WO2023067681A1 - 荷電粒子線装置 - Google Patents

荷電粒子線装置 Download PDF

Info

Publication number
WO2023067681A1
WO2023067681A1 PCT/JP2021/038557 JP2021038557W WO2023067681A1 WO 2023067681 A1 WO2023067681 A1 WO 2023067681A1 JP 2021038557 W JP2021038557 W JP 2021038557W WO 2023067681 A1 WO2023067681 A1 WO 2023067681A1
Authority
WO
WIPO (PCT)
Prior art keywords
tip
voltage
filament
charged particle
particle beam
Prior art date
Application number
PCT/JP2021/038557
Other languages
English (en)
French (fr)
Inventor
圭吾 糟谷
修平 石川
憲史 谷本
俊一 渡辺
隆 土肥
佑輔 酒井
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to JP2023554112A priority Critical patent/JPWO2023067681A1/ja
Priority to KR1020247008071A priority patent/KR20240043795A/ko
Priority to PCT/JP2021/038557 priority patent/WO2023067681A1/ja
Publication of WO2023067681A1 publication Critical patent/WO2023067681A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/065Construction of guns or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/07Eliminating deleterious effects due to thermal effects or electric or magnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources

Definitions

  • the present invention relates to a charged particle beam device.
  • a charged particle beam device irradiates a sample with a charged particle beam such as an electron beam, and detects secondary electrons, transmitted electrons, reflected electrons, X-rays, etc. emitted from the sample to generate an observation image of the sample. It is a device.
  • a high-brightness electron source is required to obtain an observation image with high spatial resolution, and for example, a cold field emission (CFE) electron source is used.
  • CFE cold field emission
  • a CFE electron source that emits an electron beam by concentrating an electric field on the tip of a sharpened single crystal (tip), residual gas adheres to the tip of the tip, making the emission current unstable.
  • the tip tip is cleaned by applying a heating pulse.
  • Patent Document 1 when an electric field and a heating pulse are applied to a CFE electron source to perform a cleaning process, a negative voltage is applied to a cup-shaped suppressing electrode that covers areas other than the tip of the tip, so that the tip and other parts are cleaned. Suppression of unwanted thermionic emission from is disclosed.
  • Patent Document 1 does not give sufficient consideration to the temperature control of the CFE electron source to which heating pulses are applied. Although the temperature of the CFE electron source can be estimated from the amount of thermal electrons emitted, if the thermal electron emission from the chip and other parts is suppressed, the temperature cannot be estimated accurately and it is difficult to precisely control the temperature. Become.
  • an object of the present invention is to provide a charged particle beam device capable of precisely controlling the temperature when the cold cathode field emission electron source is heated.
  • the present invention provides a charged particle beam device capable of precisely controlling the temperature when a cold cathode field emission electron source is heated.
  • a filament connected to the tip; an auxiliary electrode covering the filament and having an opening through which the tip protrudes; and a cold cathode field emission electron source for extracting electrons from the cold cathode field emission electron source.
  • a charged particle beam device comprising: an extraction electrode to which an extraction voltage is applied; and an acceleration electrode to which an acceleration voltage is applied for accelerating electrons extracted from the cold cathode field emission electron source, wherein the tip and the filament is heated, a positive voltage is applied to the auxiliary electrode with respect to the tip to cause the auxiliary electrode to collect thermoelectrons emitted from the tip and the filament to measure current. characterized by
  • a charged particle beam device capable of precisely controlling the temperature when the cold cathode field emission electron source is heated.
  • FIG. 10 is a diagram showing an example of an optimum voltage range applied to the auxiliary electrode and the extraction electrode when the projection length T of the tip is changed.
  • a charged particle beam device irradiates a sample with a charged particle beam such as an electron beam, and detects secondary electrons, transmitted electrons, reflected electrons, X-rays, etc. emitted from the sample to generate an observation image of the sample. It is a device.
  • a scanning electron microscope is an apparatus that irradiates a sample 602 with an electron beam 601 and detects secondary electrons and reflected electrons emitted from the sample to generate an observation image of the sample 602 .
  • the interior of the cylindrical body 603 is divided into a first vacuum chamber 605, a second vacuum chamber 606, and a third vacuum chamber 607 from above.
  • Each vacuum chamber has an opening in the center through which the electron beam 601 passes and is differentially pumped.
  • Each vacuum chamber and sample chamber 604 will be described below.
  • the first vacuum chamber 605 is evacuated by an ion pump 608 and a non-evaporable getter pump 609 to an ultra-high vacuum on the order of 10 ⁇ 8 Pa, more preferably an extremely high vacuum of 10 ⁇ 9 Pa or less. .
  • the CFE electron source 201 is an electron source that emits electrons using electric field concentration, and is held by an insulator 610 and electrically insulated from the cylindrical body 603 .
  • the extraction electrode 106 is an electrode to which an extraction voltage for extracting electrons from the CFE electron source 201 is applied. provided above.
  • the acceleration electrode 109 is an electrode to which an acceleration voltage is applied, and has an opening through which the electron beam 601 passes on the central axis. An electric field for accelerating the electron beam 601 is formed in the acceleration space 112 by applying an acceleration voltage to the acceleration electrode 109 .
  • the configuration of the CFE electron source 201 and its surroundings will be described later with reference to FIG.
  • the second vacuum chamber 606 is evacuated by an ion pump 611 .
  • a condenser lens 612 is arranged in the second vacuum chamber 606 .
  • a condenser lens 612 focuses the electron beam 601 .
  • a detector 616 is arranged in the third vacuum chamber 607 .
  • a detector 616 detects secondary electrons and reflected electrons emitted from the sample 602 .
  • a plurality of detectors 616 may be provided, and may be arranged in the sample chamber 604 , the first vacuum chamber 605 , and the second vacuum chamber 606 .
  • a sample chamber 604 is evacuated by a turbomolecular pump 613 .
  • An objective lens 614 and a sample 602 are arranged in the sample chamber 604 .
  • the CFE electron source 201, the extraction electrode 106, the acceleration electrode 109, the condenser lens 612, the objective lens 614, the detector 616, the ion pump 608, the turbomolecular pump 613, etc. provided in the cylinder 603 and the sample chamber 604 are controlled by the controller 617.
  • the control unit 617 is a device that controls the operation of each unit and generates an observed image of the sample 602 based on the signal detected by the detector 616, and is, for example, a computer, an electronic board, or an electric circuit. Note that the control of the operation of each part includes adjustment of voltage and current applied to each part, reception of voltage and current values measured at each part, and the like.
  • a display unit 618 and an input unit 619 are connected to the control unit 617 .
  • a display unit 618 is a device that displays an observation image, such as a liquid crystal display or a touch panel. Note that the display unit 618 may display the feature amount calculated from the observed image, the voltage and current values applied to each portion, the voltage and current values measured at each portion, and the like.
  • the input unit 619 is a device used for inputting observation conditions and operating conditions, and is, for example, a keyboard, mouse, or touch panel.
  • the voltage applied to each component, the amount of current, the operating state of the device, etc. are recorded in the control unit 617, and displayed on the display unit 618 or the display unit of an information terminal such as a remote computer at any time. By doing so, users and maintenance personnel can refer to it.
  • values such as the extraction voltage V1, the acceleration voltage V0, the auxiliary voltage Vs, and the emission current amount of the CFE electron source 201 in the steady image observation state are displayed on the display unit 618.
  • FIG. When the emission current amount of the CFE electron source 201 has decreased to a preset value, or when a certain time has passed since the flushing, the display unit 618 displays that the flushing is necessary. A user or a person in charge of maintenance sees this display and manually performs flushing. The flushing may be performed automatically, and other timings such as changing the acceleration voltage, moving the observation point on the sample, exchanging the observation sample, adjusting the focal position, adjusting the current of various voltages, and changing the electron source. It may be executed while changing the emission current amount.
  • the voltage and current applied to each part during flushing may be displayed on the display part 618 .
  • the acceleration voltage V0, extraction voltage V1, and auxiliary voltage Vs during flushing may be displayed.
  • the current measured by the auxiliary electrode 202 and the extraction electrode 106 shown in FIG. 2 the temperature calculated from the measured current, the current supplied to the filament 102 from the flushing power supply 113 shown in FIG.
  • the time to be set may be displayed. From these results, it may be determined whether the device is flushing with V0 applied. Also, the user or maintenance staff may refer to the flushing conditions and adjust the conditions via the input unit 619 to optimize the next and subsequent flushings.
  • the information at the time of flushing may be recorded in the power supply, the control unit 617, etc., instead of being displayed on the display unit 618, and may be referred to by the user or maintenance personnel at any timing.
  • multiple scanning electron microscopes are operated in parallel in a factory, etc., by referring to the records of the flushing conditions and operating conditions of multiple devices, finding the optimum conditions and feeding them back to all devices, Optimize operating conditions for multiple instruments. As a result, the reproducibility of the observation image of the entire apparatus is improved, and the downtime can be reduced.
  • CFE electron source 201 has tip 101 , filament 102 , pin 103 , insulator 104 and auxiliary electrode 202 .
  • the tip 101 is made of metal with a sharpened tip, for example, a ⁇ 310> or ⁇ 111> oriented tungsten single crystal, and the tip has a radius of curvature of about 100 nm.
  • Tip 101 is welded to the tip of filament 102 .
  • Filament 102 is a V-shaped hairpin shaped tungsten polycrystalline wire.
  • a pin 103 is welded to each end of the filament 102 .
  • the two pins 103 are metal terminals and are electrically insulated from each other by being held by the insulator 104 . Chip 101, filament 102 and pin 103 are electrically at the same potential.
  • An extraction power supply 108 is connected between the pin 103 and the extraction electrode 106 .
  • the extraction power supply 108 applies an extraction voltage V1, which is a positive voltage with respect to the chip 101, to the extraction electrode 106.
  • the extraction voltage V1 is, for example, about 2 kV to 4 kV.
  • An electric field is concentrated at the tip of the tip 101 due to the application of the extraction voltage V1, and tunnel electrons are field-emitted from the tip of the tip 101 when the intensity of the electric field reaches 3 ⁇ 10 9 V/m or more.
  • Tunnel electrons pass through an aperture of a diaphragm 107 that is arranged on the central axis of the extraction electrode 106 and has the same potential as the extraction electrode 106 .
  • An acceleration power supply 111 is connected between the acceleration electrode 109 and the chip 101 .
  • Acceleration power supply 111 applies acceleration voltage V 0 , which is a positive voltage with respect to chip 101 , to acceleration electrode 109 .
  • the acceleration voltage V0 is, for example, about 5 kV to 300 kV. That is, if the acceleration electrode 109 is at the ground potential, a voltage of about -5 kV to -300 kV is applied to the tip 101 .
  • an electric field is formed in the acceleration space 112 between the extraction electrode 106 and the acceleration electrode 109 by the voltage difference of V0-V1, and the electron beam passing through the acceleration space 112 is applied with the acceleration voltage Accelerate to V0.
  • the electric field formed in the acceleration space 112 functions as an electrostatic lens to focus the electron beam.
  • the electron beam accelerated in the acceleration space 112 passes through the opening of the diaphragm 110 which is arranged on the central axis of the acceleration electrode 109 and has the same potential as the acceleration electrode 109 , and irradiates the sample 602 .
  • the emission current from the tip of the tip 101 is reduced when hydrogen or organic gas adheres to the electron emission surface of the tip of the tip 101 as residual gas. Therefore, a pulse current is supplied from a flushing power supply 113 connected between the pins 103 to heat the filament 102 and the tip 101, and a cleaning process called flushing is periodically performed. That is, the flashing removes the residual gas at the tip of the tip 101 and restores the reduced emission current to its initial value.
  • the timing at which the flushing is performed may be determined based on an operator's instruction, or may be determined automatically based on the decrease in the current emitted from the tip of the tip 101 . Also, the pulse current supply time is several seconds or less, more preferably one second or less.
  • Organic gases such as CO and CO 2 strongly adhering to the chip 101 begin to desorb when heated to 1600° C. or higher, and are completely desorbed when heated to 1900° C. or higher.
  • Hydrogen which is the main component of the residual gas, is desorbed by heating up to 1500°C. If the cleaning is insufficient, the reproducibility of the current of the electron beam cannot be obtained, and the reproducibility of the observation image cannot be obtained.
  • blunting increasing the radius of curvature of the tip of the tip 101 begins when heated to 2200° C. or higher, and progresses sharply when heated to 2400° C. or higher.
  • the temperature during flushing is preferably 1600°C to 2400°C, more preferably 1900°C to 2200°C. In other words, it is important to precisely control the temperatures when the tip 101 and the filament 102 are heated by flushing so as to both clean the tip and prolong its life. By feeding back the temperature measurement results to the flushing conditions, the temperature during flushing is optimized.
  • thermoelectrons 205 , 206 and 207 Heating to 1600° C. or higher causes thermoelectrons 205 , 206 and 207 to be emitted from the filament 102 and tip 101 . These thermal electrons increase exponentially with the temperature during flashing and can damage various parts. Therefore, an auxiliary electrode 202 is provided as an electrode that covers the filament 102 .
  • the auxiliary electrode 202 is held by the insulator 104 and electrically insulated from the pin 103 .
  • the auxiliary electrode 202 is cup-shaped and has an opening 203 through which the tip of the tip 101 protrudes.
  • the size of the opening 203 is made as small as possible in order to suppress leakage of thermoelectrons to the outside of the auxiliary electrode 202.
  • the diameter is 1 mm or less, more preferably 0.6 mm or less.
  • the distance L between the auxiliary electrode 202 and the extraction electrode 106 is typically 400 ⁇ m to 800 ⁇ m, more preferably about 500 ⁇ m to 600 ⁇ m.
  • a protrusion length T which is the length by which the tip of the tip 101 protrudes from the opening 203 of the auxiliary electrode 202, is typically about 50 ⁇ m to 750 ⁇ m, more preferably about 50 ⁇ m to 350 ⁇ m.
  • the aperture diameter of the aperture 107 of the extraction electrode 106 is typically 1 mm or less, more preferably 0.5 mm or less, in order to reduce thermal electrons entering the acceleration space 112 .
  • auxiliary power supply 204 and an ammeter 116 are connected between the auxiliary electrode 202 and the pin 103 .
  • Auxiliary power supply 204 applies an auxiliary voltage Vs to chip 101 .
  • the auxiliary voltage Vs is set to any voltage, positive, negative, or 0, depending on the situation. For example, during flushing, a positive voltage is set as the auxiliary voltage Vs, typically 0.1 kV to 1 kV, more preferably 0.1 kV to 0.6 kV.
  • thermoelectrons 205 emitted from the root side of the filament 102 among the thermoelectrons 205, 206, and 207 enter the auxiliary electrode 202 and are measured by the ammeter 116. be done.
  • a value measured by the ammeter 116 is transmitted to the control unit 617 and converted into a temperature using, for example, Richardson Dashman's equation.
  • the values measured by the ammeter 116 may be converted into temperatures using a table created by previously measuring the relationship between the heating temperature of the chip 101 and the filament 102 and the amount of thermoelectrons. That is, most of the thermoelectrons emitted from the filament 102 are measured by the ammeter 116 to calculate the temperature, so the temperature when the CFE electron source is heated can be controlled precisely.
  • the auxiliary voltage Vs is preferably higher than the extraction voltage V1.
  • thermoelectrons receive a repulsive force from the extraction electrode due to the potential gradient between the auxiliary electrode 202 and the extraction electrode 106 .
  • the thermoelectrons 206 and 207 passing through the opening 203 of the auxiliary electrode 202, the thermoelectrons 206 returning to the auxiliary electrode 202 increase. That is, since more thermoelectrons emitted from the tip 101 and the filament 102 are measured by the ammeter 116, the heating temperatures of the tip 101 and the filament 102 can be determined more accurately.
  • the trajectory of the thermoelectrons is bent by the repulsive force, and the thermoelectrons 207 passing through the aperture of the diaphragm 107 are reduced.
  • the thermal electrons 207 entering the acceleration space 112 can be reduced.
  • the electric field at the tip of the tip 101 formed by the auxiliary voltage Vs and the extracting voltage V1 during flushing is sufficiently low and is 3 ⁇ 10 9 V/m or less. For this reason, problems such as build-up and mixing of thermal electrons into tunnel electrons, which will be described later, do not occur.
  • Example 1 a positive voltage is applied to the auxiliary electrode 202 that covers the filament 102 and has the opening 203 through which the tip 101 protrudes. Let the auxiliary electrode 202 collect. Since the temperatures of the tip 101 and the filament 102 are calculated based on the current measured by the auxiliary electrode 202, the temperature during flushing can be precisely controlled. Furthermore, by precisely controlling the temperature during flushing, the residual gas can be properly desorbed without dulling the tip of the tip 101 . As a result, an observed image with good reproducibility can be obtained while a predetermined electron beam current is maintained, and the life of the CFE electron source can be extended.
  • the flushing temperature can also be managed by connecting the ammeter 116 to the extraction power supply 108 instead of the auxiliary power supply 204 .
  • the amount of current measured at the extraction electrode is small.
  • thermoelectrons may be measured by providing two power supply capacities inside the extraction power supply 108 and switching to a circuit with a higher capacity during flushing.
  • the extraction power source 108 has a problem of increased cost because it has two power supply capacities.
  • the auxiliary electrode 202 since the auxiliary electrode 202 is located behind the tip of the tip, it is not irradiated with tunnel electrons. Therefore, the power supply capacity of the auxiliary power supply 204 can be made based on the current amount of thermal electrons emitted during flushing. Therefore, it is not necessary to provide the auxiliary power supply 204 with power supply capacity of two systems as in the case of the conventional extraction power supply, and the cost can be reduced.
  • the flashing temperature can also be controlled by connecting the ammeter 116 to the flashing power supply 113 and measuring the total amount of current of thermoelectrons.
  • the auxiliary voltage Vs and the extraction voltage V1 during flushing are set to positive voltages.
  • the auxiliary voltage Vs during flushing is set to a positive voltage and the extraction voltage V1 is set to zero or a negative voltage. Since part of the configuration and functions described in the first embodiment can be applied to the second embodiment, the same reference numerals are used for the same configurations and functions, and the description thereof is omitted.
  • the configuration of the CFE electron source 201 and its surroundings is the same as in the first embodiment.
  • the extraction voltage V1 applied to the extraction electrode 106 by the extraction power supply 108 is zero or a negative voltage.
  • thermoelectrons 206 passing through the opening 203 and returning to the auxiliary electrode 202 increase.
  • thermoelectrons 207 (referred to as thermoelectrons 208 in FIG. 3) passing through the aperture of the diaphragm 107 in the first embodiment cannot exceed the potential gradient and cannot pass through the aperture, returning to the auxiliary electrode 202. . That is, since all thermoelectrons emitted from the tip 101 and the filament 102 are measured by the ammeter 116, the heating temperatures of the tip 101 and the filament 102 can be obtained more accurately. As a result, the reproducibility of the observation image is improved and the life of the electron source is extended in the second embodiment as well.
  • thermoelectrons 207 passing through the aperture of the diaphragm 107 disappear, the thermoelectrons become zero in the acceleration space 112 and do not enter.
  • the effect of eliminating the thermal electrons 207 entering the acceleration space 112 will be described later in the fourth embodiment.
  • Example 2 a positive voltage with respect to the tip 101 is applied to the auxiliary electrode 202, and a zero or negative voltage is applied to the extraction electrode 106. is collected by the auxiliary electrode 202 . Since the temperatures of the tip 101 and the filament 102 are calculated based on the current measured by the auxiliary electrode 202, the temperature during flushing can be controlled more precisely. Furthermore, since the residual gas can be appropriately desorbed without dulling the tip of the tip 101, it is possible to improve the reproducibility of the observed image and extend the life of the CFE electron source.
  • Embodiments 1 and 2 it has been described that a positive voltage is applied to the auxiliary electrode 202 during flushing, and thermal electrons are collected and measured by the auxiliary electrode 202 .
  • the auxiliary voltage Vs and the extracting voltage V1 during flashing are set to positive voltages to precisely control the temperature by collecting thermal electrons. to reduce the downtime of Since part of the configuration and functions described in the first and second embodiments can be applied to the third embodiment, the same reference numerals are used for the same configurations and functions, and the description thereof is omitted.
  • the CFE electron source emits tunnel electrons of several ⁇ A to several hundred ⁇ A from the electron emission surface at the tip of the tip.
  • thermal electrons of several mA to several hundred mA are temporarily emitted from the tip and filament. That is, the thermal electron current is about 1000 times larger than the tunnel electron current. Since the power supply capacity of the acceleration power supply 111 is determined based on the current amount of tunnel electrons in a steady state, if the flashing is performed while the acceleration voltage is applied, an excessive current flows through the acceleration power supply and the power supply capacity becomes insufficient. As a result, the acceleration voltage abruptly changes and discharge occurs, which may lead to failure of the power supply.
  • a charged particle beam device equipped with a general CFE electron source that does not have an auxiliary electrode should stop image observation once, stop applying the accelerating voltage, and then perform flushing. I do.
  • the acceleration voltage is stepped down from 100 kV to 0 V over 50 seconds, and the application of the acceleration voltage is stopped. Flushing is then performed in a few seconds or less, more preferably in 1 second or less. Then, the acceleration voltage is increased again from 0 V to 100 kV over 50 seconds.
  • the time during which image observation is stopped is called downtime. The higher the acceleration voltage of the device, the longer the time required for voltage step-down and step-up, resulting in longer downtime.
  • the down time can be reduced by increasing the voltage step-down and voltage step-up speeds, but if these speeds are high, the electric field will change sharply and discharge may occur. Therefore, there is a limit to the magnitude of the step-down and step-up speeds.
  • the step-down and step-up speeds are typically 3 kV/sec or less, more preferably 2 kV/sec or less.
  • the CFE electron source 201 described in Embodiment 1 collects thermal electrons during flashing with an auxiliary electrode to precisely control the temperature. At this time, since most of the thermoelectrons collide with the auxiliary electrode 202, the current amount of the thermoelectrons 207 entering the acceleration space 112 is 1/100 of that in a general CFE electron source without the auxiliary electrode 202. to some extent. This amount of current is about 10 times the amount of tunnel electrons in a steady state. Therefore, by increasing the power supply capacity of the acceleration power supply 111 ten times that of the conventional one, the acceleration power supply will not fail even if the flashing is performed while the acceleration voltage is applied.
  • the current amount of the thermoelectrons 207 entering the acceleration space 112 is further reduced, and is the same as the current amount of the tunnel electrons in the steady state. to some extent.
  • the power supply capacity of the acceleration power supply 111 is the same as the conventional one, even if the flashing is performed while the acceleration voltage is applied, the acceleration power supply will not fail due to insufficient power supply capacity.
  • the cost of the power supply can be reduced.
  • the amount of electron impact desorption gas and ions generated is reduced to the same level as in the steady state, the deterioration of the vacuum degree of the electron gun is suppressed, and the possibility of damage to the electron source is reduced.
  • FIGS. 4A to 4D An example of the time change of the voltage applied to each electrode will be described with reference to FIGS. 4A to 4D.
  • An example of voltage change during flashing of a conventional CFE electron source having no auxiliary electrode will be described with reference to FIG. 4A.
  • the accelerating voltage V0 during tunneling electron emission is 100 kV
  • the extracting voltage V1 is 2 kV
  • the step-down and step-up speed is 2 kV/sec
  • the extracting voltage V1 during flashing is 0.2 kV
  • the flashing time is 1 second.
  • the extraction voltage V1 is first stepped down from 2 kV to 0.2 kV to stop field emission and image observation. This required time is 0.9 seconds.
  • the acceleration voltage V0 is stepped down from 100 kV to 0 kV, and application of the acceleration voltage V0 is stopped. This required time is 50 seconds.
  • flushing is performed. This required time is 1 second.
  • the acceleration voltage V0 is boosted from 0 kV to 100 kV, and the application of V0 is resumed. This required time is 50 seconds.
  • the extraction voltage V1 is increased from 0.2 kV to 2 kV, and field emission and image observation are restarted. This required time is 0.9 seconds. All these steps take 102.8 seconds, which is the required downtime for each flush.
  • the auxiliary voltage Vs is constant at 0.3 kV, and the extraction voltage V1 is stepped down from 2 kV during image observation to 0.2 kV during flashing, and then back to 2 kV.
  • An example is shown in which the voltage is boosted and the acceleration voltage V0 is constant at 100 kV. It should be noted that it takes 0.9 s to step down the extraction voltage V1 from 2 kV to 0.2 kV, 1 s to keep it at 0.2 kV during flushing, and 0.9 s to step up from 0.2 kV to 2 kV. The time without image observation is limited to 2.8 s.
  • the acceleration voltage V0 at the time of field emission (at the time of image observation) before and after the flushing and the V0 at the time of flushing are kept constant, so that the time required for stepping down and stepping up the voltage of V0 can be shortened. Downtime can be greatly reduced. Further, in this configuration, since the auxiliary voltage Vs during field emission (image observation) and Vs during flushing are constant, there is an advantage that the time required for stepping down and stepping up the auxiliary voltage Vs can be omitted.
  • the auxiliary voltage Vs is 0.3 kV and the extraction voltage V1 is 0.2 kV, and since the extraction voltage V1 ⁇ the auxiliary voltage Vs, the heating temperatures of the tip 101 and the filament 102 can be obtained more accurately.
  • the auxiliary voltage Vs is ⁇ 0.3 kV during image observation and 0.3 kV during flashing
  • the extraction voltage V1 is 2 kV during image observation and 0.2 kV during flashing
  • the acceleration voltage V0 is constant at 100 kV.
  • the time for stepping up and down the auxiliary voltage Vs and the extraction voltage V1 is 0.9 s
  • the time for flushing is 1 s
  • the time for no image observation is limited to 2.8 s. Even with this configuration, downtime can be greatly reduced compared to the conventional case by performing flushing while applying the acceleration voltage V0.
  • the auxiliary power supply 204 of this configuration is a power supply capable of outputting both positive and negative polarities.
  • auxiliary power supply 204 By setting the auxiliary power supply 204 to have both positive and negative polarities, there is an advantage that the flushing can be performed with precisely controlled temperature regardless of whether Vs is positive or negative during steady-state image observation.
  • Vs is negative during electron emission
  • the extraction voltage required to emit the same amount of current is higher than when Vs is positive.
  • a high extraction voltage reduces the influence of electron-electron interaction, and thus has the advantage of obtaining an electron beam with high brightness.
  • extraction voltage V1 ⁇ auxiliary voltage Vs during flushing the heating temperatures of tip 101 and filament 102 can be obtained more accurately.
  • the auxiliary voltage Vs is constant at 0.3 kV
  • the extraction voltage V1 is 2 kV during image observation and 0.2 kV during flashing
  • the acceleration voltage V0 is changed from 100 kV during the first image observation to the second
  • An example of stepping down to 50 kV during image observation is shown.
  • the time for stepping up and down the extraction voltage V1 is 0.9 s
  • the time for flushing is 1 s
  • the time for which no image observation is performed is limited to 2.8 s.
  • extraction voltage V1 ⁇ auxiliary voltage Vs during flushing the heating temperatures of tip 101 and filament 102 can be obtained more accurately.
  • flushing is performed during the period in which the acceleration voltage V0 is changed, unnecessary downtime does not need to be increased.
  • Flushing may be performed not only during the change of the acceleration voltage V0, but also during the period during which the observation point is moved, the sample 602 is exchanged, the focus position is adjusted, and the voltage or current applied to each part is adjusted. This eliminates additional downtime due to the flushing process. Since the downtime of flushing effectively becomes zero, the downtime of the entire operation of the apparatus is reduced.
  • V0 unit: kV
  • step-down and step-up speeds are typically 3 kV/sec or less to avoid discharge, it takes V0/3 sec for step-down and V0/3 sec for step-up during flashing.
  • downtime of at least V0 ⁇ 2/3 seconds occurred.
  • speed of stepping down and stepping up is more preferably 2 kV/sec or less, it takes V0/2 sec for stepping down and V0/2 sec for stepping up. Occurred.
  • the downtime required for flushing can typically be V0 ⁇ 2/3 seconds or less, more preferably V0 seconds or less.
  • Example 3 by applying a positive voltage to the tip 101 to the auxiliary electrode 202 and the extraction electrode 106, the apparatus stops due to insufficient capacity of the acceleration power supply 111, the pressure of the electron gun deteriorates, There is little risk of discharge occurring, and flushing can be performed while the acceleration voltage V0 is applied. As a result, the downtime required for flushing can be greatly reduced compared to the conventional method. Further, the auxiliary electrode 202 collects more thermal electrons emitted during flashing, and the temperature of the tip 101 and the filament 102 is calculated based on the current measured by the auxiliary electrode 202. Therefore, the temperature during flashing can be calculated. It can be managed more precisely. Furthermore, since the residual gas can be appropriately desorbed without dulling the tip of the tip 101, it is possible to improve the reproducibility of the observed image and extend the life of the CFE electron source.
  • the auxiliary voltage Vs and the extraction voltage V1 during flushing are set to positive voltages to collect thermal electrons during flushing and further reduce downtime of the device.
  • the auxiliary voltage Vs during flushing is set to a positive voltage and the extraction voltage V1 is set to zero or a negative voltage to achieve both precise control of temperature and reduction of downtime. Since some of the configurations and functions described in the first to third embodiments can be applied to the fourth embodiment, the same reference numerals are used for the same configurations and functions, and the description thereof is omitted.
  • the auxiliary voltage Vs is constant at 0.3 kV
  • the extracting voltage V1 is stepped down from 2 kV during image observation to 0 kV during flushing, and then boosted again to 2 kV
  • the acceleration voltage V0 is constant at 100 kV.
  • the extraction voltage V1 is stepped up and down in 1 s
  • the flushing time is 1 s
  • the time during which no image observation is performed is limited to 3 s.
  • the auxiliary voltage Vs is 0.3 kV and the extraction voltage V1 is 0 kV. is measured, the heating temperature can be obtained more accurately.
  • the auxiliary voltage Vs is constant at 0.3 kV
  • the extraction voltage V1 is stepped down from 2 kV during image observation to ⁇ 0.1 kV during flashing, and then is stepped up again to 2 kV
  • the acceleration voltage V0 is 100 kV.
  • a constant example is shown. It should be noted that it takes 1.05 s to step up and down the extracting voltage V1, 1 s to flash, and 3.1 s to not observe the image, which significantly reduces downtime compared to conventional systems. can.
  • the extraction power source 108 becomes a power source capable of outputting both positive and negative polarities.
  • the auxiliary voltage Vs is 0.3 kV and the extraction voltage V1 is -0.1 kV, and all thermoelectrons are measured, so the heating temperature can be obtained more accurately.
  • Example 4 as described with reference to FIG. 4C, the auxiliary voltage Vs at the time of tunneling electron emission (at the time of image observation) can be made negative.
  • a positive voltage with respect to the tip 101 is applied to the auxiliary electrode 202, and a zero or negative voltage is applied to the extraction electrode 106. Flashing can be performed while the accelerating voltage V0 is applied without the risk of stopping the apparatus, deteriorating the pressure of the electron gun, or causing discharge. As a result, the downtime required for flushing can be greatly reduced compared to conventional general CFE electron sources. Further, the auxiliary electrode 202 collects more thermal electrons emitted during flashing, and the temperature of the tip 101 and the filament 102 is calculated based on the current measured by the auxiliary electrode 202. Therefore, the temperature during flashing can be calculated. It can be managed more precisely. Furthermore, since the residual gas can be appropriately desorbed without dulling the tip of the tip 101, it is possible to improve the reproducibility of the observed image and extend the life of the CFE electron source.
  • Embodiments 1 to 4 it has been described that a positive voltage is applied to the auxiliary electrode 202 during flushing, and thermal electrons are collected and measured by the auxiliary electrode 202 .
  • a zero or negative voltage is applied to the auxiliary electrode 202 during flushing, the extraction voltage V1 applied to the extraction electrode 106 is controlled, and thermal electrons are collected and measured by the extraction electrode 106. do. Since part of the configurations and functions described in the first to fourth embodiments can be applied to the fifth embodiment, the same reference numerals are used for the same configurations and functions, and the description thereof is omitted.
  • the configuration of the CFE electron source 201 and its surroundings is the same as in the first embodiment.
  • the auxiliary voltage Vs applied to the auxiliary electrode 202 by the auxiliary power supply 204 is zero or a negative voltage, and the ammeter 116 is connected to the extraction electrode 106 .
  • the auxiliary voltage Vs is a negative voltage
  • the potential gradient formed between the filament 102 and the auxiliary electrode 202 acts to push back thermoelectrons emitted from the filament.
  • the thermoelectrons emitted from the tip 101 and the filament 102 during flashing become only the thermoelectrons 301 emitted from the tip of the tip 101 , enter the extraction electrode 106 and are measured by the ammeter 116 . That is, the thermoelectrons 205 and 206 shown in FIG. 3 cannot be emitted.
  • the auxiliary voltage Vs is zero, a similar potential gradient occurs due to space charge limitation, and thermoelectrons cannot be emitted.
  • a value measured by the ammeter 116 is transmitted to the control unit 617 and converted into a temperature.
  • the temperature of the tip of the tip 101 can be calculated more accurately.
  • the temperature difference between the filament 102 and the tip of the tip 101 during flushing is several tens to 100 degrees Celsius. It is important to clean the electron emission surface of the tip of the tip 101 in the flashing.
  • the temperature of the electron emission surface can be managed more accurately. can improve the reproducibility and lifetime of electron emission.
  • FIG. 7 An example of potential distribution in the vicinity of the chip 101 will be described with reference to FIG.
  • the vicinity of the chip 101 is enlarged, and equipotential lines 303 are indicated by dotted lines when the auxiliary voltage Vs is -0.2 kV and the extraction voltage V1 is 0.3 kV during flushing.
  • the area around the auxiliary electrode 202 to which a negative voltage is applied has a negative potential
  • the area around the extraction electrode 106 and the diaphragm 107 to which a positive voltage is applied has a positive potential.
  • a boundary point 304 is a point where the zero potential equipotential line intersects the chip 101 . The position of the boundary point 304 changes depending on the auxiliary voltage Vs, the extraction voltage V1, and the projection length T of the tip 101.
  • thermoelectrons On the surface of the tip 101 and the filament 102, the area above the boundary point 304 is a region 305 covered with a negative potential, while the area below the boundary point 304 is a region 306 covered with a positive potential. In the region 305 covered with a negative potential, the thermoelectrons are pushed back, whereas in the region 306 covered with a positive potential, thermoelectrons are emitted, and most of the thermoelectrons 301 reach the extraction electrode 106 and the diaphragm 107. A very small portion of thermoelectrons 302 that are incident pass through the aperture of the diaphragm 107 .
  • thermoelectrons 301 By making the amount of current of thermoelectrons 301 equal to the amount of current of tunnel electrons field-emitted in a steady state, it is possible to reduce costs and manage temperature without changing the power supply capacity of extraction power supply 108 .
  • the current amount of tunnel electrons is from 1 ⁇ A to several hundred ⁇ A, and the current density of thermal electrons emitted during flashing at 2000° C. is about 650 A/m 2 .
  • the surface area of the region 306 covered with a positive potential should be 1500 ⁇ m 2 or more.
  • the position of the boundary point 304 should be 50 ⁇ m or more from the tip of the tip 101 . Since the current density of thermoelectrons decreases when the temperature during flashing becomes lower, it is desirable to increase the surface area of the region 306 covered with positive potential to increase the amount of measurable thermoelectrons.
  • thermionic electrons have a lower brightness and a larger energy spread than tunneling electrons. Therefore, if the flashing is performed while the field emission is being performed, thermal electrons are mixed in the tunnel electrons for image observation, and the resolution of the observation image is deteriorated. In order to avoid these build-up and mixing of thermal electrons, it is necessary to reduce the extracting voltage during flashing and reduce the electric field intensity at the tip end to 3 ⁇ 10 9 V/m or less.
  • FIG. 8 shows an example of the result of calculating the optimum voltage range 403 applied to both electrodes in a space where the vertical axis is the auxiliary voltage Vs and the horizontal axis is the extraction voltage V1, satisfying the following conditions.
  • the protrusion length T of the tip 101 was set to 250 ⁇ m
  • the distance L between the auxiliary electrode 202 and the extraction electrode 106 was set to 800 ⁇ m.
  • the position of the boundary point 304 where the equipotential line of zero potential intersects the tip 101 It should be 50 ⁇ m or more from the tip. Also, in order to prevent build-up at the tip of the tip 101, it is necessary to stop field emission by setting the electric field strength at the tip of the tip 101 to 3 ⁇ 10 9 V/m or less during flushing.
  • the auxiliary voltage Vs and the extraction voltage V1 are set so as to satisfy these conditions.
  • a straight line 401 in FIG. 8 is a combination of the auxiliary voltage Vs and the extraction voltage V1 at which the position 50 ⁇ m from the tip of the tip 101 has zero potential. That is, in the region above the straight line 401, the position 50 ⁇ m from the tip of the tip 101 has a positive potential, and thermal electrons of 1 ⁇ A or more can be measured.
  • a straight line 402 in FIG. 8 is a combination of the auxiliary voltage Vs and the extracting voltage V1 at which the electric field strength at the tip of the tip 101 is 3 ⁇ 10 9 V/m.
  • Both straight lines 401 and 402 show that the thermoelectron amount and the electric field are kept constant by increasing the negative auxiliary voltage Vs in accordance with the extraction voltage V1.
  • the electric field intensity at the tip of the tip 101 is 3 ⁇ 10 9 V/m or less, the field emission stops, and even if flushing is performed, buildup does not occur.
  • the auxiliary voltage Vs in the optimum voltage range 403 and the extracting voltage V1 during flushing the temperature at the tip of the tip 101 can be calculated, the cost of the extracting power source 108 can be reduced, build-up at the tip of the tip 101 can be prevented, and tunneling can be prevented. Thermal electrons can be prevented from being mixed into electrons.
  • the tip of the tip 101 is built up, and thermal electrons are mixed into the tunnel electrons. Therefore, region 404 can be said to be an inappropriate voltage range.
  • FIG. 9 shows an example of calculation results of the optimum voltage range 504 when the protrusion length T is changed from 50 ⁇ m to 750 ⁇ m.
  • the distance L between the auxiliary electrode 202 and the extraction electrode 106 was set to 800 ⁇ m.
  • the temperature at the tip of the tip 101 can be accurately calculated, and the cost of the extraction power supply 108 can be reduced. This makes it possible to prevent build-up at the tip of the tip 101 and to prevent thermal electrons from mixing into tunnel electrons.
  • the distance L between the auxiliary electrode 202 and the extraction electrode 106 is other length, for example, 400 ⁇ m to 600 ⁇ m, by using the auxiliary voltage Vs and the extraction voltage V1 in the optimum voltage range 504 during flushing, A similar effect can be obtained.
  • the optimum voltage range 504 is a region that satisfies -5.49 V1 ⁇ Vs ⁇ -0.150 V1 + 1.18 and -146/(V1 - 4.13) + 6.40 ⁇ Vs ⁇ 0 (unit: kV) is represented as
  • a zero voltage or a negative voltage with respect to the chip 101 is applied to the auxiliary electrode 202, and the extraction voltage V1 applied to the extraction electrode 106 is controlled so that the extraction electrode 106 generates thermoelectrons.
  • the tip tip temperature during flushing can be more precisely controlled.
  • the residual gas can be appropriately desorbed without dulling the tip of the tip 101, it is possible to improve the reproducibility of the observed image and extend the life of the CFE electron source.
  • the reproducibility of the observed image is improved by preventing build-up on the electron emission surface at the tip of the tip 101 and by preventing thermal electrons from being mixed with tunnel electrons used for image observation.
  • Embodiment 6 further describes how to reduce the downtime of the device by keeping the acceleration voltage V0 applied during flushing. Since a part of the configuration and functions described in the first to fifth embodiments can be applied to the sixth embodiment, the same reference numerals are used for the same configurations and functions, and the description thereof is omitted.
  • thermoelectrons 302 that are a very small portion near the central axis pass through the diaphragm 107 and enter the acceleration space 112 .
  • the amount of current is about the same as that of tunnel electrons used for steady-state image observation. Therefore, even if the flashing is performed while the V0 voltage is applied, failure due to insufficient power supply capacity of the acceleration power supply 111 will not occur. In addition, there is little possibility that the degree of vacuum of the electron gun will be deteriorated or that the electron source will be damaged. Therefore, flushing can be performed while the acceleration voltage V0 is applied, and downtime can be reduced.
  • the auxiliary voltage Vs is constant at ⁇ 0.2 kV
  • the extracting voltage V1 is stepped down from 2 kV during image observation to 0.3 kV during flushing, and then stepped up again to 2 kV
  • the acceleration voltage V0 is 100 kV.
  • a constant example is shown.
  • the time for which the extraction voltage V1 is stepped up and down is 0.85 s
  • the time for which 0.3 kV is maintained during flushing is 1 s
  • the time for which no image observation is performed is limited to 2.7 s.
  • thermoelectrons are not emitted from the filament 102 but only from the tip of the tip 101 .
  • the temperature of the tip of the tip 101 can be calculated more accurately.
  • no build-up or mixing of thermal electrons into tunnel electrons occurs.
  • FIG. 10 shows an example in which the auxiliary voltage Vs is 0.3 kV during image observation and 0 kV during flashing, the extraction voltage V1 is 2 kV during image observation and 0.1 kV during flashing, and the acceleration voltage V0 is constant at 100 kV. shown.
  • the time for stepping up and down the auxiliary voltage Vs and the extraction voltage V1 is 0.95 s, the time for flushing is 1 s, and the time for which no image observation is performed is limited to 2.9 s.
  • thermoelectrons 301 emitted from the tip of the tip 101 are measured, the temperature of the tip of the tip 101 is measured. can be calculated more accurately. In addition, no build-up or mixing of thermal electrons into tunnel electrons occurs.
  • FIG. 10C shows an example in which the auxiliary voltage Vs is ⁇ 0.2 kV during image observation and ⁇ 1.3 kV during flashing, the extraction voltage V1 is constant at 2 kV, and the acceleration voltage V0 is constant at 100 kV.
  • the time for which the auxiliary voltage Vs is stepped up and down is 0.55 s, the time for flushing is 1 s, and the time for which no image observation is performed is 2.1 s.
  • the auxiliary voltage Vs during flashing is -1.3 kV, no thermoelectrons are emitted from the filament 102, and only thermoelectrons 301 emitted from the tip of the tip 101 are measured, the temperature of the tip of the tip 101 is measured. can be calculated more accurately.
  • the extraction voltage V1 is constant, discharge due to the step-up/step-down of V1 is less likely to occur. In addition, no build-up or mixing of thermal electrons into tunnel electrons occurs.
  • FIG. 10D shows an example in which the auxiliary voltage Vs is 1 kV during image observation and -0.6 kV during flashing, the extraction voltage V1 is constant at 1 kV, and the acceleration voltage V0 is constant at 100 kV.
  • the time for which the auxiliary voltage Vs is stepped up and down is 0.8 s, the time for flushing is 1 s, and the time for which no image observation is performed is limited to 2.6 s.
  • the auxiliary voltage Vs during flashing is -0.6 kV, no thermoelectrons are emitted from the filament 102, and only thermoelectrons 301 emitted from the tip of the tip 101 are measured, the temperature of the tip of the tip 101 is measured. can be calculated more accurately.
  • the extraction voltage V1 is constant, discharge is less likely to occur. In addition, neither buildup nor mixing of thermal electrons into tunnel electrons occurs.
  • the auxiliary electrode 202 is applied with a voltage that is zero or negative with respect to the chip 101, and the extraction voltage V1 applied to the extraction electrode 106 is controlled so that the extraction electrode 106 generates thermoelectrons.
  • the tip tip temperature during flushing can be more precisely controlled.
  • there is no risk of stopping the apparatus due to insufficient capacity of the acceleration power supply 111, deterioration of the pressure of the electron gun, or discharge, and the flashing can be performed while the acceleration voltage V0 is applied.
  • the downtime required for flushing can be greatly reduced compared to conventional general CFE electron sources.
  • the residual gas can be appropriately desorbed without dulling the tip of the tip 101, it is possible to improve the reproducibility of the observed image and extend the life of the CFE electron source.
  • the reproducibility of the observation image is improved by preventing build-up on the electron emission surface at the tip of the tip 101 and by preventing thermal electrons from being mixed with tunnel electrons used for image observation.
  • the tip 101 may be made of a low work function material such as CeB 6 or LaB 6 , or a surface-inactive material such as a carbon-coated material.
  • a nanowire electron source or a monatomic electron source in which the radius of curvature of the tip is sharpened from several tens of nanometers or several atoms to about one atom, may be used.
  • a plurality of constituent elements disclosed in the above embodiments may be appropriately combined. Furthermore, some components may be deleted from all the components shown in the above embodiments.

Abstract

冷陰極電界放出電子源が加熱されるときの温度を精密に管理することが可能な荷電粒子線装置を提供する。先端が先鋭化されたチップと、前記チップに接続されるフィラメントと、前記フィラメントを覆うとともに前記チップが突き出る開口を有する補助電極と、を有する冷陰極電界放出電子源と、前記冷陰極電界放出電子源から電子を引き出すための引出電圧が印加される引出電極と、前記冷陰極電界放出電子源から引き出された電子を加速するための加速電圧が印加される加速電極を備える荷電粒子線装置であって、前記チップと前記フィラメントが加熱されるときに、前記補助電極に、前記チップに対して正の電圧を印加することで、前記チップと前記フィラメントから放出される熱電子を前記補助電極に収集させて電流を計測することを特徴とする。

Description

荷電粒子線装置
 本発明は、荷電粒子線装置に関する。
 荷電粒子線装置は、電子線のような荷電粒子線を試料に照射し、試料から放出される二次電子や透過電子、反射電子、X線などを検出して、試料の観察像を生成する装置である。空間分解能が高い観察像を得るには高輝度の電子源が必要であり、例えば冷陰極電界放出(Cold Field Emission:CFE)電子源が用いられる。先鋭化された単結晶(チップ)の先端に電界を集中させることで電子線を放出させるCFE電子源では、チップ先端に残留ガスが付着することで放出電流が不安定になるため、定期的な加熱パルスの印加によってチップ先端の清浄化処理が行われる。
 ところで加熱パルスが印加されるとき、CFE電子源のチップ及び他の部分から熱電子放出が生じることがある。このような熱電子放出は荷電粒子線装置の各部に大きな損傷を与えかねない。特許文献1には、CFE電子源に電界と加熱パルスを印加して清浄化処理をするときに、チップ先端以外を覆うカップ状の抑制電極に負電圧を印加することで、チップ及び他の部分からの望ましくない熱電子放出を抑制することが開示される。
特開2007-73521号公報
 しかしながら、特許文献1では加熱パルスが印加されるCFE電子源の温度管理に対する配慮が不十分である。CFE電子源の温度は放出される熱電子の量から見積れるものの、チップ及び他の部分からの熱電子放出が抑制されると、温度を正確に見積もれず温度を精密に管理することが困難となる。
 そこで本発明は、冷陰極電界放出電子源が加熱されるときの温度を精密に管理することが可能な荷電粒子線装置を提供することを目的とする。
 上記目的を達成するために本発明は、冷陰極電界放出電子源が加熱されるときの温度を精密に管理することが可能な荷電粒子線装置を提供するために、先端が先鋭化されたチップと、前記チップに接続されるフィラメントと、前記フィラメントを覆うとともに前記チップが突き出る開口を有する補助電極と、を有する冷陰極電界放出電子源と、前記冷陰極電界放出電子源から電子を引き出すための引出電圧が印加される引出電極と、前記冷陰極電界放出電子源から引き出された電子を加速するための加速電圧が印加される加速電極を備える荷電粒子線装置であって、前記チップと前記フィラメントが加熱されるときに、前記補助電極に、前記チップに対して正の電圧を印加することで、前記チップと前記フィラメントから放出される熱電子を前記補助電極に収集させて電流を計測することを特徴とする。
 本発明によれば、冷陰極電界放出電子源が加熱されるときの温度を精密に管理することが可能な荷電粒子線装置を提供することができる。
荷電粒子線装置の一例である走査電子顕微鏡の全体構成の一例を示す概略断面図 実施例1の冷陰極電界放出電子源とその周辺の構成の一例を示す概略断面図 実施例2の冷陰極電界放出電子源とその周辺の構成の一例を示す概略断面図 各電極に印加される電圧の変化の一例を示す図 各電極に印加される電圧の変化の一例を示す図 各電極に印加される電圧の変化の一例を示す図 各電極に印加される電圧の変化の一例を示す図 各電極に印加される電圧の変化の一例を示す図 各電極に印加される電圧の変化の一例を示す図 実施例5の冷陰極電界放出電子源とその周辺の構成の一例を示す概略断面図 実施例5のチップの近傍の電位分布の一例を示す概略断面図 補助電極と引出電極に印加される最適な電圧範囲の一例を示す図 チップの突出長Tを変えたときの補助電極と引出電極に印加される最適な電圧範囲の一例を示す図 各電極に印加される電圧の変化の一例を示す図 各電極に印加される電圧の変化の一例を示す図 各電極に印加される電圧の変化の一例を示す図 各電極に印加される電圧の変化の一例を示す図
 以下、添付図面に従って本発明に係る荷電粒子線装置の実施例について説明する。荷電粒子線装置は、電子線のような荷電粒子線を試料に照射し、試料から放出される二次電子や透過電子、反射電子、X線などを検出して、試料の観察像を生成する装置である。
 図1を用いて荷電粒子線装置の一例である走査電子顕微鏡の全体構成について説明する。走査電子顕微鏡は、電子線601を試料602に照射し、試料から放出される二次電子や反射電子を検出して、試料602の観察像を生成する装置であり、筒体603と試料室604を備える。筒体603の内部は、上から第一真空室605と第二真空室606、第三真空室607に分けられる。各真空室は電子線601が通過する開口を中央に有し、差動排気される。以下、各真空室と試料室604について説明する。
 第一真空室605は、イオンポンプ608と非蒸発ゲッターポンプ609で真空排気され、圧力を10-8Pa 台の超高真空、より好的には10-9Pa以下の極高真空にされる。第一真空室605の内部には、CFE電子源201と引出電極106、加速電極109が配置される。CFE電子源201は電界集中を利用して電子を放出する電子源であり、碍子610に保持されて筒体603と電気的に絶縁される。引出電極106はCFE電子源201から電子を引き出すための引出電圧が印加される電極であって、CFE電子源201を内包するカップ型の形状を有し、電子線601を通過させる開口が中心軸上に設けられる。加速電極109は加速電圧が印加される電極であって、電子線601を通過させる開口が中心軸上に設けられる。加速電極109への加速電圧の印加により、電子線601を加速するための電界が加速空間112に形成される。CFE電子源201とその周辺の構成については図2を用いて後述する。
 第二真空室606はイオンポンプ611で真空排気される。第二真空室606にはコンデンサレンズ612が配置される。コンデンサレンズ612は電子線601を集束させる。
 第三真空室607には、検出器616が配置される。検出器616は試料602から放出される二次電子や反射電子を検出する。検出器616は複数設けられても良く、試料室604や第一真空室605、第二真空室606に配置されても良い。
 試料室604はターボ分子ポンプ613で真空排気される。試料室604には、対物レンズ614と試料602が配置される。
 筒体603や試料室604に設けられるCFE電子源201や引出電極106、加速電極109、コンデンサレンズ612、対物レンズ614、検出器616、イオンポンプ608、ターボ分子ポンプ613などは、制御部617に接続される。制御部617は、各部の動作を制御するとともに、検出器616で検出された信号に基づいて試料602の観察像を生成する装置であり、例えばコンピュータや電子基板、電気回路である。なお、各部の動作の制御には、各部に印加される電圧や電流の調整や、各部で測定される電圧や電流の値の受信等が含まれる。
 制御部617には、表示部618と入力部619が接続される。表示部618は、観察像を表示する装置であり、例えば液晶ディスプレイやタッチパネルである。なお表示部618には、観察像から算出される特徴量や、各部に印加される電圧や電流の値、各部で測定される電圧や電流の値等が表示されても良い。入力部619は、観察条件や動作条件の入力に用いられる装置であり、例えばキーボードやマウス、タッチパネルである。
 各構成要素に印加する電圧、電流量、または、装置の稼働状態などを制御部617に記録しておき、任意のタイミングで表示部618や、遠隔地のコンピュータなどの情報端末の表示部に表示することでユーザやメンテナンス担当者が参照することができる。
 一例では、定常時の像観察状態における引出電圧V1や加速電圧V0、補助電圧Vs、CFE電子源201の放出電流量などの値を表示部618に表示する。CFE電子源201の放出電流量が事前に設定した値に減少した場合や、フラッシングから一定時間が経過した場合、表示部618にフラッシングが必要なことを表示する。ユーザやメンテナンス担当者はこの表示を見て手動でフラッシングを行う。なお、フラッシングは自動で行ってもよく、その他のタイミング、例えば、加速電圧の変更や、試料上の観察箇所の移動、観察試料の交換、焦点位置調整、各種電圧の電流の調整、電子源の放出電流量の変更、などの最中に実行しても良い。
 なおフラッシング時に各部に印加される電圧や電流が表示部618に表示されても良い。例えば、フラッシング時の加速電圧V0や引出電圧V1、補助電圧Vsが表示されても良い。また図2で示す補助電極202や引出電極106で計測される電流や計測された電流から算出される温度、図2で示すフラッシング電源113からフィラメント102に供給される電流、フィラメント102に電流が供給される時間などが表示されても良い。これらの結果から、装置がV0を印加した状態でフラッシングしているかを判別しても良い。また、フラッシング条件をユーザやメンテナンス担当者が参照し、入力部619を介して条件を調整することで、次回以降のフラッシングを最適化しても良い。
 その他に、これらのフラッシング時の情報を表示部618で表示せず、電源や制御部617等に記録し、任意のタイミングでユーザやメンテナンス担当者が参照しても良い。工場などで複数台の走査電子顕微鏡を並行して稼働させる場合、複数台の装置のフラッシング条件や稼働状態の記録を参照し、適宜、最適な条件を求めて全ての装置にフィードバックすることで、複数台の装置の動作条件を最適化する。この結果、装置全体の観察像の再現性が向上し、ダウンタイムを低減できる。
 図2を用いてCFE電子源201とその周辺の構成の一例について説明する。CFE電子源201は、チップ101と、フィラメント102、ピン103、碍子104、補助電極202を有する。チップ101は先端が先鋭化された金属であり、例えば<310>方位や<111>方位のタングステン単結晶であり、その先端の曲率半径は約100nm程度である。チップ101はフィラメント102の先端に溶接される。フィラメント102は、V字型のヘアピン形状にされたタングステン多結晶線である。フィラメント102の両端にはピン103がそれぞれ溶接される。2つのピン103は金属の端子であり、碍子104に保持されることで互いに電気的に絶縁される。チップ101とフィラメント102、ピン103は電気的に同電位である。
 ピン103と引出電極106の間には引出電源108が接続される。引出電源108は、チップ101に対して正の電圧である引出電圧V1を引出電極106に印加する。引出電圧V1は例えば2kVから4kV程度である。引出電圧V1の印加によってチップ101の先端には電界が集中し、電界の強度が3×10V/m以上になると、チップ101の先端からトンネル電子が電界放出される。トンネル電子は、引出電極106の中心軸上に配置され引出電極106と同電位である絞り107が有する開口を通過する。
 加速電極109とチップ101の間には加速電源111が接続される。加速電源111は、チップ101に対して正の電圧である加速電圧V0を加速電極109に印加する。加速電圧V0は、例えば5kVから300kV程度である。すなわち加速電極109がグランド電位であれば、チップ101には-5kVから-300kV程度の電圧が印加される。引出電圧V1と加速電圧V0の印加によって、引出電極106と加速電極109の間の加速空間112にはV0-V1分の電圧差による電界が形成され、加速空間112を通過する電子線は加速電圧V0まで加速される。また加速空間112に形成される電界は静電レンズとして機能し、電子線を集束させる。加速空間112にて加速された電子線は、加速電極109の中心軸上に配置され加速電極109と同電位である絞り110が有する開口を通過して、試料602に照射される。
 チップ101の先端からの放出電流は、チップ101先端の電子放出面に水素や有機系のガスが残留ガスとして付着することで減少する。そこで、ピン103の間に接続されるフラッシング電源113からパルス電流が供給されることにより、フィラメント102とチップ101が加熱され、フラッシングと呼ばれる清浄化処理が定期的に行われる。すなわちフラッシングによってチップ101の先端の残留ガスを脱離させ、減少した放出電流を初期値に戻す。なおフラッシングが行われるタイミングは、操作者の指示に基づいて決定されても良いし、チップ101の先端からの放出電流の減少に基づいて自動的に決定されても良い。またパルス電流の供給時間は数秒以下、より好適には1秒以下である。
 チップ101に強固に付着するCOやCOといった有機系のガスは、1600℃以上の加熱で脱離し始め、1900℃以上の加熱で完全に脱離する。なお残留ガスの主成分である水素は1500℃までの加熱により脱離する。清浄化が不十分であると電子線の電流の再現性が得られず、観察像の再現性が得られなくなる。一方、2200℃以上の加熱でチップ101の先端の鈍化(曲率半径の増加)が始まり、2400℃以上の加熱で急激に進む。チップ101の先端が鈍化すると、チップ101の先端の電界強度が低下して放出されるトンネル電子が減少する。このため、所定の電流を得るためには引出電圧を高くする必要がある。チップ101の鈍化が進み、電界放出に必要な電圧が引出電源の仕様を超えた場合、電子源は寿命となり、交換が必要になる。以上のことから、フラッシング時の温度は1600℃から2400℃が好ましく、1900℃から2200℃がさらに好ましい。すなわちフラッシングによりチップ101とフィラメント102が加熱されるときの温度を精密に管理して、チップの清浄化と長寿命化を両立することが重要である。温度の測定結果をフラッシング条件にフィードバックすることで、フラッシング時の温度を最適化する。
 1600℃以上の加熱は、フィラメント102とチップ101から熱電子205、206、207を放出させる。これらの熱電子は、フラッシング時の温度に対して指数関数的に増加し、各部に損傷を与えかねない。そこで、フィラメント102を覆う電極として補助電極202を設ける。
 補助電極202は碍子104に保持され、ピン103とは電気的に絶縁される。補助電極202は、カップ型の形状であって、チップ101の先端が突き出る開口203を有する。開口203の大きさは、補助電極202の外への熱電子の漏れを抑制するために極力小さくされ、例えば直径が1mm以下、より好ましくは0.6mm以下にされる。
 補助電極202と引出電極106との距離Lは、典型的には400μmから800μm、より好適には500μmから600μm程度である。補助電極202の開口203からチップ101の先端が突き出る長さである突出長Tは、典型的には50μmから750μm程度であり、より好適には50μmから350μm程度である。引出電極106の絞り107の開口の直径は、加速空間112に侵入する熱電子を低減するために、典型的には1mm以下、より好適には0.5mm以下である。
 補助電極202とピン103との間には、補助電源204と電流計116が接続される。補助電源204は、チップ101に対する電圧である補助電圧Vsを印加する。補助電圧Vsには、正、負、0の何かの電圧が状況に応じて設定される。例えば、フラッシング時には補助電圧Vsとして正の電圧が設定され、典型的には0.1kVから1kV、より好適には0.1kVから0.6kVが設定される。
 補助電圧Vsとして正の電圧が設定されることにより、熱電子205、206、207のうちのフィラメント102の根元側から放出される熱電子205は、補助電極202に入射し、電流計116によって計測される。電流計116による計測値は、制御部617に送信され、例えばリチャードソンダッシュマンの式を用いて、温度に換算される。なおチップ101とフィラメント102の加熱温度と熱電子の量との関係を予め測定することによって作成されるテーブルを用いて、電流計116による計測値が温度に換算されても良い。すなわち、フィラメント102から放出されるほとんどの熱電子が電流計116によって計測されて、温度が算出されるので、CFE電子源が加熱されるときの温度を精密に管理することができる。
 なお補助電圧Vsは引出電圧V1より大きいことが好ましい。引出電圧V1<補助電圧Vsとすることで、補助電極202と引出電極106との間の電位勾配により、熱電子は引出電極から斥力を受ける。この結果、補助電極202の開口203を通過する熱電子206、207のうちの補助電極202に戻る熱電子206が増加する。すなわちチップ101とフィラメント102から放出される熱電子のより多くが電流計116によって計測されるので、チップ101とフィラメント102の加熱温度がより正確に求められる。また引出電圧V1<補助電圧Vsとすることにより、斥力によって熱電子の軌道が曲げられ、絞り107の開口を通過する熱電子207が減少する。この結果、加速空間112に侵入する熱電子207を低減できる。加速空間112に侵入する熱電子207が低減することの効果については、実施例3で後述する。また、フラッシング時の補助電圧Vsと引出電圧V1で形成されるチップ101先端の電界は十分低く、3×10V/m以下である。このため、後述するビルドアップや、トンネル電子への熱電子の混入といった問題は生じない。
 以上説明したように実施例1では、フィラメント102を覆うとともにチップ101が突き出る開口203を有する補助電極202に、チップ101に対して正の電圧を印加することで、フラッシング時に放出される熱電子を補助電極202に収集させる。そして補助電極202で計測される電流に基づいて、チップ101とフィラメント102の温度が算出されるので、フラッシング時の温度を精密に管理することができる。さらに、フラッシング時の温度の精密な管理により、チップ101の先端を鈍化させることなく、残留ガスを適切に脱離させることができる。その結果、所定の電子線の電流を保ちながら再現性の良い観察像が得られ、CFE電子源の長寿命化を図ることができる。
 なお、電流計116を補助電源204ではなく、引出電源108に接続することでもフラッシング温度を管理できる。この場合、熱電子のほとんどは補助電極に衝突するため、引出電極で測定する電流量は少なくなる。一方、補助電極をもたない一般的なCFE電子源では、引出電源108の内部に二系統の電源容量をもたせ、フラッシング時は容量の高い回路に切り替えることで、熱電子を測定する場合がある。しかし、引出電源108は二系統の電源容量をもつためにコストが増加する課題があった。実施例1の補助電極を備えたCFE電子源を用いることで、引出電源に二系統の電源容量をもたせる必要がなくなり、コストを低減できる。
 その他に、補助電極202はチップ先端より後方にあるため、トンネル電子が照射されないことから、補助電源204の電源容量は、フラッシング時に放出する熱電子の電流量を基準に作れば良い。従って、従来の引出電源で行ったように、補助電源204に二系統の電源容量をもたせる必要はなく、コストを低減できる。また、電流計116をフラッシング電源113に接続し、熱電子の全電流量を測定することでフラッシング温度を管理することもできる。
 実施例1では、フラッシング時の補助電圧Vsと引出電圧V1を正の電圧にすることについて説明した。実施例2では、フラッシング時の補助電圧Vsを正の電圧にし、引出電圧V1は零または負の電圧にすることについて説明する。なお実施例2には、実施例1で説明した構成や機能の一部を適用できるので、同様の構成、機能については同じ符号を用いて説明を省略する。
 図3を用いてCFE電子源201とその周辺の構成の一例について説明する。CFE電子源201とその周辺の構成は、実施例1と同様である。ただし、引出電源108によって引出電極106に印加される引出電圧V1は零または負の電圧である。
 引出電圧V1が零または負の電圧であることにより、補助電極202と引出電極106との間の電位勾配は実施例1よりも大きくなり、斥力が強くなる。この結果、開口203を通過して補助電極202に戻る熱電子206が増加する。さらに実施例1では絞り107の開口を通過していた熱電子207(図3では熱電子208と記載する)は、電位勾配を超えることができずに開口を通過できず、補助電極202に戻る。すなわち、チップ101とフィラメント102から放出される熱電子の全てが電流計116によって計測されるので、チップ101とフィラメント102の加熱温度がより正確に求められる。この結果、実施例2でも観察像の再現性向上や電子源の長寿命化を実現する。
 また絞り107の開口を通過していた熱電子207がなくなるため、加速空間112に熱電子が零となり、侵入しなくなる。加速空間112に侵入する熱電子207がなくなることの効果については、実施例4で後述する。
 以上説明したように実施例2では、補助電極202に、チップ101に対して正の電圧を印加するとともに、引出電極106に零または負の電圧を印加することで、フラッシング時に放出される熱電子のより多くを補助電極202に収集させる。そして補助電極202で計測される電流に基づいて、チップ101とフィラメント102の温度が算出されるので、フラッシング時の温度をより精密に管理することができる。さらに、チップ101の先端を鈍化させることなく、残留ガスを適切に脱離させることができるので、観察像の再現性向上とCFE電子源の長寿命化を図ることができる。
 実施例1及び実施例2では、フラッシング時に補助電極202に正の電圧を印加し、補助電極202で熱電子を収集して計測することについて説明した。実施例3では、フラッシング時の補助電圧Vsと引出電圧V1を正の電圧にすることで熱電子の収集による温度の精密管理を行い、さらにフラッシング時に加速電圧V0を印加したままにすることで装置のダウンタイムを低減することについて説明する。なお実施例3には、実施例1と実施例2で説明した構成や機能の一部を適用できるので、同様の構成、機能については同じ符号を用いて説明を省略する。
 定常時の像観察時は、CFE電子源はチップ先端の電子放出面から数μAから数百μAのトンネル電子を放出する。一方、フラッシング時には、一時的にチップとフィラメントから数mAから数百mAの熱電子を放出する。すなわち、熱電子の電流量はトンネル電子の電流量の約1000倍大きい。加速電源111の電源容量は定常時のトンネル電子の電流量を基準に作るため、加速電圧を印加したままフラッシングをすると、過剰な電流が加速電源に流れて電源容量が不足する。この結果、加速電圧が急峻に変化して放電が発生し、電源が故障する場合がある。その他に、高エネルギーに加速された大量の熱電子が加速電極に衝突すると、電子衝撃脱離ガスやイオンが生じる。これらは電子銃の真空を悪化させるとともに、電子源に衝突することで電子源を破損させる場合がある。これらの装置が故障する原因を避けるために、補助電極をもたない一般的なCFE電子源を搭載した荷電粒子線装置は、一度、像観察を止め、加速電圧の印加を停止してからフラッシングを行う。
 例えば、加速電圧が100kV、降圧、昇圧速度が2kV/秒の荷電粒子線装置でフラッシングを行う場合、まず、加速電圧を100kVから0Vまで50秒かけて降圧して加速電圧の印加を停止する。次に、フラッシングを数秒以下、より好適には1秒以下で行う。そして、加速電圧を0Vから100kVまで再び50秒かけて昇圧する。これら全ての工程を足すと、フラッシングを行うためには少なくとも100秒以上、像観察を止める必要がある。この像観察を止める時間をダウンタイムと呼ぶ。加速電圧が高い装置ほど、降圧と昇圧にかかる時間が長いため、ダウンタイムも長くなる。降圧、昇圧速度を大きくすることでダウンタイムを低減できるが、これらの速度が大きいと電界が急峻に変化することになり、放電が起こる場合がある。このため、降圧、昇圧速度の大きさには限度がある。降圧、昇圧速度は典型的には3kV/秒以下、より好適には2kV/秒以下である。
 半導体デバイスの製造工程で使われる走査電子顕微鏡等では、より多くのデバイスをより短時間で観察することで、製造コストと製造時間を低減することが望まれる。このため、フラッシングのたびに長いダウンタイムを必要とすることは、半導体デバイスの製造コストと製造時間を増加させる課題となる。また、このような半導体デバイスの製造工程で使われる走査電子顕微鏡等では、デバイスの寸法を再現性よく測長することが重要な場合があり、観察像の再現性が重要となる。
 実施例1で説明したCFE電子源201は、フラッシング時の熱電子を補助電極で収集して温度を精密に管理する。このとき、熱電子のほとんどは補助電極202に衝突することから、加速空間112に侵入する熱電子207の電流量は、補助電極202をもたない一般的なCFE電子源と比べて1/100程度になる。この電流量は定常時のトンネル電子の10倍程度である。そこで、加速電源111の電源容量を従来の10倍にすることで、加速電圧を印加したままフラッシングしても加速電源が故障することがなくなる。
 さらに、実施例1で説明したように、引出電圧V1<補助電圧Vsとすることで、加速空間112に侵入する熱電子207の電流量はさらに減少し、定常時のトンネル電子の電流量と同程度となる。この結果、加速電源111の電源容量が従来と同じであっても、加速電圧を印加したままフラッシングをしても電源容量の不足に起因して加速電源が故障することはない。さらに、電源容量を増やす必要がないため電源のコストを低減できる。その他に、電子衝撃脱離ガスやイオンの発生量は定常時と同程度にまで少なくなり、電子銃の真空度悪化が抑えられ、電子源が破損する可能性も低くなる。以上の理由から、V0電圧を印加したままでもフラッシングすることが可能となり、加速電圧V0の降圧、昇圧に必要な時間がなくなることでダウンタイムを低減できる。
 図4A~図4Dを用いて、各電極に印加される電圧の時間変化の一例について説明する。図4Aを用いて、従来の補助電極をもたない一般的なCFE電子源のフラッシング時の電圧変化の一例を説明する。なお、ここではトンネル電子放出時(像観察時)の加速電圧V0が100kV、引出電圧V1が2kV、降圧、昇圧速度が2kV/秒、フラッシング時の引出電圧V1が0.2kV、フラッシングの時間は1秒であるとした。
 従来の補助電極をもたない一般的なCFE電子源でフラッシングを行う場合、まず引出電圧V1を2kVから0.2kVに降圧し、電界放出と像観察を止める。この所要時間は0.9秒である。次に加速電圧V0を100kVから0kVに降圧し、加速電圧V0の印加を止める。この所要時間は50秒である。次に、フラッシングを行う。この所要時間は1秒である。次に、加速電圧V0を0kVから100kVに昇圧し、V0の印加を再開する。この所要時間は50秒である。最後に、引出電圧V1を0.2kVから2kVに昇圧し、電界放出と像観察を再開する。この所要時間は0.9秒である。これらの全工程の所要時間は102.8秒であり、これがフラッシングの度に必要なダウンタイムとなる。
 図4Bには、補助電極を備えたCFE電子源において、補助電圧Vsは0.3kVで一定であり、引出電圧V1は像観察時の2kVからフラッシング時に0.2kVに降圧されてから再び2kVへ昇圧され、加速電圧V0は100kVで一定である例が示される。なお引出電圧V1が2kVから0.2kVまで降圧される時間は0.9s、フラッシング時に0.2kVに保たれる時間は1s、0.2kVから2kVまで昇圧される時間は0.9sであり、像観察がなされない時間は2.8sに留められる。本構成によって、フラッシング前後の電界放出時(像観察時)の加速電圧V0とフラッシング時のV0を一定としたままフラッシングすることで、V0の降圧と昇圧に要する時間を省略でき、従来と比べてダウンタイムを大幅に低減できる。また、本構成では、電界放出時(像観察時)の補助電圧Vsとフラッシング時のVsが一定であることから、補助電圧Vsの降圧と昇圧の時間を省略できる利点がある。またフラッシング時には補助電圧Vsが0.3kV、引出電圧V1が0.2kVであって、引出電圧V1<補助電圧Vsであるので、チップ101とフィラメント102の加熱温度がより正確に求められる。
 図4Cには、補助電圧Vsは像観察時に-0.3kV、フラッシング時に0.3kVであり、引出電圧V1は像観察時に2kV、フラッシング時に0.2kVであり、加速電圧V0は100kVで一定である例が示される。なお補助電圧Vsと引出電圧V1が昇降圧される時間は0.9s、フラッシングされる時間は1sであり、像観察がなされない時間は2.8sに留められる。本構成であっても、加速電圧V0を印加したままフラッシングすることで従来と比べてダウンタイムを大幅に低減できる。また、本構成の補助電源204は、正負両極性を出力可能な電源になる。補助電源204を正負両極性とすることで、定常の像観察時のVsが正負どちらで電圧あっても、温度を精密に管理したフラッシングを行える利点がある。電子放出時のVsを負にした場合、Vsを正にした場合と比べて、同じ電流量を放出させるのに必要な引出電圧が高くなる。引出電圧が高いと電子間相互作用の影響が減るため、輝度の高い電子線が得られる利点がある。またフラッシング時に引出電圧V1<補助電圧Vsであるので、チップ101とフィラメント102の加熱温度がより正確に求められる。
 図4Dには、補助電圧Vsは0.3kVで一定であり、引出電圧V1は像観察時に2kV、フラッシング時に0.2kVであり、加速電圧V0は第一の像観察時の100kVから第二の像観察時の50kVへ降圧される例が示される。なお引出電圧V1の昇降圧される時間は0.9s、フラッシングされる時間は1sであり、像観察がなされない時間は2.8sに留められる。またフラッシング時に引出電圧V1<補助電圧Vsであるので、チップ101とフィラメント102の加熱温度がより正確に求められる。さらに、加速電圧V0が変更される期間にフラッシングがなされるので、余計なダウンタイムを増やさなくて済む。なお加速電圧V0の変更に限らず、観察箇所の移動や試料602の交換、焦点位置の調整、各部に印加される電圧や電流の調整などが実行される期間にフラッシングがなされても良い。これにより、フラッシング工程のために新たにダウンタイムが発生することがなくなる。実効的にフラッシングのダウンタイムが0となることから、装置運用全体でのダウンタイムが低減する。
 図4Aで示したように、補助電極をもたない従来の一般的なCFE電子源では、V0(単位はkV)の印加を停止してフラッシングを行った。降圧、昇圧の速度は放電を避けるために典型的には3kV/秒以下であることから、フラッシングをする際には降圧にV0/3秒、昇圧にV0/3秒を要し、これらを合わせて少なくともV0×2/3秒のダウンタイムが発生した。また、降圧、昇圧の速度は、より好適には2kV/秒以下であることから、降圧にV0/2秒、昇圧にV0/2秒を要し、これらを合わせて少なくともV0秒のダウンタイムが発生した。
 一方、実施例3の走査電子顕微鏡は、V0を印加したままフラッシングを行うことから、V0の降圧と昇圧の時間が不要となる。この結果、フラッシングに要するダウンタイムを典型的にはV0×2/3秒以下、より好適にはV0秒以下にできる。
 以上説明したように実施例3では、補助電極202と引出電極106に、チップ101に対して正の電圧を印加することで、加速電源111の容量不足による装置の停止や電子銃の圧力悪化、放電が起こるリスクが少なく、加速電圧V0を印加したままフラッシングすることができる。この結果、従来と比べてフラッシングに必要なダウンタイムを大幅に低減できる。また、フラッシング時に放出される熱電子のより多くを補助電極202に収集させ、補助電極202で計測される電流に基づいて、チップ101とフィラメント102の温度が算出されるので、フラッシング時の温度をより精密に管理することができる。さらに、チップ101の先端を鈍化させることなく、残留ガスを適切に脱離させることができるので、観察像の再現性向上とCFE電子源の長寿命化を図ることができる。
 実施例3では、フラッシング時の補助電圧Vsと引出電圧V1を正の電圧にすることフラッシング時の熱電子の収集を行い、さらに、装置のダウンタイムを低減することについて説明した。実施例4では、フラッシング時の補助電圧Vsを正の電圧にし、引出電圧V1は零または負の電圧にすることで、温度の精密管理とダウンタイム低減を両立することについて説明する。なお実施例4には、実施例1から実施例3で説明した構成や機能の一部を適用できるので、同様の構成、機能については同じ符号を用いて説明を省略する。
 実施例2で説明したように、フラッシング時の補助電圧Vsを正の電圧にし、引出電圧V1は零または負の電圧することで、加速空間112に侵入する熱電子が零になる。この結果、加速電圧V0を印加したままフラッシングを行っても、加速電源111の容量不足に起因した故障や、電子銃の圧力悪化、電子源の破損といった問題が起こらずにダウンタイムを低減できる。
 図5A、図5Bを用いて、各電極に印加される電圧の変化の一例について説明する。図5Aには、補助電圧Vsは0.3kVで一定であり、引出電圧V1は像観察時の2kVからフラッシング時に0kVに降圧されてから再び2kVへ昇圧され、加速電圧V0は100kVで一定である例が示される。なお引出電圧V1が昇降圧される時間は1s、フラッシングされる時間は1sであり、像観察がなされない時間は3sに留められることから、従来と比べてダウンタイムを大幅に低減できる。またフラッシング時には補助電圧Vsが0.3kV、引出電圧V1が0kVであって、図4B~図4Dの場合よりも補助電極202と引出電極106との間の電位勾配が大きくなり、全ての熱電子が計測されるので、加熱温度がより正確に求められる。
 図5Bには、補助電圧Vsは0.3kVで一定であり、引出電圧V1は像観察時の2kVからフラッシング時に-0.1kVに降圧されてから再び2kVへ昇圧され、加速電圧V0は100kVで一定である例が示される。なお引出電圧V1が昇降圧される時間は1.05s、フラッシングされる時間は1sであり、像観察がなされない時間は3.1sに留められることから、従来と比べてダウンタイムを大幅に低減できる。本構成の場合、引出電源108は正負両極性を出力可能な電源となる。またフラッシング時には補助電圧Vsが0.3kV、引出電圧V1が-0.1kVであって、全ての熱電子が計測されるので、加熱温度がより正確に求められる。
 なお、実施例4であっても、図4Cで説明したように、トンネル電子放出時(像観察時)の補助電圧Vsを負にすることもできる。また、図4Dで説明したように、加速電圧V0の変更に限らず、観察箇所の移動や試料602の交換、焦点位置の調整、各部に印加される電圧や電流の調整などが実行される期間にフラッシングがなされても良い。
 以上説明したように実施例4では、補助電極202に、チップ101に対して正の電圧を印加するとともに、引出電極106に零または負の電圧を印加することで、加速電源111の容量不足による装置の停止や電子銃の圧力悪化、放電が起こるリスクがなく、加速電圧V0を印加したままフラッシングすることができる。この結果、従来の一般的なCFE電子源と比べてフラッシングに必要なダウンタイムを大幅に低減できる。また、フラッシング時に放出される熱電子のより多くを補助電極202に収集させ、補助電極202で計測される電流に基づいて、チップ101とフィラメント102の温度が算出されるので、フラッシング時の温度をより精密に管理することができる。さらに、チップ101の先端を鈍化させることなく、残留ガスを適切に脱離させることができるので、観察像の再現性向上とCFE電子源の長寿命化を図ることができる。
 実施例1から実施例4では、フラッシング時に補助電極202に正の電圧を印加し、補助電極202で熱電子を収集して計測することについて説明した。実施例5では、フラッシング時に補助電極202に零または負の電圧を印加するとともに、引出電極106に印加される引出電圧V1を制御し、引出電極106で熱電子を収集して計測することについて説明する。なお実施例5には、実施例1から実施例4で説明した構成や機能の一部を適用できるので、同様の構成、機能については同じ符号を用いて説明を省略する。
 図6を用いてCFE電子源201とその周辺の構成の一例について説明する。CFE電子源201とその周辺の構成は、実施例1と同様である。ただし、補助電源204によって補助電極202に印加される補助電圧Vsは零または負の電圧であり、電流計116は引出電極106に接続される。
 補助電圧Vsが負の電圧であることにより、フィラメント102と補助電極202との間に形成される電位勾配はフィラメントから放出される熱電子を押し戻すように作用する。その結果、フラッシング時にチップ101とフィラメント102から放出される熱電子は、チップ101の先端から放出される熱電子301だけとなり、引出電極106に入射して電流計116によって計測される。すなわち、図3で示した熱電子205と熱電子206が放出できなくなる。補助電圧Vsが零であっても空間電荷制限によって同様の電位勾配ができ、熱電子は放出できない。電流計116による計測値は、制御部617に送信されて温度に換算される。チップ101の先端から放出される熱電子301だけが計測されることにより、チップ101の先端の温度がより正確に算出される。フラッシング時のフィラメント102とチップ101の先端との温度差は数十℃から100℃程度ある。フラッシングはチップ101先端の電子放出面を清浄化することが重要であり、チップ101の先端から放出する熱電子のみを測定して温度を算出することで、電子放出面の温度をより正確に管理でき、電子放出の再現性と寿命を向上できる。
 図7を用いてチップ101の近傍の電位分布の一例について説明する。図7では、チップ101の近傍が拡大されるとともに、フラッシング時に補助電圧Vsを-0.2kV、引出電圧V1を0.3kVとしたときの等電位線303が点線で示される。負の電圧が印加される補助電極202の周辺は負の電位となり、正の電圧が印加される引出電極106と絞り107の周辺は正の電位となる。また零の電位の等電位線がチップ101と交わる点を境界点304とする。境界点304の位置は、補助電圧Vsと引出電圧V1やチップ101の突出長Tによって変化する。
 チップ101とフィラメント102の表面において、境界点304より上側は負の電位に覆われる領域305であるのに対して、下側は正の電位に覆われる領域306である。そして負の電位に覆われる領域305では熱電子の放出が押し戻されるのに対して、正の電位で覆われる領域306では熱電子が放出され、ほとんどの熱電子301は引出電極106と絞り107に入射し、極一部の熱電子302が絞り107の開口を通過する。
 負の電圧である補助電圧Vsの絶対値を大きくすると、境界点304の位置は下方へ移動し、チップ101から放出される熱電子301は減少する。また正の電圧である引出電圧V1の絶対値を大きくすると、境界点304の位置は上方へ移動し、チップ101から放出される熱電子301は増加する。
 熱電子301の電流量を定常時に電界放出されるトンネル電子の電流量と同等にすることにより、引出電源108の電源容量を変えることなく、コストを低減して温度の管理ができる。トンネル電子の電流量は1μAから数百μAであり、2000℃でのフラッシング時に放出される熱電子の電流密度は約650A/mである。熱電子301を1μA以上にするには正の電位に覆われる領域306の表面積を1500μm以上にすれば良い。そしてチップ101の先端の形状を半頂角が約10度である円錐であるので、境界点304の位置はチップ101の先端から50μm以上にすれば良い。なおフラッシング時の温度がより低温になると熱電子の電流密度が低下するので、正の電位に覆われる領域306の表面積はより大きくし、測定できる熱電子量を増やすことが望ましい。
 ここで、電界放出時と同じ高い引出電圧V1を印加したままフラッシングを行うと、チップ101先端の電子放出面でビルドアップと呼ばれる形状の変化が起こる。これは、3×10V/mの強電界下でチップ101が1600℃以上に加熱されることで、チップ表面のタングステン原子が拡散移動し、結晶の低指数面が成長するためである。先端形状が変化すると、フラッシング前後で放出する電流量が変化する。この結果、観察像のSN比や電圧条件が変わり、観察像の再現性が得られなくなる。
 その他に、トンネル電子と比べて、熱電子は輝度が低く、エネルギー幅が大きい。従って、電界放出をさせながらフラッシングを行うと、像観察を行うトンネル電子に熱電子が混入することで観察像の分解能が悪化する。これらのビルドアップと熱電子の混入を避けるために、フラッシング時の引出電圧は下げ、チップ先端の電界強度を3×10V/m以下にする必要がある。
 図8を用いて、補助電極と引出電極に印加される最適な電圧範囲について説明する。図8では、縦軸が補助電圧Vs、横軸が引出電圧V1である空間に、両電極に印加される最適な電圧範囲403を、以下に述べる条件を満たすように計算した結果の一例が示される。なお最適な電圧範囲403を計算するにあたり、チップ101の突出長Tを250μm、補助電極202と引出電極106との間の距離Lを800μmとした。
 図7を用いて述べたように、チップ101の先端から放出される熱電子301を1μA以上にするには、零の電位の等電位線がチップ101と交わる境界点304の位置をチップ101の先端から50μm以上にする必要がある。またチップ101の先端のビルドアップを防ぐためには、フラッシング時のチップ101の先端の電界強度を3×10V/m以下にして電界放出を止める必要がある。これらの条件を満たすように補助電圧Vsと引出電圧V1が設定される。
 図8の直線401は、チップ101の先端から50μmの位置が零の電位となる補助電圧Vsと引出電圧V1の組合せである。すなわち、直線401よりも上側の領域ではチップ101の先端から50μmの位置が正の電位となり、1μA以上の熱電子を測定できる。
 図8の直線402は、チップ101の先端の電界強度が3×10V/mとなる補助電圧Vsと引出電圧V1の組合せである。直線401と直線402のいずれも、引出電圧V1に合わせて負の補助電圧Vsを大きくすることで、熱電子量や電界が一定となることを示す。ここで、直線402よりも下側の領域ではチップ101の先端の電界強度は3×10V/m以下となり、電界放出は止まり、さらにフラッシングをしてもビルドアップは起こらない。
 実施例5では、補助電圧Vsを零または負の電位にするので、Vs=0の線と直線401、直線402で囲まれた三角形の領域が最適な電圧範囲403となる。最適な電圧範囲403の補助電圧Vsと引出電圧V1をフラッシング時に使用することにより、チップ101の先端の温度を算出できるとともに、引出電源108のコスト低減とチップ101の先端のビルドアップの防止、トンネル電子への熱電子の混入の防止ができる。なお、直線401と直線402との交点405よりも右側であって直線401よりも下側かつ直線402よりも上側の領域404では、熱電子301の量が不十分でフラッシングの温度の管理ができないとともに、チップ101の先端がビルドアップし、トンネル電子への熱電子の混入が起こる。このため、領域404は不適切な電圧範囲といえる。
 図9を用いて、チップの突出長Tを変えたときの補助電極と引出電極に印加される最適な電圧範囲について説明する。図9には、突出長Tを50μmから750μmまで変えたときの最適な電圧範囲504の計算結果の一例が示される。なお最適な電圧範囲504を計算するにあたり、補助電極202と引出電極106との間の距離Lを800μmとした。
 図8を用いて述べたように、最適な電圧範囲504は、Vs=0の線と、チップ101の先端から50μmの位置が零の電位となる直線と、チップ101の先端の電界強度が3×10V/mとなる直線で囲まれた領域である。突出長Tが変わるとVs=0の線以外の二直線も変わり、突出長Tが短いほど二直線は右上方向にずれる。なおT=50μmのときにチップ101の先端の電界強度が3×10V/mとなる直線501はVs=-0.150V1+1.18と表される。またT=650μmのときにチップ101の先端から50μmの位置が零の電位となる直線502はVs=-5.49V1と表される。そして二直線の交点は、Vs=-146/(V1-4.13)+6.40と表される曲線503の上を移動する。
 従って突出長Tが変わる場合にも、最適な電圧範囲504の補助電圧Vsと引出電圧V1をフラッシング時に使用することにより、チップ101の先端の温度を正確に算出できるとともに、引出電源108のコスト低減とチップ101の先端のビルドアップ防止、トンネル電子への熱電子混入防止が可能になる。なお補助電極202と引出電極106との間の距離Lがその他の長さ、例えば400μmから600μmである場合でも、最適な電圧範囲504の補助電圧Vsと引出電圧V1をフラッシング時に使用することにより、同様の効果を得ることができる。また最適な電圧範囲504は、-5.49V1≦Vs≦-0.150V1+1.18、かつ、-146/(V1-4.13)+6.40≦Vs≦0、(単位はkV)を満たす領域として表される。
 以上説明したように実施例5では、補助電極202に、チップ101に対して零または負の電圧を印加するとともに、引出電極106に印加される引出電圧V1を制御し、引出電極106で熱電子を収集して計測することで、フラッシング時のチップ先端の温度をより精密に管理することができる。さらに、チップ101の先端を鈍化させることなく、残留ガスを適切に脱離させることができるので、観察像の再現性向上とCFE電子源の長寿命化を図ることができる。その他に、チップ101の先端の電子放出面でのビルドアップを防ぎ、像観察に用いるトンネル電子に熱電子が混入することを防ぐことで、観察像の再現性を向上する。
 実施例5では、フラッシング時に補助電極202に零または負の電圧を印加するとともに、引出電極106に印加される引出電圧V1を制御し、引出電極106で熱電子を収集して計測することについて説明した。実施例6ではさらに、フラッシング時に加速電圧V0を印加したままにすることで装置のダウンタイムを低減することについて説明する。なお実施例6には、実施例1から実施例5で説明した構成や機能の一部を適用できるので、同様の構成、機能については同じ符号を用いて説明を省略する。
 図7で示した熱電子のうち、中心軸近傍の極一部の熱電子302は、絞り107を通過して加速空間112に侵入する。その電流量は定常時の像観察に用いるトンネル電子と同程度である。このため、V0電圧を印加したままフラッシングをしても、加速電源111の電源容量の不足に起因した故障は起こらない。また、電子銃の真空度悪化や電子源が破損する可能性も低い。従って、加速電圧V0を印加したままフラッシングでき、ダウンタイムを低減できる。
 図10A~図10Dを用いて、各電極に印加される電圧の変化の一例について説明する。図10Aには、補助電圧Vsは-0.2kVで一定であり、引出電圧V1は像観察時の2kVからフラッシング時に0.3kVに降圧されてから再び2kVへ昇圧され、加速電圧V0は100kVで一定である例が示される。なお引出電圧V1が昇降圧される時間は0.85s、フラッシング時に0.3kVに保たれる時間は1sであり、像観察がなされない時間は2.7sに留められる。また補助電圧Vsが-0.2kVで一定であるので、熱電子はフィラメント102からは放出されず、チップ101の先端のみから放出される。その結果、チップ101の先端の温度をより正確に算出できる。また、ビルドアップやトンネル電子への熱電子の混入も起こらない。
 図10には、補助電圧Vsは像観察時に0.3kV、フラッシング時に0kVであり、引出電圧V1は像観察時に2kV、フラッシング時に0.1kVであり、加速電圧V0は100kVで一定である例が示される。なお補助電圧Vsと引出電圧V1が昇降圧される時間は0.95s、フラッシングされる時間は1sであり、像観察がなされない時間は2.9sに留められる。またフラッシング時の補助電圧Vsが-0.2kVであり、フィラメント102から熱電子は放出されず、チップ101の先端から放出される熱電子301だけが計測されるので、チップ101の先端の温度をより正確に算出できる。また、ビルドアップやトンネル電子への熱電子の混入も起こらない。
 図10Cには、補助電圧Vsは像観察時に-0.2kV、フラッシング時に-1.3kVであり、引出電圧V1は2kVで一定であり、加速電圧V0は100kVで一定である例が示される。なお補助電圧Vsが昇降圧される時間は0.55s、フラッシングされる時間は1sであり、像観察がなされない時間は2.1sに留められる。またフラッシング時の補助電圧Vsが-1.3kVであり、フィラメント102から熱電子は放出されず、チップ101の先端から放出される熱電子301だけが計測されるので、チップ101の先端の温度をより正確に算出できる。引出電圧V1が一定であるので、V1の昇降圧に起因した放電が起こりにくい。また、ビルドアップやトンネル電子への熱電子の混入も起こらない。
 図10Dには、補助電圧Vsは像観察時に1kV、フラッシング時に-0.6kVであり、引出電圧V1は1kVで一定であり、加速電圧V0は100kVで一定である例が示される。なお補助電圧Vsが昇降圧される時間は0.8s、フラッシングされる時間は1sであり、像観察がなされない時間は2.6sに留められる。またフラッシング時の補助電圧Vsが-0.6kVであり、フィラメント102から熱電子は放出されず、チップ101の先端から放出される熱電子301だけが計測されるので、チップ101の先端の温度をより正確に算出できる。さらに引出電圧V1が一定であるので、放電が起こりにくい。また、ビルドアップやトンネル電子への熱電子の混入も起こらない。
 以上説明したように実施例6では、補助電極202に、チップ101に対して零または負の電圧を印加するとともに、引出電極106に印加される引出電圧V1を制御し、引出電極106で熱電子を収集して計測することで、フラッシング時のチップ先端の温度をより精密に管理することができる。また、加速電源111の容量不足による装置の停止や電子銃の圧力悪化、放電が起こるリスクがなく、加速電圧V0を印加したままフラッシングすることができる。この結果、従来の一般的なCFE電子源と比べてフラッシングに必要なダウンタイムを大幅に低減できる。さらに、チップ101の先端を鈍化させることなく、残留ガスを適切に脱離させることができるので、観察像の再現性向上とCFE電子源の長寿命化を図ることができる。その他に、チップ101の先端の電子放出面でのビルドアップを防ぎ、さらに像観察に用いるトンネル電子に熱電子が混入することを防ぐことで、観察像の再現性を向上する。
 以上、本発明の複数の実施例について説明した。本発明は上記実施例に限定されるものではなく、発明の要旨を逸脱しない範囲で構成要素を変形して具体化できる。例えば、チップ101としてタングステン単結晶の代わりに、CeBやLaBなどの低仕事関数材料や、炭素被服材料のような表面が不活性な材料が用いられても良い。また先端の曲率半径を数十nmや数原子から一原子程度までに先鋭化したナノワイヤ電子源や、単原子電子源が用いられても良い。また、上記実施例に開示されている複数の構成要素を適宜組み合わせても良い。さらに、上記実施例に示される全構成要素からいくつかの構成要素を削除しても良い。
101…チップ、102…フィラメント、103…ピン、104…碍子、106…引出電極、107…絞り、108…引出電源、109…加速電極、110…絞り、111…加速電源、112…加速空間、113…フラッシング電源、116…電流計、201…CFE電子源、202…補助電極、203…開口、204…補助電源、205…熱電子、206…熱電子、207…熱電子、208…熱電子、301…熱電子、302…熱電子、303…等電位線、304…境界点、305…負の電位で覆われる領域、306…正の電位で覆われる領域、401…直線、402…直線、403…最適な電圧範囲、404…領域、405…交点、501…直線、502…直線、503…曲線、504…最適な電圧範囲、601…電子線、602…試料、603…筒体、604…試料室、605…第一真空室、606…第二真空室、607…第三真空室、608…イオンポンプ、609…非蒸発ゲッターポンプ、610…碍子、611…イオンポンプ、612…コンデンサレンズ、613…ターボ分子ポンプ、614…対物レンズ、616…検出器、617…制御部、618…表示部、619…入力部

Claims (15)

  1.  先端が先鋭化されたチップと、前記チップに接続されるフィラメントと、前記フィラメントを覆うとともに前記チップが突き出る開口を有する補助電極と、を有する冷陰極電界放出電子源と、
     前記冷陰極電界放出電子源から電子を引き出すための引出電圧が印加される引出電極と、
     前記冷陰極電界放出電子源から引き出された電子を加速するための加速電圧が印加される加速電極を備える荷電粒子線装置であって、
     前記チップと前記フィラメントが加熱されるときに、前記補助電極に、前記チップに対して正の電圧を印加することで、前記チップと前記フィラメントから放出される熱電子を前記補助電極に収集させて電流を計測することを特徴とする荷電粒子線装置。
  2.  請求項1に記載の荷電粒子線装置であって、
     前記チップと前記フィラメントが加熱されるときに、前記補助電極に印加される補助電圧を前記引出電圧よりも大きくすることを特徴とする荷電粒子線装置。
  3.  請求項2に記載の荷電粒子線装置であって、
     前記チップと前記フィラメントが加熱されるときに、前記引出電圧を零または負の電圧にすることを特徴とする荷電粒子線装置。
  4.  請求項1に記載の荷電粒子線装置であって、
     像観察時に、前記補助電極に補助電圧を印加する電源は、前記チップに対して正と負の両方の電圧を印加できることを特徴とする荷電粒子線装置。
  5.  請求項1に記載の荷電粒子線装置であって、
     前記加速電圧の変更や、観察箇所の移動、試料の交換、焦点位置の調整、各部に印加される電圧や電流の調整のいずれかがなされる期間に、前記チップと前記フィラメントを加熱することを特徴とする荷電粒子線装置。
  6.  請求項1に記載の荷電粒子線装置であって、
     前記チップと前記フィラメントが加熱されるときに、前記加速電圧、前記引出電圧、前記補助電極に印加される補助電圧、前記補助電極で計測される電流、算出される温度、前記フィラメントに供給される電流、前記フィラメントに電流が供給される時間、の少なくとも一つを表示する表示部を備えることを特徴とする荷電粒子線装置。
  7.  請求項1に記載の荷電粒子線装置であって、
     前記チップと前記フィラメントが加熱されるときに、前記加速電圧、前記引出電圧、前記補助電極に印加される補助電圧、前記補助電極で計測される電流、算出される温度、前記フィラメントに供給される電流、前記フィラメントに電流が供給される時間、の少なくとも一つを記録する制御部を備えることを特徴とする荷電粒子線装置。
  8.  請求項1に記載の荷電粒子線装置であって、
     前記チップと前記フィラメントが加熱されるときに、前記加速電圧が印加されていることを特徴とする荷電粒子線装置。
  9.  請求項3に記載の荷電粒子線装置であって、
     前記チップと前記フィラメントが加熱されるときに、前記加速電圧が印加されていることを特徴とする荷電粒子線装置。
  10.  請求項5に記載の荷電粒子線装置であって、
     前記チップと前記フィラメントが加熱されるときに、前記加速電圧が印加されていることを特徴とする荷電粒子線装置。
  11.  請求項6に記載の荷電粒子線装置であって、
     前記チップと前記フィラメントが加熱されるときに、前記加速電圧が印加されていることを特徴とする荷電粒子線装置。
  12.  先端が先鋭化されたチップと、前記チップに接続されるフィラメントと、前記フィラメントを覆うとともに前記チップが突き出る開口を有する補助電極と、を有する冷陰極電界放出電子源と、
     前記冷陰極電界放出電子源から電子を引き出すための引出電圧が印加される引出電極と、
     前記冷陰極電界放出電子源から引き出された電子を加速するための加速電圧が印加される加速電極を備える荷電粒子線装置であって、
     前記チップと前記フィラメントが加熱されるときに、前記補助電極に印加される補助電圧をVs、前記引出電圧をV1とすると、-5.49V1≦Vs≦-0.150V1+1.18、かつ、-146/(V1-4.13)+6.40≦Vs≦0Vs≦0を満たす状態で、前記チップから放出される熱電子を前記引出電極に収集させて電流を計測することを特徴とする荷電粒子線装置。
  13.  請求項12に記載の荷電粒子線装置であって、
     前記チップと前記フィラメントが加熱されるときに、前記加速電圧が印加されていることを特徴とする荷電粒子線装置。
  14.  先端が先鋭化されたチップと、前記チップに接続されるフィラメントと、前記フィラメントを覆うとともに前記チップが突き出る開口を有する補助電極と、を有する冷陰極電界放出電子源と、
     前記冷陰極電界放出電子源から電子を引き出すための引出電圧が印加される引出電極と、
     前記冷陰極電界放出電子源から引き出された電子を加速するための加速電圧V0(kV)が印加される加速電極を備える荷電粒子線装置であって、
     前記チップと前記フィラメントが加熱される際の観察停止時間が、V0(秒)以下であることを特徴とする荷電粒子線装置。
  15.  先端が先鋭化されたチップと、前記チップに接続されるフィラメントと、前記フィラメントを覆うとともに前記チップが突き出る開口を有する補助電極と、を有する冷陰極電界放出電子源と、
     前記冷陰極電界放出電子源から電子を引き出すための引出電圧が印加される引出電極と、
     前記冷陰極電界放出電子源から引き出された電子を加速するための加速電圧が印加される加速電極と、
     各部の動作を制御する制御部を備える荷電粒子線装置であって、
     前記制御部は、前記チップと前記フィラメントが加熱されるときに、前記補助電極に、前記チップに対して正の電圧を印加することで、前記チップと前記フィラメントから放出される熱電子を前記補助電極に収集させ、前記補助電極で計測される電流に基づいて、前記チップと前記フィラメントの温度を算出することを特徴とする荷電粒子線装置。
PCT/JP2021/038557 2021-10-19 2021-10-19 荷電粒子線装置 WO2023067681A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023554112A JPWO2023067681A1 (ja) 2021-10-19 2021-10-19
KR1020247008071A KR20240043795A (ko) 2021-10-19 2021-10-19 하전 입자선 장치
PCT/JP2021/038557 WO2023067681A1 (ja) 2021-10-19 2021-10-19 荷電粒子線装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038557 WO2023067681A1 (ja) 2021-10-19 2021-10-19 荷電粒子線装置

Publications (1)

Publication Number Publication Date
WO2023067681A1 true WO2023067681A1 (ja) 2023-04-27

Family

ID=86058909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038557 WO2023067681A1 (ja) 2021-10-19 2021-10-19 荷電粒子線装置

Country Status (3)

Country Link
JP (1) JPWO2023067681A1 (ja)
KR (1) KR20240043795A (ja)
WO (1) WO2023067681A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012959A (ja) * 1973-04-13 1975-02-10
JPS50100964A (ja) * 1974-01-07 1975-08-11
JPS57165944A (en) * 1981-04-06 1982-10-13 Jeol Ltd Dallying method for emitter
JP2007073521A (ja) * 2005-09-05 2007-03-22 Ict Integrated Circuit Testing Ges Fuer Halbleiterprueftechnik Mbh 荷電粒子ビーム照射デバイス及び荷電粒子ビーム照射デバイスを動作させるための方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012959A (ja) * 1973-04-13 1975-02-10
JPS50100964A (ja) * 1974-01-07 1975-08-11
JPS57165944A (en) * 1981-04-06 1982-10-13 Jeol Ltd Dallying method for emitter
JP2007073521A (ja) * 2005-09-05 2007-03-22 Ict Integrated Circuit Testing Ges Fuer Halbleiterprueftechnik Mbh 荷電粒子ビーム照射デバイス及び荷電粒子ビーム照射デバイスを動作させるための方法

Also Published As

Publication number Publication date
JPWO2023067681A1 (ja) 2023-04-27
KR20240043795A (ko) 2024-04-03

Similar Documents

Publication Publication Date Title
US9257257B2 (en) Electron beam control method, electron beam generating apparatus, apparatus using the same, and emitter
US8999178B2 (en) Method for fabricating emitter
JP5099756B2 (ja) 電子線発生装置およびその制御方法
US7151268B2 (en) Field emission gun and electron beam instruments
EP3066680A1 (en) Bright and durable field emission source derived from refractory taylor cones
US8530867B1 (en) Electron generation and delivery system for contamination sensitive emitters
US9017562B2 (en) Particle sources and methods for manufacturing the same
JP2013528915A (ja) 粒子源及びその粒子源を用いたデバイス
JP2009301920A (ja) ナノチップエミッタ作製方法
WO2023067681A1 (ja) 荷電粒子線装置
US10614994B2 (en) Electron microscope
US10074506B2 (en) Method for manufacturing electron source
US9773637B2 (en) Plasma ion source and charged particle beam apparatus
JP5723730B2 (ja) エミッタ、ガス電界電離イオン源、およびイオンビーム装置
JP2008251300A (ja) X線検査装置
JP2011082056A (ja) 集束イオンビーム装置のナノエミッタ作製方法及びナノエミッタ作製手段を有する集束イオンビーム装置
JP6129982B2 (ja) 電子顕微鏡
EP3736848B1 (en) Electron source and electron gun
JP7018418B2 (ja) 電子銃、電子顕微鏡、3次元積層造形装置、及び電子銃の電流調整方法
US11404238B2 (en) Control method for electron microscope and electron microscope
JP5830601B2 (ja) ガス電界電離イオン源およびイオンビーム装置
JP6236480B2 (ja) エミッタの作製方法
JP4457513B2 (ja) X線発生装置
Tsujino et al. Uniformity of field emission electron beam and picosecond field emission from metallic field emitter arrays under high electric field
JP2000251736A (ja) 電子源の製造方法および電子源および画像形成装置および帯電処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961334

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023554112

Country of ref document: JP