WO2016110996A1 - 電子銃、電子銃の制御方法および制御プログラム並びに3次元造形装置 - Google Patents

電子銃、電子銃の制御方法および制御プログラム並びに3次元造形装置 Download PDF

Info

Publication number
WO2016110996A1
WO2016110996A1 PCT/JP2015/050460 JP2015050460W WO2016110996A1 WO 2016110996 A1 WO2016110996 A1 WO 2016110996A1 JP 2015050460 W JP2015050460 W JP 2015050460W WO 2016110996 A1 WO2016110996 A1 WO 2016110996A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron gun
emission current
control electrode
bias voltage
electron
Prior art date
Application number
PCT/JP2015/050460
Other languages
English (en)
French (fr)
Inventor
佐藤 崇
Original Assignee
技術研究組合次世代3D積層造形技術総合開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 技術研究組合次世代3D積層造形技術総合開発機構 filed Critical 技術研究組合次世代3D積層造形技術総合開発機構
Priority to PCT/JP2015/050460 priority Critical patent/WO2016110996A1/ja
Priority to US14/785,730 priority patent/US10217599B2/en
Priority to JP2016510533A priority patent/JP6190040B2/ja
Priority to EP15778595.7A priority patent/EP3065161B1/en
Publication of WO2016110996A1 publication Critical patent/WO2016110996A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/08Arrangements for controlling intensity of ray or beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/12Arrangements for controlling cross-section of ray or beam; Arrangements for correcting aberration of beam, e.g. due to lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/065Construction of guns or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06308Thermionic sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/065Source emittance characteristics
    • H01J2237/0653Intensity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to an electron gun, an electron gun control method and control program, and a three-dimensional modeling apparatus.
  • Patent Document 1 discloses a three-electrode electron gun including a cathode, a Wehnelt electrode, and an anode.
  • the electron gun described in the above document cannot prevent a decrease in the brightness of the electron beam when the emission current is changed.
  • An object of the present invention is to provide a technique for solving the above-described problems.
  • an electron gun comprises: A cathode that emits thermal electrons; A Wehnelt electrode for focusing the thermal electrons; A control electrode for extracting the thermoelectrons from the tip of the cathode; An anode for accelerating the thermal electrons and irradiating the powder as an electron beam; By changing at least one of a bias voltage applied to the Wehnelt electrode and a control electrode voltage applied to the control electrode, the luminance of the electron beam forms a peak.
  • the bias voltage and the control electrode voltage Optimal condition collection control means for determining a combination; Equipped with.
  • an electron gun control method includes: A determination step for determining a consumption degree of the cathode based on an emission current of the electron gun; A readjustment step of performing readjustment of the bias voltage and control electrode voltage of the electron gun if the amount of decrease in the emission current is equal to or greater than a predetermined threshold; A fine adjustment step of performing fine adjustment of the bias voltage and the control electrode voltage of the electron gun when the amount of decrease in the emission current is less than the predetermined threshold; It is characterized by including.
  • an electron gun control program provides: A determination step for determining a consumption degree of the cathode based on an emission current of the electron gun; A readjustment step of performing readjustment of the bias voltage and control electrode voltage of the electron gun if the amount of decrease in the emission current is equal to or greater than a predetermined threshold; A fine adjustment step of performing fine adjustment of the bias voltage and the control electrode voltage of the electron gun when the amount of decrease in the emission current is less than the predetermined threshold; Is executed by a computer.
  • a three-dimensional modeling apparatus includes: The electron gun according to claim 1 is used.
  • the present invention it is possible to prevent the brightness of the electron beam from being lowered when the emission current is changed.
  • the electron gun 100 is a device that supplies an electron beam.
  • the electron gun 100 includes an electron beam supply unit 101 and an optimum condition collection control unit 105.
  • the electron beam supply unit 101 includes a cathode 111, a Wehnelt electrode 112, a control electrode 113, and an anode 114.
  • the cathode 111 emits thermoelectrons.
  • the Wehnelt electrode 112 focuses thermoelectrons.
  • the control electrode 113 controls the electric field strength at the tip of the cathode 111 and draws thermoelectrons from the tip of the cathode.
  • the anode 114 accelerates the thermal electrons and irradiates the powder as an electron beam 120.
  • the optimum condition collection control unit 105 changes the bias voltage applied to the Wehnelt electrode 112 and the control electrode voltage applied to the control electrode 113, thereby changing the bias voltage at which the luminance of the electron beam 120 forms a peak. And the control electrode voltage are determined.
  • the emission current changes, it is possible to prevent a decrease in the brightness of the electron beam. Further, in order to prevent a decrease in the luminance of the electron beam, a combination of a bias voltage and a control voltage that form a peak in the luminance of the electron beam can be determined.
  • FIG. 2 is a diagram for explaining the configuration of the electron gun 201 used in the three-dimensional modeling apparatus according to the prerequisite technology of the present embodiment.
  • the electron gun 201 includes a cathode 211, a Wehnelt electrode 212, and an anode 214.
  • the electron gun 201 is a three-electrode type electron gun. Since the electron gun 201 can easily obtain a large current, for example, a wide range of devices such as an electron microscope, an electron beam drawing device, an electron beam analyzer, an electron beam processing device (welding, surface modification, additive manufacturing, etc.), etc. Is used.
  • the electron beam processing apparatus is generally provided with various processing modes, and the diameter of the electron beam 220 and the beam current of the electron beam 220 are rapidly changed according to the processing mode used or the usage situation. It is necessary to let Furthermore, since the electron beam of such an electron beam processing apparatus has a high acceleration voltage (several tens of kV or more) and a large current (10 mA or more), when the electron beam 220 is irradiated to the structure inside the apparatus, the structure There is a risk of damage.
  • the current control diaphragm for controlling the beam current on the sample (on the powder) cannot be arranged in the electron optical column, the electrons emitted from the cathode 211 (electron gun 201) All of the beam 220 will reach the sample. That is, the beam current and emission current on the sample have the same value. In this case, in order to change the beam current, the emission current itself of the electron gun 201 must be changed.
  • a method of changing the bias voltage (application voltage of the Wehnelt electrode 212) can be considered.
  • the luminance of the electron beam 220 is changed in accordance with the change of the bias voltage. Also changes.
  • the luminance is related to the size of the beam diameter of the electron beam 220 formed on the sample. That is, when the brightness of the electron beam 220 decreases, the beam diameter of the electron beam 220 increases.
  • the luminance of the electron beam 220 is changed simultaneously with the change of the emission current like the electron gun 201, there is a problem that the luminance becomes small at a certain emission current and a desired beam diameter cannot be obtained.
  • FIG. 3 is a diagram illustrating the configuration of the three-dimensional modeling apparatus 300 according to the present embodiment.
  • FIG. 4 is a diagram illustrating the configuration of the electron gun 301 according to the present embodiment.
  • FIG. 5 is a diagram illustrating a current signal curve acquired by beam scanning by the three-dimensional modeling apparatus 300 according to the present embodiment.
  • the three-dimensional modeling apparatus 300 includes a lens barrel 360, a vacuum chamber 320, a high voltage power source 330, a computer 340, and an electron optical system control unit 350.
  • the lens barrel 360 includes an electron gun 301, a lens 305, and a deflector 306.
  • the electron gun 301 includes a cathode 311, a Wehnelt electrode 312, a control electrode 313, and an anode 314. That is, the electron gun 301 is a four-electrode type electron gun including four electrodes.
  • the vacuum chamber 320 includes a Faraday cup 322, a cooling pipe 323, and an ammeter 324.
  • the beam current and beam diameter of the electron beam 370 are measured using the Faraday cup 322.
  • the Faraday cup 322 is provided with a cooling pipe 323 in order to suppress a temperature rise due to irradiation with the electron beam 370.
  • the ammeter 324 measures the beam current 325 of the electron beam 370.
  • the high voltage power supply 330 includes a cathode heating power supply 332, a bias power supply 334, a control electrode power supply 335, a power supply control unit 336, an ammeter 337, and an acceleration power supply 338.
  • the ammeter 337 measures the load current 333.
  • the computer 340 includes an optimum condition collection control unit 341 and an approximate calculation calculation unit 342.
  • the electron optical system control unit 350 controls the electron optical system including the lens 305 and the deflector 306.
  • the electron gun 301 is a thermionic emission type electron gun composed of four electrodes: a cathode 311, a Wehnelt electrode 312, a control electrode 313, and an anode 314.
  • the electron gun 301 is operated by a cathode heating power source 332, a bias power source 334, a control electrode power source 335, and an acceleration power source 338 provided in the high voltage power source 330.
  • the electron beam 370 emitted from the electron gun 301 is controlled by the lens 305 and the deflector 306 and focuses on the powder at a predetermined position.
  • the three-dimensional modeling apparatus 300 adjusts the electron gun 301 by determining an optimum combination condition of a bias voltage and a control electrode voltage at which the luminance of the electron beam 370 forms a peak.
  • a Faraday cup 322 with a knife edge provided in the vacuum chamber 320 is used.
  • the Faraday cup 322 is provided with a cooling pipe 323 in order to suppress a temperature rise due to beam irradiation.
  • a current signal curve as shown in FIG. 5 is measured.
  • the apparatus used for measuring the beam current is not limited to this.
  • the approximate calculation calculation unit 342 performs curve fitting and differential calculation processing on the acquired current signal curve to calculate the beam diameter of the electron beam 370.
  • the beam current of the electron beam 370 reaching the sample surface (on the powder) may be obtained from the measured value of the Faraday cup 322, but is not limited thereto. Since the beam current of the electron beam 370 has the same value as the emission current emitted from the cathode 311 (electron gun 301), the load current 333 flowing through the high-voltage power source 330 can be measured by an ammeter 337.
  • the series of operations described above are automatically performed by the optimum condition collection control unit 341 included in the computer 340.
  • the optimum condition collection control unit 341 sends a command to the power supply control unit 336 to change the bias voltage and the control electrode voltage in a matrix.
  • the optimum condition collection control unit 341 measures the beam diameter and beam current of the electron beam 370 by the method described above, calculates the current density under each condition, and controls the bias voltage and control for obtaining a specific emission current. Record optimum combination conditions with electrode voltage.
  • the optimum condition collection control unit 341 also sends a command to the electron optical system control unit 350, and appropriately performs beam scanning of the electron beam 370 on the knife edge, focusing and defocusing of the electron beam 370, and the like.
  • FIG. 6 is a diagram showing the bias voltage characteristics of the current density and emission current of the electron gun 301 according to the present embodiment.
  • FIG. 7 is another diagram showing the bias voltage characteristics of the current density and emission current of the electron gun 301 according to this embodiment.
  • the control electrode voltage is fixed at V c1 , the beam diameter and beam current of the electron beam 370 are measured while changing the bias voltage, and the current density of the electron beam 370 is calculated. Thereby, the bias voltage characteristic between the current density and the emission current as shown in FIG. 6 is obtained. As shown in the figure, there is a bias voltage V b1 that maximizes the current density, and the emission current in this case is I 1 .
  • This series of operations is performed while gradually increasing the control electrode voltage to V c2 , V c3 , V c4,. Thereby, a plurality of bias voltage characteristics of the current density and the emission current as shown in FIG. 7 are obtained, and an optimum combination condition of the bias voltage and the control electrode voltage with respect to the specific emission current is obtained.
  • the acceleration voltage is constant in the three-electrode electron gun, only one bias voltage characteristic between the current density and the emission current can be obtained. In other words, in a three-electrode electron gun, when a large emission current is required, the brightness of the electron beam has to be reduced (since the brightness has been sacrificed), and the beam diameter has increased, resulting in high accuracy. It was not possible to make a high shape.
  • Electron guns with a four-electrode configuration have the characteristic that the luminance hardly deteriorates (decreases) even if the emission current is changed. Therefore, electron beam machining such as a three-dimensional modeling apparatus that is assumed to be used while changing the emission current. An electron gun suitable for use in the apparatus. In other words, even if the emission current is changed, an electron beam with high brightness can be used correspondingly, and the beam diameter can be reduced by narrowing the electron beam, so that modeling (processing) with high accuracy is performed. Can do.
  • the current density and the emission current must be acquired while changing the two parameters of the bias voltage and the control electrode voltage in a matrix. Therefore, manual data collection takes a lot of time.
  • the optimum combination conditions change with the consumption of the cathode, the optimum combination conditions must be re-recorded each time the consumption of the cathode progresses to some extent.
  • FIG. 8 is a flowchart for explaining the operation of the three-dimensional modeling apparatus 300 according to this embodiment.
  • FIG. 9 is a diagram for explaining an outline of the determination of the cathode wear condition by the three-dimensional modeling apparatus 300 according to the present embodiment.
  • the 3D modeling apparatus 300 automatically performs the determination of the degree of wear of the cathode 311 and the readjustment and fine adjustment of the bias voltage and the control electrode voltage according to this flowchart.
  • step S801 the three-dimensional modeling apparatus 300 automatically adjusts the electron gun 301 so that an electron beam 370 suitable for manufacturing a modeled object by stacking powder is obtained. That is, the three-dimensional modeling apparatus 300 measures the emission current and the current density, and determines a plurality of conditions (optimum combination conditions) for the combination of the bias voltage and the control electrode voltage at which the luminance is the highest (forms a peak). To do. Then, the electron gun 301 applies a combination most suitable for the modeling conditions of the modeled object from the determined optimum combination conditions, and manufactures the modeled object. As a result, it is possible to always use the electron beam 370 having the highest luminance or peak luminance.
  • step S803 the three-dimensional modeling apparatus 300 determines whether the apparatus is in an idling state. That is, the three-dimensional modeling apparatus 300 ends the operation if the apparatus is manufacturing a modeled object.
  • the three-dimensional modeling apparatus 300 shifts to a determination mode in which the consumption state of the cathode 311 is determined in step S805. .
  • step S 807 the emission current and the current density are measured again using the optimum combination condition derived in the automatic adjustment mode of the electron gun 301. .
  • step S809 the three-dimensional modeling apparatus 300 determines whether or not the emission current remeasured in step S807 has decreased by 5% or more compared to the emission current obtained by the last adjustment of the electron gun 301.
  • the emission current obtained at the end is compared, but the object of comparison is not limited to this.
  • the emission current when the three-dimensional modeling apparatus 300 is first activated may be compared. Further, for example, due to the exhaustion of the cathode 311, it may be compared with an emission current immediately after the cathode 311 is replaced.
  • the three-dimensional modeling apparatus 300 performs readjustment of the electron gun 301 in step S811. If the emission current has not decreased by 5% or more, the three-dimensional modeling apparatus 300 performs fine adjustment of the electron gun 301 in step S813.
  • step S815 the three-dimensional modeling apparatus 300 changes the bias voltage and the control electrode voltage in a matrix and records the optimum combination condition from the beginning.
  • the three-dimensional modeling apparatus 300 rerecords the optimum combination condition so that only the bias voltage is changed and a desired emission current is obtained in step S817.
  • Determination of the degree of wear of the cathode 311 is performed when the apparatus is in an idling state (wait state).
  • the optimum combination conditions (V b1 , V c1 ), (V b2 , V c2 ), (V b3 , V c3 ) recorded in the optimum condition collection control circuit 341 for the bias voltage and the control electrode voltage are: ⁇ Change the order in order to obtain the emission current and current density again.
  • the tip of the cathode 311 Since the tip of the cathode 311 is consumed with use, the emission current becomes smaller than when the electron gun 311 is adjusted. Further, when the cathode 311 is consumed, the tip of the cathode 311 moves away from the Wehnelt electrode 312, so that the optimum bias voltage condition for each control electrode voltage is lower than the original condition.
  • the optimum combination condition (V b1 , V c1 ) of the bias voltage and the control electrode voltage changes as shown in FIG. 9 as the cathode 311 is consumed.
  • the solid line in the figure is a measurement result obtained when the bias voltage and the control electrode voltage are changed in a matrix when the electron gun 301 is adjusted.
  • the points in the figure indicate the results measured by the cathode wear condition determination, and the broken lines indicate the results predicted from the data acquired by the cathode wear condition determination. If the bias voltage and the control electrode voltage are changed in a matrix, it takes time to acquire data. Therefore, in the cathode wear condition determination, the optimum combination condition (V b1 , V c1 ),... (V b5 , V Acquire data in c5 ).
  • fine adjustment of the electron gun 301 is performed. To do.
  • the fine adjustment of the electron gun 301 is an adjustment that changes only the bias voltage without changing the control electrode voltage when obtaining a desired emission current. For example, as shown in FIG. 9, the desired emission current I 1 was obtained under the optimum combination conditions (V b1 , V c1 ) when adjusting the electron gun, but only I 1 ′ was obtained as the cathode 311 was consumed. It is gone.
  • the reduction in the emission current is compensated by changing the optimum combination condition from (V b1 , V c1 ) to (V b1 ′, V c1 ).
  • the other optimum combination conditions V b2 , V c2 ), (V b3 , V c3 ),... (V b5 , V c5 ), (V b2 ′, V c2 ), (V b3 ′) , V c3 ),... (V b5 ′, V c5 ) and only the bias voltage are changed so that a desired emission current can be obtained under each condition.
  • the optimum conditions (conditions in which current density and luminance show a peak (highest)) of the electron gun 301 change in a direction in which the bias voltage decreases. This change is the same as the direction in which the bias voltage is changed by fine adjustment of the electron gun 301.
  • the electron gun adjustment not only compensates for the emission current, but also has the effect of bringing the electron gun setting closer to the optimum condition, although it is not perfect.
  • “readjustment” of the electron gun 301 is performed.
  • the readjustment of the electron gun 301 is an adjustment in which the optimum combination condition of the bias voltage and the control electrode voltage is obtained again from the beginning to obtain a desired emission current. If the emission current decreases greatly, even if the emission current can be compensated only by changing the bias voltage, it cannot be compensated until the current density is reduced.
  • the brightness of the electron gun 301 is deteriorated (decreased) under each condition. Since the beam diameter cannot be reduced to a small value, the processing accuracy of the three-dimensional modeling apparatus 300 also decreases. Therefore, when the emission current is reduced by 5% or more in the cathode consumption condition determination, the electron gun 301 is readjusted.
  • the four-electrode thermoelectron emission electron gun requires complicated adjustment of the electron gun. However, the provision of the above-described automatic adjustment mechanism makes it possible to always operate the electron gun with appropriate settings.
  • the emission current drop of “5%” is used as a criterion for fine adjustment and readjustment, but the criterion is not limited to this. It is important to re-adjust the electron gun optimum condition that gradually moves away only by fine adjustment, and it becomes a determinant of the judgment criteria. As described here, when the emission current decrease of 5% is used as a criterion, readjustment of the electron gun 301 is performed before the luminance deviates much from the optimum condition.
  • the emission current changes, it is possible to prevent a decrease in the brightness of the electron beam. Further, in order to prevent a decrease in the luminance of the electron beam, it is possible to determine an optimum condition for a combination of a bias voltage and a control voltage that keeps the luminance of the electron beam at the maximum luminance (peak luminance).
  • the electron gun is described using a three-dimensional modeling apparatus.
  • the use of the electron gun according to the present embodiment is not limited to this, and can be used for an electron microscope, for example.
  • the present invention may be applied to a system composed of a plurality of devices, or may be applied to a single device. Furthermore, the present invention can also be applied to a case where an information processing program that implements the functions of the embodiments is supplied directly or remotely to a system or apparatus. Therefore, in order to realize the functions of the present invention on a computer, a program installed on the computer, a medium storing the program, and a WWW (World Wide Web) server that downloads the program are also included in the scope of the present invention. . In particular, at least a non-transitory computer readable medium storing a program for causing a computer to execute the processing steps included in the above-described embodiments is included in the scope of the present invention.

Abstract

 エミッション電流を変化させた場合に、電子ビームの輝度の低下を防止することを目的とする。電子銃であって、熱電子を放出するカソード(111)と、前記熱電子を集束するウェネルト電極(112)と、前記カソード(111)の先端から前記熱電子を引き出す制御電極(113)と、前記熱電子を加速して、電子ビームとして粉体に照射するアノード(114)と、前記ウェネルト電極(112)に印加するバイアス電圧および前記制御電極(113)に印加する制御電極電圧の少なくともいずれか一方を変化させることにより、前記電子ビームの輝度がピークを形成する、前記バイアス電圧と前記制御電極電圧との組合せを決定する最適条件収集制御手段(105)と、を備えた。

Description

電子銃、電子銃の制御方法および制御プログラム並びに3次元造形装置
 本発明は、電子銃、電子銃の制御方法および制御プログラム並びに3次元造形装置に関する。
 上記技術分野において、特許文献1には、カソードとウェネルト電極とアノードとを備えた3電極構成の電子銃が開示されている。
特開平1-274349号公報
 しかしながら、上記文献に記載の電子銃では、エミッション電流を変化させた場合に、電子ビームの輝度の低下を防止することができなかった。
 本発明の目的は、上述の課題を解決する技術を提供することにある。
 上記目的を達成するため、本発明に係る電子銃は、
 熱電子を放出するカソードと、
 前記熱電子を集束するウェネルト電極と、
 前記カソードの先端から前記熱電子を引き出す制御電極と、
 前記熱電子を加速して、電子ビームとして粉体に照射するアノードと、
 前記ウェネルト電極に印加するバイアス電圧および前記制御電極に印加する制御電極電圧の少なくともいずれか一方を変化させることにより、前記電子ビームの輝度がピークを形成する、前記バイアス電圧と前記制御電極電圧との組合せを決定する最適条件収集制御手段と、
 を備えた。
 上記目的を達成するため、本発明に係る電子銃の制御方法は、
 電子銃のエミッション電流に基づいて、カソードの消耗具合を判定する判定ステップと、
 前記エミッション電流の減少量が所定の閾値以上である場合には、前記電子銃のバイアス電圧および制御電極電圧の再調整を実行する再調整ステップと、
 前記エミッション電流の減少量が前記所定の閾値未満である場合には、前記電子銃の前記バイアス電圧および制御電極電圧の微調整を実行する微調整ステップと、
 を含むことを特徴とする。
 上記目的を達成するため、本発明に係る電子銃の制御プログラムは、
 電子銃のエミッション電流に基づいて、カソードの消耗具合を判定する判定ステップと、
 前記エミッション電流の減少量が所定の閾値以上である場合には、前記電子銃のバイアス電圧および制御電極電圧の再調整を実行する再調整ステップと、
 前記エミッション電流の減少量が前記所定の閾値未満である場合には、前記電子銃の前記バイアス電圧および制御電極電圧の微調整を実行する微調整ステップと、
 をコンピュータに実行させることを特徴とする。
 上記目的を達成するため、本発明に係る3次元造形装置は、
 請求項1に記載の電子銃を用いた。
 本発明によれば、エミッション電流を変化させた場合に、電子ビームの輝度の低下を防止することができる。
本発明の第1実施形態に係る電子銃の構成を示す図である。 本発明の第2実施形態の前提技術に係る3次元造形装置に用いられている電子銃の構成を示す図である。 本発明の第2実施形態に係る3次元造形装置の構成を示す図である。 本発明の第2実施形態に係る3次元造形装置の電子銃の構成を示す図である。 本発明の第2実施形態に係る3次元造形装置によるビームスキャンにより電流信号曲線を取得する様子を説明する図である。 本発明の第2実施形態に係る3次元造形装置の電子銃の電流密度とエミッション電流のバイアス電圧特性を示す図である。 本発明の第2実施形態に係る3次元造形装置の電子銃の電流密度とエミッション電流のバイアス電圧特性を示す他の図である。 本発明の第2実施形態に係る3次元造形装置の動作を説明するためのフローチャートである。 本発明の第2実施形態に係る3次元造形装置によるカソード消耗具合の判定の概要を説明するための図である。
 以下に、本発明を実施するための形態について、図面を参照して、例示的に詳しく説明記載する。ただし、以下の実施の形態に記載されている、構成、数値、処理の流れ、機能要素などは一例に過ぎず、その変形や変更は自由であって、本発明の技術範囲を以下の記載に限定する趣旨のものではない。
 [第1実施形態]
 本発明の第1実施形態としての電子銃100について、図1を用いて説明する。電子銃100は、電子ビームを供給する装置である。
 図1に示すように、電子銃100は、電子ビーム供給部101と最適条件収集制御部105とを備える。電子ビーム供給部101は、カソード111と、ウェネルト電極112と、制御電極113と、アノード114とを備える。カソード111は、熱電子を放出する。ウェネルト電極112は、熱電子を集束する。
 制御電極113は、カソード111の先端の電界強度を制御して、カソードの先端から熱電子を引き出す。アノード114は、熱電子を加速して、電子ビーム120として粉体に照射する。
 最適条件収集制御部105は、ウェネルト電極112に印加するバイアス電圧および制御電極113に印加する制御電極電圧の少なくともいずれか一方を変化させることにより、電子ビーム120の輝度がピークを形成する、バイアス電圧と制御電極電圧との組合せを決定する。
 本実施形態によれば、エミッション電流が変化した場合に、電子ビームの輝度の低下を防止することができる。また、電子ビームの輝度の低下を防止するために、電子ビームの輝度がピークを形成するバイアス電圧と制御電圧との組合せを決定することができる。
 [第2実施形態]
 次に本発明の第2実施形態に係る3次元造形装置について、図2~図9を用いて説明する。
 (前提技術について)
 図2は、本実施形態の前提技術に係る3次元造形装置に用いられている電子銃201の構成を説明するための図である。電子銃201は、カソード211とウェネルト電極212とアノード214とを備えている。電子銃201は、3電極型の電子銃である。電子銃201は、容易に大電流を得ることができるので、例えば、電子顕微鏡や電子ビーム描画装置、電子ビーム分析装置、電子ビーム加工装置(溶接や表面改質、積層造形等)といった幅広い装置などに使用されている。
 例えば、電子ビーム加工装置には一般的に様々な加工モードが設けられており、使用している加工モードや使用状況などに応じて電子ビーム220の径や電子ビーム220のビーム電流を迅速に変更させる必要がある。さらに、このような電子ビーム加工装置の電子ビームは、高加速電圧(数10kV以上)、大電流(10mA以上)であるので、装置内部の構造物に電子ビーム220が照射されると、その構造物が損傷する恐れがある。
 また、これらの装置では、試料上(粉体上)のビーム電流を制御するための電流制御絞りを電子光学鏡筒に配置することができないので、カソード211(電子銃201)から放出された電子ビーム220は全て試料上に到達することになる。すなわち、試料上のビーム電流とエミッション電流とは同じ値となる。この場合、ビーム電流を変更するには、電子銃201のエミッション電流そのものを変更させなくてはならない。
 電子銃201でエミッション電流を迅速に変更させるためには、バイアス電圧(ウェネルト電極212の印加電圧)を変更する方法が考えられるが、この方法では、バイアス電圧の変化にともない、電子ビーム220の輝度も変化する。
 輝度は、試料上に形成される電子ビーム220のビーム径の大きさと関連がある。つまり、電子ビーム220の輝度が低下すると、電子ビーム220のビーム径が大きくなる。電子銃201のように、エミッション電流の変化とともに電子ビーム220の輝度も同時に変化してしまうと、あるエミッション電流では輝度が小さくなり、所望のビーム径が得られないという問題があった。
 (本実施形態の3次元造形装置について)
 図3は、本実施形態に係る3次元造形装置300の構成を説明する図である。図4は、本実施形態に係る電子銃301の構成を説明する図である。図5は、本実施形態に係る3次元造形装置300によるビームスキャンにより取得した電流信号曲線を説明する図である。3次元造形装置300は、鏡筒360と真空チャンバ320と高圧電源330とコンピュータ340と電子光学系制御部350とを備える。
 鏡筒360は、電子銃301とレンズ305と偏向器306とを備える。電子銃301は、カソード311とウェネルト電極312と制御電極313とアノード314とを備えている。つまり、電子銃301は、4電極で構成される、4電極型の電子銃である。真空チャンバ320は、ファラデーカップ322と冷却管323と電流計324とを備える。ファラデーカップ322を使用して、電子ビーム370のビーム電流とビーム径とを測定する。ファラデーカップ322には、電子ビーム370の照射による温度上昇を抑制するために冷却管323が設けられている。
 電流計324は、電子ビーム370のビーム電流325を計測する。高圧電源330は、カソード加熱電源332とバイアス電源334と制御電極電源335と電源制御部336と電流計337と加速電源338とを備える。電流計337は、ロード電流333を計測する。コンピュータ340は、最適条件収集制御部341と近似計算演算部342とを備える。電子光学系制御部350は、レンズ305と偏向器306とを含む電子光学系を制御する。
 電子銃301は、カソード311、ウェネルト電極312、制御電極313およびアノード314の4つの電極から構成される熱電子放出型電子銃である。電子銃301は、高圧電源330に設けられたカソード加熱電源332、バイアス電源334、制御電極電源335および加速電源338によって動作する。電子銃301から放出された電子ビーム370は、レンズ305と偏向器306とによって制御され、所定の位置にある粉体上に焦点を結ぶ。
 3次元造形装置300は、電子ビーム370の輝度がピークを形成するバイアス電圧と制御電極電圧との最適な組合せ条件を決定して、電子銃301の調整を行なう。バイアス電圧と制御電極電圧との最適組合せ条件を決定するためには、ビーム電流とビーム径とを測定する必要がある。そこで、図3に示したように、真空チャンバ320に設けられたナイフエッジ付きのファラデーカップ322を使用する。ファラデーカップ322には、ビーム照射による温度上昇を抑制するために、冷却管323が設けられている。電子銃301から照射される電子ビーム370をナイフエッジの境界にビームスキャンすることにより、図5に示したような、電流信号曲線が測定される。なお、ここでは、ファラデーカップを用いてビーム電流を測定したが、ビーム電流の測定に用いる機器はこれに限定されない。
 さらに、近似計算演算部342は、取得した電流信号曲線にカーブフィッティングと微分計算処理を施して、電子ビーム370のビーム径を算出する。試料面上(粉体上)に到達する電子ビーム370のビーム電流については、ファラデーカップ322の測定値から求めてもよいが、これに限定されない。電子ビーム370のビーム電流は、カソード311(電子銃301)から放出されるエミッション電流と同じ値となるので、高圧電源330に流れるロード電流333を電流計337で測定して求めることもできる。
 上述の一連の動作は、コンピュータ340に含まれる最適条件収集制御部341によって自動的に行なわれる。最適条件収集制御部341は、電源制御部336に指令を送り、バイアス電圧と制御電極電圧とをマトリクス状に変化させる。この時、最適条件収集制御部341は、上述した手法により電子ビーム370のビーム径とビーム電流とを測定し、各条件における電流密度を算出し、特定のエミッション電流を得るためのバイアス電圧と制御電極電圧との最適な組合せ条件を記録する。最適条件収集制御部341は、電子光学系制御部350にも指令を送り、ナイフエッジ上の電子ビーム370のビームスキャンや、電子ビーム370のフォーカスやデフォーカスなどを適宜行なう。
 ここで、3次元造形装置300に使用される4電極構成の電子銃301を例に取り、バイアス電圧と制御電極電圧との最適組合せ条件の決定方法について説明する。図6は、本実施形態に係る電子銃301の電流密度とエミッション電流のバイアス電圧特性を示す図である。図7は、本実施形態に係る電子銃301の電流密度とエミッション電流のバイアス電圧特性を示す他の図である。
 制御電極電圧をVc1に固定し、バイアス電圧を変化させながら電子ビーム370のビーム径とビーム電流とを測定して、電子ビーム370の電流密度を算出する。これにより、図6に示したような、電流密度とエミッション電流とのバイアス電圧特性が得られる。同図に示したように、電流密度が最大となるバイアス電圧Vb1が存在し、この場合のエミッション電流はI1となる。
 電流密度が最も大きくなる条件と、輝度が最も大きくなる(ピークを形成する)条件とはほぼ同じであるので、この場合、バイアス電圧と制御電極電圧との組合せ(Vb1,Vc1)が、エミッション電流I1を得るための最適な組合せ条件となる。
 この一連の操作を制御電極電圧をVc2、Vc3、Vc4、・・・と徐々に大きくしながら実施する。これにより、図7に示したような、電流密度とエミッション電流とのバイアス電圧特性が複数得られ、特定のエミッション電流に対するバイアス電圧と制御電極電圧との最適組合せ条件が得られる。これに対して、3電極構成の電子銃では、加速電圧が一定なので、電流密度とエミッション電流とのバイアス電圧特性が1つしか得られない。つまり、3電極構成の電子銃では、大きなエミッション電流が必要な場合には、電子ビームの輝度を低下させなければならず(輝度を犠牲にしていたので)、ビーム径が広がってしまい、精度の高い造形をすることはできなかった。
 4電極構成の電子銃は、エミッション電流を変えても輝度がほとんど劣化(低下)しないという特性を有するため、エミッション電流を変化させながら使用することを前提としている3次元造形装置などの電子ビーム加工装置に用いるのに適している電子銃である。つまり、エミッション電流を変化させても、それに対応して輝度の高い電子ビームを使うことができ、電子ビームを絞ってビーム径を小さくすることができるので、精度の高い造形(加工)をすることができる。
 ただし、最適な組合せ条件を得るためには、バイアス電圧および制御電極電圧の2つのパラメータをマトリクス状に変化させながら電流密度とエミッション電流とを取得しなければならない。そのため、手動でのデータ収集には多大な時間を要する。しかも、カソード消耗に伴い最適な組合せ条件が変化するので、カソードの消耗がある程度進むと、その都度最適な組合せ条件を記録し直さなくてはならない。
 図8は、本実施形態に係る3次元造形装置300の動作を説明するためのフローチャートである。図9は、本実施形態に係る3次元造形装置300によるカソード消耗具合の判定の概要を説明するための図である。
 3次元造形装置300は、このフローチャートに従って、カソード311の消耗具合の判定や、バイアス電圧および制御電極電圧の再調整や微調整を自動で行なう。
 3次元造形装置300は、ステップS801において、電子銃301の自動調整を行ない、粉体を積層して造形物を製造するために適した電子ビーム370が得られるようにする。つまり、3次元造形装置300は、エミッション電流と電流密度とを測定して、輝度が最も高くなる(ピークを形成する)バイアス電圧と制御電極電圧との組合せの条件(最適組合せ条件)を複数決定する。そして、電子銃301は、決定した最適組合せ条件の中から、造形物の造形の条件に最も適した組合せを適用して、造形物を製造する。これにより、常に最高輝度またはピーク輝度の電子ビーム370を使うことが可能となる。
 3次元造形装置300は、ステップS803において、装置がアイドリング状態にあるか否かを判定する。すなわち、3次元造形装置300は、装置が造形物を製造中であれば、動作を終了する。3次元造形装置300は、装置がアイドリング状態、つまり、造形物を製造しないで装置が待機状態(ウェイト状態)にある場合、ステップS805において、カソード311の消耗具合の判定を行なう判定モードに移行する。
 3次元造形装置300は、カソード311の消耗具合の判定モードに移行すると、ステップS807において、電子銃301の自動調整モードで導出した最適組合せ条件を用いて、再びエミッション電流と電流密度とを測定する。
 3次元造形装置300は、ステップS809において、ステップS807において再測定したエミッション電流が、最後に電子銃301の調整で得たエミッション電流と比較して5%以上低下しているか否かを判断する。ここでは、最後(再測定の直前)に得たエミッション電流と比較をしているが、比較の対象はこれに限定されない。例えば、3次元造形装置300を最初に起動した時のエミッション電流と比較をしてもよい。また、例えば、カソード311の消耗により、カソード311を交換した直後のエミッション電流などと比較してもよい。
 そして、再測定したエミッション電流が、比較対象のエミッション電流と比較して5%以上低下していれば、3次元造形装置300は、ステップS811において、電子銃301の再調整を行なう。また、エミッション電流が5%以上低下していなければ、3次元造形装置300は、ステップS813において、電子銃301の微調整を行なう。
 電子銃301の再調整を行なう場合、3次元造形装置300は、ステップS815において、バイアス電圧と制御電極電圧とをマトリクス状に変化させ、最適組合せ条件を一から記録し直す。また、電子銃301の微調整を行なう場合、3次元造形装置300は、ステップS817において、バイアス電圧のみを変え、所望するエミッション電流が得られるように、最適組合せ条件を記録し直す。
 カソード311の消耗具合の判定は、装置がアイドリング状態(ウェイト状態)にある場合に行なわれる。まず、バイアス電圧と制御電極電圧とを最適条件収集制御回路341に記録されている最適組合せ条件(Vb1,Vc1)、(Vb2,Vc2)、(Vb3,Vc3)、・・・に順番に変化させ、再度、エミッション電流と電流密度とを取得する。
 カソード311の先端は、使用に伴い消耗するので、エミッション電流は電子銃311の調整を行なった時よりも小さくなる。また、カソード311が消耗すればカソード311の先端はウェネルト電極312から遠ざかるため、各々の制御電極電圧に対する最適なバイアス電圧条件は元の条件よりも低くなる。
 例えば、バイアス電圧と制御電極電圧の最適組合せ条件(Vb1,Vc1)は、カソード311の消耗に伴い図9に示したような変化をする。同図の実線は、電子銃301の調整時にバイアス電圧と制御電極電圧とをマトリクス状に変化させた際に取得した測定結果である。また、同図の点は、カソード消耗具合判定で測定した結果を、破線は、カソード消耗具合判定で取得したデータから予測される結果を、それぞれ示している。なお、バイアス電圧と制御電極電圧とをマトリクス状に変化させると、データ取得に時間を要するので、カソード消耗具合判定では、最適組合せ条件(Vb1,Vc1)、・・・(Vb5,Vc5)でデータ取得を行なう。
 カソード311の消耗具合判定で測定したエミッション電流が、最後に電子銃調整で得たエミッション電流と比較して5%未満の低下に収まっている場合には、電子銃301の「微調整」を実施する。電子銃301の微調整は、所望するエミッション電流を得る際に、制御電極電圧は変えずにバイアス電圧のみを変更する調整である。例えば、図9に示したように、電子銃調整時に最適組合せ条件(Vb1,Vc1)で所望するエミッション電流I1を得ていたのが、カソード311の消耗に伴いI1’しか得られなくなっている。
 このとき、微調整では最適組合せ条件を(Vb1,Vc1)から(Vb1’,Vc1)に変更することで、エミッション電流の低下を補償している。同様に、他の最適組合せ条件(Vb2,Vc2)、(Vb3,Vc3)、・・・(Vb5,Vc5)においても、(Vb2’,Vc2)、(Vb3’,Vc3)、・・・(Vb5’,Vc5)とバイアス電圧のみを変更し、各条件で所望するエミッション電流が得られるようにする。
 カソード311が消耗すると、図9(b)に示すように、電子銃301の最適条件(電流密度、輝度がピークを示す(最も高くなる)条件)はバイアス電圧が小さくなる方向に変化する。この変化は、電子銃301の微調整でバイアス電圧を変化させる方向と同じである。すなわち、電子銃調整は、エミッション電流を補償するだけではなく、完全ではないものの電子銃設定を最適条件付近に近づける効果もある。
 一方、カソード消耗具合判定で測定したエミッション電流が、最後に電子銃調整で得たエミッション電流と比較して5%以上低下していた場合には、電子銃301の「再調整」を実施する。電子銃301の再調整は、バイアス電圧と制御電極電圧との最適組合せ条件を初めから取得し直して、所望するエミッション電流を得る調整である。エミッション電流の減少が大きくなると、バイアス電圧の変更のみでは、エミッション電流を補償できても、電流密度の低下までは補償しきれなくなる。
 これは、各条件で電子銃301の輝度が劣化(低下)していることと同じであり、ビーム径を小さく絞れなくなるので、3次元造形装置300の加工精度も低下する。そこで、カソード消耗具合判定で5%以上のエミッション電流の低下がみられた場合、電子銃301の再調整を実施する。4電極構成の熱電子放出型電子銃は電子銃調整が煩雑であるが、上述した自動調整機構を備えることで、常に適切な設定で電子銃の運用が可能となる。
 なお、ここでは、エミッション電流の低下「5%」を微調整と再調整との判断基準としたが、判断基準はこれに限定されない。微調整のみでは徐々に離れていく電子銃最適条件をどの段階で調整し直すが重要であり、判断基準の決定要因となる。ここで説明したように、エミッション電流の低下5%を判断基準とする場合、輝度が最適条件からそれほど逸脱しないうちに、電子銃301の再調整が実施される。
 高い加工精度が要求される装置の場合、このように判断基準を5%に設定し、頻繁に再調整を行なうとよい。一方、高い加工精度が必要とされない装置ならば、輝度が適正値でなくても装置は問題なく運用できるので、エミッション電流低下10%や20%を判断基準として、ほとんどを微調整で済ませてもよい。
 本実施形態によれば、エミッション電流が変化した場合に、電子ビームの輝度の低下を防止することができる。また、電子ビームの輝度の低下を防止するために、電子ビームの輝度を最高輝度(ピーク輝度)に保つバイアス電圧と制御電圧との組み合わせの最適条件を決定することができる。
 なお、上述の説明では、3次元造形装置を用いて電子銃の説明をしたが、本実施形態に係る電子銃の用途はこれに限定されず、例えば、電子顕微鏡などに用いることもできる。
 [他の実施形態]
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、それぞれの実施形態に含まれる別々の特徴を如何様に組み合わせたシステムまたは装置も、本発明の範疇に含まれる。
 また、本発明は、複数の機器から構成されるシステムに適用されてもよいし、単体の装置に適用されてもよい。さらに、本発明は、実施形態の機能を実現する情報処理プログラムが、システムあるいは装置に直接あるいは遠隔から供給される場合にも適用可能である。したがって、本発明の機能をコンピュータで実現するために、コンピュータにインストールされるプログラム、あるいはそのプログラムを格納した媒体、そのプログラムをダウンロードさせるWWW(World Wide Web)サーバも、本発明の範疇に含まれる。特に、少なくとも、上述した実施形態に含まれる処理ステップをコンピュータに実行させるプログラムを格納した非一時的コンピュータ可読媒体(non-transitory computer readable medium)は本発明の範疇に含まれる。

Claims (9)

  1.  熱電子を放出するカソードと、
     前記熱電子を集束するウェネルト電極と、
     前記カソードの先端から前記熱電子を引き出す制御電極と、
     前記熱電子を加速して、電子ビームとして粉体に照射するアノードと、
     前記ウェネルト電極に印加するバイアス電圧および前記制御電極に印加する制御電極電圧の少なくともいずれか一方を変化させることにより、前記電子ビームの輝度がピークを形成する、前記バイアス電圧と前記制御電極電圧との組合せを決定する最適条件収集制御手段と、
     を備えた電子銃。
  2.  前記最適条件収集制御手段は、前記カソードと前記ウェネルト電極と前記制御電極と前記アノードとを備える電子銃のエミッション電流に基づいて、前記カソードの消耗具合を判定し、判定結果に基づいて、前記電子銃の前記バイアス電圧および前記制御電極電圧の微調整または再調整を実行することを特徴とする請求項1に記載の電子銃。
  3.  前記最適条件収集制御手段は、電子銃がアイドリング状態にある場合に、前記カソードの消耗具合の判定を実行することを特徴とする請求項1または2に記載の電子銃。
  4.  前記最適条件収集制御手段は、前記エミッション電流の減少量が、所定の閾値以上である場合には、前記再調整を実行し、前記所定の閾値未満である場合には、前記微調整を実行することを特徴とする請求項2または3に記載の電子銃。
  5.  前記最適条件収集制御手段は、所望のエミッション電流を得るために、前記バイアス電圧を変更して、前記微調整を実行することを特徴とする請求項2乃至4のいずれか1項に記載の電子銃。
  6.  前記最適条件収集制御手段は、所望のエミッション電流を得るために、前記バイアス電圧および前記制御電極電圧を変更して、前記再調整を実行することを特徴とする請求項2乃至4のいずれか1項に記載の電子銃。
  7.  電子銃のエミッション電流に基づいて、カソードの消耗具合を判定する判定ステップと、
     前記エミッション電流の減少量が所定の閾値以上である場合には、前記電子銃のバイアス電圧および制御電極電圧の再調整を実行する再調整ステップと、
     前記エミッション電流の減少量が前記所定の閾値未満である場合には、前記電子銃の前記バイアス電圧および制御電極電圧の微調整を実行する微調整ステップと、
     を含むことを特徴とする電子銃の制御方法。
  8.  電子銃のエミッション電流に基づいて、カソードの消耗具合を判定する判定ステップと、
     前記エミッション電流の減少量が所定の閾値以上である場合には、前記電子銃のバイアス電圧および制御電極電圧の再調整を実行する再調整ステップと、
     前記エミッション電流の減少量が前記所定の閾値未満である場合には、前記電子銃の前記バイアス電圧および制御電極電圧の微調整を実行する微調整ステップと、
     をコンピュータに実行させることを特徴とする電子銃の制御プログラム。
  9.  請求項1に記載の電子銃を用いた3次元造形装置。
PCT/JP2015/050460 2015-01-09 2015-01-09 電子銃、電子銃の制御方法および制御プログラム並びに3次元造形装置 WO2016110996A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/050460 WO2016110996A1 (ja) 2015-01-09 2015-01-09 電子銃、電子銃の制御方法および制御プログラム並びに3次元造形装置
US14/785,730 US10217599B2 (en) 2015-01-09 2015-01-09 Electron gun, control method and control program thereof, and three-dimensional shaping apparatus
JP2016510533A JP6190040B2 (ja) 2015-01-09 2015-01-09 電子銃、電子銃の制御方法および制御プログラム並びに3次元造形装置
EP15778595.7A EP3065161B1 (en) 2015-01-09 2015-01-09 Electron gun, control method and control program thereof, and three-dimensional shaping apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/050460 WO2016110996A1 (ja) 2015-01-09 2015-01-09 電子銃、電子銃の制御方法および制御プログラム並びに3次元造形装置

Publications (1)

Publication Number Publication Date
WO2016110996A1 true WO2016110996A1 (ja) 2016-07-14

Family

ID=56355717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050460 WO2016110996A1 (ja) 2015-01-09 2015-01-09 電子銃、電子銃の制御方法および制御プログラム並びに3次元造形装置

Country Status (4)

Country Link
US (1) US10217599B2 (ja)
EP (1) EP3065161B1 (ja)
JP (1) JP6190040B2 (ja)
WO (1) WO2016110996A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019053919A (ja) * 2017-09-15 2019-04-04 日本電子株式会社 冷陰極電界放出型電子銃、冷陰極電界放出型電子銃の調整方法、エミッタの先鋭化方法、および電子顕微鏡
JP2020004557A (ja) * 2018-06-27 2020-01-09 株式会社日立製作所 電子顕微鏡
JP2021502670A (ja) * 2017-11-10 2021-01-28 ア−カム アーベー フィラメントの疲労を検出する方法、3次元物品を形成する方法、およびフィラメントの疲労を検出するデバイス

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437316B2 (ja) * 2014-02-14 2018-12-12 日本電子株式会社 電子銃、三次元積層造形装置及び電子銃制御方法
KR20180061136A (ko) * 2015-06-19 2018-06-07 어플라이드 머티어리얼스, 인코포레이티드 적층 제조에서의 파우더의 선택적 퇴적
US11569064B2 (en) 2017-09-18 2023-01-31 Ims Nanofabrication Gmbh Method for irradiating a target using restricted placement grids
JP7007152B2 (ja) * 2017-10-19 2022-01-24 株式会社アドバンテスト 三次元積層造形装置および積層造形方法
US10651010B2 (en) 2018-01-09 2020-05-12 Ims Nanofabrication Gmbh Non-linear dose- and blur-dependent edge placement correction
US10840054B2 (en) * 2018-01-30 2020-11-17 Ims Nanofabrication Gmbh Charged-particle source and method for cleaning a charged-particle source using back-sputtering
EP3613563A1 (en) * 2018-08-24 2020-02-26 Concept Laser GmbH Apparatus for additively manufacturing at least one three-dimensional object
US11099482B2 (en) 2019-05-03 2021-08-24 Ims Nanofabrication Gmbh Adapting the duration of exposure slots in multi-beam writers
KR20210132599A (ko) 2020-04-24 2021-11-04 아이엠에스 나노패브릭케이션 게엠베하 대전 입자 소스
JP7160857B2 (ja) * 2020-05-20 2022-10-25 日本電子株式会社 ビーム調整方法及び三次元積層造形装置
EP4325545A1 (en) * 2022-08-19 2024-02-21 incoatec GmbH X-ray tube with flexible intensity adjustment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274349A (ja) 1988-04-25 1989-11-02 Jeol Ltd 電子銃用高圧電源
JP2000011932A (ja) * 1998-06-18 2000-01-14 Advantest Corp 電子銃
JP2010261072A (ja) * 2009-05-07 2010-11-18 Htl:Kk 電子ビーム造形方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133824A (en) * 1980-03-21 1981-10-20 Toshiba Corp Electron beam device
JPS57165943A (en) * 1981-04-02 1982-10-13 Akashi Seisakusho Co Ltd Acceleration controlling method for charged particle beams in electron microscope and similar device
JPS5818833A (ja) * 1981-07-27 1983-02-03 Denki Kagaku Kogyo Kk 高密度電子ビ−ムの低温発生方法及びその装置
JPS58223247A (ja) * 1982-06-22 1983-12-24 Toshiba Corp 電子銃の輝度設定方法
JPS63216261A (ja) * 1987-03-02 1988-09-08 Jeol Ltd 集束イオンビ−ム装置等のビ−ム電流安定化装置
JP3418941B2 (ja) * 1992-03-30 2003-06-23 日本電子株式会社 電子線発生装置
US5834781A (en) * 1996-02-14 1998-11-10 Hitachi, Ltd. Electron source and electron beam-emitting apparatus equipped with same
US6590216B1 (en) * 2000-01-27 2003-07-08 Nikon Corporation Servo control for high emittance electron source
JP3943022B2 (ja) 2000-12-01 2007-07-11 株式会社荏原製作所 基板検査装置
US8487534B2 (en) * 2010-03-31 2013-07-16 General Electric Company Pierce gun and method of controlling thereof
US9079248B2 (en) * 2011-12-28 2015-07-14 Arcam Ab Method and apparatus for increasing the resolution in additively manufactured three-dimensional articles
US8779376B2 (en) * 2012-01-09 2014-07-15 Fei Company Determination of emission parameters from field emission sources

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274349A (ja) 1988-04-25 1989-11-02 Jeol Ltd 電子銃用高圧電源
JP2000011932A (ja) * 1998-06-18 2000-01-14 Advantest Corp 電子銃
JP2010261072A (ja) * 2009-05-07 2010-11-18 Htl:Kk 電子ビーム造形方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3065161A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019053919A (ja) * 2017-09-15 2019-04-04 日本電子株式会社 冷陰極電界放出型電子銃、冷陰極電界放出型電子銃の調整方法、エミッタの先鋭化方法、および電子顕微鏡
JP2021502670A (ja) * 2017-11-10 2021-01-28 ア−カム アーベー フィラメントの疲労を検出する方法、3次元物品を形成する方法、およびフィラメントの疲労を検出するデバイス
JP2020004557A (ja) * 2018-06-27 2020-01-09 株式会社日立製作所 電子顕微鏡
JP7068069B2 (ja) 2018-06-27 2022-05-16 株式会社日立製作所 電子顕微鏡

Also Published As

Publication number Publication date
EP3065161A1 (en) 2016-09-07
JP6190040B2 (ja) 2017-08-30
EP3065161A4 (en) 2017-08-02
US20170154750A1 (en) 2017-06-01
EP3065161B1 (en) 2018-11-21
JPWO2016110996A1 (ja) 2017-04-27
US10217599B2 (en) 2019-02-26

Similar Documents

Publication Publication Date Title
JP6190040B2 (ja) 電子銃、電子銃の制御方法および制御プログラム並びに3次元造形装置
US9257257B2 (en) Electron beam control method, electron beam generating apparatus, apparatus using the same, and emitter
JP5290238B2 (ja) 電子顕微鏡
KR101570362B1 (ko) 캐소드의 동작 온도 조정 방법 및 전자빔 묘화 장치
JP2020087930A (ja) 電子銃、電子放出装置、及び電子銃の製造方法
CN113793790A (zh) 开放式微焦点x射线源及其控制方法
JP2016152251A (ja) 電子ビーム描画装置のカソードの寿命予測方法
JP6943701B2 (ja) 冷陰極電界放出型電子銃の調整方法
JP5362297B2 (ja) 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法
JP2008251300A (ja) X線検査装置
KR101648063B1 (ko) X선 발생장치 및 그 제어방법
JP2012018790A (ja) 電子銃の駆動方法、電子ビーム描画装置および電子ビーム描画方法
JP4676461B2 (ja) 電子ビーム描画装置及び電子ビームの電流密度調整方法
JP6129982B2 (ja) 電子顕微鏡
JP2018098395A (ja) 荷電粒子装置、荷電粒子描画装置および荷電粒子ビーム制御方法
WO2020161795A1 (ja) 荷電粒子線装置
US11398364B2 (en) Electron gun, electron microscope, three-dimensional additive manufacturing apparatus, and method of adjusting current of electron gun
US20190304743A1 (en) Charged particle beam system and method
US11404238B2 (en) Control method for electron microscope and electron microscope
JP6246647B2 (ja) 電子銃、三次元積層造形装置及び電子銃制御方法
US11749491B2 (en) Electron beam writing apparatus and cathode life span prediction method
JP6118142B2 (ja) 電子銃装置、描画装置、電子銃電源回路のリーク電流測定方法、及び電子銃電源回路のリーク電流判定方法
WO2023067681A1 (ja) 荷電粒子線装置
JP7068069B2 (ja) 電子顕微鏡
JP2014056743A (ja) X線発生装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14785730

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015778595

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015778595

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016510533

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15778595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE