JP6437316B2 - 電子銃、三次元積層造形装置及び電子銃制御方法 - Google Patents

電子銃、三次元積層造形装置及び電子銃制御方法 Download PDF

Info

Publication number
JP6437316B2
JP6437316B2 JP2015003094A JP2015003094A JP6437316B2 JP 6437316 B2 JP6437316 B2 JP 6437316B2 JP 2015003094 A JP2015003094 A JP 2015003094A JP 2015003094 A JP2015003094 A JP 2015003094A JP 6437316 B2 JP6437316 B2 JP 6437316B2
Authority
JP
Japan
Prior art keywords
cathode
control
thermoelectrons
opening
bias voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015003094A
Other languages
English (en)
Other versions
JP2015167125A (ja
Inventor
佐藤 崇
崇 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2015003094A priority Critical patent/JP6437316B2/ja
Publication of JP2015167125A publication Critical patent/JP2015167125A/ja
Application granted granted Critical
Publication of JP6437316B2 publication Critical patent/JP6437316B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/063Geometrical arrangement of electrodes for beam-forming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/002Devices involving relative movement between electronbeam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0026Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/06Electron-beam welding or cutting within a vacuum chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/024Electron guns using thermionic emission of cathode heated by electron or ion bombardment or by irradiation by other energetic beams, e.g. by laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/027Construction of the gun or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/08Arrangements for controlling intensity of ray or beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06308Thermionic sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/065Source emittance characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/31Processing objects on a macro-scale
    • H01J2237/3128Melting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Automation & Control Theory (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

本発明は、ステージ上に粉末試料を薄く敷いた層を一層ずつ重ねて造形する際に用いられる、電子銃、三次元積層造形装置及び電子銃制御方法に関する。
ステージ上に敷き詰めた樹脂粉末からなる粉末層にレーザー光を照射して樹脂粉末を溶融させ、この樹脂粉末が凝固した層を積み重ねて立体物を造形する光造形装置が広く知られている。近年は、電子顕微鏡等に用いられていた電子銃を用いて、ステージ上に敷き詰めた粉末試料からなる粉末層に電子ビームを照射し、この粉末試料が溶融、凝固した層を積み重ねて立体物を造形する三次元積層造形装置が用いられつつある。このように電子ビームを粉末試料に照射すると、この電子ビーム内を電流が流れる。以下の説明では、この電流を「ビーム電流」と呼ぶ。
電子ビームを用いる装置の一例である電子顕微鏡では微小な試料を観察するために、数pA〜数μAのビーム電流が用いられる。電子顕微鏡で使用される電子銃の加速電圧は数10kV以上、大きいもので数100kVにもなるが、電流量はせいぜい数10μA程度と小さく電子ビームの出力はそれほど大きくならない。そのため、光学系内部にビームを遮るものを配置することが可能である。電子顕微鏡では光学系内部に電流制限絞りを配置し、それを通過する電子ビームの量を電磁レンズでコントロールすることで所望するビーム電流を得ている。このビーム電流制御法の利点は、電子銃設定を一定に保ったままビーム電流を変更できることにある。すなわち、どのようなビーム電流条件であっても電子銃を常に最適な条件で使用し続けることが可能である。
一方、三次元積層造形装置では粉末試料を溶融させるために、一般的に数10mAの大電流を有し、10kV以上で加速された出力の大きい電子ビームを扱う。このような大きな出力の電子ビームが電流制限絞りに照射されると、電流制限絞りが損傷してしまう場合があるため、電流制限絞りを用いてビーム電流を制御することはできない。また、電流制限絞りを用いなければ、カソードから放出された全ての電子ビームが粉末試料に到達してしまい、ビームが絞れず微細な造形を行うことが困難となる。このため、三次元積層造形装置では、バイアス電圧を用いて電子銃から放出される電子ビームを制御して、ビーム電流を変化させている。なお、電子銃のバイアス電圧を変化させた場合、それに伴い変化するのはビーム電流だけではない。輝度や光源径等、あらゆる電子銃特性が変化する。
ここで、特許文献1には、熱電子を放出するフィラメントと、フィラメントから熱電子を引き出す引き出し電極と、フィラメントから引き出された熱電子を集束するウェネルトと、集束された熱電子を加速するアノードと、を備えた電子銃について開示されている。
特開平1−274349号公報
ところで、一般的に三次元積層造形に際して用いられる粉末試料の溶融プロセスは、まず粉末試料の予備加熱から始まり、次に造形物の周端を形成する溶融、そして造形物内部の溶融という順で進められる。そして、電子銃から粉末試料に照射される電子ビームのビーム電流と、この電子ビームがZ軸ステージ上に焦点を結んだときのビーム径は、溶融プロセス毎に必要とされる値が異なる。このため、電子銃や、ビーム径を可変するレンズの動作条件を変更してこれらを制御する必要がある。例えば、一つの粉末層を溶融する間に数mA〜数十mAの間でビーム電流を変化させなければならないが、ビーム電流を変化させると、電子ビームの輝度も変化してしまい、溶融ムラが生じることがあった。
本発明はこのような状況に鑑みて成されたものであり、電流制限絞りを使用しない電子銃であっても、電子ビームの輝度を低下させないことを目的とする。
本発明は、加熱電源により加熱されたカソードの先端から熱電子を放出する。
カソードの先端が挿入され、中心軸に沿って設けられた第1開口を有するウェネルト電極が、印加されたバイアス電圧によりカソードの熱電子放出領域を制御して、熱電子を集束する。
中心軸に沿って設けられた第2開口を有する制御電極が、印加された制御電圧により、カソードの先端から引き出した熱電子を、第2開口に通過させる。
中心軸に沿って設けられた第3開口を有するアノードが、印加された加速電圧により、カソードが放出した熱電子を加速し、第2開口を通過した熱電子を、第3開口に通過させて、粉末試料に電子ビームを照射する。
制御部が、バイアス電圧と制御電圧を変化させて粉末試料に照射される電子ビームビーム電流を変えた際に電子ビームの輝度を一定に保つため、バイアス電圧及び制御電圧の組み合わせ条件に基づいてバイアス電圧及び制御電圧を設定する制御を行う。
本発明によれば、制御電極がカソードの先端の電界強度を制御して、電子ビームの輝度を一定に保つことができる。
本発明の一実施の形態例に係る三次元積層造形装置の構成図である。 従来の電子銃の構成図である。 従来の電子銃の周辺の等電位線を表した説明図である。 本発明の一実施の形態例に係る電子銃の拡大斜視図である。 図1に示したカソードの近傍を拡大視した部分断面図である。 本発明の一実施の形態例に係る電子銃の周辺の等電位線を表した説明図である。 従来の電子銃のバイアス電圧を変化させた場合における、仮想光源径と放出半角の変化例を示す説明図である。 従来の電子銃のバイアス電圧を変化させた場合における、輝度とビーム電流の変化例を示す説明図である。 本発明の一実施の形態例に係るバイアス電圧と制御電圧を変化させた場合における、ビーム電流と輝度の変化例を示す説明図である。 本発明の一実施の形態例に係るバイアス電圧と制御電圧を変化させた場合における、仮想光源径と放出半角の変化例を示す説明図である。 本発明の一実施の形態例に係る輝度が極大となる制御電圧とバイアス電圧の組み合わせを抽出した結果を示す説明図である。
以下、本発明の一実施の形態例に係る電子銃及び三次元積層造形装置について、添付図面を参照して説明する。
この三次元積層造形装置では、電子銃を制御することにより電子ビームの輝度を一定に保つための電子銃制御方法が実現される。本明細書及び図面において、実質的に同一の機能又は構成を有する構成要素については、同一の符号を付することにより重複する説明を省略する。
<三次元積層造形装置の構成>
図1は、三次元積層造形装置1の構成図である。
三次元積層造形装置1は、従来の三次元光造形装置と同様に、三次元CAD(Computer Aided Design)にて作成されたデータから複雑な部品を直接造形することが可能である。ただし、三次元積層造形装置1は、電子ビームB1を利用することにより高速かつ高精度に立体物を造形することが可能であり、しかも従来の方法では難しかった高強度な金属部品を作成することができる。
三次元積層造形装置1は、電子銃10と、所定のビーム径に収束された電子ビームB1を粉末試料8上で走査する電子光学系20、Z方向に移動可能なZ軸ステージ4上に供給した粉末試料8を敷き詰める試料供給系21を備える。また、三次元積層造形装置1は、各系を制御する制御系としての制御部22と、制御プログラムや後述するバイアス電圧と制御電圧の組み合わせ条件等を記憶する記憶部23と、造形チャンバー7内を真空引きする真空ポンプ24とを備える。電子銃10、電子光学系20、試料供給径21、Z軸ステージ4は、内部を真空とした チャンバー内に設置される。
熱電子放出型の電子銃10は、カソード11、ウェネルト電極12、制御電極13及びアノード14を備えた4極構成としてあり、Z軸ステージ4に向けて電子ビームB1を放出し、造形物9を積層造形する。この電子銃10の一部領域15を含む電子銃10の詳細な構成例は後述する。
電子光学系20には、レンズ2、偏向器3が含まれる。
レンズ2は、電磁的な作用により電子銃10から放出された電子ビームB1をさらに集束し、電子ビームB1の焦点をZ軸ステージ4上に結ばせる。偏向器3は、レンズ2を通過した電子ビームB1をZ軸ステージ4の所定位置に移動させる。
試料供給系21には、粉末試料格納庫5、粉末積層アーム6が含まれる。
造形チャンバー7の内部は、粉末試料8の劣化を防止するために、真空ポンプ24により真空引きしてある。そして、Z軸ステージ4は、粉末試料8の一層単位で鉛直方向に移動可能である。Z軸ステージ4上には、水平方向に移動可能な粉末積層アーム6によって粉末試料8が所定の高さで敷き詰められる。
ここで、三次元積層造形装置1の動作について説明する。
まず、真空ポンプ24が造形チャンバー7の内部を真空引きした後、粉末試料格納庫5よりZ軸ステージ4に粉末試料8を供給する。そして、水平方向に移動する粉末積層アーム6が、所望の高さ(例えば、粉末試料8の粒径)となるように粉末試料8をZ軸ステージ4上に均一に敷きつめる。その後、電子銃10から電子ビームB1がZ軸ステージ4上の粉末試料8に向けて照射される。
このとき、カソード11は、不図示の加熱電源によって加熱されて熱電子を放出する。ウェネルト電極12は、不図示のバイアス電源によって印加された負の電位であるバイアス電圧により、カソード11の熱電子放出領域を制御して、熱電子を集束する。制御電極13は、印加された正の電位である制御電圧により、カソード11の先端から鉛直方向に熱電子を引き出す。アノード14は、不図示の加速電源によって印加された加速電圧により、カソード11が放出した熱電子を加速し、電子ビームB1として粉末試料8に照射する。制御部22は、粉末試料8に照射される電子ビームB1によって発生するビーム電流を変えた際に電子ビームB1の輝度を一定に保つため、記憶部23から読み出したバイアス電圧及び制御電圧の組み合わせ条件に基づいてバイアス電圧及び制御電圧を設定する制御を行う。
この電子ビームB1は、電子光学系20によって所定の位置に制御され、Z軸ステージ4上の粉末試料8を高温で溶融する。溶融された粉末試料8は、電子ビームB1が通過した後、凝固し始める。電子ビームB1によってZ軸ステージ4上に所定の形状が造形されると、Z軸ステージ4は、粉末試料8の一層分だけ降下し、上述した試料供給系21による粉末試料8の供給と、電子銃10、電子光学系20による造形が繰り返される。
このように電子ビームB1により一層毎に溶融された後、凝固した粉末試料8により造形される二次元構造体は、造形物9である三次元構造体から一つの粉末層と同じ高さ毎に平面で切り出したものである。そして、三次元積層造形装置1は、粉末試料8の一層毎に電子ビームB1を照射して、粉末試料8の溶融及び凝固を繰り返した後、最終的に所望の造形物9を造形する。
<従来の電子銃の構成>
ここで、従来の三次元積層造形装置で用いられる熱電子放出型の電子銃100の構成について、図2と図3を参照して説明する。
図2は、従来の電子銃100の構成例を示す。
この電子銃100は、カソード101、ウェネルト電極102及びアノード103の3つの電極を備える三極構成としてある。
カソード101は、不図示の加熱電源によって通電加熱されることで先端より熱電子を放出する。カソード101に近接するウェネルト電極102は、平板部を有する皿状に形成されており、平板部の中心には熱電子が通過するための第1開口102aが形成されている。このウェネルト電極102は、カソード101に対して印加された負の電位(バイアス電圧)により、カソード101の先端に局在する熱電子放出領域を制御したり、電子ビームB2を集束したりする役割を果たす。ウェネルト電極102の下方に設けられるアノード103についても、平板部を有して形成されており、平板部の中心には熱電子が通過するための第2開口103aが形成されている。このアノード103は、不図示の加速電源によって印加された加速電圧でカソード101から熱電子を一方向(鉛直下向き)に引き出す。アノード103の第2開口103aを通過した熱電子は電子ビームB2として不図示のZ軸ステージ上に敷き詰められた不図示の粉末試料に達し、この粉末試料を溶融する。
この電子銃100は、10−4Pa以下の真空度の下で放出した熱電子を電子ビームB2として用いており、数10mA以上の大電流とした電子ビームにより粉末試料を溶融することが可能となる。
ここで、電子ビームB2について、図3を参照して説明する。
図3は、カソード101の周囲の等電位線を表した従来の電子銃100の拡大図である。
図3には、カソード101の周囲の等電位線を1kVずつ示してある。これにより、カソード101には負の電位(例えば、−60kV)が印加されていることが示される。そして、カソード101の平面部101aから熱電子が放出されるが、平面部101aに連続するテーパ部101bの一部からも熱電子が放出される。以下の説明では、電子銃100から放出された電子ビームB2の各軌道をその進行方向とは逆の電子銃側に引き戻し(図3中の点線)、そこから発しているように見える虚のクロスオーバーを「仮想光源S2」と呼び、仮想光源S2の直径を「仮想光源径D2」と呼ぶ。図3に示すように、仮想光源S2はカソード101の内部に形成される場合もある。
<本実施の形態例に係る電子銃の構成>
次に、本実施の形態例に係る三次元積層造形装置1で用いられる、熱電子放出型の電子銃10の構成及び動作について、図4〜図6を参照して説明する。
図4は、電子銃10の拡大斜視図である。
図5は、図1に示したカソード11の近傍を拡大視した部分断面図である。
上述したように電子銃10は、カソード11、ウェネルト電極12、制御電極13及びアノード14の4つの電極を備える4極構成としてある。ウェネルト電極12、制御電極13及びアノード14は、いずれも熱電子の放出方向に対して垂直な位置であって、互いに接触しない位置で固定されている。
カソード11は、鉛直下向きとした先端に平面部11a、テーパ部11b及び底面部11cを有する円錐台状に形成されている。このカソード11は、不図示の加熱電源によって通電加熱されることで平面部11aより熱電子を放出する。
ウェネルト電極12は、平面部12a、テーパ部12b及び第1開口12cを備える。平面部12aは、水平方向に略平行に配置されており、テーパ部12bは、平面部12aの水平面に対してカソード11に向けて傾斜角α(=20〜50°)を有するように傾斜して形成される。テーパ部12bには、テーパ部12bの中心軸C1に沿って第1開口12cが形成される。この第1開口12cには、カソード11の先端である、平面部11aの全体と、テーパ部11bの一部とが挿入される。カソード11のテーパ部11bからの熱電子の放出は、ウェネルト電極12に印加されるバイアス電圧によって制限される。
制御電極13は、平面部13a、テーパ部13b及び第2開口13cを備える。平面部13aは、水平方向に略平行に配置されており、テーパ部13bは、平面部13aの水平面に対して、ウェネルト電極12に向けて傾斜角β(=30〜60°)を有するように傾斜して形成される。このテーパ部13bの傾斜角βは、ウェネルト電極12のテーパ部12bの傾斜角αよりも大きい。そして、テーパ部13bには、テーパ部13bの中心軸C1に沿って第2開口13cが形成される。カソード11が放出し、ウェネルト電極12が集束した熱電子は、この第2開口13cを通過する。制御電極13は、制御部22によって印加された制御電圧によって、空間電荷効果によってカソード11の先端付近に溜まった熱電子を引き出すことができる。
アノード14は、平面部14a及び第3開口14bを備える。平面部14aは、水平方向に略平行に配置されている。平面部14aには、平面部14aの中心軸C1に沿って第3開口14bが形成される。アノード14は、制御電極13の第2開口13cを通過した熱電子を第3開口14bに通過させる。
ここで、図5の一部領域15に示したように、カソード11の平面部11aの直径を100〜1500μmの範囲内に形成してあるため、電子銃10から大きなビーム電流を得ることができる。また、カソード11をウエネルト電極12の第1開口12cに挿入し、平面部11aを第1開口12cの下端より下方向に100〜500μm程度突出させる。また、平面部11aをウエネルト電極12に設けたテーパ部12bの内部に収まるように配置する。これにより、ウエネルト電極12は、カソード11の先端における熱電子放出領域を低いバイアス電圧で制御することが可能となる。
図6は、等電位線を表した電子銃10の拡大図である。
図6には、等電位線を1kVずつ示してある。これにより、電子銃10のカソード11には負の電位(例えば、−60kV)が印加されていることが示される。以下の説明では、電子銃10から放出された電子ビームB1の各軌道をその進行方向とは逆の電子銃側に引き戻し(図6中の点線)、そこから発しているように見える虚のクロスオーバーを「仮想光源S1」と呼び、仮想光源S1の直径を「仮想光源径D1」と呼ぶ。
このようにカソード11のテーパ部11bは、先端に平面部11aを有する円錐台状に形成され、平面部11aが第1開口12cに挿入され、制御電極13側に位置する。そして、底面部11cがウェネルト電極12の第1開口12cよりも上の位置に固定される。これにより、カソード11のテーパ部11bに生じる熱電子の放出をバイアス電圧によって抑制することができる。また、制御電極13は、ウェネルト電極12に形成されたテーパ部12bを利用して可能な限り、第2開口13cをカソード11の先端に近づけて配置されている。上述したように制御電極13には、正の電位とした制御電圧が印加されており、この電圧値を変えることで、制御電極13の第2開口13cとカソード11の先端との間における電界の強さを任意に変えることができる。このため、制御部22は、ウェネルト電極12によるバイアス電圧と、制御電極13による制御電圧を用いて、ビーム電流を制御することが可能となる。
この場合、所望の大きさとしたビーム電流を得るための制御電圧とバイアス電圧の組み合わせが複数存在するはずである。そして、複数の組み合わせの中で最も高い輝度が得られる組み合わせを選択することで、ビーム電流の変化時における輝度の低下を抑制することができると考えられる。以下に、制御電圧とバイアス電圧の組み合わせ条件について検討する。
<従来の電子銃制御方法>
ここで、従来の電子銃100に関し、バイアス電圧と電子銃特性との関係をシミュレーションした結果について、図7と図8を参照して説明する。以下に説明する電子銃特性としては、仮想光源径D2、電子ビームB2の放出半角、ビーム電流と、電子ビームB2の輝度がある。なお、以下のグラフ中で符号の記載は省略する。
図7は、バイアス電圧を変化させた場合における、仮想光源径D2と放射半角の変化例を示す。
図7では、仮想光源径D2は、バイアス電圧を650Vから930Vまで大きくしても400〜500μmの間であまり変化しないが、バイアス電圧を1000V付近まで大きくすると急激に大きくなる(1000μm)ことが示されている。また、同図によれば、バイアス電圧が大きくなるに伴い放射半角は小さくなる。ここで、放射半角とは、電子銃100から放出される電子ビームB2の水平方向の広がりを示す。放出半角が小さいほどレンズを通した際に発生する電子ビームの収差が小さくなる。
図8は、バイアス電圧を変化させた場合における、輝度とビーム電流の変化例を示す。
バイアス電圧を650Vから1000Vまで大きくすると、ビーム電流は線形的に減少する。一方、電子ビームB2の輝度は、バイアス電圧が650Vから930Vまでは上昇傾向を示すが、930V付近を超えると一転して減少傾向に転じる。この結果は、ある特定のバイアス電圧条件で輝度が最大となることを示している。なお、輝度が高いとは、電子ビーム単位面積当たり、及び単位立体角当たりのビーム電流量が多いこと意味し、輝度が高ければ試料粉末を溶融しやすくなる。また、輝度が高い方が電子ビームB2のビーム径を小さく絞ることができるので、高精度に造形することが可能となる。
以上の結果から、一般的な熱電子放出型の電子銃を用いても所望のビーム電流を得ること自体は可能であるものの、ビーム電流を大きくしたり小さくしたりすると輝度が低下することが示された。このため、従来の三次元積層造形装置のように、ウエネルト電極を用いてビーム電流の制御を行おうとしても、高い輝度を得られるビーム電流を利用できる場合と、利用できない場合とが発生し、粉末試料に溶融ムラが生じやすくなってしまう。
<本実施の形態例に係る電子銃制御方法>
次に、ビーム電流が変化した場合であっても電子ビームB1の輝度を保つための本実施の形態例に係る電子銃制御方法について、図9〜図11を参照して説明する。
図9は、バイアス電圧と制御電圧を変化させた場合における、ビーム電流と輝度の変化例を示す。
図9では、制御部22が制御電圧を、2.0kV、2.5kV、3.0kV、3.5kVのように変化させ、バイアス電圧を600V、850V、1000V、1200Vの付近で増減させた場合における電子銃特性をシミュレーションした例を示している。
図9より、制御電圧を大きくするほどビーム電流が増大することが示されている。また、同図によれば、電子銃10によって生じた電子ビームB1の輝度は、従来の電子銃100によって生じた電子ビームB2の輝度(図8)と比較して数倍も大きくなることが示されている。この理由として、制御電圧によってカソード11の先端の単位面積当たりから放出される熱電子が増大したことと、ウエネルト電極12と制御電極13の間に発生した静電界のレンズ作用によって、仮想光源径D1が小さく抑えられたことが想定される。
図10は、バイアス電圧と制御電圧を変化させた場合における、仮想光源径と放出半角の変化例を示す。
図10でも、制御部22が制御電圧を、2.0kV、2.5kV、3.0kV、3.5kVのように変化させ、バイアス電圧を600V、850V、1000V、1200Vの付近で増減させた場合における電子銃特性をシミュレーションした例を示している。
図10より、制御電圧を2.0kVから3.5kVまで大きくすると、仮想光源径D1が小さくなり、放射半角が大きくなることが示される。更に、図9からは、各々の制御電圧において、バイアス電圧を増減させると、特定のバイアス電圧で輝度が極大をとることが示されている。
図11は、輝度が極大となる制御電圧とバイアス電圧の組み合わせを抽出した結果を示す。
図11によれば、制御電圧とバイアス電圧の両方を変えることによって、輝度が保たれることが示される。また、ビーム電流を60mAから120mAの範囲で変えても、輝度が保たれることが示される。
ここで、電子ビームB1の輝度Bは、以下の式(1)により表される。
Figure 0006437316
式(1)において、Iはビーム電流の大きさであり、rは仮想光源S1の半径であり、αは放射半角である。
式(1)より、ビーム電流を大きくすると共に、仮想光源S1の半径を小さくし、放射半角を小さくすれば、電子ビームB1の輝度を高くすることができると分かる。従来は、図7に示したように、放射半角を小さくするためには高いバイアス電圧が必要となる。一方、仮想光源S2の半径はバイアス電圧を大きくしていくと、あるバイアス電圧を境に急激に大きくなる。そのため、図8に示したように、電子ビームB2の輝度はある特定のバイアス電圧で最大値をとる。このバイアス電圧で得られるビーム電流は1条件のみであり、そこからビーム電流を変化させるほど輝度は大きく低下する。よって、従来は、ある特定条件のビーム電流でしか高い輝度の電子ビームB2を利用できなかった。
しかし、本実施の形態例に係る電子銃10では、制御電極13がカソード11の先端における電界強度を高めてカソード11から熱電子を引き出すようにしている。このとき、図10に示したように、制御電圧をかけながらバイアス電圧を上げると、仮想光源径は小さくなるが、放射半角は大きくなるという互いの変化を相殺する関係が見られる。ここで、式(1)に示したように、仮想光源径と放射半角は、輝度の大きさに寄与するパラメータである。このため、バイアス電圧と制御電圧を上げながらビーム電流を上げたとしても、電子ビームB1の輝度の極大値はあまり変わらない。このため、ビーム電流を変化させても高い輝度を維持したまま電子ビームB1を粉末試料8に照射することができる。
また、電子銃10に所望の電子ビームB1を放出させるために、図11に示したようなバイアス電圧と制御電圧の組み合わせ条件を、ビーム電流に対応させて記憶部23に記憶しておく。そして、制御部22は、使用する電子ビームB1のビーム電流に応じて記憶部23から組み合わせ条件を読み出して、各電極に所定の印加電圧を設定する。これにより、電子銃10は、高い輝度を維持したまま溶融プロセス毎にビーム電流を変化させることが可能となる。
以上説明した一実施の形態例に係る4極構成とした熱電子放出型の電子銃10では、従来行っていたバイアス電圧によるビーム電流の制御に加えて、さらに制御電圧でビーム電流を制御するようにしている。このため、電流制限絞りが使えない三次元積層造形装置1において、電子ビームB1の輝度を低下させずにビーム電流を制御することが可能になる。しかも、制御電極13を追加したことにより得られる電子ビームB1の輝度は、従来の電子銃100が照射していた電子ビームB2の輝度よりも数倍高くなる。
また、ウエネルト電極12の形状を、熱電子の放出方向とは逆方向に窪ませた形状にしたことにより、熱電子を集束しやすくなる。また、カソード11の熱電子放出領域の制御も容易になり、カソード11のテーパ部11bからの熱電子の放出が抑制される。
また、制御電極13に形成されるテーパ部13bの傾斜角βは、ウェネルト電極12に形成されるテーパ部12bの傾斜角αよりも大きくしたことにより、制御電極13の第2開口13cを、第1開口12cに挿入されたカソード11の先端に近づけることができる。このため、制御電極13は、カソード11の先端から熱電子を引き出してビーム電流を増大することができる。さらにウェネルト電極12と制御電極13との間に発生した電界はレンズとして作用する。これにより、仮想光源径D1を従来の仮想光源径D2よりも小さくすることができる。
なお、本発明は上述した実施の形態例に限られるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りその他種々の応用例、変形例を取り得ることは勿論である。
例えば、ウェネルト電極12にテーパ部11bを形成せず、制御電極13にテーパ部13bを形成しない構成としてもよい。
また、カソード11、ウェネルト電極12及び制御電極13の各テーパ部は、各中心軸に沿って角錐台状又は円柱状に形成されていてもよい。
また、上記した実施の形態例は本発明を分かりやすく説明するために装置及びシステムの構成を詳細且つ具体的に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることは可能であり、更にはある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
1…電子銃、2…レンズ、3…偏向器、4…Z軸ステージ、5…粉末試料格納庫、6…粉末積層アーム、7…造形チャンバー、8…粉末試料、10…三次元積層造形装置、11…カソード、11a…平面部、12…ウェネルト電極、13…制御電極、14…アノード

Claims (5)

  1. 加熱電源により加熱されて、先端から熱電子を放出するカソードと、
    前記カソードの先端が挿入され、中心軸に沿って設けられた第1開口を有し、印加されたバイアス電圧により前記カソードの熱電子放出領域を制御して、前記熱電子を集束するウェネルト電極と、
    中心軸に沿って設けられた第2開口を有し、印加された制御電圧により、前記カソードの先端から放出された前記熱電子を、前記第2開口に通過させる制御電極と、
    中心軸に沿って設けられた第3開口を有し、印加された加速電圧により、前記カソードが放出した前記熱電子を加速し、前記第2開口を通過した前記熱電子を、前記第3開口に通過させて、粉末試料に電子ビームを照射するアノードと、
    前記バイアス電圧と前記制御電圧を変化させて前記粉末試料に照射される前記電子ビームビーム電流を変えた際に前記電子ビームの輝度を一定に保つため、前記バイアス電圧及び前記制御電圧の組み合わせ条件に基づいて前記バイアス電圧及び前記制御電圧を設定する制御を行う制御部と、を備える
    電子銃。
  2. 前記カソードに形成されるテーパ部は、先端に平面部を有する円錐台状、角錐台状又は円柱状のいずれかに形成され、前記平面部が前記第1開口に挿入され、前記制御電極側に位置する
    請求項1記載の電子銃。
  3. 前記ウェネルト電極は、前記カソードに向けて形成されるテーパ部を有し、
    前記制御電極は、前記ウェネルト電極に向けて形成されるテーパ部を有し、
    前記制御電極に形成される前記テーパ部の傾斜角は、前記ウェネルト電極に形成される前記テーパ部の傾斜角よりも大きい
    請求項2記載の電子銃。
  4. 電子ビームを発生する電子銃と、粉末試料が敷き詰められるステージと、前記ステージに対して前記電子ビームを走査する電子光学系と、前記粉末試料を前記ステージに敷き詰める試料供給系と、前記電子銃の制御を行う制御系と、を備え、
    前記電子銃は、
    加熱電源により加熱されて、先端から熱電子を放出するカソードと、
    前記カソードの先端が挿入され、中心軸に沿って設けられた第1開口を有し、印加されたバイアス電圧により前記カソードの熱電子放出領域を制御して、前記熱電子を集束するウェネルト電極と、
    中心軸に沿って設けられた第2開口を有し、印加された制御電圧により、前記カソードの先端から放出された前記熱電子を、前記第2開口に通過させる制御電極と、
    中心軸に沿って設けられた第3開口を有し、印加された加速電圧により、前記カソードが放出した前記熱電子を加速し、前記第2開口を通過した前記熱電子を、前記第3開口に通過させて、粉末試料に電子ビームを照射するアノードと、を有し、
    前記制御系は、前記バイアス電圧と前記制御電圧を変化させて前記粉末試料に照射される前記電子ビームビーム電流を変えた際に前記電子ビームの輝度を一定に保つため、前記バイアス電圧及び前記制御電圧の組み合わせ条件に基づいて前記バイアス電圧及び前記制御電圧を設定する制御を行う
    三次元積層造形装置。
  5. 加熱電源により加熱されたカソードの先端から熱電子を放出するステップと、
    前記カソードの先端が挿入され、中心軸に沿って設けられた第1開口を有するウェネルト電極が、印加されたバイアス電圧により前記カソードの熱電子放出領域を制御して、前記熱電子を集束するステップと、
    中心軸に沿って設けられた第2開口を有する制御電極が、印加された制御電圧により、前記カソードの先端から引き出した前記熱電子を、前記第2開口に通過させるステップと、
    中心軸に沿って設けられた第3開口を有するアノードが、印加された加速電圧により、前記カソードが放出した前記熱電子を加速し、前記第2開口を通過した前記熱電子を、前記第3開口に通過させて、粉末試料に電子ビームを照射するステップと、
    制御部が、前記バイアス電圧と前記制御電圧を変化させて前記粉末試料に照射される前記電子ビームビーム電流を変えた際に前記電子ビームの輝度を一定に保つため、前記バイアス電圧及び前記制御電圧の組み合わせ条件に基づいて前記バイアス電圧及び前記制御電圧を設定する制御を行うステップと、を含む
    電子銃制御方法。
JP2015003094A 2014-02-14 2015-01-09 電子銃、三次元積層造形装置及び電子銃制御方法 Active JP6437316B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015003094A JP6437316B2 (ja) 2014-02-14 2015-01-09 電子銃、三次元積層造形装置及び電子銃制御方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014026487 2014-02-14
JP2014026487 2014-02-14
JP2015003094A JP6437316B2 (ja) 2014-02-14 2015-01-09 電子銃、三次元積層造形装置及び電子銃制御方法

Publications (2)

Publication Number Publication Date
JP2015167125A JP2015167125A (ja) 2015-09-24
JP6437316B2 true JP6437316B2 (ja) 2018-12-12

Family

ID=52464295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015003094A Active JP6437316B2 (ja) 2014-02-14 2015-01-09 電子銃、三次元積層造形装置及び電子銃制御方法

Country Status (3)

Country Link
US (1) US9269520B2 (ja)
EP (1) EP2911181B1 (ja)
JP (1) JP6437316B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018520024A (ja) * 2015-06-19 2018-07-26 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 付加製造における粉末の選択的堆積
US10525531B2 (en) * 2015-11-17 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10525547B2 (en) * 2016-06-01 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
CN106735203B (zh) * 2016-12-06 2019-01-18 西安智熔金属打印系统有限公司 一种电子束快速成形制造方法
CN109716480B (zh) 2017-01-12 2021-02-19 爱德万测试株式会社 三维分层建模装置的电子束列、三维分层建模装置、以及三维分层建模方法
CN106862568A (zh) * 2017-02-23 2017-06-20 西北工业大学 基于电子束熔丝的增减材复合制造装置和方法
CN106847660B (zh) * 2017-04-05 2018-08-21 中国科学技术大学 一种中高能电子枪
US10821721B2 (en) * 2017-11-27 2020-11-03 Arcam Ab Method for analysing a build layer
FR3075673B1 (fr) * 2017-12-26 2019-12-20 Addup Appareil de fabrication additive selective a source d'electrons a cathode a chauffage indirect
JP7068069B2 (ja) * 2018-06-27 2022-05-16 株式会社日立製作所 電子顕微鏡
US10522324B1 (en) * 2018-08-02 2019-12-31 Expresslo Llc Method of producing lift out specimens for teaching, practice, and training
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
FR3087577B1 (fr) * 2018-10-23 2021-12-10 Addup Source d'electrons a double wehnelt pour appareil de fabrication additive selective
CN109979791B (zh) * 2018-12-20 2021-07-06 中国电子科技集团公司第十二研究所 一种阴极热子组件及其制作方法
CN114284124A (zh) * 2021-02-02 2022-04-05 湖州超群电子科技有限公司 一种电子束辐照增强装置及其使用方法
JP7346475B2 (ja) 2021-03-10 2023-09-19 日本電子株式会社 三次元積層造形装置および三次元積層造形方法
CN116344297A (zh) * 2023-05-26 2023-06-27 苏州一目万相科技有限公司 球管和球管的控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1955846C3 (de) * 1969-11-06 1973-10-31 Leybold-Heraeus Gmbh & Co Kg, 5000 Koeln Elektronenkanone fur die Erhitzung von Materialien in einem Vakuumbehalter
US4091311A (en) * 1976-12-17 1978-05-23 United Technologies Corporation Modulatable, hollow beam electron gun
JPS5648028A (en) * 1979-09-26 1981-05-01 Toshiba Corp Electron gun
JPS6081746A (ja) * 1983-10-13 1985-05-09 Nec Corp 電子ビ−ム発生装置
JPS6081747A (ja) * 1983-10-13 1985-05-09 Nec Corp 電子ビ−ム発生装置
JPH01274349A (ja) 1988-04-25 1989-11-02 Jeol Ltd 電子銃用高圧電源
JP4052731B2 (ja) * 1998-06-18 2008-02-27 株式会社アドバンテスト 電子銃
JP2007335125A (ja) * 2006-06-13 2007-12-27 Ebara Corp 電子線装置
CN102361002B (zh) * 2006-06-30 2015-07-15 株式会社岛津制作所 电子束控制方法、电子束生成设备、使用该方法的设备,以及发射器
JP2012044191A (ja) * 2007-03-29 2012-03-01 Advantest Corp 電子銃及び電子ビーム露光装置
JP2010255057A (ja) * 2009-04-27 2010-11-11 Htl:Kk 電子ビーム造形装置
FR2987293B1 (fr) * 2012-02-27 2014-03-07 Michelin & Cie Procede et appareil pour realiser des objets tridimensionnels a proprietes ameliorees
WO2016110996A1 (ja) * 2015-01-09 2016-07-14 技術研究組合次世代3D積層造形技術総合開発機構 電子銃、電子銃の制御方法および制御プログラム並びに3次元造形装置

Also Published As

Publication number Publication date
JP2015167125A (ja) 2015-09-24
US20150270088A1 (en) 2015-09-24
US9269520B2 (en) 2016-02-23
EP2911181B1 (en) 2017-10-11
EP2911181A1 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP6437316B2 (ja) 電子銃、三次元積層造形装置及び電子銃制御方法
JP5281004B2 (ja) エミッタの設計方法、電子ビーム発生装置およびそれを用いたデバイス
JP4685115B2 (ja) 電子ビーム露光方法
KR101915523B1 (ko) 엑스선 튜브
JP6363293B1 (ja) 3次元造形装置、3次元造形装置の制御方法および3次元造形装置の制御プログラム
JP6042552B2 (ja) 3次元造形装置、3次元造形装置の制御方法および制御プログラム
WO2016110996A1 (ja) 電子銃、電子銃の制御方法および制御プログラム並びに3次元造形装置
JP4913599B2 (ja) 帯電粒子抽出デバイスおよびその設計方法
JP5290238B2 (ja) 電子顕微鏡
JP6210493B2 (ja) 荷電粒子ビーム照射装置及び荷電粒子ビーム照射方法
CN110461506B (zh) 在添加剂层制造期间的带电粒子束控制
US11458561B2 (en) Electron beam column for three-dimensional printing device, three-dimensional printing device, and three-dimensional printing method
JP6999277B2 (ja) 熱電界エミッタチップ、熱電界エミッタチップを含む電子ビーム装置、および電子ビーム装置を動作させる方法
JP5386229B2 (ja) 電子銃
US8126118B2 (en) X-ray tube and method of voltage supplying of an ion deflecting and collecting setup of an X-ray tube
CN111051985B (zh) 具有高分辨率的电子束设备
CN206451682U (zh) 一种电子源产生装置
JP2012018790A (ja) 電子銃の駆動方法、電子ビーム描画装置および電子ビーム描画方法
JP2011082056A (ja) 集束イオンビーム装置のナノエミッタ作製方法及びナノエミッタ作製手段を有する集束イオンビーム装置
JP2015182419A (ja) 三次元積層造形装置及び三次元積層造形方法
JP7018418B2 (ja) 電子銃、電子顕微鏡、3次元積層造形装置、及び電子銃の電流調整方法
JP6246647B2 (ja) 電子銃、三次元積層造形装置及び電子銃制御方法
JP2015232952A (ja) カソードの取得方法および電子ビーム描画装置
JP2013225521A (ja) 電子銃
Drozdenko et al. Numerical modeling parameters for a three-electrode axial system for electron sources in the micro X-ray equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181114

R150 Certificate of patent or registration of utility model

Ref document number: 6437316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150