ビーム13及び第2ビーム23のうち、接触端子15の近傍のみを拡大している。なお、第1ビーム13及び第2ビーム23の駆動のため、第1ビーム13及び第2ビーム23の底面であって第1信号線14及び第2信号線24の下方に第1駆動素子11及び第2駆動素子21が積層される場合があるが、図5では省略している(図6以降でも同様である)。
第1補強例の場合、接触端子15の上側、すなわち、本体部15aにおいて接点部15bが設けられている側とは逆側が、補強部材31によって補強されている。また、第1ビーム13における第1信号線14の上方にも補強部材32(第2の補強部材)が設けられていてもよい。さらに、第2ビーム23における第2信号線24の上方にも補強部材33が設けられていてもよい。
補強部材31は、接触端子15の上面の少なくとも一部を覆うように形成される。補強部材31の厚さは、特に限定されないが、補強部材31を厚くすると接触端子15を含む第1ビーム13の先端部分の重量が増大するため、動作に影響を与える可能性があることから、第1ビーム13の動作に影響を与えない範囲(例えば、1μmを下回る程度)とすることが好ましい。接触端子15の上面のうち、接点部15bに対応する部分(接点部15bの上方)に補強部材31を設けることで、接点部15bが第2信号線24と接触する際に生じる力を補強部材31が吸収及び分散させることが可能となる。そして、接触端子15の上面全面を覆う構成とした場合には、接触端子15の上面の一部分を覆うよりも、接点部15bが第2信号線24と接触する際に生じる力を好適に吸収及び分散させることができることから、接触端子15全体の補強が可能となるため、接触端子15の強度をより高めることができ、接触不良を低減することができる。さらに、第1ビーム13側の端部では第1ビーム13の補強部材32と連続している構成とすることができる。この場合、補強部材31により接触端子15をより強固に支持することができる。
補強部材32は、第1ビーム13の補強のために設けられる。また、補強部材33は、第2ビーム23の補強のために設けられる。このとき、補強部材32,33は、第1信号線14又は第2信号線24の上方の一部を覆っていてもよい。また、第1信号線14又は第2信号線24が設けられていない領域において、第1ビーム13又は第2ビーム23の上面を覆う構成であってもよい。補強部材32,33を備えることで、圧電型MEMSスイッチにおける接触不良をさらに低減することができる。ただし、第1ビーム13及び第2ビーム23は、接触端子15と比較して十分大きいため、接点部15bが第2信号線24と接触する際に生じる力を分散しやすいため、接触端子15と比較して変形等が生じる可能性が低い。したがって、補強部材32,33を備えていなくてもよい。補強部材32,33の厚さは、適宜設定することができる。
補強部材31〜33の材料は特に限定されないが、第1ビーム13及び第2ビーム23と同様に、歪応力曲線において線形性を示す材料、すなわち弾性を有する材料が好ましい。例えば、Fe−Ni−Cr合金、Cu−Sn−P合金、単結晶Si等を適宜用いることができる。なかでも単結晶Siは、歪応力曲線において広い線形領域を有するため、特に好適に用いることができる。補強部材31〜33の材料は、上述のように、可撓性を有する材料から適宜選択することができるが、上述の材料の他に、SiNx(窒化シリコン)、Al(アルミナ)、TiNx(窒化チタン)、SiO(酸化ケイ素)、AlN(窒化アルミ)、多結晶Si、アモルファスシリコン、ダイアモンド、DLC(ダイヤモンドライクカーボン)等を用いることができる。なお、補強部材31,32は、第1駆動素子11を構成する下部電極11a及び上部電極11cよりもヤング率が高いこと、又は、降伏強度が大きいことが好ましい。また、補強部材33は、第2駆動素子21を構成する下部電極21a及び上部電極21cよりもヤング率が高いこと、又は、降伏強度が大きいことが好ましい。このような構成を備えることで、電圧の印加による第1駆動素子11又は第2駆動素子21の変形を補強部材が規制することを防止することができる。
次に、図6〜図8を参照しながら、第1補強例に係る接触端子15を含む圧電型MEMSスイッチの製造方法について説明する。第1補強例に係る接触端子15を含む圧電型MEMSスイッチは、公知の圧電型MEMSスイッチの製造方法と比較して、補強部材層の形成を行う工程が含まれている点が相違する。したがって、図6〜図8では公知の製造方法については説明を省略し、第1ビーム、第2ビーム及び接触端子を製造する工程について説明する。
図6は、上記の工程を説明するフロー図であり、図7及び図8は、製造工程を説明する模式図である。
まず、基板41上に、駆動素子層、ビーム材層を成膜した後に、パターニングを行う(S01)。その後、ビーム材層上に信号線用の金属層を形成する(S02)。上記の工程は公知の方法により行われる。図7(A)は、信号線用の金属層の形成までを行った図である。図7(A)に示すように、基板上に第1ビーム材層13d(可撓性部材層)及び第2ビーム材層23dが形成され、その上に第1信号線層14d、第2信号線層24dが形成される。なお、基板41は、圧電型MEMSスイッチにおける固定部材PKとなる部材である。第1ビーム13及び第2ビーム23の一端側を自由端とするため、第1ビーム材層13d及び第2ビーム材層23dと基板41との間には犠牲層42が設けられる。また、第1ビーム材層13d及び第2ビーム材層23dとの間には、第1ビーム13及び第2ビーム23とを区切るための犠牲層43(レジスト)が設けられる。犠牲層43は、また、第1ビーム材層13d及び第2ビーム材層23dを形成した後にパターニングによって開口を設けた後に設けられる。
次に、接触端子15のためのGAP犠牲層を形成する(S03)。図7(B)に示すように、GAP犠牲層44は、接触端子15の下側(信号線側)の形状を規定するための層であるが、例えば、Si,SiO等の材料を用いることができる。また、樹脂材料等をGAP犠牲層に使用してもよい。
次に、接触端子層15dを形成した(S04)後に、補強部材層31dを形成する(S05)。図8(A)は、GAP犠牲層44の上部に接触端子層15d及び補強部材層31dをこの順に積層した状態を示している。なお、第1ビーム13又は第2ビーム23にも補強部材を設ける場合には、補強部材層31dを形成するのと同時に、第1信号線層14d又は第2信号線層24dの上方に補強部材層を積層する。
その後、犠牲層42,43及びGAP犠牲層44をエッチングにより除去する(S06)。この結果、図8(B)に示すように、一方の端部が基板41(固定部材PK)に固定されて他方の端部が自由端となった第1ビーム13及び第2ビーム23と、ビーム上に取り付けられた第1信号線14及び第2信号線24と、第1ビーム13の端部に設けられた接触端子15と、接触端子15の上面を覆う補強部材31と、を有する圧電型MEMSスイッチが製造される。
このように、第1補強例に係る圧電型MEMSスイッチでは、接触端子15の上方の接点部15bが設けられている側とは逆側が補強部材31によって補強されている。これにより、接点部15bが第2信号線24と接触する際に生じる力を分散することができる。したがって、スイッチの制御を繰り返すことによって接点部15bを含む接触端子15が破損することを防止することができる。
(第2補強例)
図9は、第1補強例に係る第1ビーム13及び第2ビーム23の周辺の拡大図である。
第2補強例の場合、接触端子15の下側、すなわち、本体部15aにおいて接点部15bが設けられている側と同じ側が補強部材34によって補強されている。また、第1補強例と同様に第1ビーム13における第1信号線14の上方にも補強部材32が設けられていてもよい。さらに、第2ビーム23における第2信号線24の上方にも補強部材33が設けられていてもよい。
補強部材34は、接触端子15の下面のうち、接点部15b以外の本体部15aが露出する領域の少なくとも一部を覆うように形成される。補強部材34の厚さは、接点部15bよりも薄くされる。これにより、補強部材34によって接点部15bと第2信号線24との接触が妨げることのない構成とすることができる。接触端子15の下面のうち接点部15b以外の領域(本体部15aが露出する領域)を全て覆う構成とした場合には、接触端子15の下面の一部分を覆うよりも、接点部15bが第2信号線24と接触する際に生じる力を好適に吸収及び分散させることができることから、接触端子15全体の補強が可能となるため、接触端子15の強度をより高めることができ、接触不良を低減することができる。
補強部材34は、補強部材31〜34と同様に、例えばSiN等のように、第1ビーム13及び第2ビーム23と同様の材料を用いることができる。
次に、図10〜図11を参照しながら、第2補強例に係る接触端子15を含む圧電型MEMSスイッチの製造方法について説明する。第2補強例に係る接触端子15を含む圧電型MEMSスイッチは、接触端子及び補強部材の積層順序が異なる以外は第1補強例に係る圧電型MEMSスイッチの製造方法と同様である。したがって、共通する部分は説明を省略する。
図10は、上記の工程を説明するフロー図であり、図11は、製造工程を説明する模式図である。
まず、基板41上に、駆動素子層、ビーム材層を成膜した後に、パターニングを行う(S11)。その後、ビーム材層上に信号線用の金属層を形成する(S12)。その後、接触端子15及び補強部材34のためのGAP犠牲層を形成する(S13)。これらの工程は、第1補強例と同様である。ただし、第2補強例では、接触端子15の下方に補強部材34が設けられるため、接点部15bと補強部材34の表面との高さの差は第1補強例と異なる。したがって、GAP犠牲層の厚さは接触端子15及び補強部材34の形状に応じて適宜調整される。
そして、補強部材層34dを形成した(S14)後に、接触端子層15dを形成する(S15)。図11(A)は、GAP犠牲層44の上部に補強部材層34dを積層した状態を示している。なお、第1ビーム13又は第2ビーム23にも補強部材を設ける場合には、補強部材層34dを形成するのと同時に、第1信号線層14d又は第2信号線層24dの上方に補強部材層を積層する。
その後、犠牲層42,43及びGAP犠牲層44をエッチングにより除去する(S16)。この結果、図11(B)に示すように、一方の端部が基板41(固定部材PK)に固定されて他方の端部が自由端となった第1ビーム13及び第2ビーム23と、ビーム上に取り付けられた第1信号線14及び第2信号線24と、第1ビーム13の端部に設けられた接触端子15と、接触端子15の下面を覆う補強部材34と、を有する圧電型MEMSスイッチが製造される。
このように、第2補強例に係る圧電型MEMSスイッチにおいても、接触端子15の下方の接点部15bが設けられている側が補強部材34によって補強されている。これにより、接点部15bが第2信号線24と接触する際に生じる力を分散することができる。したがって、スイッチの制御を繰り返すことによって接点部15bを含む接触端子15が破損することを防止することができる。
また、第2補強例に係る圧電型MEMSスイッチでは、接触端子15の上方に補強部材を設けることがないため、補強された接触端子15が大型化することを防ぐことができる。すなわち、圧電型MEMSスイッチを大型化することなく、接触端子15を補強することが可能となる。
(第3補強例)
図12は、第3補強例に係る第1ビーム13及び第2ビーム23の周辺の拡大図である。
第3補強例は、第1補強例と第2補強例とを組み合わせたような構成となっていて、接触端子15を挟み込むように補強部材31,34が設けられている。接触端子15の上側、すなわち、接点部15bが設けられている側とは逆側は補強部材31によって補強されている。また、接触端子15の下側、すなわち、接点部15bが設けられている側が補強部材34によって補強されている。なお、第1補強例と同様に第1ビーム13における第1信号線14の上方にも補強部材32が設けられていてもよい。さらに、第2ビーム23における第2信号線24の上方にも補強部材33が設けられていてもよい。
図12に示す第3補強例に係る圧電型MEMSスイッチは、第1補強例及び第2補強例を組み合わせた構成であるので、第1補強例及び第2補強例で示した製造方法を用いて製造することができる。すなわち、駆動素子層、ビーム材層を成膜した後に、パターニングを行う。次に、ビーム材層上に信号線用の金属層を形成する。次に、接触端子15及び補強部材34のためのGAP犠牲層を形成する。その後、補強部材34となる補強部材層34d、接触端子15となる接触端子層15d及び補強部材31となる補強部材層31dをこの順に積層した後に、エッチングにより犠牲層及びGAP犠牲層を除去することで、図12に示す構成を得ることができる。
このように、第3補強例に係る圧電型MEMSスイッチにおいても、接触端子15を挟み込むように補強部材31,34が設けられている。これにより、接点部15bが第2信号線24と接触する際に生じる力を分散することができる。したがって、スイッチの制御を繰り返すことによって接点部15bを含む接触端子15が破損することを防止することができる。
以上、本発明の実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
例えば、第1ビーム13及び第2ビーム23の形状等は適宜変更することができる。また、第1ビーム13及び第2ビーム23を変形させるための第1駆動素子11及び第2駆動素子21の配置及び形状等も適宜変更することができる。
11…第1駆動素子、12…第1駆動回路、13…第1ビーム、14…第1信号線、15…接触端子、15a…本体部、15b…接点部、21…第2駆動素子、22…第2駆動回路、23…第2ビーム、24…第2信号線、31〜32…補強部材、100…圧電型MEMSスイッチ。

Claims (5)

  1. 圧電駆動素子における電圧印加により変形する可撓性部材と、
    前記可撓性部材に設けられ、前記可撓性部材の変形により信号線間の接続と切断とを切り替える接点部を備えた接触端子と、
    前記接触端子を補強する補強部材と、
    前記可撓性部材を補強する第2の補強部材と、
    を備える圧電型MEMSスイッチ。
  2. 前記接触端子は、接触端子本体と、前記接触端子本体における前記信号線に対向した位置に設けられる接点部と、を備え、前記補強部材は、前記接触端子本体において、前記接点部が設けられた側とは逆側に設けられる請求項1に記載の圧電型MEMSスイッチ。
  3. 前記接触端子は、接触端子本体と、前記接触端子本体における前記信号線に対向した位置に設けられる接点部と、を備え、前記補強部材は、前記接触端子本体において、前記接点部が設けられた側と同じ側に設けられる請求項1又は2に記載の圧電型MEMSスイッチ。
  4. 圧電駆動素子における電圧印加により変形する可撓性部材と、前記可撓性部材に設けられ、前記可撓性部材の変形により信号線間の接続と切断とを切り替える接点部を備えた接触端子と、前記接触端子を補強する補強部材と、を備え、前記接触端子は、接触端子本体と、前記接触端子本体における前記信号線に対向した位置に設けられる接点部と、を備え、前記補強部材は、前記接触端子本体において、前記接点部が設けられた側とは逆側に設けられる圧電型MEMSスイッチの製造方法であって、
    前記可撓性部材となる可撓性部材層上に、犠牲層を形成する工程と、
    前記犠牲層上に前記接触端子となる接触端子層を形成する工程と、
    前記接触端子層上に前記補強部材となる補強部材層を形成する工程と、
    前記犠牲層を除去する工程と、
    を有する圧電型MEMSスイッチの製造方法。
  5. 圧電駆動素子における電圧印加により変形する可撓性部材と、前記可撓性部材に設けられ、前記可撓性部材の変形により信号線間の接続と切断とを切り替える接点部を備えた接触端子と、前記接触端子を補強する補強部材と、を備え、前記接触端子は、接触端子本体と、前記接触端子本体における前記信号線に対向した位置に設けられる接点部と、を備え、前記補強部材は、前記接触端子本体において、前記接点部が設けられた側と同じ側に設けられる圧電型MEMSスイッチの製造方法であって、
    前記可撓性部材となる可撓性部材層上に、犠牲層を形成する工程と、
    前記犠牲層上に前記補強部材となる補強部材層を形成する工程と、
    前記補強部材層上に前記接触端子となる接触端子層を形成する工程と、
    前記犠牲層を除去する工程と、
    を有する圧電型MEMSスイッチの製造方法。
JP2015173145A 2015-09-02 2015-09-02 圧電型memsスイッチ及び圧電型memsスイッチの製造方法 Active JP6575241B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015173145A JP6575241B2 (ja) 2015-09-02 2015-09-02 圧電型memsスイッチ及び圧電型memsスイッチの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015173145A JP6575241B2 (ja) 2015-09-02 2015-09-02 圧電型memsスイッチ及び圧電型memsスイッチの製造方法

Publications (2)

Publication Number Publication Date
JP2017050175A JP2017050175A (ja) 2017-03-09
JP6575241B2 true JP6575241B2 (ja) 2019-09-18

Family

ID=58279559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015173145A Active JP6575241B2 (ja) 2015-09-02 2015-09-02 圧電型memsスイッチ及び圧電型memsスイッチの製造方法

Country Status (1)

Country Link
JP (1) JP6575241B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043153A1 (en) * 1999-12-10 2001-06-14 Koninklijke Philips Electronics N.V. Electronic devices including micromechanical switches
JP2003208841A (ja) * 2002-10-21 2003-07-25 Nec Corp マイクロマシンスイッチおよびこれを用いたフェーズドアレイアンテナ装置
KR101188438B1 (ko) * 2006-02-20 2012-10-08 삼성전자주식회사 하향형 멤스 스위치의 제조방법 및 하향형 멤스 스위치
US8604670B2 (en) * 2008-05-30 2013-12-10 The Trustees Of The University Of Pennsylvania Piezoelectric ALN RF MEM switches monolithically integrated with ALN contour-mode resonators
JP2012086315A (ja) * 2010-10-20 2012-05-10 Nippon Telegr & Teleph Corp <Ntt> 微細可動構造体の製造方法および微細可動構造体
JP6247501B2 (ja) * 2013-10-30 2017-12-13 国立大学法人東北大学 圧電型memsスイッチを備えた集積回路装置の製造方法

Also Published As

Publication number Publication date
JP2017050175A (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
JP5081038B2 (ja) Memsスイッチおよびその製造方法
US10160635B2 (en) MEMS device and process for RF and low resistance applications
JP4465341B2 (ja) 高周波マイクロマシンスイッチ及びその製造方法
KR101092536B1 (ko) 압전형 rf 멤스 소자 및 그 제조방법
CN107623502B (zh) 体声波谐振器装置
JP4504237B2 (ja) ウエットエッチング方法、マイクロ可動素子製造方法、およびマイクロ可動素子
CN113395053B (zh) 石英薄膜谐振器及其制造方法
JP6575241B2 (ja) 圧電型memsスイッチ及び圧電型memsスイッチの製造方法
JP6617480B2 (ja) 圧電型memsスイッチ
JP2009238547A (ja) Memsスイッチ
JP6551072B2 (ja) Memsスイッチ及び電子機器
CN111327291A (zh) 体声波谐振器及弹性波滤波器装置
JP2007026804A (ja) 高周波マイクロマシンスイッチの構造およびその製造方法
JP2012015886A (ja) 振動片、振動子、発振器および電子機器
JP6551071B2 (ja) Memsスイッチ
JP6601071B2 (ja) Memsスイッチ及び電子機器
JP6551070B2 (ja) 圧電型memsスイッチ
JP6612529B2 (ja) 弾性波装置および通信装置
JP2004127973A (ja) 可変キャパシタ及びその製造方法
JP2009252516A (ja) Memsスイッチ
JP6705351B2 (ja) Memsスイッチ及び電子機器
US10508025B2 (en) MEMS switch and electronic device
JP2009252378A (ja) Memsスイッチ
WO2012102119A1 (ja) 可変容量素子
JP2014093752A (ja) 可変フィルタおよび通信機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190805

R150 Certificate of patent or registration of utility model

Ref document number: 6575241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150