JP6551394B2 - 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明 - Google Patents

重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明 Download PDF

Info

Publication number
JP6551394B2
JP6551394B2 JP2016506482A JP2016506482A JP6551394B2 JP 6551394 B2 JP6551394 B2 JP 6551394B2 JP 2016506482 A JP2016506482 A JP 2016506482A JP 2016506482 A JP2016506482 A JP 2016506482A JP 6551394 B2 JP6551394 B2 JP 6551394B2
Authority
JP
Japan
Prior art keywords
group
layer
substituent
polymer
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016506482A
Other languages
English (en)
Other versions
JPWO2015133437A1 (ja
Inventor
飯田 宏一朗
宏一朗 飯田
延軍 李
延軍 李
友和 梅基
友和 梅基
チ 高
チ 高
五郎丸 英貴
英貴 五郎丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JPWO2015133437A1 publication Critical patent/JPWO2015133437A1/ja
Application granted granted Critical
Publication of JP6551394B2 publication Critical patent/JP6551394B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • C07C13/66Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings the condensed ring system contains only four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/45Monoamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/02Monocyclic aromatic halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/18Polycyclic aromatic halogenated hydrocarbons
    • C07C25/22Polycyclic aromatic halogenated hydrocarbons with condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/17Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings containing other rings in addition to the six-membered aromatic rings, e.g. cyclohexylphenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/06One of the condensed rings being a six-membered aromatic ring the other ring being four-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/08Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing three- or four-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • C07C2603/50Pyrenes; Hydrogenated pyrenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は重合体に関し、特に、有機電界発光素子の正孔注入層及び正孔輸送層として有用な重合体、該重合体を含有する有機電界発光素子用組成物、並びに、この有機電界発光素子を有する有機EL(Electro Luminescence)表示装置及び有機EL照明に関する。
有機電界発光素子における有機層の形成方法としては、真空蒸着法と湿式成膜法が挙げられる。真空蒸着法は積層化が容易であるため、陽極及び/又は陰極からの電荷注入の改善、励起子の発光層封じ込めが容易であるという利点を有する。一方で、湿式成膜法は真空プロセスが要らず、大面積化が容易で、様々な機能をもった複数の材料を混合した塗布液を用いることにより、容易に、様々な機能をもった複数の材料を含有する層を形成できる等の利点がある。しかしながら、湿式成膜法は積層化が困難であるため、真空蒸着法による素子に比べて駆動安定性に劣り、一部を除いて実用レベルに至っていないのが現状である。
そこで、湿式成膜法による積層化を行うために、塗布後に不溶化する架橋性基を有する電荷輸送性重合体が所望され、またその開発が行われている。具体的には、特許文献1〜4には、架橋性基として耐久性に優れるベンゾシクロブテン、電荷輸送性部位として輸送性に優れるアリールアミン構造を有する重合体が開示されている。
国際公開第2009/123269号 国際公開第2011/078387号 国際公開第2011/093428号 国際公開第2013/191137号
本発明者らの検討によると、特許文献1〜4に記載のベンゾシクロブテンを含有する重合体を不溶化させるためには、大きなエネルギーが必要であり、高温長時間の焼成を必要とするため、問題が生じることがわかってきた。具体的には、基板や隔壁、絶縁膜、表示装置においてはTFTなどの部材の耐熱性を高めなければならないことや、焼成に長い時間を要するために素子を少量ずつしか製造できないことがわかってきた。
そこで、本発明は、低温短時間での不溶化が可能な、正孔注入輸送能が高く、耐久性の高い重合体及び該重合体を含む有機電界発光素子用組成物を提供することを課題とする。また本発明は、簡便に製造可能な、輝度が高く、駆動寿命が長い有機電界発光素子を提供することを課題とする。
本発明者らは、鋭意検討した結果、特定の架橋性基を有する重合体を用いることで、上記課題を解決することを見出し、本発明を完成するに至った。
即ち、本発明は、以下の[1]〜[12]の構成を有する。
[1]下記式(1)で表される架橋性基を有する重合体。
Figure 0006551394
(式(1)中の1,2−ジヒドロシクロブタ〔a〕ナフタレン環は置換基を有していてもよい。)
[2]下記式(2)で表される繰り返し単位を含む前記[1]に記載の重合体。
Figure 0006551394
(式(2)中、pは0以上、3以下の整数を表し、Ar及びArは、各々独立に、直接結合、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を表し、Ar〜Arは、各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、但し、Ar及びArのいずれもが、直接結合であることはない。)
[3]下記式(3)で表される繰り返し単位を含む前記[1]に記載の重合体。
Figure 0006551394
(式(3)中、qは0以上、3以下の整数を表し、Rは、置換基を有していてもよい炭素数1〜24のアルキル基、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、Ar及びArは、各々独立に、直接結合、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を表し、Ar〜Ar12は、各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、但し、Ar及びArのいずれもが、直接結合であることはない。)
[4]下記式(4)で表される繰り返し単位を含む前記[1]に記載の重合体。
Figure 0006551394
(式(4)中、rは0以上、3以下の整数を表し、Ar13、Ar14、Ar16及びAr17は、各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、Ar15は、直接結合、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を表す。)
[5]重量平均分子量(Mw)が20,000以上であり、分散度(Mw/Mn)が2.5以下である前記[1]〜[4]のいずれか一つに記載の重合体。
[6]前記[1]〜[5]のいずれか一つに記載の重合体を含有する、有機電界発光素子用組成物。
[7]基板上に、陽極、陰極、及び該陽極と該陰極の間に有機層を有する有機電界発光素子であって、該有機層が、前記[6]に記載の有機電界発光素子用組成物を用いて、湿式成膜法で形成された層を含む、有機電界発光素子。
[8]前記湿式成膜法で形成された層が、正孔注入層及び正孔輸送層のうちの少なくとも一つである、前記[7]に記載の有機電界発光素子。
[9]陽極と陰極の間に正孔注入層、正孔輸送層及び発光層を含み、前記正孔注入層、正孔輸送層及び発光層は、全て湿式成膜法により形成されたものである、前記[7]又は[8]に記載の有機電界発光素子。
[10]前記[7]〜[9]のいずれか一つに記載の有機電界発光素子を有する有機EL表示装置。
[11]前記[7]〜[9]のいずれか一つに記載の有機電界発光素子を有する有機EL照明。
[12]下記式(5)で表される化合物。
Figure 0006551394
(式(5)中、Xはハロゲン原子を表す。)
本発明の重合体を含有する有機電界発光素子用組成物を用いて湿式成膜することにより得られる層は、クラックなどが生じることがなく、平坦である。本発明における有機電界発光素子によれば、輝度が高く、駆動寿命が長い。
図1は、本発明の有機電界発光素子の構造例を示す断面の模式図である。
以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に特定されない。
また、本明細書において、「質量」で表される百分率や部は「重量」で表される百分率や部と同義である。
<重合体>
本発明の重合体は、下記式(1)で表される架橋性基を有する。
Figure 0006551394
(式(1)中の1,2−ジヒドロシクロブタ〔a〕ナフタレン環は置換基を有していてもよい。)
式(1)中の1,2−ジヒドロシクロブタ〔a〕ナフタレン環が有していてもよい置換基としては、架橋反応の妨げになりにくいものが好ましく、具体的には、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基等が挙げられる。
式(1)で表される架橋性基は熱により、下記反応式(6)のように開環する。下記反応式(6)の開環反応の活性化エネルギーは、従来、架橋性基として用いられてきたベンゾシクロブテンの開環反応の活性化エネルギーよりも小さい。
Figure 0006551394
開環後は、下記反応式(7)のような付加反応が進行する。
Figure 0006551394
一連の架橋反応において、通常、開環反応の方が、付加反応に比べて大きな活性化エネルギーを必要とする。そのため、開環反応の活性化エネルギーが小さい、1,2−ジヒドロシクロブタ〔a〕ナフタレンを架橋性基とする式(1)を含む重合体では、低温短時間での不溶化が可能となるのである。
つまり、上記式(1)で表される架橋性基を有する重合体の低温での不溶化速度は、上記式(1)で表される架橋性基に依存するものであり、上記メカニズムから本発明の重合体は、低温での不溶化が短時間で達成できるものである。
電荷輸送に適した部分構造としては、トリアリールアミン構造;フルオレン環、アントラセン環、ピレン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、フェノキサジン環、フェナントロリン環などの3環以上の芳香族環構造;ピリジン環、ピラジン環、トリアジン環、キノリン環、チオフェン環、シロール環、イミダゾール環、ピラゾール環、オキサジアゾール環、ベンゾチアジアゾール環などの芳香族複素環構造;金属錯体構造等が挙げられ、正孔輸送性に優れる点でトリアリールアミン構造が好ましい。
本発明の重合体は、下記式(2)で表される繰り返し単位を含むことが、電荷輸送性が向上する点で好ましい。
Figure 0006551394
(式(2)中、pは0以上、3以下の整数を表し、
Ar及びArは、各々独立に、直接結合、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を表し、
Ar〜Arは、各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、
但し、Ar及びArのいずれもが、直接結合であることはない。)
式(2)中の架橋性基は、トリアリールアミン構造から少なくとも一つの単結合を介して存在し、架橋性基は電荷輸送の妨げとなりにくいため、電荷輸送性がより向上する。
本発明の重合体は、下記式(3)で表される繰り返し単位を含むことが、電荷輸送性が向上する点、より温和な条件で不溶化する点で好ましい。
Figure 0006551394
(式(3)中、qは0以上、3以下の整数を表し、
は、置換基を有していてもよい1〜24のアルキル基、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、
Ar及びArは、各々独立に、直接結合、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を表し、
Ar〜Ar12は、各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、
但し、Ar及びArのいずれもが、直接結合であることはない。)
式(3)中のsp3混成軌道の中心となる炭素原子は、π共役系に関与しないため、sp3混成軌道の中心となる炭素原子に結合する側鎖である架橋性基は電荷輸送の妨げとなりにくいため、電荷輸送性がより向上する。
sp3混成軌道の中心である原子は、sp2混成軌道の中心である原子に比べ、周りの結合の回転が起こりやすいため、重合体における架橋性基は効率よく反応するため、架橋性基の数が少なくても、又は、架橋反応の条件が穏和であっても有機溶剤に対して難溶とすることができる。
本発明の重合体は、下記式(4)で表される繰り返し単位を含むことが、電荷輸送性が向上する点で好ましい。
Figure 0006551394
(式(4)中、rは0以上、3以下の整数を表し、
Ar13、Ar14、Ar16及びAr17は、各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、
Ar15は、直接結合、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を表す。)
式(4)中の架橋性基は、主鎖のアリーレン基から少なくとも一つの単結合を介して存在し、架橋性基は電荷輸送の妨げとなりにくいため、電荷輸送性がより向上する。
[Ar〜Ar17
式(2)〜(4)において、Ar、Ar、Ar、Ar及びAr15はそれぞれ、直接結合、置換基を有していてもよい2価の芳香族炭化水素基、又は置換基を有していてもよい2価の芳香族複素環基を表す。前記芳香族炭化水素基及び芳香族複素環基は、複数個、結合したものでもよい。
Ar、Ar、Ar、Ar、Ar10及びAr14はそれぞれ、置換基を有していてもよい2価の芳香族炭化水素基、又は置換基を有していてもよい2価の芳香族複素環基を表す。前記芳香族炭化水素基及び芳香族複素環基は、複数個、結合したものでもよい。
Ar13は置換基を有していてもよい3価の芳香族炭化水素基、又は置換基を有していてもよい3価の芳香族複素環基を表す。前記芳香族炭化水素基及び芳香族複素環基は、複数個、結合したものでもよい。
Ar、Ar11、Ar12、Ar16及びAr17はそれぞれ、置換基を有していてもよい1価の芳香族炭化水素基、又は置換基を有していてもよい1価の芳香族複素環基を表す。前記芳香族炭化水素基及び芳香族複素環基は、複数個、結合したものでもよい。
芳香族炭化水素環基としては、炭素数6〜30が好ましく、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環などの、6員環の単環又は2〜5縮合環の1価または2価の基が挙げられる。
芳香族複素環基としては、炭素数3〜30が好ましく、例えば、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シンノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環などの、5又は6員環の単環又は2〜4縮合環の1価または2価の基が挙げられる。
電荷輸送性が優れる点、耐久性に優れる点から、芳香族炭化水素環基が好ましく、中でもベンゼン環、フルオレン環の2価の基、すなわち、フェニレン基、フルオレニレン基がより好ましく、1,3−フェニレン基、1,4−フェニレン基、2,7−フルオレニル基が更により好ましい。
芳香族炭化水素基及び芳香族複素環基が複数個、結合した基である場合、電荷輸送性が優れる点、耐久性に優れる点から、それらの基が2〜6個連結されていることが好ましい。連結される芳香族炭化水素基及び芳香族複素環基は、1種であっても、複数種であってもよい。
また、芳香族炭化水素基及び芳香族複素環基が複数個、結合した基である場合、連結基を介して結合していてもよい。この場合、連結基としては、−CR−、−O−、−CO−、−NR−、及び−S−からなる群より選ばれる基、及びそれらを2〜10連結した基が好ましい。また、2以上連結される場合、連結基は1種であっても、複数種であってもよい。ここでR〜Rは、各々独立して、水素原子又は置換基を有していてもよい炭素数1〜24のアルキル基、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい芳香族複素環基を表す。連結基としては、−CR−、及び、2〜6連結した−CR−が特に好ましく、−CR−がより好ましい。
芳香族炭化水素環基、芳香族複素環基が有してもよい置換基としては、本重合体の特性を著しく低減させないものであれば特に制限はないが、例えば、下記置換基群Zから選ばれる基が挙げられ、アルキル基、アルコキシ基、芳香族炭化水素環基、芳香族複素環基が好ましく、アルキル基がより好ましい。
[置換基群Z]
例えばメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、tert−ブチル基、n−ヘキシル基、シクロヘキシル基、ドデシル基などの、炭素数が通常1以上であり、通常24以下、好ましくは12以下である、直鎖、分岐、又は環状のアルキル基;
例えばビニル基等の、炭素数が通常2以上であり、通常24以下、好ましくは12以下であるアルケニル基;
例えばエチニル基等の、炭素数が通常2以上であり、通常24以下、好ましくは12以下であるアルキニル基;
例えばメトキシ基、エトキシ基等の、炭素数が通常1以上であり、通常24以下、好ましくは12以下であるアルコキシ基;
例えばフェノキシ基、ナフトキシ基、ピリジルオキシ基等の、炭素数が通常4以上、好ましくは5以上であり、通常36以下、好ましくは24であるアリールオキシ基;
例えばメトキシカルボニル基、エトキシカルボニル基等の、炭素数が通常2以上であり、通常24以下、好ましくは12以下であるアルコキシカルボニル基;
例えばジメチルアミノ基、ジエチルアミノ基等の、炭素数が通常2以上であり、通常24以下、好ましくは12以下であるジアルキルアミノ基;
例えばジフェニルアミノ基、ジトリルアミノ基、N−カルバゾリル基等の、炭素数が通常10以上、好ましくは12以上であり、通常36以下、好ましくは24以下のジアリールアミノ基;
例えばフェニルメチルアミノ基等の、炭素数が通常7以上であり、通常36以下、好ましくは24以下であるアリールアルキルアミノ基;
例えばアセチル基、ベンゾイル基等の、炭素数が通常2以上であり、通常24以下、好ましくは12以下であるアシル基;
例えばフッ素原子、塩素原子等のハロゲン原子;
例えばトリフルオロメチル基等の、炭素数が通常1以上であり、通常12以下、好ましくは6以下のハロアルキル基;
例えばメチルチオ基、エチルチオ基等の、炭素数が通常1以上であり、通常24以下、好ましくは12以下のアルキルチオ基;
例えばフェニルチオ基、ナフチルチオ基、ピリジルチオ基等の、炭素数が通常4以上、好ましくは5以上であり、通常36以下、好ましくは24以下であるアリールチオ基;
例えばトリメチルシリル基、トリフェニルシリル基等の、炭素数が通常2以上、好ましくは3以上であり、通常36以下、好ましくは24以下であるシリル基;
例えばトリメチルシロキシ基、トリフェニルシロキシ基等の、炭素数が通常2以上、好ましくは3以上であり、通常36以下、好ましくは24以下であるシロキシ基;
シアノ基;
例えばフェニル基、ナフチル基等の、炭素数が通常6以上であり、通常36以下、好ましくは24以下である芳香族炭化水素環基;
例えばチエニル基、ピリジル基等の、炭素数が通常3以上、好ましくは4以上であり、通常36以下、好ましくは24以下である芳香族複素環基。
これらの置換基の中でも、溶解性の点から、炭素数1〜12のアルキル基及び炭素数1〜12のアルコキシ基が好ましい。
また、上記各置換基がさらに置換基を有していてもよく、その例としては前記[置換基群Z]の項に例示した基から選択される。
[R
式(3)において、Rは、水素原子、置換基を有していてもよい1〜24のアルキル基、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。アルキル基は、直鎖、分岐、又は環状の、炭素数が通常1以上であり、通常24以下のアルキル基であり、好ましくは12以下である。具体的には、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、tert−ブチル基、n−ヘキシル基、シクロヘキシル基、ドデシル基があげられる。Rが置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基である場合、具体例、好ましい例は、Ar、Ar11、Ar12、Ar16及びAr17と同様である。
式(2)〜(4)において、p、q及びrはそれぞれ、0以上、3以下の整数である。p、q及びrはそれぞれ、2以下が好ましい。
[重合体の分子量]
本発明の重合体の重量平均分子量(Mw)は、通常3,000,000以下、好ましくは1,000,000以下、より好ましくは500,000以下、さらに好ましくは200,000以下であり、また通常2,500以上、好ましくは5,000以上、より好ましくは10,000以上、さらに好ましくは20,000以上であり、特に好ましくは30,000以上である。
重合体の重量平均分子量が上記上限値を超えると、溶媒に対する溶解性が低下するため、成膜性が損なわれるおそれがある。また、重合体の重量平均分子量が上記下限値を下回ると、重合体のガラス転移温度、融点及び気化温度が低下するため、耐熱性が低下する場合がある。
また、本発明の重合体における数平均分子量(Mn)は、通常2,500,000以下、好ましくは750,000以下、より好ましくは400,000以下であり、また通常2,000以上、好ましくは4,000以上、より好ましくは8,000以上、さらに好ましくは20,000以上である。
さらに、本発明の重合体における分散度(Mw/Mn)は、好ましくは3.5以下であり、さらに好ましくは2.5以下、特に好ましくは2.0以下である。尚、分散度の下限値は1である。該重合体の分散度が、上記上限値以下であると、溶媒に対する溶解性や電荷輸送能が良好である。
本発明において、本発明の重合体は、重量平均分子量が20,000以上であり、かつ分散度が2.5以下であることが好ましい。重量平均分子量と分散度が前記範囲を満たす重合体は低分子量の成分が少なく、十分に不溶化しやすいため好ましい。
通常、重合体の重量平均分子量及び分散度はSEC(サイズ排除クロマトグラフィー)測定により決定される。SEC測定では高分子量成分ほど溶出時間が短く、低分子量成分ほど溶出時間が長くなるが、分子量既知のポリスチレン(標準試料)の溶出時間から算出した校正曲線を用いて、サンプルの溶出時間を分子量に換算することによって、重量平均分子量及び分散度が算出される。
[架橋性基の数]
本発明の重合体が有する架橋性基は、架橋することにより十分に不溶化し、その上に湿式成膜法で他の層を形成しやすくなる点では、多い方が好ましい。一方で、形成された層にクラックが生じ難く、未反応架橋性基が残りにくく、有機電界発光素子が長寿命になりやすい点では、架橋性基は少ないことが好ましい。
本発明の重合体における、1つの重合体鎖の中に存在する架橋性基は、通常平均1以上、好ましくは平均2以上、また通常200以下、好ましくは100以下である。
また、本発明の重合体が有する架橋性基の数は、重合体の分子量1000あたりの数で表すことができる。重合体の分子量1000あたりの架橋性基の数は、重合体からその末端基を除いて、合成時の仕込みモノマーのモル比と、構造式から算出することができる。例えば、後述の実施例で合成した重合体1の場合で説明すると、重合体1において、末端基を除いた繰り返し単位の分子量は平均840.71であり、また架橋性基は、1繰り返し単位当たり平均0.111個である。これを単純比例により計算すると、分子量1000あたりの架橋性基の数は、0.13個と算出される。
Figure 0006551394
本発明の重合体が有する架橋性基の数を、重合体の分子量1000あたりの数で表した場合、分子量1000あたり、通常3.0個以下、好ましくは2.0個以下、さらに好ましくは1.0個以下、また通常0.01個以上、好ましくは0.05個以上である。
架橋性基の数が上記範囲内であると、クラックなどが起き難く、平坦な膜が得られ易い。また、架橋密度が適度であるため、架橋反応後の層内に残る未反応の架橋性基が少なく、得られる素子の寿命に影響し難い。
さらに、架橋反応後の、有機溶媒に対する難溶性が十分であるため、湿式成膜法での多層積層構造が形成し易い。
[具体例]
以下に、本発明の重合体の具体例を列挙する。
これらの重合体は、ランダム共重合体、交互共重合体、ブロック共重合体、又はグラフト共重合体などのいずれでもよく、単量体の配列順序には限定されない。
Figure 0006551394
Figure 0006551394
本発明の重合体は、樹脂からなる絶縁膜を有する有機電界発光素子に用いることが好ましい。その理由は、樹脂からなる絶縁膜は比較的耐熱性が低いため、有機電界発光素子を作製する際の温度が低い方が樹脂からなる絶縁膜の分解やガスの放出が抑えられるためである。ここで、樹脂からなる絶縁膜とは、基板上の陽極、補助電極、何らかの凹凸を覆う平坦化膜、または電極を区画する膜などであり、画素や発光領域を区画する隔壁などが含まれる。何らかの凹凸とは、例えば、光を散乱するための粒子含有層や、表示装置に設けられるTFTなどである。絶縁膜用樹脂としては、ポリイミド系樹脂、ポリオレフィン系樹脂、アクリル系樹脂が好ましい。また、本発明の重合体は、樹脂からなる絶縁膜が用いられている有機EL表示装置用の有機電界発光素子に用いることがより好ましい。
<合成方法>
本発明の重合体中の、式(1)で表される架橋性基を有する単量体は、式(5)で表されるハロゲン化物を経由して合成することができる。
Figure 0006551394
(式(5)中、Xはハロゲン原子を表す。)
式(5)において、ハロゲン原子としては、I、Br、Cl、F等が挙げられ、次の反応が進行しやすい観点からI、Br、Clが好ましい。
式(5)で表されるハロゲン化物は、下記反応式(8)のように、1,2−ジヒドロシクロブタ〔a〕ナフタレンに、N−ブロモコハク酸イミド、N−ブロモフタル酸イミドなどのカルボン酸イミドのN−ハロゲン化物を作用させることで、4−位が選択的にハロゲン化され、効率よく得ることができる。
Figure 0006551394
(上記反応式中、Xはハロゲン原子を表す。)
従来の架橋性基であるベンゾシクロブテンのハロゲン化物を得る方法としては、下記反応式(9)のように、臭素が用いられてきた(欧州特許第346959号、J.Am.Chem.Soc.2011年,133号,49巻,19864頁)。しかし、1,2−ジヒドロシクロブタ〔a〕ナフタレンに臭素を作用させた場合、4−位以外も臭素化されてしまうため、目的物を効率良く得ることができない。
Figure 0006551394
式(5)で表されるハロゲン化物から、単量体へ誘導する方法としては、公知のカップリング手法が適用可能である。例えば、下記式のようにSuzuki反応によって合成される。
Figure 0006551394
(上記反応式中、Xはハロゲン原子を示し、Gは、ポリマー化の際に反応をする基を表し、BRはボロン酸基又はボロン酸エステル基を表し、Ar、Ar及びAr13は、各々独立して、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。)
Figure 0006551394
(上記反応式中、Xはハロゲン原子を示し、Gは、ポリマー化の際に反応をする基を表し、BRはボロン酸基又はボロン酸エステル基を表し、Rは、水素原子、アルキル基、置換基を有してもよい芳香族炭化水素基環基又は置換基を有してもよい芳香族複素環基環基を表す。Ar、Ar及びAr10は、各々独立して、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。)
本発明の重合体の製造方法は特には制限されず、本発明の重合体が得られる限り任意である。例えば、Suzuki反応による重合方法、Grignard反応による重合方法、Yamamoto反応による重合方法、Ullmann反応による重合方法、Buchwald−Hartwig反応による重合方法等などによって製造できる。
Ullmann反応による重合方法及びBuchwald−Hartwig反応による重合方法の場合、例えば、式(1a)で表される1級アミノアリール(Arは上記と同義である)と、式(2a)で表されるジハロゲン化アリール(XはI、Br、Cl、F等のハロゲン原子を表し、Ar、Ar及びArは上記と同義であり、pは0以上、3以下の整数である。)を反応させることにより、本発明の重合体が合成される。
Figure 0006551394
また、式(3a)で表されるジハロゲン化アリール(XはI、Br、Cl、F等のハロゲン原子を表し、R、Ar、Ar及びAr10は上記と同義である。)と、式(4a)で表される1級又は2級アミノアリール(Ar、Ar11、Ar12は上記と同義であり、qは0以上、3以下の整数である。)を反応させることにより、本発明の重合体が合成される。
Figure 0006551394
なお前記の重合方法において、通常、N−アリール結合を形成する反応は、例えば炭酸カリウム、tert−ブトキシナトリウム、トリエチルアミン等の塩基存在下で行う。また、例えば銅やパラジウム錯体等の遷移金属触媒存在下で行うこともできる。
Suzuki反応のよる重合方法の場合、例えば、式(1b)で表されるホウ素誘導体(BRはボロン酸基または又はボロン酸エステル基を表し、Ar、Ar及びAr13は上記と同義である。)と式(2b)で表されるジハロゲン化アリール(XはI、Br、Cl、F等のハロゲン原子を表し、Ar、Ar及びArは上記と同義であり、pは0以上、3以下の整数である。)を反応させることにより、本発明の重合体が合成される。
Figure 0006551394
また、式(3b)で表されるホウ素誘導体(BRはボロン酸基または又はボロン酸エステル基を表し、R、Ar、Ar及びAr10は上記と同義である。)と式(4b)で表されるジハロゲン化アリール(XはI、Br、Cl、F等のハロゲン原子を表し、Ar、Ar10及びAr12は上記と同義であり、pは0以上、3以下の整数である。)を反応させることにより、本発明の重合体が合成される。
Figure 0006551394
なお前記の重合方法において、通常、ホウ素誘導体とジハロゲン化物との反応工程は、例えば炭酸カリウム、tert−ブトキシナトリウム、トリエチルアミン等の塩基存在下で行う。また、必要に応じて、例えば銅やパラジウム錯体等の遷移金属触媒存在下で行うこともできる。さらにホウ素誘導体との反応工程では、例えば、炭酸カリウム、りん酸カリウム、tert−ブトキシナトリウム、トリエチルアミン等の塩基、及び、パラジウム錯体等の遷移金属触媒の存在下で行うことができる。
また、本発明の電荷輸送性ポリマーは、上述した重合方法以外にも、日本国特開2001−223084号公報に記載の重合方法、日本国特開2003−213002号公報に記載の重合方法、日本国特開2004−2740号公報に記載の重合方法、さらには、不飽和二重結合を有する化合物のラジカル重合、エステル結合やアミド結合を形成する反応による逐次重合などを用いることができる。
その他、公知のカップリング反応が使用可能である。公知のカップリング手法としては、具体的には、「Palladium in Heterocyclic Chemistry:A guide for the Synthetic Chemist」(第二版、2002、Jie Jack Li and Gordon W.Gribble、Pergamon社)、「遷移金属が拓く有機合成 その多彩な反応形式と最新の成果」(1997年、辻二郎、化学同人社)、「ボルハルト・ショアー現代有機化学 下」(2004年、K.P.C.Vollhardt、化学同人社)などに記載又は引用されている、ハロゲン化アリールとアリールボレートとのカップリング反応などの、環同士の結合(カップリング)反応を用いることができる。
なお、前記式(1)で表される部分構造は、前述したように、予め本発明の重合体の原料である単量体に結合させておき、これを重合することにより本発明の重合体を得てもよいし、また、本発明の重合体の主鎖にあたる部分を合成した後に、所望の部分に式(1)で表される部分構造を結合してもよい。
化合物の精製方法としては、「分離精製技術ハンドブック」(1993年、(財)日本化学会編)、「化学変換法による微量成分及び難精製物質の高度分離」(1988年、(株)アイ ピー シー発行)、あるいは「実験化学講座(第4版)1」(1990年、(財)日本化学会編)の「分離と精製」の項に記載の方法をはじめとし、公知の技術を利用可能である。具体的には、抽出(懸濁洗浄、煮沸洗浄、超音波洗浄、酸塩基洗浄を含む)、吸着、吸蔵、融解、晶析(溶剤からの再結晶、再沈殿を含む)、蒸留(常圧蒸留、減圧蒸留)、蒸発、昇華(常圧昇華、減圧昇華)、イオン交換、透析、濾過、限外濾過、逆浸透、圧浸透、帯域溶解、電気泳動、遠心分離、浮上分離、沈降分離、磁気分離、各種クロマトグラフィー(形状分類:カラム、ペーパー、薄層、キャピラリー、移動相分類:ガス、液体、ミセル、超臨界流体。分離機構:吸着、分配、イオン交換、分子ふるい、キレート、ゲル濾過、排除、アフィニティー)などが挙げられる。
生成物の確認や純度の分析方法としては、ガスクロマトグラフ(GC)、高速液体クロマトグラフ(HPLC)、高速アミノ酸分析計(有機化合物)、キャピラリー電気泳動測定(CE)、サイズ排除クロマトグラフ(SEC)、ゲル浸透クロマトグラフ(GPC)、交差分別クロマトグラフ(CFC)、質量分析(MS、LC/MS,GC/MS,MS/MS)、核磁気共鳴装置(NMR(HNMR,13CNMR))、フーリエ変換赤外分光高度計(FT−IR)、紫外可視近赤外分光高度計(UV.VIS,NIR)、電子スピン共鳴装置(ESR)、透過型電子顕微鏡(TEM-EDX)電子線マイクロアナライザー(EPMA)、金属元素分析(イオンクロマトグラフ、誘導結合プラズマ−発光分光(ICP−AES)原子吸光分析(AAS)、蛍光X線分析装置(XRF))、非金属元素分析、微量成分分析(ICP−MS,GF−AAS,GD−MS)等を必要に応じ、適用可能である。
[有機電界発光素子用組成物]
本発明の有機電界発光素子用組成物は、本発明の重合体を含有するものである。なお、本発明の有機電界発光素子用組成物は、本発明の重合体を1種類含有するものであってもよく、2種類以上を任意の組み合わせ及び任意の比率で含有するものであってもよい。
{重合体の含有量}
本発明の有機電界発光素子用組成物中の本発明の重合体の含有量は、通常0.01〜70質量%、好ましくは0.1〜60質量%、さらに好ましくは0.5〜50質量%である。
上記範囲内であると、形成した有機層に欠陥が生じ難く、また膜厚ムラが生じ難いため好ましい。
本発明における有機電界発光素子用組成物は、本発明に係る重合体以外に溶媒等を含むことができる。
{溶媒}
本発明の有機電界発光素子用組成物は、通常、溶媒を含有する。この溶媒は、本発明の重合体を溶解するものが好ましい。具体的には、本発明の重合体を、室温で通常0.05質量%以上、好ましくは0.5質量%以上、さらに好ましくは1質量%以上溶解する溶媒が好適である。
溶媒の具体例としては、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族系溶媒;1,2−ジクロロエタン、クロロベンゼン、o−ジクロロベンゼン等の含ハロゲン溶媒;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール−1−モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル、1,2−ジメトキシベンゼン、1,3−ジメトキシベンゼン、アニソール、フェネトール、2−メトキシトルエン、3−メトキシトルエン、4−メトキシトルエン、2,3−ジメチルアニソール、2,4−ジメチルアニソール等の芳香族エーテル等のエーテル系溶媒;酢酸エチル、酢酸n−ブチル、乳酸エチル、乳酸n−ブチル等の脂肪族エステル;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸イソプロピル、安息香酸プロピル、安息香酸n−ブチル等の芳香族エステル等のエステル系溶媒;などの有機溶媒、その他、後述の正孔注入層形成用組成物や正孔輸送層形成用組成物に用いられる有機溶媒が挙げられる。
なお、溶媒は、1種類を用いてもよく、2種類以上を任意の組み合わせ及び任意の比率で併用してもよい。
中でも、本発明の有機電界発光素子用組成物に含有される溶媒としては、20℃における表面張力が、通常40dyn/cm未満、好ましくは36dyn/cm以下、より好ましくは33dyn/cm以下である溶媒が好ましい。
本発明の有機電界発光素子用組成物を用いて湿式成膜法により塗膜を形成し、本発明の重合体を架橋させて有機層を形成する場合、溶媒と下地の親和性が高いことが好ましい。これは、膜質の均一性が有機電界発光素子の発光の均一性及び安定性に大きく影響するためである。従って、湿式成膜法に用いる有機電界発光素子用組成物には、よりレベリング性が高く均一な塗膜を形成しうるように表面張力が低いことが求められる。そこで前記のような低い表面張力を有する溶媒を使用することにより、本発明の重合体を含有する均一な層を形成することができ、ひいては均一な架橋層を形成することができることから、好ましい。
低表面張力の低い溶媒の具体例としては、前述したトルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族系溶媒、安息香酸エチル等のエステル系溶媒、アニソール等のエーテル系溶媒、トリフルオロメトキシアニソール、ペンタフルオロメトキシベンゼン、3−(トリフルオロメチル)アニソール、エチル(ペンタフルオロベンゾエート)等が挙げられる。
また一方で、本発明の有機電界発光素子用組成物に含有される溶媒としては、25℃における蒸気圧が、通常10mmHg以下、好ましくは5mmHg以下であり、通常0.1mmHg以上であるものが好ましい。このような溶媒を使用することにより、有機電界発光素子を湿式成膜法により製造するプロセスに好適で、本発明の重合体の性質に適した有機電界発光素子用組成物を調製することができる。
このような溶媒の具体例としては、前述したトルエン、キシレン、メシチレン等の芳香族系溶媒、エーテル系溶媒及びエステル系溶媒が挙げられる。
ところで、水分は有機電界発光素子の性能劣化を引き起こす可能性があり、中でも特に連続駆動時の輝度低下を促進する可能性がある。そこで、湿式成膜中に残留する水分をできる限り低減するために、前記の溶媒の中でも、25℃における水の溶解度が1質量%以下であるものが好ましく、0.1質量%以下である溶媒がより好ましい。
本発明の有機電界発光素子用組成物に含有される溶媒の含有量は、通常10質量%以上、好ましくは30質量%以上、より好ましくは50質量%以上、特に好ましくは80質量%以上である。溶媒の含有量が上記下限以上であることにより、形成される層の平坦さ及び均一さを良好にすることができる。
<電子受容性化合物>
本発明の有機電界発光素子用組成物は、正孔注入層を形成するために用いる場合、低抵抗化する点で、さらに電子受容性化合物を含有することが好ましい。
電子受容性化合物としては、酸化力を有し、本発明の重合体から一電子受容する能力を有する化合物が好ましい。具体的には、電子親和力が4eV以上である化合物が好ましく、5eV以上である化合物がさらに好ましい。
このような電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、及び、アリールアミンとルイス酸との塩よりなる群から選ばれる1種又は2種以上の化合物等が挙げられる。
具体的には、4−イソプロピル−4’−メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラート、トリフェニルスルホニウムテトラフルオロボラート等の有機基の置換したオニウム塩(国際公開第2005/089024号);塩化鉄(III)(日本国特開平11−251067号公報)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物;トリス(ペンタフルオロフェニル)ボラン(日本国特開2003−31365号公報)等の芳香族ホウ素化合物;フラーレン誘導体及びヨウ素等が挙げられる。
本発明の有機電界発光素子用組成物は、上記のような電子受容性化合物の1種を単独で含んでいてもよく、また2種以上を任意の組み合わせ、及び比率で含んでいてもよい。
本発明の有機電界発光素子用組成物が電子受容性化合物を含む場合、本発明の有機電界発光素子用組成物の電子受容性化合物の含有量は通常0.0005質量%以上、好ましくは0.001質量%以上で、通常20質量%以下、好ましくは10質量%以下である。また、有機電界発光素子用組成物中の本発明の重合体に対する電子受容性化合物の割合は、通常0.5質量%以上、好ましくは1質量%以上、より好ましくは3質量%以上で、通常80質量%以下、好ましくは60質量%以下、さらに好ましくは40質量%以下である。
有機電界発光素子用組成物中の電子受容性化合物の含有量が上記下限以上であると重合体から電子受容体が電子を受容し、形成した有機層が低抵抗化するため好ましく、上記上限以下であると形成した有機層に欠陥が生じ難く、また膜厚ムラが生じ難いため好ましい。
また、本発明の有機電界発光素子用組成物は更にカチオンラジカル化合物を含有していてもよい。
カチオンラジカル化合物としては、正孔輸送性化合物から一電子取り除いた化学種であるカチオンラジカルと、対アニオンとからなるイオン化合物が好ましい。但し、カチオンラジカルが正孔輸送性の高分子化合物由来である場合、カチオンラジカルは高分子化合物の繰り返し単位から一電子取り除いた構造となる。
カチオンラジカルとしては、正孔輸送性化合物として前述した化合物から一電子取り除いた化学種であることが好ましい。正孔輸送性化合物として好ましい化合物から一電子取り除いた化学種であることが、非晶質性、可視光の透過率、耐熱性、及び溶解性などの点から好適である。
ここで、カチオンラジカル化合物は、前述の正孔輸送性化合物と前述の電子受容性化合物を混合することにより生成させることができる。即ち、前述の正孔輸送性化合物と前述の電子受容性化合物とを混合することにより、正孔輸送性化合物から電子受容性化合物へと電子移動が起こり、正孔輸送性化合物のカチオンラジカルと対アニオンとからなるカチオンイオン化合物が生成する。
本発明の有機電界発光素子用組成物がカチオンラジカル化合物を含む場合、本発明の有機電界発光素子用組成物のカチオンラジカル化合物の含有量は通常0.0005質量%以上、好ましくは0.001質量%以上で、通常40質量%以下、好ましくは20質量%以下である。カチオンラジカル化合物の含有量が上記下限以上であると形成した有機層が低抵抗化するため好ましく、上記上限以下であると形成した有機層に欠陥が生じ難く、また膜厚ムラが生じ難いため好ましい。
[有機電界発光素子]
本発明の有機電界発光素子は、基板上に、陽極及び陰極と、該陽極と該陰極の間に有機層を有する有機電界発光素子において、該有機層が、本発明の重合体を含む本発明の有機電界発光素子用組成物を用いて湿式成膜法により形成された層であることが好ましい。
本発明の有機電界発光素子において、湿式成膜法により形成された層は、正孔注入層及び正孔輸送層の少なくとも一方であることが好ましく、特に、この有機層が正孔注入層、正孔輸送層及び発光層を備え、これら正孔注入層、正孔輸送層及び発光層の全てが湿式成膜法により形成された層であることが好ましい。
本発明において湿式成膜法とは、成膜方法、即ち、塗布方法として、例えば、スピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、インクジェット法、ノズルプリンティング法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法等の湿式で成膜させる方法を採用し、この塗布膜を乾燥させて膜形成を行う方法をいう。これらの成膜方法の中でも、スピンコート法、スプレーコート法、インクジェット法、ノズルプリンティング法などが好ましい。
以下に、本発明の有機電界発光素子の層構成及びその一般的形成方法等の実施の形態の一例を、図1を参照して説明する。
図1は本発明の有機電界発光素子10の構造例を示す断面の模式図であり、図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は正孔阻止層、7は電子輸送層、8は電子注入層、9は陰極を各々表す。これらの構造に適用する材料は、公知の材料を適用することができ、特に制限はないが、各層に関しての代表的な材料や製法を一例として以下に記載する。また、公報や論文等を引用している場合、当該内容を当業者の常識の範囲で適宜、適用、応用することができるものとする。
{基板}
基板1は、有機電界発光素子の支持体となるものであり、通常、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシート等が用いられる。これらのうち、ガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明な合成樹脂の板が好ましい。基板は、外気による有機電界発光素子の劣化が起こり難いことからガスバリア性の高い材質とするのが好ましい。このため、特に合成樹脂製の基板等のようにガスバリア性の低い材質を用いる場合は、基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を上げるのが好ましい。
{陽極}
陽極2は、発光層5側の層に正孔を注入する機能を担う。
陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属;インジウム及び/又はスズの酸化物等の金属酸化物;ヨウ化銅等のハロゲン化金属;カーボンブラック及びポリ(3−メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。
陽極2の形成は、通常、スパッタリング法、真空蒸着法等の乾式法により行われることが多い。また、銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等を用いて陽極を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板上に塗布することにより形成することもできる。また、導電性高分子の場合は、電解重合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布して陽極を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。
陽極2は、通常、単層構造であるが、適宜、積層構造としてもよい。陽極2が積層構造である場合、1層目の陽極上に異なる導電材料を積層してもよい。
陽極2の厚みは、必要とされる透明性と材質等に応じて、決めればよい。特に高い透明性が必要とされる場合は、可視光の透過率が60%以上となる厚みが好ましく、80%以上となる厚みが更に好ましい。陽極2の厚みは、通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは500nm以下とするのが好ましい。一方、透明性が不要な場合は、陽極2の厚みは必要な強度等に応じて任意の厚みとすればよく、この場合、陽極2は基板と同一の厚みでもよい。
陽極2の表面に他の層を成膜する場合は、成膜前に、紫外線/オゾン、酸素プラズマ、アルゴンプラズマ等の処理を施すことにより、陽極2上の不純物を除去すると共に、そのイオン化ポテンシャルを調整して正孔注入性を向上させておくことが好ましい。
{正孔注入層}
陽極2側から発光層5側に正孔を輸送する機能を担う層は、通常、正孔注入輸送層又は正孔輸送層と呼ばれる。そして、陽極2側から発光層5側に正孔を輸送する機能を担う層が2層以上ある場合に、より陽極側に近い方の層を正孔注入層3と呼ぶことがある。正孔注入層3は、陽極2から発光層5側に正孔を輸送する機能を強化する点で、形成することが好ましい。正孔注入層3を形成する場合、通常、正孔注入層3は、陽極2上に形成される。
正孔注入層3の膜厚は、通常1nm以上、好ましくは5nm以上、また、通常1000nm以下、好ましくは500nm以下である。
正孔注入層の形成方法は、真空蒸着法でも、湿式成膜法でもよい。成膜性が優れる点では、湿式成膜法により形成することが好ましい。
正孔注入層3は、正孔輸送性化合物を含むことが好ましく、正孔輸送性化合物と電子受容性化合物とを含むことがより好ましい。更には、正孔注入層中にカチオンラジカル化合物を含むことが好ましく、カチオンラジカル化合物と正孔輸送性化合物とを含むことが特に好ましい。
以下に、一般的な正孔注入層の形成方法について説明するが、本発明の有機電界発光素子において、正孔注入層は、本発明の有機電界発光素子用組成物を用いて湿式成膜法により形成されることが好ましい。
<正孔輸送性化合物>
正孔注入層形成用組成物は、通常、正孔注入層3となる正孔輸送性化合物を含有する。また、湿式成膜法の場合は、通常、更に溶媒も含有する。正孔注入層形成用組成物は、正孔輸送性が高く、注入された正孔を効率よく輸送できるのが好ましい。このため、正孔移動度が大きく、トラップとなる不純物が製造時や使用時等に発生し難いことが好ましい。また、安定性に優れ、イオン化ポテンシャルが小さく、可視光に対する透明性が高いことが好ましい。特に、正孔注入層が発光層と接する場合は、発光層からの発光を消光しないものや発光層とエキサイプレックスを形成して、発光効率を低下させないものが好ましい。
正孔注入層3には、正孔輸送性化合物の酸化により、正孔注入層の導電率を向上させることができるため、前述の電子受容性化合物や、前述のカチオンラジカル化合物を含有していることが好ましい。
PEDOT/PSS(Adv.Mater.,2000年,12巻,481頁)やエメラルジン塩酸塩(J.Phys.Chem.,1990年,94巻,7716頁)等の高分子化合物由来のカチオンラジカル化合物は、酸化重合(脱水素重合)することによっても生成する。
ここでいう酸化重合は、モノマーを酸性溶液中で、ペルオキソ二硫酸塩等を用いて化学的に、又は、電気化学的に酸化するものである。この酸化重合(脱水素重合)の場合、モノマーが酸化されることにより高分子化されるとともに、酸性溶液由来のアニオンを対アニオンとする、高分子の繰り返し単位から一電子取り除かれたカチオンラジカルが生成する。
<湿式成膜法による正孔注入層の形成>
湿式成膜法により正孔注入層3を形成する場合、通常、正孔注入層となる材料を可溶な溶媒(正孔注入層用溶媒)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を正孔注入層の下層に該当する層(通常は、陽極)上に塗布して成膜し、乾燥させることにより形成する。
正孔注入層形成用組成物中における正孔輸送性化合物の濃度は、本発明の効果を著しく損なわない限り任意であるが、膜厚の均一性の点では、低い方が好ましく、また、一方、正孔注入層に欠陥が生じ難い点では、高い方が好ましい。具体的には、0.01質量%以上であるのが好ましく、0.1質量%以上であるのが更に好ましく、0.5質量%以上であるのが特に好ましく、また、一方、70質量%以下であるのが好ましく、60質量%以下であるのが更に好ましく、50質量%以下であるのが特に好ましい。
溶媒としては、例えば、エーテル系溶媒、エステル系溶媒、芳香族炭化水素系溶媒、アミド系溶媒などが挙げられる。
エーテル系溶媒としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール−1−モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル及び1,2−ジメトキシベンゼン、1,3−ジメトキシベンゼン、アニソール、フェネトール、2−メトキシトルエン、3−メトキシトルエン、4−メトキシトルエン、2,3−ジメチルアニソール、2,4−ジメチルアニソール等の芳香族エーテル等が挙げられる。
エステル系溶媒としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n−ブチル等の芳香族エステル等が挙げられる。
芳香族炭化水素系溶媒としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3−イソプロピルビフェニル、1,2,3,4−テトラメチルベンゼン、1,4−ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレン等が挙げられる。アミド系溶媒としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等が挙げられる。
これらの他、ジメチルスルホキシド等も用いることができる。
正孔注入層3の湿式成膜法による形成は、通常、正孔注入層形成用組成物を調製後に、これを、正孔注入層3の下層に該当する層(通常は、陽極2)上に塗布成膜し、乾燥することにより行われる。
正孔注入層3は、通常、成膜後に、加熱や減圧乾燥等により塗布膜を乾燥させる。例えば、日本国特開2009−212510公報等に開示されている従来の方法を適用することができる。
<真空蒸着法による正孔注入層の形成>
真空蒸着法により正孔注入層3を形成する場合には、通常、正孔注入層3の構成材料(前述の正孔輸送性化合物、電子受容性化合物等)の1種類又は2種類以上を真空容器内に設置された坩堝に入れ(2種類以上の材料を用いる場合は、通常各々を別々の坩堝に入れ)、真空容器内を真空ポンプで10−4Pa程度まで排気した後、坩堝を加熱して(2種類以上の材料を用いる場合は、通常各々の坩堝を加熱して)、坩堝内の材料の蒸発量を制御しながら蒸発させ(2種類以上の材料を用いる場合は、通常各々独立に蒸発量を制御しながら蒸発させ)、坩堝に向き合って置かれた基板上の陽極上に正孔注入層を形成する。なお、2種類以上の材料を用いる場合は、それらの混合物を坩堝に入れ、加熱、蒸発させて正孔注入層を形成することもできる。真空蒸着法は、従来の方法を適用することができる。
なお、正孔注入層3は、後述の正孔輸送層4と同様に架橋されていてもよい。
{正孔輸送層}
正孔輸送層4は、陽極2側から発光層5側に正孔を輸送する機能を担う層である。正孔輸送層4は、本発明の有機電界発光素子では、必須の層では無いが、陽極2から発光層5に正孔を輸送する機能を強化する点では、この層を形成することが好ましい。正孔輸送層4を形成する場合、通常、正孔輸送層4は、陽極2と発光層5の間に形成される。また、上述の正孔注入層3がある場合は、正孔注入層3と発光層5の間に形成される。
正孔輸送層4の膜厚は、通常5nm以上、好ましくは10nm以上であり、また、一方、通常300nm以下、好ましくは100nm以下である。
正孔輸送層4の形成方法は、真空蒸着法でも、湿式成膜法でもよい。成膜性が優れる点では、湿式成膜法により形成することが好ましい。
以下に一般的な正孔輸送層の形成方法について説明するが、本発明の有機電界発光素子において、正孔輸送層は、本発明の有機電界発光素子用組成物を用いて湿式成膜法により形成されることが好ましい。
正孔輸送層4は、通常、正孔輸送性化合物を含有する。正孔輸送層4に含まれる正孔輸送性化合物としては、特に、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルで代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(日本国特開平5−234681号公報)、4,4’,4’’−トリス(1−ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン化合物(J.Lumin.,72−74巻、985頁、1997年)、トリフェニルアミンの四量体から成る芳香族アミン化合物(Chem.Commun.,2175頁、1996年)、2,2’,7,7’−テトラキス−(ジフェニルアミノ)−9,9’−スピロビフルオレン等のスピロ化合物(Synth.Metals,91巻、209頁、1997年)、4,4’−N,N’−ジカルバゾールビフェニルなどのカルバゾール誘導体などが挙げられる。また、例えばポリビニルカルバゾール、ポリビニルトリフェニルアミン(日本国特開平7−53953号公報)、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン(Polym.Adv.Tech.,7巻、33頁、1996年)等も好ましく使用できる。
<湿式成膜法による正孔輸送層の形成>
湿式成膜法で正孔輸送層を形成する場合は、通常、上述の正孔注入層を湿式成膜法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに正孔輸送層形成用組成物を用いて形成させる。
湿式成膜法で正孔輸送層を形成する場合は、通常、正孔輸送層形成用組成物は、更に溶媒を含有する。正孔輸送層形成用組成物に用いる溶媒は、上述の正孔注入層形成用組成物で用いる溶媒と同様の溶媒を使用することができる。
正孔輸送層形成用組成物中における正孔輸送性化合物の濃度は、正孔注入層形成用組成物中における正孔輸送性化合物の濃度と同様の範囲とすることができる。
正孔輸送層の湿式成膜法による形成は、前述の正孔注入層成膜法と同様に行うことができる。
<真空蒸着法による正孔輸送層の形成>
真空蒸着法で正孔輸送層を形成する場合についても、通常、上述の正孔注入層を真空蒸着法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに正孔輸送層形成用組成物を用いて形成させることができる。蒸着時の真空度、蒸着速度及び温度などの成膜条件などは、前記正孔注入層の真空蒸着時と同様の条件で成膜することができる。
{発光層}
発光層5は、一対の電極間に電界が与えられた時に、陽極2から注入される正孔と陰極9から注入される電子が再結合することにより励起され、発光する機能を担う層である。発光層5は、陽極2と陰極9の間に形成される層であり、発光層は、陽極の上に正孔注入層がある場合は、正孔注入層と陰極の間に形成され、陽極の上に正孔輸送層がある場合は、正孔輸送層と陰極の間に形成される。
発光層5の膜厚は、本発明の効果を著しく損なわない限り任意であるが、膜に欠陥が生じ難い点では厚い方が好ましく、また、一方、薄い方が低駆動電圧としやすい点で好ましい。このため、3nm以上であるのが好ましく、5nm以上であるのが更に好ましく、また、一方、通常200nm以下であるのが好ましく、100nm以下であるのが更に好ましい。
発光層5は、少なくとも、発光の性質を有する材料(発光材料)を含有するとともに、好ましくは、電荷輸送性を有する材料(電荷輸送性材料)とを含有する。
<発光材料>
発光材料は、所望の発光波長で発光し、本発明の効果を損なわない限りは特に制限はなく、公知の発光材料を適用可能である。発光材料は、蛍光発光材料でも、燐光発光材料でもよいが、発光効率が良好である材料が好ましく、内部量子効率の観点から燐光発光材料が好ましい。
蛍光発光材料としては、例えば、以下の材料が挙げられる。
青色発光を与える蛍光発光材料(青色蛍光発光材料)としては、例えば、ナフタレン、ペリレン、ピレン、アントラセン、クマリン、クリセン、p−ビス(2−フェニルエテニル)ベンゼン及びそれらの誘導体等が挙げられる。
緑色発光を与える蛍光発光材料(緑色蛍光発光材料)としては、例えば、キナクリドン誘導体、クマリン誘導体、Al(CNO)などのアルミニウム錯体等が挙げられる。
黄色発光を与える蛍光発光材料(黄色蛍光発光材料)としては、例えば、ルブレン、ペリミドン誘導体等が挙げられる。
赤色発光を与える蛍光発光材料(赤色蛍光発光材料)としては、例えば、DCM(4−(dicyanomethylene)−2−methyl−6−(p−dimethylaminostyryl)−4H−pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン等が挙げられる。
また、燐光発光材料としては、例えば、長周期型周期表の第7〜11族から選ばれる金属を含む有機金属錯体等が挙げられる。周期表の第7〜11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金等が挙げられる。
有機金属錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基又はヘテロアリール基を表す。
好ましい燐光発光材料として、具体的には、例えば、トリス(2−フェニルピリジン)イリジウム、トリス(2−フェニルピリジン)ルテニウム、トリス(2−フェニルピリジン)パラジウム、ビス(2−フェニルピリジン)白金、トリス(2−フェニルピリジン)オスミウム、トリス(2−フェニルピリジン)レニウム等のフェニルピリジン錯体及びオクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリン等のポルフィリン錯体等が挙げられる。
高分子系の発光材料としては、ポリ(9,9−ジオクチルフルオレン−2,7−ジイル)、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(4,4’−(N−(4−sec−ブチルフェニル))ジフェニルアミン)]、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(1,4−ベンゾ−2{2,1’−3}−トリアゾール)]などのポリフルオレン系材料、ポリ[2−メトキシ−5−(2−ヘチルヘキシルオキシ)−1,4−フェニレンビニレン]などのポリフェニレンビニレン系材料が挙げられる。
<電荷輸送性材料>
電荷輸送性材料は、正電荷(正孔)又は負電荷(電子)輸送性を有する材料であり、本発明の効果を損なわない限り、特に制限はなく、公知の発光材料を適用可能である。
電荷輸送性材料は、従来、有機電界発光素子の発光層に用いられている化合物等を用いることができ、特に、発光層のホスト材料として使用されている化合物が好ましい。
電荷輸送性材料としては、具体的には、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、オリゴチオフェン系化合物、ポリチオフェン系化合物、ベンジルフェニル系化合物、フルオレン基で3級アミンを連結した化合物、ヒドラゾン系化合物、シラザン系化合物、シラナミン系化合物、ホスファミン系化合物、キナクリドン系化合物等の正孔注入層の正孔輸送性化合物として例示した化合物等が挙げられる他、アントラセン系化合物、ピレン系化合物、カルバゾール系化合物、ピリジン系化合物、フェナントロリン系化合物、オキサジアゾール系化合物、シロール系化合物等の電子輸送性化合物等が挙げられる。
また、例えば、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルで代表される2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(日本国特開平5−234681号公報)、4,4’,4’’−トリス(1−ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン系化合物(J.Lumin.,72−74巻、985頁、1997年)、トリフェニルアミンの四量体から成る芳香族アミン系化合物(Chem.Commun.,2175頁、1996年)、2,2’,7,7’−テトラキス−(ジフェニルアミノ)−9,9’−スピロビフルオレン等のフルオレン系化合物(Synth.Metals,91巻、209頁、1997年)、4,4’−N,N’−ジカルバゾールビフェニルなどのカルバゾール系化合物等の正孔輸送層の正孔輸送性化合物として例示した化合物等も好ましく用いることができる。また、この他、2−(4−ビフェニリル)−5−(p−ターシャルブチルフェニル)−1,3,4−オキサジアゾール(tBu−PBD)、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール(BND)などのオキサジアゾール系化合物、2,5−ビス(6’−(2’,2’’−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロール(PyPySPyPy)等のシロール系化合物、バソフェナントロリン(BPhen)、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP、バソクプロイン)などのフェナントロリン系化合物等も挙げられる。
<湿式成膜法による発光層の形成>
発光層の形成方法は、真空蒸着法でも、湿式成膜法でもよいが、成膜性に優れることから、湿式成膜法が好ましく、スピンコート法及びインクジェット法が更に好ましい。特に、本発明の有機電界発光素子用組成物を用いて、発光層の下層となる正孔注入層又は正孔輸送層を形成すると、湿式成膜法による積層化が容易であるため、湿式成膜法を採用することが好ましい。湿式成膜法により発光層を形成する場合は、通常、上述の正孔注入層を湿式成膜法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに、発光層となる材料を可溶な溶媒(発光層用溶媒)と混合して調製した発光層形成用組成物を用いて形成する。
溶媒としては、例えば、正孔注入層の形成について挙げたエーテル系溶媒、エステル系溶媒、芳香族炭化水素系溶媒、アミド系溶媒の他、アルカン系溶媒、ハロゲン化芳香族炭化水素系溶媒、脂肪族アルコール系溶媒、脂環族アルコール系溶媒、脂肪族ケトン系溶媒及び脂環族ケトン系溶媒などが挙げられる。以下に溶媒の具体例を挙げるが、本発明の効果を損なわない限り、これらに限定されるものではない。これらのうち、アルカン系溶媒及び芳香族炭化水素系溶媒が特に好ましい。
{正孔阻止層}
発光層5と後述の電子注入層8との間に、正孔阻止層6を設けてもよい。正孔阻止層6は、発光層5の上に、発光層5の陰極9側の界面に接するように積層される層である。
この正孔阻止層6は、陽極2から移動してくる正孔を陰極9に到達するのを阻止する役割と、陰極9から注入された電子を効率よく発光層5の方向に輸送する役割とを有する。正孔阻止層6を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。
このような条件を満たす正孔阻止層の材料としては、例えば、ビス(2−メチル−8−キノリノラト)(フェノラト)アルミニウム、ビス(2−メチル−8−キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2−メチル−8−キノラト)アルミニウム−μ−オキソ−ビス−(2−メチル−8−キノリラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(日本国特開平11−242996号公報)、3−(4−ビフェニルイル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール等のトリアゾール誘導体(日本国特開平7−41759号公報)、バソクプロイン等のフェナントロリン誘導体(日本国特開平10−79297号公報)などが挙げられる。更に、国際公開第2005/022962号に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層の材料として好ましい。
正孔阻止層6の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成できる。
正孔阻止層6の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常0.3nm以上、好ましくは0.5nm以上であり、また、通常100nm以下、好ましくは50nm以下である。
{電子輸送層}
電子輸送層7は素子の電流効率をさらに向上させることを目的として、発光層5と電子注入層8との間に設けられる。
電子輸送層7は、電界を与えられた電極間において陰極9から注入された電子を効率よく発光層5の方向に輸送することができる化合物より形成される。電子輸送層7に用いられる電子輸送性化合物としては、陰極9又は電子注入層8からの電子注入効率が高く、かつ、高い電子移動度を有し、注入された電子を効率よく輸送することができる化合物であることが必要である。
電子輸送層に用いる電子輸送性化合物としては、具体的には、例えば、8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体(日本国特開昭59−194393号公報)、10−ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3−ヒドロキシフラボン金属錯体、5−ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号公報)、キノキサリン化合物(日本国特開平6−207169号公報)、フェナントロリン誘導体(日本国特開平5−331459号公報)、2−t−ブチル−9,10−N,N’−ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
電子輸送層7の膜厚は、通常1nm以上、好ましくは5nm以上であり、また、通常300nm以下、好ましくは100nm以下である。
電子輸送層7は、前記と同様にして湿式成膜法、或いは真空蒸着法により正孔阻止層6上に積層することにより形成される。通常は、真空蒸着法が用いられる。
{電子注入層}
電子注入層8は、陰極9から注入された電子を効率よく、電子輸送層7又は発光層5へ注入する役割を果たす。
電子注入を効率よく行うには、電子注入層8を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属等が用いられる。その膜厚は通常0.1nm以上、5nm以下が好ましい。
更に、バソフェナントロリン等の含窒素複素環化合物や8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送材料に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(日本国特開平10−270171号公報、日本国特開2002−100478号公報、日本国特開2002−100482号公報などに記載)ことも、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。
電子注入層8の膜厚は通常5nm以上、好ましくは10nm以上、また、通常200nm以下、好ましくは100nm以下の範囲である。
電子注入層8は、湿式成膜法或いは真空蒸着法により、発光層5又はその上の正孔阻止層6や電子輸送層7上に積層することにより形成される。
湿式成膜法の場合の詳細は、前述の発光層の場合と同様である。
{陰極}
陰極9は、発光層5側の層(電子注入層又は発光層など)に電子を注入する役割を果たす。
陰極9の材料としては、前記の陽極2に使用される材料を用いることが可能であるが、効率良く電子注入を行なう上では、仕事関数の低い金属を用いることが好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の金属又はそれらの合金などが用いられる。具体例としては、例えば、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム−リチウム合金等の低仕事関数の合金電極などが挙げられる。
素子の安定性の点では、陰極の上に、仕事関数が高く、大気に対して安定な金属層を積層して、低仕事関数の金属からなる陰極を保護することが好ましい。積層する金属としては、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が挙げられる。
陰極の膜厚は通常、陽極と同様である。
{その他の層}
本発明の有機電界発光素子は、本発明の効果を著しく損なわなければ、更に他の層を有していてもよい。すなわち、陽極と陰極との間に、上述の他の任意の層を有していてもよい。
{その他の素子構成}
本発明の有機電界発光素子は、上述の説明とは逆の構造、即ち、基板上に陰極、電子注入層、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に積層することも可能である。
本発明の有機電界発光素子を有機電界発光装置に適用する場合は、単一の有機電界発光素子として用いても、複数の有機電界発光素子がアレイ状に配置された構成にして用いても、陽極と陰極がX−Yマトリックス状に配置された構成にして用いてもよい。
[有機EL表示装置]
本発明の有機電界発光素子表示装置(有機EL表示装置)は、上述の本発明の有機電界発光素子を用いたものである。本発明の有機EL表示装置の型式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
例えば、「有機ELディスプレイ」(オーム社、平成16年8月20日発行、時任静士、安達千波矢、村田英幸著)に記載されているような方法で、本発明の有機EL表示装置を形成することができる。
[有機EL照明]
本発明の有機電界発光素子照明(有機EL照明)は、上述の本発明の有機電界発光素子を用いたものである。本発明の有機EL照明の型式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
(モデル化合物の合成)
Figure 0006551394
窒素気流中、3−(1−ピレニル)フェニルボロン酸、2.11g(6.56mmol)、4−ブロモシクロブテン、1.20g(6.56mmol)、トルエン:エタノール(30ml:15ml)、2M炭酸ナトリウム水溶液15mlを、60℃に加熱下、40分間撹拌し、テトラキス(トリフェニルホスフィン)パラジウム(0)、0.15g(0.13mmol)を加え、6時間還流した。室温まで放冷した後、反応液にトルエン(100ml)および水(120ml)を加え攪拌後、分液し、水層をトルエン(100ml×2回)で抽出し、有機層を合わせ、硫酸マグネシウムで乾燥後、濃縮した。さらに、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=9:1)で精製することにより、化合物1(1.80g)を得た。
H−NMR(400MHz、CDCl)δ 3.23(s、4H);7.13(d、1H);7.38(s、1H);7.51〜7.68(m、4H);7.82〜8.04(m、4H);8.10(s、2H);8.15〜8.25(m、4H)。
Figure 0006551394
1,2−ジヒドロシクロブタ〔a〕ナフタレン、1.00g(6.48mmol)、N,N−ジメチルホルムアミド、15mlに溶解し、N−ブロモスクシンイミド、1.15g(6.48mmol)を10mlのN,N−ジメチルホルムアミドに溶解して室温で滴下した。室温で98時間反応させた。反応液に純水を入れ、塩化メチレンで分液を行った。有機層を濃縮してシリカゲルカラムクロマトグラフィー(アセトニトリル:テトラヒドロフラン=9:1)で精製することにより、化合物2(0.56g)を得た。
H−NMR(400MHz、CDCl)δ 3.28〜3.35(m、4H);7.49〜7.53(m、2H);7.56(s、1H);7.66〜7.70(m、1H);8.26〜8.30(m、1H)。
Figure 0006551394
窒素気流中、3−(1−ピレニル)フェニルボロン酸、2.38g(7.39mmol)、化合物2、2.07g(8.88mmol)、トルエン:エタノール(60ml:30ml)、2M炭酸ナトリウム水溶液22mlを、60℃に加熱下、40分間撹拌し、テトラキス(トリフェニルホスフィン)パラジウム(0)、0.26g(0.22mmol)を加え、3時間還流した。室温まで放冷した後、反応液にトルエン(200ml)および水(240ml)を加え攪拌後、分液し、水層をトルエン(100ml×2回)で抽出し、有機層を合わせ、硫酸マグネシウムで乾燥後、濃縮した。さらに、シリカゲルカラムクロマトグラフィー(ヘキサン:塩化メチレン=6:1)で精製することにより、化合物3(3.20g)を得た。
H−NMR(400MHz、CDCl)δ 3.33〜3.45(m、4H);7.31(s、1H);7.39〜7.48(m、2H);7.57〜7.77(m、5H);7.95〜8.30(m、10H)。
(参考例)
島津製作所社製DSC−50を用いて、化合物1の示差走査熱量測定(DSC)を行ったところ、架橋反応に伴う発熱が観測され、ピークトップは262℃であった。同様にして、化合物3の示差走査熱量測定を行ったところ、架橋反応に伴う発熱が観測され、ピークトップは235℃であり、化合物1の測定結果よりも27℃低かった。
これらの結果から、化合物3に含まれる1,2−ジヒドロシクロブタ〔a〕ナフタレンは、化合物1に含まれるベンゾシクロブテンよりも、27℃低い温度で架橋反応することが確認された。よって、本発明の1,2−ジヒドロシクロブタ〔a〕ナフタレンを架橋基として有する重合体は、従来のベンゾシクロブテンを架橋基として有する重合体に比べて、低い温度で溶剤に対して不溶になると考えられる。
(モノマーの合成)
Figure 0006551394
窒素気流下、100mlのジメチルスルホンキシド、化合物2、4.8g(20.6mmol)、ビス(ピナコラト)ジボロン5.75g(22.7mmol)、酢酸カリウム6.1g(61.8mmol)を、60℃で30分間攪拌した。1,1’−ビス(ジフェニルホスフィノ)フェロセンパラジウム(II)ジクロリドジクロロメタン0.51g(0.62mmol)を加え、82℃で4時間撹拌した。反応液を減圧濾過し、濾液をトルエンで抽出し、無水硫酸マグネシウムで乾燥し、活性白土により粗精製した。更に、アセトニトリルで洗浄し、無色固体の化合物4を得た(収量4.0g、収率69.3%)。
Figure 0006551394
窒素気流下、3−ブロモアニリン0.78g(4.54mmol)、化合物4、1.40g(5.00mmol)、炭酸ナトリウム(2.41g、22.7mmol)、トルエン30ml、エタノール15ml、及び水12mlを、65℃まで加温した。テトラキス(トリフェニルホスフィン)パラジウム(0.26g、0.23mmol)を加え、窒素下で6時間加熱還流した。放冷後、酢酸エチルで抽出し、有機層を硫酸マグネシウムで乾燥後、濃縮した。さらに、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=8:1)で精製することにより、化合物5(0.59g)を得た。
Figure 0006551394
窒素気流下、1,3,5−トリブロモベンゼン、3.00g(9.53mmol)、化合物4、1.34g(4.77mmol)、炭酸ナトリウム(2.53g、23.85mmol)、及びトルエン80ml、エタノール40ml、及び水12mlを、65℃まで加温した。テトラキス(トリフェニルホスフィン)パラジウム(0.11g、0.095mmol)を加え、窒素下で4.5時間加熱還流した。放冷後、トルエンで抽出し、有機層を硫酸マグネシウムで乾燥後、濃縮した。さらに、シリカゲルカラムクロマトグラフィー(ヘキサン)で精製することにより、化合物6(1.00g)を得た。
Figure 0006551394
窒素気流下、4,4’−[1−(4−ブロモフェニル)エチリデン]ビスフェノール4.67g(12.65mmol)、化合物4、3.90g(13.92mmol)、1,2−ジメトキシエタン80mlを室温で攪拌した。これに、2M炭酸カリウム水溶液22mlを加えた。テトラキス(トリフェニルホスフィン)パラジウム0.29g(0.25mmol)を加え、4時間加熱還流した。放冷後、酢酸エチルで抽出し、有機層を硫酸マグネシウムで乾燥後、濃縮した。さらに、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)で精製することにより、化合物7(5.50g)を得た。
Figure 0006551394
−5℃で、化合物7、5.50g(12.43mmol)を塩化メチレン(90ml)、トリエチルアミン6.30g(62.15mmol)に溶解させ、トリフルオロメタンスルホン酸無水物10.5g(37.3mmol)を17mlの塩化メチレンに溶解させた溶液を滴下した。4時間撹拌し、反応液を氷水に注いだ。塩化メチレンで抽出し、有機層を硫酸マグネシウムで乾燥後、濃縮した。シリカゲルカラムクロマトグラフィー(ヘキサン:塩化メチレン=3:1)で精製することにより、化合物8(7.3g)を得た。
Figure 0006551394
窒素気流下、化合物8、7.1g(10.05mmol)、ビス(ピナコラト)ジボロン6.1g(24.11mmol)、酢酸カリウム5.90g(60.3mmol)ジメチルスルホキシド100mlを60℃で30分間攪拌した。1,1’−ビス(ジフェニルホスフィノ)フェロセンパラジウム(II)ジクロリドジクロロメタン0.41g(0.50mmol)を加え、85℃で3.5時間撹拌した。反応液を減圧濾過し、濾液をトルエンで抽出し、有機層を無水硫酸マグネシウムで乾燥し、濾液を濃縮して、メタノールを加え、析出した無色固体を濾取し、化合物9(3.6g)を得た。
Figure 0006551394
窒素気流下、化合物9、3.6g(5.43mmol)、1−ブロモ−4−ヨードベンゼン3.38g(11.96mmol)、トルエン120ml、エタノール60ml、2Mリン酸カリウム水溶液18mlを入れて加熱し、30分間攪拌した。テトラキス(トリフェニルホスフィン)パラジウム0.28g(0.24mmol)を加え、4.5時間還流した。反応液に水を加え、トルエンで抽出し、有機層を無水硫酸マグネシウム及び活性白土を加え、濾液を濃縮した。吸着シリカゲルカラムクロマトグラフィー(展開溶媒:n−ヘキサン:トルエン=4:1)により精製し、無色固体の化合物10(2.1g)を得た。
(ポリマーの合成)
Figure 0006551394
2,7−ビス(4−ブロモフェニル)−9,9−ジヘキシルフルオレン(3.500g、5.43mmol)、2−アミノ−9,9−ジヘキシルフルオレン(3.80g、10.87mmol)、及びtert−ブトキシナトリウム(4.02g、41.9mmol)、トルエン(80.7ml)を仕込み、系内を窒素置換して、60℃まで加温した(溶液A)。トリス(ジベンジリデンアセトン)ジパラジウム錯体(0.100g、0.109mmol)のトルエン6.5ml溶液に、[4−(N,N−ジメチルアミノ)フェニル]ジ−tert−ブチルホスフィン(0.231g、0.868mmol)を加え、60℃まで加温した(溶液B)。窒素気流中、溶液Aに溶液Bを添加し、1時間、加熱還流反応した。2,7−ビス(4−ブロモフェニル)−9,9−ジヘキシルフルオレン(2.450g、3.80mmol)を添加し、1時間加熱還流した。さらに、化合物10(0.783g、1.087mmol)を添加し、1時間加熱還した後、ブロモベンゼン(0.85g、5.43mmol)を添加し1.5時間加熱還流反応した。反応液を放冷し、トルエン100ml添加してエタノール/水(500ml/90ml)溶液に滴下し、粗ポリマーを得た。
粗ポリマーをトルエンに溶解し、アセトンに再沈殿し、析出したポリマーを濾取した。得られたポリマーをトルエンに溶解させ、希塩酸にて洗浄し、アンモニア含有エタノールに再沈殿した。濾取したポリマーをカラムクロマトグラフィーにより精製し、重合体1(4.3g)を得た。
重量平均分子量(Mw)=44100
数平均分子量(Mn)=30200
分散度(Mw/Mn)=1.46
Figure 0006551394
4,4’−ジブロモビフェニル(2.678g、8.58mmol)、2−アミノ−9,9−ジヘキシルフルオレン(6.00g、17.17mmol)、及びtert−ブトキシナトリウム(5.53g、57.50mmol)、トルエン(90ml)を仕込み、系内を窒素置換して、60℃まで加温した(溶液A)。トリス(ジベンジリデンアセトン)ジパラジウム錯体(0.158g、0.172mmol)のトルエン12ml溶液に、[4−(N,N−ジメチルアミノ)フェニル]ジ−tert−ブチルホスフィン(0.365g、1.376mmol)を加え、60℃まで加温した(溶液B)。窒素気流中、溶液Aに溶液Bを添加し、1.0時間、加熱還流反応した。化合物6(0.333g、0.858mmol)、30分間加熱還流後4,4’−ジブロモビフェニル(2.276g、7.294mmol)を添加した。1.0時間加熱還流後、ブロモベンゼン(2.02g、12.87mmol)を添加した。1.5時間加熱還流反応した。反応液を放冷し、トルエン100ml添加してエタノール/水(500ml/90ml)溶液に滴下し、粗ポリマーを得た。
粗ポリマーをトルエンに溶解し、アセトンに再沈殿し、析出したポリマーを濾取した。得られたポリマーをトルエンに溶解させ、希塩酸にて洗浄し、アンモニア含有エタノールに再沈殿した。濾取したポリマーをカラムクロマトグラフィーにより精製し、重合体2(0.7g)を得た。
重量平均分子量(Mw)=50300
数平均分子量(Mn)=36400
分散度(Mw/Mn)=1.38
Figure 0006551394
4,4’−ジブロモビフェニル(2.500g、8.00mmol)、2−アミノ−9,9−ジヘキシルフルオレン(5.60g、16.00mmol)、及びtert−ブトキシナトリウム(5.93g、61.8mmol)、トルエン(57.7ml)を仕込み、系内を窒素置換して、60℃まで加温した(溶液A)。トリス(ジベンジリデンアセトン)ジパラジウム錯体(0.147g、0.160mmol)のトルエン9.5ml溶液に、[4−(N,N−ジメチルアミノ)フェニル]ジ−tert−ブチルホスフィン(0.340g、1.282mmol)を加え、60℃まで加温した(溶液B)。窒素気流中、溶液Aに溶液Bを添加し、1時間、加熱還流反応した。4,4’−ジブロモビフェニル(2.015g、6.46mmol)を添加し、1時間加熱還流した。さらに、化合物10(0.716g、0.994mmol)を添加し、1時間加熱還した後、ブロモベンゼン(1.26g、8.02mmol)を添加し1.5時間加熱還流反応した。反応液を放冷し、トルエン100ml添加してエタノール/水(500ml/90ml)溶液に滴下し、粗ポリマーを得た。
粗ポリマーをトルエンに溶解し、アセトンに再沈殿し、析出したポリマーを濾取した。得られたポリマーをトルエンに溶解させ、希塩酸にて洗浄し、アンモニア含有エタノールに再沈殿した。濾取したポリマーをカラムクロマトグラフィーにより精製し、重合体3(1.1g)を得た。
重量平均分子量(Mw)=37100
数平均分子量(Mn)=27700
分散度(Mw/Mn)=1.34
Figure 0006551394
4,4’−ジブロモビフェニル(3.83g、12.22mmol)、化合物5(0.299g、1.22mmol)、2−アミノ−9,9−ジヘキシルフルオレン(8.10g、23.18mmol)、及びtert−ブトキシナトリウム(7.86g、81.74mmol)、トルエン120mlを仕込み、系内を窒素置換して、60℃まで加温した(溶液A)。トリス(ジベンジリデンアセトン)ジパラジウム錯体(0.22g、0.244mmol)のトルエン15ml溶液に、[4−(N,N−ジメチルアミノ)フェニル]ジ−tert−ブチルホスフィン(0.518g、1.95mmol)を加え、60℃まで加温した(溶液B)。窒素気流中、溶液Aに溶液Bを添加し、1.0時間、加熱還流反応した。1,4−ジブロモビフェニル(2.66g、8.54mmol)を添加した。1.0時間加熱還流後、4,4’−ジブロモビフェニル(0.88g、2.83mmol)を追添加した。1.0時間加熱還流後、ブロモベンゼン(2.88g、18.34mmol)を添加した。1.5時間加熱還流反応した。反応液を放冷し、トルエン150ml添加してエタノール/水(500ml/90ml)溶液に滴下し、粗ポリマーを得た。
粗ポリマーをトルエンに溶解し、アセトンに再沈殿し、析出したポリマーを濾取した。得られたポリマーをトルエンに溶解させ、希塩酸にて洗浄し、アンモニア含有エタノールに再沈殿した。濾取したポリマーをカラムクロマトグラフィーにより精製し、重合体4(4.1g)を得た。
重量平均分子量(Mw)=46700
数平均分子量(Mn)=33800
分散度(Mw/Mn)=1.38
〔不溶化率の測定〕
(実施例1)
以下の方法にて膜厚L1及びL2を各々測定し、L2/L1を不溶化率とした。
<成膜方法、及び膜厚L1の測定方法>
重合体1(Mw=44100、Mn=30200、Mw/Mn=1.46)の4質量%シクロヘキシルベンゼン溶液(組成物)を調製し、該組成物をガラス基板にスピンコートして膜を形成した。
Figure 0006551394
スピンコートは、窒素中で、スピナ回転数2400rpm、スピナ回転時間120秒として行った。スピンコート後、窒素中、ホットプレート上で210℃にて、10分間加乾燥した。得られた膜の一部を掻き取り、段差計(テンコールP−15)で膜厚L1(nm)を測定した。
<膜厚L2の測定方法>
膜厚L1測定後の基板をスピナにセットし、シクロヘキシルベンゼンを膜厚測定した場所に垂らし、30秒静置後に、スピンアウトした。シクロヘキシルベンゼンを蒸発させるため、ホットプレート上でベークした後、再び同じ場所の膜厚L2(nm)を測定し、シクロヘキシルベンゼンのスピン処理後の不溶化率L2/L1を算出した。
L1=58.0nm、L2=49.9nmであり、重合体1の不溶化率は86%であった。
(実施例2)
実施例1と同様にして、重合体2(Mw=50300、Mn=36400、Mw/Mn=1.38)の不溶化率を測定した。
Figure 0006551394
L1=51.2nm、L2=41.5nmであり、重合体2の不溶化率は81%であった。
(実施例3)
実施例1と同様にして、重合体3(Mw=37100、Mn=27700、Mw/Mn=1.34)の不溶化率を測定した。
Figure 0006551394
L1=50.7nm、L2=46.6nmであり、重合体3の不溶化率は92%であった。
(実施例4)
実施例1と同様にして、重合体4(Mw=46700、Mn=33800、Mw/Mn=1.38)の不溶化率を測定した。
Figure 0006551394
L1=52.2nm、L2=48.6nmであり、重合体4の不溶化率は93%であった。
(比較例1)
実施例1と同様にして、重合体5(Mw=50000、Mn=33300、Mw/Mn=1.50)の不溶化率を測定した。
Figure 0006551394
L1=78.8nm、L2=0nmであり、重合体5の不溶化率は0%であった。
(比較例2)
実施例1と同様にして、重合体6(Mw=38900、Mn=27600、Mw/Mn=1.41)の不溶化率を測定した。
Figure 0006551394
L1=50.4nm、L2=0nmであり、重合体6の不溶化率は0%であった。
(比較例3)
実施例1と同様にして、重合体7(Mw=48000、Mn=33100、Mw/Mn=1.45)の不溶化率を測定した。
Figure 0006551394
L1=52.6nm、L2=0nmであり、重合体7の不溶化率は0%であった。
実施例1〜4及び比較例1〜3の不溶化率の測定結果を、表1にまとめた。
Figure 0006551394
表1に示した通り、1,2−シクロブタ〔a〕ナフタレンを架橋性基として有する本願の重合体は不溶化した。一方、従来の架橋性基であるベンゾシクロブテンを有する重合体は不溶化しなかった。
〔有機電界発光素子〕
(実施例5)
図1に示す有機電界発光素子を作製した。
ガラス基板1上に、インジウム・スズ酸化物(ITO)透明導電膜をスパッタ成膜により堆積したものを、通常のフォトリソグラフィー技術と塩酸エッチングを用いて2mm幅のストライプにパターニングして膜厚70nmの陽極2を形成した。パターン形成したITO基板を、界面活性剤水溶液による超音波洗浄、超純水による水洗、超純水による超音波洗浄、超純水による水洗の順で洗浄後、圧縮空気で乾燥させ、最後に紫外線オゾン洗浄を行った。
次に、前記の重合体7、構造式(A1)に示す4−イソプロピル−4’−メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラートおよび安息香酸エチルを含有する正孔注入層形成用塗布液を調製した。この塗布液を陽極2上にスピンコートにより成膜して、下記条件で加熱し、膜厚40nmの正孔注入層を得た。
Figure 0006551394
<正孔注入層形成用塗布液>
溶媒 安息香酸エチル
塗布液濃度 重合体7:2.5質量%
A1:0.5質量%
<正孔注入層3の成膜条件>
スピンコート雰囲気 大気中
加熱条件 大気中 240℃ 10分
引き続き、下記重合体1を含有する正孔輸送層形成用塗布液を調製し、下記の条件で正孔注入層3上にスピンコートにより成膜、加熱して膜厚40nmの正孔輸送層を形成した。
Figure 0006551394
<正孔輸送層形成用塗布液>
溶媒 シクロヘキシルベンゼン
塗布液濃度 1.5質量%
<正孔輸送層4の成膜条件>
スピンコート雰囲気 窒素中
加熱条件 窒素中 220℃ 10分
次に、以下の構造式に示す、化合物(H1)、(H2)、および(D1)を含有する発光層形成用塗布液を調製し、下記の条件でスピンコートにより成膜を行い、加熱することで膜厚50nmの発光層を正孔輸送層4上に形成した。
Figure 0006551394
<発光層形成用塗布液>
溶媒 シクロヘキシルベンゼン
塗布液濃度 H1:1.2質量%
H2:3.6質量%
D1:0.48質量%
<発光層5の成膜条件>
スピンコート雰囲気 窒素中
加熱条件 窒素中 130℃ 10分
ここで、発光層までを成膜した基板を、真空蒸着装置内に移し、下記に示す構造を有する有機化合物(E1)を真空蒸着法にて、発光層5の上に積層させ、膜厚15nmの正孔阻止層6を形成した。
Figure 0006551394
次に、下記に示す構造を有する有機化合物(E2)を真空蒸着法にて、正孔阻止層6の上に積層させ、膜厚20nmの電子輸送層7を形成した。
Figure 0006551394
ここで、電子輸送層7までの蒸着を行った素子を別の真空蒸着装置に移し、陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極2のITOストライプとは直交するように素子に密着させた。電子注入層8として、先ず、フッ化リチウム(LiF)を、モリブデンボートを用いた真空蒸着法により、0.5nmの膜厚で電子輸送層7の上に成膜した。次に、陰極9としてアルミニウムを同様にモリブデンボートにより加熱して、真空蒸着法により、膜厚80nmのアルミニウム層を形成した。以上の2層の蒸着時の基板温度は室温に保持した。
引き続き、素子が保管中に大気中の水分等で劣化することを防ぐため、以下に記載の方法で封止処理を行った。
窒素グローブボックス中で、23mm×23mmサイズのガラス板の外周部に、約1mmの幅で光硬化性樹脂(スリーボンドファインケミカル株式会社製30Y−437)を塗布し、中央部に水分ゲッターシート(ダイニック株式会社製)を設置した。この上に、陰極形成を終了した基板を、蒸着された面が乾燥剤シートと対向するように貼り合わせた。その後、光硬化性樹脂が塗布された領域のみに紫外光を照射し、樹脂を硬化させた。
以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。この素子の特性を表2に示す。
(比較例4)
正孔輸送層4を、重合体5を含有する正孔輸送層形成用塗布液を調製し、スピンコートにより成膜、加熱して形成した以外は、実施例5と同様に有機電界発光素子を作成した。この素子の特性を表2に示す。
Figure 0006551394
<正孔輸送層形成用塗布液>
溶媒 シクロヘキシルベンゼン
塗布液濃度 1.5質量%
<正孔輸送層4の成膜条件>
スピンコート雰囲気 窒素中
加熱条件 窒素中 220℃ 10分
Figure 0006551394
表2から明らかなように、本発明の重合体を使用した有機電界発光素子は電圧が低いことがわかった。
(実施例6)
下記条件にて、重合体2、前記式(A1)に示した4−イソプロピル−4’−メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラートおよび安息香酸エチルを含有する正孔注入層形成用塗布液を調製した。この塗布液を陽極2上にスピンコートにより成膜して、下記条件で加熱し、膜厚40nmの正孔注入層を形成したこと以外は、実施例5と同様に有機電界発光素子を作成した。この素子の特性を表3に示す。
Figure 0006551394
<正孔注入層形成用塗布液>
溶媒 安息香酸エチル
塗布液濃度 重合体2:2.5質量%
A1:0.5質量%
<正孔注入層3の成膜条件>
スピンコート雰囲気 大気中
加熱条件 大気中 220℃ 10分
(実施例7)
正孔注入層形成用塗布液に用いる重合体を、重合体2から重合体3に代えたこと以外は、実施例6と同様に有機電界発光素子を作成した。この素子の特性を表3に示す。
Figure 0006551394
(実施例8)
正孔注入層形成用塗布液に用いる重合体を、重合体2から重合体4に代えたこと以外は、実施例6と同様に有機電界発光素子を作成した。この素子の特性を表3に示す。
Figure 0006551394
(比較例5)
正孔注入層形成用塗布液に用いる重合体を、重合体2から重合体7に代え、正孔輸送層形成用塗布液に用いる重合体を、重合体1から重合体5に代えたこと以外は、実施例6と同様に有機電界発光素子を作成した。この素子の特性を表3に示す。
Figure 0006551394
Figure 0006551394
表3から明らかなように、本発明の重合体を使用した有機電界発光素子は電圧が低いことがわかった。
本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2014年3月3日出願の日本特許出願(特願2014−040769)に基づくものであり、その内容はここに参照として取り込まれる。
本発明の重合体は、電気化学的安定性に優れる為、該重合体を用いて形成された層を含む素子は、フラットパネル・ディスプレイ(例えばOAコンピュータ用や壁掛けテレビ)、車載表示素子、携帯電話表示や面発光体としての特徴を生かした光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識灯への応用が考えられ、その技術的価値は大きいものである。

Claims (12)

  1. 下記式(1)で表される架橋性基を有し、部分構造として、トリアリールアミン構造、3環以上の芳香族環構造、芳香族複素環構造、または金属錯体構造を有する電荷輸送性重合体。
    Figure 0006551394
    (式(1)中の1,2−ジヒドロシクロブタ〔a〕ナフタレン環は置換基を有していてもよい。)
  2. 下記式(2)で表される繰り返し単位を含む請求項1に記載の電荷輸送性重合体。
    Figure 0006551394
    (式(2)中、pは0以上、3以下の整数を表し、
    Ar及びArは、各々独立に、直接結合、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を表し、
    Ar〜Arは、各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、
    但し、Ar及びArのいずれもが、直接結合であることはない。)
  3. 下記式(3)で表される繰り返し単位を含む請求項1に記載の電荷輸送性重合体。
    Figure 0006551394
    (式(3)中、qは0以上、3以下の整数を表し、
    は、置換基を有していてもよい炭素数1〜24のアルキル基、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、
    Ar及びArは、各々独立に、直接結合、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を表し、
    Ar〜Ar12は、各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、
    但し、Ar及びArのいずれもが、直接結合であることはない。)
  4. 下記式(4)で表される繰り返し単位を含む請求項1に記載の電荷輸送性重合体。
    Figure 0006551394
    (式(4)中、rは0以上、3以下の整数を表し、
    Ar13、Ar14、Ar16及びAr17は、各々独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、
    Ar15は、直接結合、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を表す。)
  5. 重量平均分子量(Mw)が20,000以上であり、分散度(Mw/Mn)が2.5以下である請求項1〜請求項4のいずれか一項に記載の電荷輸送性重合体。
  6. 請求項1〜請求項5のいずれか一項に記載の電荷輸送性重合体を含有する、有機電界発光素子用組成物。
  7. 基板上に、陽極、陰極、及び該陽極と該陰極の間に有機層を有する有機電界発光素子であって、
    該有機層が、請求項6に記載の有機電界発光素子用組成物を用いて、湿式成膜法で形成された層を含む、有機電界発光素子。
  8. 前記湿式成膜法で形成された層が、正孔注入層及び正孔輸送層のうちの少なくとも一つである、請求項7に記載の有機電界発光素子。
  9. 陽極と陰極の間に正孔注入層、正孔輸送層及び発光層を含み、前記正孔注入層、正孔輸送層及び発光層は、全て湿式成膜法により形成されたものである、請求項7又は請求項8に記載の有機電界発光素子。
  10. 請求項7〜請求項9のいずれか一項に記載の有機電界発光素子を有する有機EL表示装置。
  11. 請求項7〜請求項9のいずれか一項に記載の有機電界発光素子を有する有機EL照明。
  12. 下記式(5)で表される化合物。
    Figure 0006551394
    (式(5)中、Xはハロゲン原子を表す。)
JP2016506482A 2014-03-03 2015-03-02 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明 Active JP6551394B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014040769 2014-03-03
JP2014040769 2014-03-03
PCT/JP2015/056094 WO2015133437A1 (ja) 2014-03-03 2015-03-02 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019124725A Division JP6791311B2 (ja) 2014-03-03 2019-07-03 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明

Publications (2)

Publication Number Publication Date
JPWO2015133437A1 JPWO2015133437A1 (ja) 2017-04-06
JP6551394B2 true JP6551394B2 (ja) 2019-07-31

Family

ID=54055243

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016506482A Active JP6551394B2 (ja) 2014-03-03 2015-03-02 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP2019124725A Active JP6791311B2 (ja) 2014-03-03 2019-07-03 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019124725A Active JP6791311B2 (ja) 2014-03-03 2019-07-03 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明

Country Status (7)

Country Link
US (1) US10270035B2 (ja)
EP (1) EP3115395B1 (ja)
JP (2) JP6551394B2 (ja)
KR (1) KR102329435B1 (ja)
CN (1) CN106459409B (ja)
TW (1) TWI677515B (ja)
WO (1) WO2015133437A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113173942A (zh) 2016-03-24 2021-07-27 三菱化学株式会社 电子接受性化合物和电荷传输膜用组合物、使用其的发光元件
US11424410B2 (en) 2016-09-29 2022-08-23 Sumitomo Chemical Company, Limited Light emitting device
JP2019033192A (ja) * 2017-08-09 2019-02-28 株式会社ジャパンディスプレイ 発光素子、および発光素子を有する表示装置
JP7310605B2 (ja) * 2017-09-22 2023-07-19 三菱ケミカル株式会社 電荷輸送性化合物、電荷輸送性化合物を含む組成物及び該組成物を用いた有機電界発光素子
KR102295248B1 (ko) 2018-01-24 2021-08-27 주식회사 엘지화학 중합체, 이를 포함하는 코팅 조성물 및 이를 이용한 유기 발광 소자
KR20200069400A (ko) 2018-12-05 2020-06-17 삼성디스플레이 주식회사 축합환 화합물, 이를 포함한 조성물 및 이로부터 형성된 박막을 포함하는 유기 발광 소자
JP6600110B1 (ja) * 2019-02-26 2019-10-30 住友化学株式会社 発光素子
CN112635677B (zh) * 2020-12-22 2022-06-21 吉林大学 基于bcf修饰的双层阳极缓冲层聚合物太阳能电池及其制备方法
CN114106295B (zh) * 2020-12-29 2023-06-16 广东聚华印刷显示技术有限公司 可交联型聚合物及其制备方法和应用
CN114031752B (zh) * 2020-12-29 2023-06-16 广东聚华印刷显示技术有限公司 聚合型可交联化合物及其制备方法和应用
CN115160156A (zh) * 2021-04-01 2022-10-11 广东聚华印刷显示技术有限公司 有机化合物、聚合物、组合物及其应用
US11912816B2 (en) 2021-04-28 2024-02-27 Industrial Technology Research Institute Polymer and light-emitting device
WO2023112943A1 (ja) * 2021-12-16 2023-06-22 三菱ケミカル株式会社 有機半導体インク、光電変換層及び有機光電変換素子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4139952B2 (ja) * 2002-07-31 2008-08-27 日本電気株式会社 共重合高分子膜及びその形成方法、並びに共重合高分子膜を用いた半導体装置
KR101323557B1 (ko) * 2008-02-15 2013-10-29 미쓰비시 가가꾸 가부시키가이샤 공액 폴리머, 불용화 폴리머, 유기 전계 발광 소자 재료, 유기 전계 발광 소자용 조성물, 폴리머의 제조 방법, 유기 전계 발광 소자, 유기 el 디스플레이, 및 유기 el 조명
CN101981086A (zh) * 2008-04-02 2011-02-23 三菱化学株式会社 高分子化合物、由该高分子化合物交联而得到的网状高分子化合物、有机场致发光元件用组合物、有机场致发光元件、有机el显示器及有机el照明
KR101708064B1 (ko) 2008-08-13 2017-02-17 미쓰비시 가가꾸 가부시키가이샤 유기 전계 발광 소자, 유기 el 표시 장치 및 유기 el 조명
EP2518110B1 (en) 2009-12-25 2017-12-13 Sumitomo Chemical Company, Limited Composition and light emitting element using the composition
CN102725325B (zh) 2010-01-28 2015-05-06 住友化学株式会社 高分子化合物及使用其而得到的发光元件
JP5793878B2 (ja) * 2010-02-10 2015-10-14 三菱化学株式会社 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP5966422B2 (ja) 2012-02-21 2016-08-10 三菱化学株式会社 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
WO2013191137A1 (ja) 2012-06-18 2013-12-27 三菱化学株式会社 高分子化合物、電荷輸送性ポリマー、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP5955660B2 (ja) 2012-06-20 2016-07-20 住友化学株式会社 組成物、高分子化合物およびそれらを用いた発光素子
CN104447191B (zh) * 2014-10-30 2016-03-23 绵阳达高特新材料有限公司 4-溴-1,2-二氢环丁烯并[α]萘化合物及其制备方法
CN104447826A (zh) * 2014-10-30 2015-03-25 绵阳达高特新材料有限公司 1,2-二氢环丁烯并[α]萘-4-硼酸化合物及其制备方法

Also Published As

Publication number Publication date
TWI677515B (zh) 2019-11-21
EP3115395B1 (en) 2020-08-05
KR20160129009A (ko) 2016-11-08
JP2019173032A (ja) 2019-10-10
JP6791311B2 (ja) 2020-11-25
EP3115395A4 (en) 2017-03-01
JPWO2015133437A1 (ja) 2017-04-06
KR102329435B1 (ko) 2021-11-22
CN106459409B (zh) 2019-08-16
EP3115395A1 (en) 2017-01-11
CN106459409A (zh) 2017-02-22
US20160372676A1 (en) 2016-12-22
US10270035B2 (en) 2019-04-23
WO2015133437A1 (ja) 2015-09-11
TW201542623A (zh) 2015-11-16

Similar Documents

Publication Publication Date Title
JP6791311B2 (ja) 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP6057003B2 (ja) 共役ポリマー、有機電界発光素子材料、有機電界発光素子用組成物、ポリマーの製造方法、有機電界発光素子、有機elディスプレイ、及び有機el照明
JP4761006B2 (ja) 高分子化合物、該高分子化合物を架橋させてなる網目状高分子化合物、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP4935952B2 (ja) 電荷輸送性ポリマー、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5343832B2 (ja) アリールアミンポリマー、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP5793878B2 (ja) 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP6879342B2 (ja) 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP5582260B2 (ja) 高分子化合物、電荷輸送性ポリマー、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP6866576B2 (ja) 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP6593432B2 (ja) 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
WO2013125662A1 (ja) 重合体及び有機電界発光素子
JP2013216789A (ja) 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
JP2022136017A (ja) 芳香族化合物

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170502

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R151 Written notification of patent or utility model registration

Ref document number: 6551394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151