JP6369435B2 - 受信機 - Google Patents

受信機 Download PDF

Info

Publication number
JP6369435B2
JP6369435B2 JP2015189662A JP2015189662A JP6369435B2 JP 6369435 B2 JP6369435 B2 JP 6369435B2 JP 2015189662 A JP2015189662 A JP 2015189662A JP 2015189662 A JP2015189662 A JP 2015189662A JP 6369435 B2 JP6369435 B2 JP 6369435B2
Authority
JP
Japan
Prior art keywords
timing
receiver
equalizer
recovery
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015189662A
Other languages
English (en)
Other versions
JP2017069615A5 (ja
JP2017069615A (ja
Inventor
宣明 松平
宣明 松平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015189662A priority Critical patent/JP6369435B2/ja
Priority to US15/739,452 priority patent/US10484166B2/en
Priority to PCT/JP2016/075926 priority patent/WO2017056855A1/ja
Publication of JP2017069615A publication Critical patent/JP2017069615A/ja
Publication of JP2017069615A5 publication Critical patent/JP2017069615A5/ja
Application granted granted Critical
Publication of JP6369435B2 publication Critical patent/JP6369435B2/ja
Priority to US16/595,654 priority patent/US11212071B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • H04B3/06Control of transmission; Equalising by the transmitted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40013Details regarding a bus controller
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03114Arrangements for removing intersymbol interference operating in the time domain non-adaptive, i.e. not adjustable, manually adjustable, or adjustable only during the reception of special signals
    • H04L25/03146Arrangements for removing intersymbol interference operating in the time domain non-adaptive, i.e. not adjustable, manually adjustable, or adjustable only during the reception of special signals with a recursive structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/12Applying verification of the received information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0004Initialisation of the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/10Arrangements for initial synchronisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L2207/00Indexing scheme relating to automatic control of frequency or phase and to synchronisation
    • H03L2207/50All digital phase-locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0054Detection of the synchronisation error by features other than the received signal transition
    • H04L7/0062Detection of the synchronisation error by features other than the received signal transition detection of error based on data decision error, e.g. Mueller type detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Dc Digital Transmission (AREA)
  • Noise Elimination (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

本発明は、クロックを復元するクロックリカバリを備える受信機に関する。
クロックリカバリ技術は、データにクロックが重畳されているときに当該重畳信号からクロックを復元する技術として一般に提供されている。例えばUSB(Universal Serial Bus)などの高速シリアル通信技術では、データレートの2倍の周波数の動作クロックを用いて受信データをオーバーサンプリングすることでクロックを復元している。
他方、例えば1000BASE−Tによるギガビットイーサネット(登録商標)に示すように、受信機がADC(Analog to Digital Converter)を含むデジタル信号処理型のトランシーバを用いて構成されている場合、受信機の動作クロック周波数は、データレートと一致するように回路構成されている。すなわち、1000BASE−Tの場合、通信処理が125Mspsで行われるため、受信回路は125MHzのクロック信号で動作しオーバーサンプリング処理は行われないのが一般的である。これは、ADCの動作周波数を高速化すると回路構成が複雑化して回路面積が増大してしまうため、この影響を避けるためである。
受信データと同一周波数でサンプリング処理しつつ最適サンプリング位置を推定する方法としては、Mueller-Muller Timing Recoveryと称される技術がある。このMueller-Muller Timing Recovery技術は、符号間干渉により生じる干渉波に応じて最適なサンプリングタイミングを推定する技術である。この技術は、サンプリング間隔をデータレートと同じ周期としながら、主信号と時間的に前後する干渉波信号の振幅が等しくなる条件を満たすようにサンプリング位置を推定するアルゴリズムを採用している。
他方、デジタル信号処理用の受信機は、リカバリクロックを復元するタイミングリカバリの前段に位置してイコライザを搭載し、イコライザが符号間干渉を除去する処理を担っている。
米国特許7672368号明細書
しかしながら、入力信号が無信号状態から変化する起動時などにおいてタイミングリカバリがリカバリクロックを生成するときには他の技術を用いると良い(例えば、特許文献1参照)。この特許文献1記載のタイミングリカバリは収束を容易にするためイコライザから切り離したオープンループモードでリカバリクロックを生成するように構成され、このときリカバリクロックの位相を非常に遅いスピードで線形的に変化させている。このときイコライザは収束動作するがタイミングリカバリはオープンループモードで実行されるため、イコライザの収束結果はタイミングリカバリに影響されない。
その後、リカバリクロックの位相が入力信号に対して最適な値となると共にイコライザは収束する。そしてイコライザが収束した後、タイミングリカバリはクローズループモード(closed loop mode)で動作し収束動作を洗練させることになる。この技術を用いることで、タイミングリカバリとイコライザとが理想に近い状態に移行してから通常の収束動作を開始することになるため、起動時における相互干渉の問題を回避できる。
しかしながら、この処理は、オープンループモードでリカバリクロックの位相を非常に遅いスピードで線形的に変化させるようになっており、その後、クローズループモードに戻して収束動作を洗練させるようになっている。イコライザとタイミングリカバリは共に符号間干渉による干渉波を取り扱う経路に構成されるため、本質的に影響し合う回路であり、特に起動時などにおいてこの処理を行うと収束処理が長時間に及ぶことがある。
すなわち、起動時には入力信号の位相は未知であるため、リカバリクロックの位相を線形的に増加させたときに最後の位相になるまでエラーが所望の値まで減少しないこともある。しかも、各ステップにおいてイコライザのエラーの収束待ちの時間を長時間要してしまう。使用するアプリケーションによっては、このような不確定な待機時間を許容できない場合がある。
例えば、車載機器に適用したときに制御信号を送受信するときには、一定時間内に必ず通信処理を終了する必要があり、不確定な待機時間を要する技術を採用することはできない。
本発明は、上記事情に鑑みてなされたもので、その目的は、A/D変換器の動作周波数を高速化することなく、無信号状態から信号変化する起動時などにおいてもイコライザとタイミングリカバリを用いて高速で収束可能にする受信機を提供することである。
請求項1記載の発明によれば次のように作用する。例えば起動時には入力信号が無信号状態である。検出部は、入力信号が無信号状態から変化し予め定められた閾値に達するタイミングを検出する。初期位相設定部は、検出部により検出されるタイミング後に所定の時間経過したタイミングをタイミングリカバリによるリカバリクロックの初期位相とする。そして、A/D変換器は入力信号をA/D変換する。
これにより、A/D変換器の動作周波数を高速化することなく、無信号状態から信号変化する起動時などにおいてもイコライザとタイミングリカバリを用いて高速で収束可能にできる。なお起動時以外にも無信号状態が継続した後に入力信号が変化した場合においても同様に作用し同様の効果を得ることができる。
第1実施形態における全体のシステムの電気的構成例を概略的に示すブロック図 受信機の電気的構成例を概略的に示すブロック図 PLLの構成例を概略的に示すブロック図 PLLの出力信号とディバイダの出力信号を概略的に示すタイミングチャート 各ノードの信号を概略的に示すタイミングチャート 比較例の技術を適用したときのシミュレーション結果 第1実施形態の技術を適用したときのシミュレーション結果 第2実施形態において、車両内の電気的構成例を概略的に示すブロック図 CAN−FDのフレームフォーマットの概要を示す図 CAN−FDのフレームの前半の基本フォーマット及び拡張フォーマットの詳細図 受信機の電気的構成例を概略的に示すブロック図 記憶部の保持内容例 調停フェーズとデータフェーズの境界付近の期間におけるAAFの入力信号と出力信号を概略的に示すタイミングチャート
以下、受信機の幾つかの実施形態について、図面を参照しながら説明する。各実施形態において同一又は類似の機能を備えた構成要件については同一又は類似の符号を付して必要に応じて説明を省略し、各実施形態の特徴部分の説明を中心に行う。
(第1実施形態)
図1は全体のシステム1の電気的構成例を概略的に示している。このシステム1においては、例えば複数の通信ノード2〜5が伝送線路6を通じて接続されており、これらの通信ノード2〜5が所定の規格に基づくプロトコルを用いて伝送線路6を通じて互いに通信可能になっている。各通信ノード2〜5は、MCU(Micro Control Unit)7及びトランシーバ8を備える。トランシーバ8の内部には、送信機9と受信機10とが構成されている。本実施形態では、受信機10の内容に特徴を備えるため、受信機10の構成を詳細に説明し、送信機9の内容はその説明を省略する。
図2に受信機10の詳細例を示す。受信機10は、AAF(Anti Aliasing Filter)11、A/D変換器12、イコライザ13、タイミングリカバリ14、検出部15、初期位相設定部としてのディレイ回路16、を備える。
受信機10は、AAF11を通じて信号をA/D変換器12に入力する。AAF11は通過帯域を制限するフィルタであり、例えば所定の通過帯域にて平坦なゲイン特性となるバターワースフィルタを用いて構成される。AAF11は、A/D変換器12で生じる虞のあるエイリアシングを防止するために設けられる。A/D変換器12は、AAF11を通じて入力される入力信号をA/D変換する。A/D変換器12の出力はイコライザ13に入力される。
イコライザ13は、フィードフォワードイコライザ(Feed Forward Equalizer:以下FFE)17、フィードバックイコライザ(Feed Back Equalizer:以下FBE)18、加算器19、スライサ20、及び、減算器21を備える。各FFE17、FBE18は、例えばディジタルフィルタを用いて構成される。FFE17は、主信号より時間的に進んだ干渉波を除去し、FBE18は主信号より時間的に遅れた干渉波を除去する。
加算器19は、FFE17の出力信号及びFBE18の出力信号を加算し、スライサ20に出力する。スライサ20は信号波形をデータ値として変換する回路である。減算器21は、スライサ20の入力信号と受信データDATAの信号差に基づく信号をエラー信号errorとし、このエラー信号errorをFFE17、FBE18に出力する。スライサ20の入出力が互いに同一となるように、エラー信号errorがFFE17及びFBE18にフィードバックされる。この結果、エラー信号が0となるようにイコライザ13の設定が収束する。ここでスライサ20の入出力誤差が所定値より少なくなれば収束完了となる。これにより、FFE17及びFBE18は、そのタップ係数がスライサ20の入出力信号差に応じて得られるエラー信号errorを用いて最適な状態に収束可能になる。これによりイコライザ13が符号間干渉を除去する処理を担っている。
イコライザ13の後段にはタイミングリカバリ14が接続されている。このタイミングリカバリ14は、イコライザ13のデータ出力を用いてリカバリクロックRCLKを生成する。
タイミングリカバリ14は、位相検出器(Phase Detector:以下、PD)22、ループフィルタ(Loop Filter:以下、LF)23、PLL(Phase Locked Loop)24、ディバイダ25、及び、セレクタ26を備える。タイミングリカバリ14は、複数の通信ノード2〜5間の通信処理において、受信機10が入力信号AAFinを入力したときに、当該入力信号AAFinからクロックを復元するために用いられる。タイミングリカバリ14は、受信データDATAと、加算器19とスライサ20との間の共通接続ノードの信号と、を入力し、これらの信号に基づいてリカバリクロックRCLKを生成する。
PD22は、受信データDATAと加算器19とスライサ20との間の共通接続ノードの信号とを入力し、これらの信号間の位相を検出し、リカバリクロックRCLKの位相の増加/減少処理の何れを行うか判定するために設けられる。このPD22の出力信号はLF23に入力される。LF23はPD22の出力を積算するループフィルタであり、タイミングリカバリ14の負帰還動作を安定化させるために設けられる。
PLL24は、例えば水晶発振器を用いて生成された発振信号を逓倍し、この逓倍された発振信号を基準クロックPh0、Ph1、Ph2、Ph3としてディバイダ25に出力する。図3にPLL24の構成例を示す。PLL24は、その内部にVCO(Voltage Controlled Oscillator)26を備える。VCO26は、例えば偶数個(例えば4個)の差動型遅延素子26aを正帰還接続して構成される。図4に示すように、PLL24は、所定周波数(例えば2.5[GHz])の複数相(例えば4相)の差動信号を基準クロックPh0、Ph1、Ph2、Ph3として出力する。これらのPLL24の基準クロックPh0、Ph1、Ph2、Ph3はその位相が互いに90°ずれている。
ディバイダ25は、このPLL24の出力信号を分周(例えば20分周)可能に構成され、例えば起動時におけるディレイ回路16のイネーブル信号enの変化を起点として、PLL24の基準クロックPh0、Ph1、Ph2、Ph3の分周処理を開始し、この基準クロックPh0、Ph1、Ph2、Ph3の複相クロックph0〜ph79を生成し、リカバリクロックRCLKとしてMCU7に出力する。
具体的に、ディバイダ25は、外部から入力されるイネーブル信号enが「L」から「H」に変化したタイミングtaを起点として、この基準クロックPh0、Ph1、Ph2、Ph3を20分周し、複相クロックとなる80相の信号ph0〜ph79の出力を開始する。このときディバイダ25は、100[ps]毎に信号ph1〜ph79を順次アクティブレベル「H」に切替えて出力する。
他方、LF23はその出力信号がディバイダ25によるリカバリクロックRCLKの位相番号を指定する。これに応じて、セレクタ26はディバイダ25の適切な位相の信号ph0〜ph79を選択する。これにより、セレクタ26はディバイダ25の出力信号を選択してリカバリクロックRCLKとする。
図2に示す検出部15は、コンパレータ27及び閾値生成部28を備える。コンパレータ27は、A/D変換器12と並列配置されており、A/D変換器12と高速で並列動作するように配置される。コンパレータ27は、例えばA/D変換器12の構成よりも簡易なアナログ回路で構成できるため容易に高速化できると共に、回路サイズも極力小規模構成可能な回路となっている。
閾値生成部28は、例えばバンドギャップリファレンス(BGR:Band Gap Reference)回路により安定的な基準的な閾値電圧Vthを生成するブロックとなっている。閾値電圧Vthは、例えば通信開始時における入力信号AAFinの最大振幅Vmax−Vmin(但しVmin=0)の2分の1に予め定められている。
コンパレータ27は、AAF11の出力信号を入力すると共に閾値生成部28によって生成された閾値電圧Vthを入力し、これらの入力信号を比較した比較結果を検出信号detとしてディレイ回路16に出力する。ディレイ回路16は、図示しないカウンタを備え、検出部15の検出信号det及びPLL24の出力信号に応じてイネーブル信号enを生成し、タイミングリカバリ14を構成するディバイダ25に出力する。
このとき、ディレイ回路16は、通信の開始当初において検出部15の出力信号がアクティブレベルになった時点からPLL24のある所定相の基準クロック(例えばph0)の変化(例えば立上り/立下り信号変化)をカウンタによりカウントし、所定数(例えば10)をカウントしたときにイネーブル信号enをアクティブレベル(例えば「H」)に切替えてディバイダ25に出力する。ここで、前記の「所定数」は、通信の開始当初のリカバリクロックRCLKの発生タイミングがA/D変換器12の入力信号の極値(例えば最大値Vmax)付近になるように予め設定されていることが望ましい。この詳細は後述する。
以下、データレートが例えば125[Msps]で規定された1000BASE−Tを伝送線路6として用いた場合の動作を説明する。本実施形態のタイミングリカバリ14は、検出部15及びディレイ回路16と協働することで、リカバリクロックRCLKの初期位相を設定するように構成される。このとき、検出部15及びディレイ回路16をタイミングリカバリ14による初期位相の設定時に動作させ、その後、MCU7がリカバリクロックRCLKを用いて受信データDATAをサンプリング処理する。なお、A/D変換器12の動作周波数と同程度となるリカバリクロックRCLKの出力周波数は、データレートと同一相当であり概ね125[MHz]程度になっている。
図5は受信機10内における回路ノードの信号波形を概略的に示す。本実施形態では、通信ノード2〜5が起動するときに、受信機10の入力信号AAFinが無信号状態から始めて変化したときの動作について詳細に説明する。
通信ノード2〜5が起動すると各受信機10が起動し、入力信号AAFinが受信機10に入力される。AAF11は入力信号AAFinをフィルタ処理することで不要な高調波成分を除去する。AAF11は入力信号ADCinの帯域を制限するため、入力信号ADCinの信号波形は、例えばデータレート相当の周波数(例えば125[MHz])となる。コンパレータ27は、図5のタイミングt1において、AAF11の出力電圧が閾値電圧Vthより大きくなったとき、検出信号detをノンアクティブレベル「L」からアクティブレベル「H」に切替える。
ディレイ回路16は、コンパレータ27による検出信号detがアクティブレベル「H」になったタイミングt1からPLL24の信号ph0の変化をカウンタによりカウントし、図5のタイミングt2に示すように、所定数C0(例えば10)をカウントしたときにイネーブル信号enをアクティブレベル「H」に切替える。
ディレイ回路16は、図5のタイミングt2以降に示すように、イネーブル信号enが一度アクティブレベルになったことを検出すると当該アクティブレベルをラッチする。したがって、イネーブル信号enが一旦アクティブレベルに移行すれば、検出部15の検出信号detがノンアクティブレベル「L」にたとえ変化したとしても、イネーブル信号enが変化することはない。ディバイダ25は、図4に示すように、イネーブル信号enがアクティブレベルに移行したことを検出すると、20分周クロックの初期信号ph0を出力開始する。通信開始当初において、セレクタ26は信号ph0を選択し、図5のタイミングt2からt3に示すように、信号ph0がリカバリクロックRCLKとして選択出力される。
信号ph0によるリカバリクロックRCLKの初期位相は、概ね入力信号ADCinの最大値Vmax付近となる。これは、ディレイ回路16のカウンタの所定数C0が予め調整されているためである。これにより、入力信号ADCinが最大値Vmax付近になるタイミングで、リカバリクロックRCLKの信号変化を同期させることができる。
この後、図5のタイミングt3以降に示すように、タイミングリカバリ14が、PD22、LP23により負帰還制御することで、リカバリクロックRCLKの位相を設定する。このため、通信の開始当初からリカバリクロックRCLKの位相を最適な位置に合わせることができる。
以下、シミュレーション結果を説明する。図6は比較例の技術(例えば、特許文献1)を用いたときの、起動時からの時間経過に応じたエラー信号errorの大きさ、時間経過に応じた位相の大きさ、のシミュレーション結果を示す波形である。図6に示すように、イコライザが収束するまでリカバリクロックの位相はゆっくり線形的に上昇し、この例では、イコライザが収束するまでt=0.8[ms]程度の時間を要してしまう。すなわち、比較例の技術を用いると、リカバリクロックRCLKの位相をゆっくり線形的に上昇させることでリカバリクロックRCLKのエッジを入力信号ADCinに対して徐々にずらして逐次検証することになるため、リカバリクロックRCLKの初期位相を設定するまでに長時間かかってしまう。
図7は本実施形態を適用したときの図6に対応した波形を示している。なお、図6と図7のタイムスケールは同じである。この図7に示すように、t2<0.1msを満たすタイミングt2において、エラー信号errorを格段に0に近くなるように収束できる。このため、比較例の技術のように、リカバリクロックRCLKの位相をゆっくり線形的に変化させる必要がなくなる。
本実施形態の技術を用いることで、リカバリクロックRCLKの初期位相を入力信号ADCinの最大値Vmax付近となる位相に素早く合致させることができる。この結果、通信に必要な待機時間を削減できる。
<発明者が発見した本実施形態に係る技術課題>
本実施形態に示すように、イコライザ13がFFE17、FBE18を用いて構成されていると、起動時においてFFE17とFBE18の収束過程が異なることがある。例えば、この収束過程においては、FBE18による干渉波除去が十分であるものの、FFE17による干渉波除去が不十分であるときには、主信号から時間的に進んだ干渉波が残留するものの、主信号より遅れた干渉波が減少する波形となることがある。
このような場合、背景技術欄に記載したMueller-Muller Timing Recovery技術を用いて、主信号と時間的に前後する干渉波信号の振幅が等しくなる条件を満たすようにサンプリング位置を推定するアルゴリズムを採用しても、エラー信号が変化してしまい、発明者らは各FFE17、FBE18の収束動作に悪影響を及ぼしてしまうことを突き止めている。
<本実施形態のまとめ>
要するに、本実施形態によれば、検出部15が、起動時の無信号状態から入力信号が変化し閾値電圧Vthに達したタイミングt1を検出し、ディレイ回路16がこの検出されるタイミング後に所定の時間経過したタイミングをタイミングリカバリ14によるリカバリクロックRCLKの初期位相としている。このため、たとえ起動時の無信号状態から入力信号が変化したときにおいても、比較例の技術のようにリカバリクロックRCLKの位相をゆっくり変化させる必要がなくなり、素早く適切にリカバリクロックRCLKの初期位相を設定できる。
検出部15は、A/D変換器12と並列して配置されたコンパレータ27を用いて構成され、コンパレータ27により閾値電圧Vthに達したタイミングt2を検出して出力信号とし、ディレイ回路16はコンパレータ27の出力信号を所定の時間遅延してタイミングリカバリ14に出力することでリカバリクロックRCLKの初期位相とした。この結果、コンパレータ27及びディレイ回路16を用いた簡易な回路によりリカバリクロックRCLKの初期位相を設定できる。
所定の時間は、A/D変換器12の入力信号が無信号状態から始めて変化した極値付近として最大値Vmax付近となるように予め設定されているため、A/D変換器12の入力信号が最大値Vmax付近となるタイミングを初期位相とすることができ、通信初期のサンプリングタイミングを適切に設定できる。
タイミングリカバリ14がリカバリクロックRCLKを生成するときには、PLL24が基準クロックPh0〜Ph3を出力し、ディレイ回路16により設定されたリカバリクロックRCLKの初期位相を起点として、ディバイダ25が基準クロックPh0〜Ph3の分周を開始して複相クロックph0〜ph79を生成し、これらの複相クロックph0〜ph79に応じてリカバリクロックRCLKを生成する。これにより、リカバリクロックRCLKの初期位相を適切に設定してリカバリクロックRCLKを継続して出力できる。
(第2実施形態)
図8〜図11は第2実施形態の追加説明図を示す。本実施形態は、伝送線路6を車載LAN(Local Area Network)のバス106に適用し、車載機器となるECU102〜103がバス106に接続されている形態を示す。図8に示すように、バス106は分岐点106aなどを備えて車両内に敷設されており、このバス106には複数のECU102〜105が接続されている。これにより、複数のECU102〜105はCAN(Controller Area Network)規格に基づいて通信可能となっている。本実施形態はこのCAN通信を拡張したCAN−FD規格を用いて通信するときの適用例を示す。CAN−FD規格は、可変データレート(Flexible Data Rate)対応の通信規格として考慮されている。
図9にはCAN−FD規格の全体フレームの概要を示し、図10にはフレームの前半の基本フォーマット及び拡張フォーマットの詳細を示している。
CAN−FD規格は、2種類のデータレートのフェーズを混載した通信規格であり、図9に示す前部と後部の調停フェーズ(Arbitration Phase)AP1、AP2では、スタンダードなビットレートである最大1[Mbps]、これらの中間のデータフェーズ(Data Phase)DPでは、高ビットレートである2[Mbps]以上の通信速度で通信可能と規定されている。
また、図10に示す調停フェーズAP1のFDF(FD format indicator)値がレセシブ(recessive)であれば、当該フレーム中のデータフェーズDFは高ビットレート化され、ドミナント(dominant)であれば当該フレーム中のデータフェーズの通信速度はスタンダードとなるように規定されている。なお、図10中の識別符号baseIDは、送信ノード(例えば、自身のECU、他のECU)を識別するために使用される識別符号を示す。
複数のECU102〜105は信号をバス106に送出するが、この信号は分岐点106aで反射することで激しく劣化し、従来技術を適用してもデータフェーズDFにおいて通信速度の高速化が困難とされてきた。しかし、第1実施形態に示す技術を基礎とした第2実施形態に係る構成を適用することで、データフェーズDFにおける通信を高速化できることが確認されている。以下、この説明を行う。
CAN−FDはCANを拡張した規格であり、搬送波感知多重アクセス/衝突回避方式(CDMA/CA(Carrier Sense Multiple Access with Collision Avoidance))を用いた通信方式を採用している。車両内では複数のECU102〜105がバス106により接続されているが、複数のECU102〜105が同時にバス106にデータを送出したときに、調停フェーズAP1にて調停を行い優先順位の高いものが優先的にバス106を用いて通信するように規定されている。調停フェーズAP1ではデータ衝突を生じることがあるため、調停フェーズAP1では第1実施形態に示す技術を用いず、データフェーズDFにて第1実施形態に示す技術を適用することが望ましい。そもそも調停フェーズAP1、AP2はスタンダードな低速通信を用いることが規定されているため、第1実施形態で説明した技術を使用する必要性が高くない。この理由からクラシックなCANレシーバを用いてデータ受信しても良い。
そこで、図11にこの内容を実現した構成例を示す。図11に示す受信機110が第1実施形態に示す受信機10と異なるところは、クラシックなCANレシーバ128を備えており、スタンダードなビットレートの調停フェーズAP1、AP2においてクラシックCANレシーバ128を用いてデータ受信し、高ビットレートのデータフェーズDFにおいて第1実施形態の技術を用いてデータ受信しているところである。また受信機110はステート制御回路129を備え、このステート制御回路129によりFFE17、FBE18のタップ係数を調整しているところも差異となっている。
受信機110は、AAF11、A/D変換器12、イコライザ13に代わるイコライザ113、タイミングリカバリ14、検出部15、ディレイ回路16、を備えると共に、クラシックCANレシーバ128及びセレクタ133を備える。
イコライザ113は、ステート制御回路129、スイッチ130、及び、トレーニングパターン生成回路131を備える。ステート制御回路129は、切替部、選択制御部及びデータ受信制御部として機能する要素である。スイッチ130は、第1及び第2固定端子及び可動端子を備える3端子スイッチであり、第1固定端子がスライサ20に接続されると共に第2固定端子がトレーニングパターン生成回路131に接続され、可動端子が減算器21の負入力に接続されると共にFBE18のフィードバック入力に接続され、さらにPD22の入力に接続される。このスイッチ130は、ステート制御回路129から切替制御可能に設けられている。
MCU7は、通常モード、トレーニングモードを何れか選択し、この選択されたモードに基づいて動作する。MCU7はトレーニングイネーブル信号TRenをトランシーバに送信することで、これらのモードの状態を受信機110のステート制御回路129に伝達する。
ステート制御回路129は、各ブロックの状態を制御するブロックであり記憶部134を備える。ステート制御回路129は、MCU7からトレーニングイネーブル信号TRenをイネーブル入力するとトレーニングモードに移行し、アンイネーブル入力すると通常モードに移行する。ステート制御回路129は、トレーニングモードにおいて、トレーニングパターン生成回路131とFBE18と減算器21とPD22とを接続するようにスイッチ130を切替制御し、通常モードにおいてスライサ20とFBE18と減算器21とPD22とを接続するようにスイッチ130を切替制御する。
トレーニングパターン生成回路131は、トレーニングモードで用いられるブロックであり、例えば疑似ランダム符号(PRBS(Pseudo Random Binary Sequence)による2値信号のトレーニングパターンを生成し、調停フェーズAP1に自身のECUの識別番号に対応した識別符号baseIDを設定すると共に、データフェーズDFにトレーニングパターンを設定して信号を出力する。
トレーニングモードにおいて、ステート制御回路129は、トレーニングパターン生成回路131の出力信号をFBE18に入力させる。通常モードにおいては、ステート制御回路129は、A/D変換器12の出力信号に応じてデータの内容がフレーム中の何れにあるかを判断し、この判断結果に応じて選択信号をセレクタ133に出力する。セレクタ133は、この選択信号に応じて、クラシックCANレシーバ128又は受信機110のデータを選択し、MCU7にデータを出力する。なお、スイッチ130がスライサ20側に切替えられているときに、受信機110は通常モードでデータ受信することになる。このときの受信機110の構成は第1実施形態の受信機10と同一構成となる。
前記の構成において、まずトレーニングモードにおける動作を詳細に説明する。トレーニングモードは、高ビットレート通信する場合に備えて各FFE17、FBE18のタップ係数を予め収束させるモードである。このトレーニングモードにおいて、トレーニングパターン生成回路131は、調停フェーズAP1に識別符号baseIDを設定すると共にデータフェーズDFにトレーニングパターンを設定し、当該フレームをFBE18に出力してタップ係数を収束させる。このとき、ステート制御回路129は、減算器21のエラー信号errorを最小値まで収束させるようにFFE17及びFBE18のタップ係数を生成する。これにより、FFE17及びFBE18はこのタップ係数に応じてイコライズ機能を調整できるようになる。
トレーニングモードにおいて予めタップ係数の収束処理を実行しておかないと、データフェーズDFの信号を受信した後に、受信機110がタップ係数の収束動作を開始したとしても収束動作が間に合わない場合がある。
このため、受信機110がデータフェーズDFの開始直後から正しくデータを受信できるように、トレーニングモードにおいてステート制御回路129が予め最適なタップ係数を識別符号baseIDに対応して記憶部134に保持しておき、通常モードにおいて識別符号baseIDに応じてタップ係数をFFE17、FBE18に書き込む。
ステート制御回路129はトレーニングモードに移行するとスイッチ130を切替え、トレーニングパターン生成回路131を用いてトレーニングを実行し、トレーニング処理を終了するとタップ係数を記憶部134に保持する。記憶部134が記憶する内容を図12に示す。このトレーニングモードでは、スライサ20の出力を用いることなくトレーニングパターンを用いてFFE17、FBE18のタップ係数を収束させる。これにより、イコライザ113のFFE17、FBE18のタップ係数を速やかに収束させることができ、トレーニングモード中の64byteのデータフレームにおいてタップ係数を収束させることができる。
本実施形態では記憶部134をステート制御回路129内に構成した形態を示すが、この記憶部134は受信機110の内部でも外部でもどのような場所に設置しても良い。図12に示すように、タップ係数はbaseIDに応じて記憶される。そしてタップ係数は内外からの通信に応じて記憶される。これにより、ステート制御回路129は通常モードにおいて記憶部134からbaseIDに応じたタップ係数を読出すことでデータフェーズDFにおいて使用可能になる。
その後、ステート制御回路129はMCU7からの指令に応じて通常モードに切り替えられる。ステート制御回路129はA/D変換器12の出力信号を入力し調停フェーズAP1、AP2、データフェーズDFの中の何れのデータを受信しているかを判定し、この状態を判定する。
ステート制御回路129は、A/D変換器12の出力信号ADCoutを用いてCAN−FDフォーマット中のFDF値がドミナント(dominant)であると判定すると、その後のBRSの受信途中のタイミングにおいて、セレクタ133をクラシックCANレシーバ128の側に切替える。これにより、FDF値がドミナントであるときには、クラシックCANレシーバ128がスタンダードなビットレートでデータフェーズDFの最中にデータ受信できる。
逆に、ステート制御回路129は、A/D変換器12の出力信号ADCoutを用いてFDF値をレセシブであると判定すると、その後のBRSの受信途中において、セレクタ133をイコライザ113の側に切替える。これにより、FDFがレセシブであるときに受信機110がデータフェーズDFにおいて高ビットレートでデータ受信できる。図13は調停フェーズAP1とデータフェーズDFの境界付近の期間におけるAAF11の入力信号と出力信号を概略的に示している。AAF11の出力信号はA/D変換器12の入力信号に相当する。
この図13に示すように、調停フェーズAP1の後のデータフェーズDFの当初のビットの信号Sは、その電圧波形が信号反射の影響により大きく歪んだ波形となる。AAF11の入力信号はノイズに埋もれており、仮にAAF11の入力信号をイコライザ113に入力させたとしても正しく位相推定を行うことができない。しかし、本形態では、AAF11が処理した後の信号をイコライザ113及び検出部15に入力させている。この信号は高調波ノイズが除去され位相推定が実施し易い波形に成形されているため、タイミングリカバリ14が初期位相を確実に推定できるようになる。
ステート制御回路129は、図13に示すようにBRSの期間中であると判定した後、検出部15のイネーブル信号enによるディバイダ25への処理を有効に動作させるようにする。この結果、検出部15がこのビットの信号Sの立上りを閾値電圧Vthにより検出し、ディレイ回路16が信号Sの最大値付近をリカバリクロックRCLKの初期位相に設定できる。これにより、高ビットレートのデータフェーズDFにおけるリカバリクロックRCLKの初期位相を確実に設定できる。
以上説明したように、本実施形態によれば、前述実施形態と同様の作用効果を奏する。
また記憶部134には識別符号baseIDとタップ係数とが対応付けて予め保持され、ステート制御回路129は記憶部134に保持された識別符号baseIDに応じてタップ係数を切替えてCAN規格に基づく通信を行うため、識別符号baseIDに応じたタップ係数を用いてイコライザ113を収束させることができる。
受信機110は、トレーニングモードにおいてイコライザ113のタップ係数を設定して予め記憶部134に記憶させており、通常モードにおいてイコライザ113に記憶部134に記憶されたタップ係数を設定してデータ受信するようになっている。このため通常モードにおいて適切なタップ係数を素早く設定できるようになる。これにより、例えばデータフェーズDFにおいて高ビットレートで通信する場合においても、記憶部134のタップ係数を素早く設定でき高ビットレートの通信に即座に対応できる。
また受信機110は、セレクタ133を用いてクラシックCANレシーバ128とイコライザ113の出力データとを切り替えて受信データRXDとしているため、スタンダードなビットレートのデータと高ビットレートのデータの受信時に受信系を切換えて使用できる。
図面中、12はA/D変換器、13、113はイコライザ、14はタイミングリカバリ、15は検出部、16はディレイ回路(初期位相設定部)、129はステート制御回路(切替部、選択制御部、データ受信制御部)、DFはデータフェーズ、AP1、AP2は調停フェーズ、を示す。

Claims (10)

  1. 入力信号をA/D変換するA/D変換器(12)と、
    前記A/D変換器の出力をイコライズし符号間干渉を除去してデータ出力とするイコライザ(13、113)と、
    前記イコライザのデータ出力を用いてリカバリクロックを生成するタイミングリカバリ(14)と、
    前記入力信号が無信号状態から変化し予め定められた閾値に達したタイミングを検出する検出部(15)と、
    前記検出部により検出されるタイミング後に所定の時間経過したタイミングを前記タイミングリカバリによるリカバリクロックの初期位相とする初期位相設定部(16)と、を備え、
    前記タイミングリカバリは、基準クロックを出力するPLL(24)と、前記PLLの基準クロックを分周するディバイダ(25)と、を備え、
    前記リカバリクロックを生成するときには、前記PLLが基準クロックを出力し、前記初期位相設定部により設定されたリカバリクロックの初期位相を起点として前記ディバイダが基準クロックの分周を開始して複相クロックを生成し、この複相クロックに応じて前記リカバリクロックを生成する受信機。
  2. 請求項1記載の受信機において、
    前記検出部は、前記A/D変換器と並列して配置されたコンパレータ(27)を用いて構成され、前記コンパレータにより閾値に達したタイミングを検出して出力信号とし、
    前記初期位相設定部は、前記コンパレータの出力信号を所定の時間遅延して前記タイミングリカバリに出力することにより前記リカバリクロックの初期位相とするディレイ回路(16)を用いて構成される受信機。
  3. 請求項2記載の受信機において、
    前記所定の時間は、前記A/D変換器の入力信号が無信号状態から始めて変化して極値付近となるように予め定められる受信機。
  4. 入力信号をA/D変換するA/D変換器(12)と、
    前記A/D変換器の出力をイコライズし符号間干渉を除去してデータ出力とするイコライザ(13、113)と、
    前記イコライザのデータ出力を用いてリカバリクロックを生成するタイミングリカバリ(14)と、
    前記入力信号が無信号状態から変化し予め定められた閾値に達したタイミングを検出する検出部(15)と、
    前記検出部により検出されるタイミング後に所定の時間経過したタイミングを前記タイミングリカバリによるリカバリクロックの初期位相とする初期位相設定部(16)と、
    前記入力信号をCAN規格に基づいてデータ受信するクラシックCANレシーバ(128)と、
    前記クラシックCANレシーバのデータ出力と前記イコライザ(113)によりイコライズされ出力されるデータ出力との何れかを選択するセレクタ(133)と、
    前記CAN規格における調停フェーズ(AF1)のFDF値に応じて前記セレクタを選択制御することで、データフェーズ(DF)における前記クラシックCANレシーバのデータ出力と前記イコライザのデータ出力とを選択する選択制御部(129)と、を備える受信機。
  5. 入力信号をA/D変換するA/D変換器(12)と、
    前記A/D変換器の出力をイコライズし符号間干渉を除去してデータ出力とするイコライザ(13、113)と、
    前記イコライザのデータ出力を用いてリカバリクロックを生成するタイミングリカバリ(14)と、
    前記入力信号が無信号状態から変化し予め定められた閾値に達したタイミングを検出する検出部(15)と、
    前記検出部により検出されるタイミング後に所定の時間経過したタイミングを前記タイミングリカバリによるリカバリクロックの初期位相とする初期位相設定部(16)と、を備え、
    前記イコライザはタップ係数が設定されることで動作するように構成され、
    CAN規格に基づく識別符号(baseID)と前記タップ係数とが対応付けて保持され記憶部(134)を参照し、前記CAN規格に基づく通信を行うときに前記記憶部に保持された識別符号に応じて前記タップ係数を切り替える切替部(129)をさらに備える受信機。
  6. 入力信号をA/D変換するA/D変換器(12)と、
    前記A/D変換器の出力をイコライズし符号間干渉を除去してデータ出力とするイコライザ(13、113)と、
    前記イコライザのデータ出力を用いてリカバリクロックを生成するタイミングリカバリ(14)と、
    前記入力信号が無信号状態から変化し予め定められた閾値に達したタイミングを検出する検出部(15)と、
    前記検出部により検出されるタイミング後に所定の時間経過したタイミングを前記タイミングリカバリによるリカバリクロックの初期位相とする初期位相設定部(16)と、を備え、
    前記イコライザはタップ係数が設定されることで動作するように構成され、
    前記イコライザのタップ係数を収束させるトレーニングモードと、
    前記イコライザを通じてデータ受信する通常モードと、を備え、
    前記トレーニングモードにおいて収束されたタップ係数を保持する記憶部(134)から前記タップ係数を読出し前記通常モードにおいて読出されたタップ係数を前記イコライザに設定してデータ受信させるデータ受信制御部(129)をさらに備える受信機。
  7. 請求項5又は6記載の受信機において、
    前記入力信号をCAN規格に基づいてデータ受信するクラシックCANレシーバ(128)と、
    前記クラシックCANレシーバのデータ出力と前記イコライザ(113)によりイコライズされ出力されるデータ出力との何れかを選択するセレクタ(133)と、
    前記CAN規格における調停フェーズ(AF1)のFDF値に応じて前記セレクタを選択制御することで、データフェーズ(DF)における前記クラシックCANレシーバのデータ出力と前記イコライザのデータ出力とを選択する選択制御部(129)と、を備える受信機。
  8. 請求項6又は7記載の受信機において、
    前記イコライザはタップ係数が設定されることで動作するように構成され、
    CAN規格に基づく識別符号(baseID)と前記タップ係数とが対応付けて保持され記憶部(134)を参照し、前記CAN規格に基づく通信を行うときに前記記憶部に保持された識別符号に応じて前記タップ係数を切り替える切替部(129)をさらに備える受信機。
  9. 請求項4又は7記載の受信機において、
    前記検出部は、前記A/D変換器と並列して配置されたコンパレータ(27)を用いて構成され、前記コンパレータにより閾値に達したタイミングを検出して出力信号とし、
    前記初期位相設定部は、前記コンパレータの出力信号を所定の時間遅延して前記タイミングリカバリに出力することにより前記リカバリクロックの初期位相とするディレイ回路(16)を用いて構成される受信機。
  10. 請求項1から9の何れか一項に記載の受信機において、
    車載機器(102〜105)に用いられる受信機。
JP2015189662A 2015-09-28 2015-09-28 受信機 Expired - Fee Related JP6369435B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015189662A JP6369435B2 (ja) 2015-09-28 2015-09-28 受信機
US15/739,452 US10484166B2 (en) 2015-09-28 2016-09-05 Receiver
PCT/JP2016/075926 WO2017056855A1 (ja) 2015-09-28 2016-09-05 受信機
US16/595,654 US11212071B2 (en) 2015-09-28 2019-10-08 Receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015189662A JP6369435B2 (ja) 2015-09-28 2015-09-28 受信機

Publications (3)

Publication Number Publication Date
JP2017069615A JP2017069615A (ja) 2017-04-06
JP2017069615A5 JP2017069615A5 (ja) 2017-12-28
JP6369435B2 true JP6369435B2 (ja) 2018-08-08

Family

ID=58423309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015189662A Expired - Fee Related JP6369435B2 (ja) 2015-09-28 2015-09-28 受信機

Country Status (3)

Country Link
US (2) US10484166B2 (ja)
JP (1) JP6369435B2 (ja)
WO (1) WO2017056855A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11444801B2 (en) * 2018-04-23 2022-09-13 Hitachi Astemo, Ltd. Gateway device
EP3576353B1 (en) * 2018-05-31 2021-07-07 Melexis Technologies NV Flexible data rate handling in a data bus receiver
DE102019200289A1 (de) * 2018-08-17 2020-02-20 Robert Bosch Gmbh Rahmenabschirmeinheit, Teilnehmerstation für ein serielles Bussystem und Verfahren zur Kommunikation in einem seriellen Bussystem
US10530561B1 (en) * 2019-03-20 2020-01-07 Xilinx, Inc. Adaptive method to reduce training time of receivers
TWI727866B (zh) * 2020-07-24 2021-05-11 瑞昱半導體股份有限公司 決策回授等化器以及相關控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063900B2 (ja) * 1987-08-10 1994-01-12 日本電気株式会社 タイミング抽出回路
JP3155285B2 (ja) * 1991-03-01 2001-04-09 株式会社東芝 スロット・タイミング同期方式
US5602602A (en) * 1994-02-10 1997-02-11 Philips Electronics North America Corporation Method and apparatus for combating co-channel NTSC interference for digital TV transmission having a simplified rejection filter
JP3346445B2 (ja) * 1995-06-29 2002-11-18 日本電信電話株式会社 識別・タイミング抽出回路
US6928106B1 (en) 1998-08-28 2005-08-09 Broadcom Corporation Phy control module for a multi-pair gigabit transceiver
JP4168329B2 (ja) * 2003-01-29 2008-10-22 ソニー株式会社 位相波形ゲイン制御装置
JP4585438B2 (ja) * 2005-12-06 2010-11-24 富士通株式会社 タイミング再生回路
US7570182B2 (en) * 2006-09-15 2009-08-04 Texas Instruments Incorporated Adaptive spectral noise shaping to improve time to digital converter quantization resolution using dithering
US8045607B2 (en) * 2008-02-19 2011-10-25 Himax Technologies Limited Method applied to an equalizer for reducing ISI and related ISI reduction apparatus
KR101476240B1 (ko) * 2013-10-02 2014-12-24 강수원 통과대역 변조를 이용한 고속 캔 통신 시스템
US10135606B2 (en) * 2016-10-27 2018-11-20 Macom Connectivity Solutions, Llc Mitigating interaction between adaptive equalization and timing recovery

Also Published As

Publication number Publication date
WO2017056855A1 (ja) 2017-04-06
US20200036508A1 (en) 2020-01-30
JP2017069615A (ja) 2017-04-06
US10484166B2 (en) 2019-11-19
US20180191488A1 (en) 2018-07-05
US11212071B2 (en) 2021-12-28

Similar Documents

Publication Publication Date Title
JP6369435B2 (ja) 受信機
JP6032082B2 (ja) 受信回路及び半導体集積回路
TWI392319B (zh) 通信系統,接收裝置及接收方法
US7636408B2 (en) Reliable startup and steady-state of estimation based CDR and DFE
JP7273670B2 (ja) 半導体集積回路、受信装置、及び半導体集積回路の制御方法
US10785015B1 (en) Multiple phase symbol synchronization for amplifier sampler accepting modulated signal
JP2011103678A (ja) プログラマブルロジックデバイス用のデジタル適応回路網および方法
JP2011015398A (ja) バーストデータ信号受信方法および装置
KR101733660B1 (ko) 10gbase―t 시스템에서 데이터 보조 타이밍 복원을 위한 방법 및 장치
US9673963B1 (en) Multi-protocols and multi-data rates communications
US8861648B2 (en) Receiving device and demodulation device
WO2015081482A1 (en) Frequency aided clock recovery based on low speed information exchange mechanism
US9276785B2 (en) Waveform equalization apparatus
EP0941594A1 (en) Carrier phase synchronization by reverse playback
JP5704988B2 (ja) 通信装置
JP4598872B2 (ja) タイミングリカバリ回路、通信ノード、ネットワークシステム、及び電子機器
US20230350451A1 (en) Methods and Systems for Controlling Frequency Variation for a PLL Reference Clock
JP2000174741A (ja) 信号推定器を用いた位相同期ループ回路
US8166333B2 (en) Network signal processing apparatus
US20040012424A1 (en) Techniques to control signal phase
WO2000011789A1 (fr) Controleur de boucle a phase asservie, procede de controle de boucle a phase asservie et limiteur
US20140247862A1 (en) Sending and receiving system, method of sending and receiving, and receiving apparatus
JP2016163117A (ja) 信号歪み補償回路
JP5408305B2 (ja) Ofdm受信装置
JP2006303928A (ja) フィルタ装置、通信処理装置、通信処理システムおよびフィルタリング方法。

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R151 Written notification of patent or utility model registration

Ref document number: 6369435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees