JP6365560B2 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP6365560B2
JP6365560B2 JP2016013581A JP2016013581A JP6365560B2 JP 6365560 B2 JP6365560 B2 JP 6365560B2 JP 2016013581 A JP2016013581 A JP 2016013581A JP 2016013581 A JP2016013581 A JP 2016013581A JP 6365560 B2 JP6365560 B2 JP 6365560B2
Authority
JP
Japan
Prior art keywords
filter
regeneration process
differential pressure
amount
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016013581A
Other languages
English (en)
Other versions
JP2017133415A (ja
Inventor
大地 今井
大地 今井
寛真 西岡
寛真 西岡
藤原 清
清 藤原
山下 芳雄
芳雄 山下
田中 耕太
耕太 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016013581A priority Critical patent/JP6365560B2/ja
Priority to CN201710053593.1A priority patent/CN107013291B/zh
Priority to EP17152677.5A priority patent/EP3199220B1/en
Priority to US15/416,235 priority patent/US10302000B2/en
Publication of JP2017133415A publication Critical patent/JP2017133415A/ja
Application granted granted Critical
Publication of JP6365560B2 publication Critical patent/JP6365560B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/80Chemical processes for the removal of the retained particles, e.g. by burning
    • B01D46/82Chemical processes for the removal of the retained particles, e.g. by burning with catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/025Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/446Auxiliary equipment or operation thereof controlling filtration by pressure measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/448Auxiliary equipment or operation thereof controlling filtration by temperature measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/0601Parameters used for exhaust control or diagnosing being estimated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1406Exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1606Particle filter loading or soot amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

本発明は、内燃機関の排気浄化装置に関する。
車両等に搭載される内燃機関においては、該内燃機関から排出される粒子状物質(PM(Particulate Matter))の大気中への排出を抑制するために、内燃機関の排気通路にフィルタを配置する技術が知られている。このようなフィルタのPM堆積量が過剰に多くなると、該フィルタの圧力損失が過大となって内燃機関に作用する背圧が大きくなる。そこで、フィルタより上流の排気圧力とフィルタより下流の排気圧力との差(前後差圧)が所定の閾値以上になったときに、フィルタを高温且つ酸素過剰な雰囲気にすることで、該フィルタに堆積しているPMを酸化及び除去するための処理(フィルタ再生処理)を適宜行う必要がある。
ここで、フィルタに堆積するPMには、SOF(Soluble Organic Fraction)と煤(Soot)とが含まれる。そして、フィルタに堆積しているPM量が同じであっても、SOF量と煤量との割合によって前後差圧が異なる可能性がある。そこで、先ずフィルタの温度をSOFが酸化する温度まで昇温させることで、フィルタに堆積しているSOFを酸化及び除去する前処理を実行し、SOFが除去された状態における前後差圧が所定値以上になったときにフィルタの温度を煤が酸化すると考えられる温度(SOFが酸化する温度より高い温度)まで昇温させることで、フィルタに堆積している煤を酸化及び除去する処理を実行する方法が知られている(例えば、特許文献1を参照)。
特開2011−169235号公報 特開2003−254042号公報 特開2003−314249号公報 特開2005−002830号公報 特開2005−048709号公報
ところで、本願発明者らは、フィルタに堆積する煤の酸化速度は一様ではなく、煤の結晶構造によって酸化速度が異なることを見出した。そのため、煤の結晶構造に起因する酸化速度の違いを考慮せずに、フィルタ再生処理が実行されると、フィルタ再生処理の実行時間が不適切になる可能性がある。例えば、フィルタに堆積しているPMのうち、酸化速度が大きくなり易い結晶構造を持つ煤の堆積量が占める割合が高い場合は、フィルタに堆積していたPMが酸化及び除去された後もフィルタ再生処理が不要に実行される可能性がある。一方、フィルタに堆積しているPMのうち、酸化速度が大きくなり易い結晶構造を持つ煤の堆積量が占める割合が低い場合は、フィルタに残存するPMの量が想定される量より多い状態で、フィルタ再生処理が終了される可能性がある。このようにフィルタ再生処理の実行時間に過不足が生じると、フィルタに堆積しているPMを効率的に酸化及び除去することができない虞がある。
本発明は、上記した実情に鑑みてなされたものであり、その目的は、内燃機関の排気通路に設けられたフィルタに堆積しているPMを酸化及び除去するためのフィルタ再生処理を実行する内燃機関の排気浄化装置において、フィルタに堆積しているPMを効率的に酸
化及び除去することにある。
本発明は、上記した課題を解決するために、フィルタ再生処理の実行前に、該フィルタ再生処理の実行時より低い温度でプレ再生処理を実行し、その際の前後差圧の変化速度に応じてフィルタ再生処理の実行時間を変更するようにした。
詳細には、本発明の内燃機関の排気浄化装置は、内燃機関の排気通路に配置され、前記内燃機関から排出されるPMを捕集するフィルタと、前記フィルタより上流の排気圧力と前記フィルタより下流の排気圧力との差である前後差圧を検出する差圧センサと、前記フィルタに捕集されているPMの量であるPM堆積量を取得する取得手段と、前記取得手段により取得されるPM堆積量が所定の閾値以上であるときに、前記フィルタを第一目標温度まで昇温させることにより、該フィルタに捕集されているPMを酸化及び除去する処理であるフィルタ再生処理を実行する再生手段と、を備える。そして、前記再生手段は、前記取得手段により取得されるPM堆積量が前記所定の閾値以上となったときに、前記フィルタを前記第一目標温度より低い第二目標温度まで昇温させるとともに前記フィルタへ流入する排気に含まれる二酸化窒素(NO)の濃度を高める処理であるプレ再生処理を所定期間実行し、そのプレ再生処理の終了後に前記フィルタ再生処理を実行するものであって、前記プレ再生処理の実行時における前記差圧センサの検出値の変化速度が大きい場合における前記フィルタ再生処理の実行時間は前記変化速度が小さい場合における前記フィルタ再生処理の実行時間より短くなるように、前記フィルタ再生処理を実行するようにした。
ここで、本願発明者らは、内燃機関から排出される煤には、その結晶構造の違いにより酸化され易い煤が含まれることを見出した。酸化され易い煤とは、格子欠陥の多い煤であると推測される。なお、本発明における格子欠陥の多い煤とは、ラマン分光法で得られるスペクトルにおいて結晶由来のGバンドとともに欠陥由来のDバンドにもピークを有し、Dバンドのピーク値が所定値以上となる煤であり、例えば活性炭のような煤のことをいう。以下、格子欠陥の多い煤を「欠陥煤」と称する場合もある。
上記した欠陥煤は、前述したように、格子欠陥の少ない煤に比べ、酸化され易い。そのため、同一の温度条件下においては、欠陥煤の酸化速度は、格子欠陥の少ない煤の酸化速度より大きくなり易い。よって、フィルタに堆積しているPMの総量(PM堆積量)に対して欠陥煤の堆積量が占める割合(以下、「欠陥煤比率」と称する)が大きいときは小さいときに比べ、フィルタ再生処理実行時の単位時間あたりに酸化されるPMの量が多くなり易い。このような実情を考慮せずに、フィルタ再生処理の実行時間が設定されると、フィルタ再生処理の実行時間が過剰に長くなったり、又は過剰に短くなったりする可能性がある。すなわち、欠陥煤比率が高い場合は、フィルタに堆積していたPMが酸化及び除去された後もフィルタ再生処理が実行され、燃料消費率の悪化やフィルタの熱劣化を招く可能性がある。一方、欠陥煤比率が低い場合は、フィルタに残存しているPMが想定よりも多い状態でフィルタ再生処理が終了され、フィルタ再生処理の終了後におけるフィルタの圧力損失が想定より高くなり、機関出力の低下や燃料消費率の悪化を招く可能性がある。
これに対し、本発明の内燃機関の排気浄化装置は、フィルタのPM堆積量が前記所定の閾値以上となったときに、先ずプレ再生処理を所定期間実行し、そのプレ再生処理の終了後にフィルタ再生処理を実行する。そして、フィルタ再生処理の実行時間は、前記プレ再生処理の実行時における差圧センサの検出値(前後差圧)の変化速度に応じて調整される。なお、ここでいう所定期間は、前記フィルタ再生処理の実行に要する期間より十分に短い期間であって、且つフィルタに堆積している欠陥煤の極一部が酸化される程度の短い期間である。本願発明者らの知見によれば、欠陥煤は、NOの存在下においては、格子欠
陥の少ない煤よりも低い温度で酸化され易い。よって、欠陥煤比率が大きい場合は小さい場合に比べ、プレ再生処理の実行時において単位時間あたりに酸化されるPMの量が多くなり、それに伴ってプレ再生処理の実行時における前後差圧の変化速度(減少速度)が大きくなる。このような相関を踏まえると、前記プレ再生処理の実行時における前後差圧の変化速度が大きい場合は小さい場合に比べ、前記フィルタ再生処理の実行時間を短くすることにより、欠陥煤比率が高い場合は低い場合に比べ、前記フィルタ再生処理の実行時間が短くされることになる。その結果、フィルタ再生処理の実行時間がフィルタに堆積しているPMの欠陥煤比率に適した長さになるため、フィルタ再生処理の実行時間が過剰に長くなったり、又は過剰に短くなったりすることを抑制することができる。その結果、フィルタに堆積しているPMを効率的に酸化及び除去することができる。
ここで、前記所定期間は、予め定められた一定時間としてもよい。その場合、前記再生手段は、前記プレ再生処理の実行時における前記差圧センサの検出値の変化速度に相関する物理量として、前記所定期間における前記差圧センサの検出値の変化量を求めてもよい。そして、前記再生手段は、前記変化量が大きい場合におけるフィルタ再生処理の実行時間は前記変化量が小さい場合におけるフィルタ再生処理の実行時間より短くなるように、前記フィルタ再生処理を実行すればよい。このような構成によれば、プレ再生処理の実行期間を可及的に短い期間に抑えることができる。
また、前記所定期間は、前記差圧センサの検出値の変化量が予め定められた一定量に達するまでの期間としてもよい。その場合、前記再生手段は、前記プレ再生処理の実行時における前記差圧センサの検出値の変化速度に相関する物理量として、前記所定期間の長さを求めてもよい。そして、前記再生手段は、前記所定期間の長さが短い場合におけるフィルタ再生処理の実行時間は前記所定期間の長さが長い場合におけるフィルタ再生処理の実行時間より短くなるように、前記フィルタ再生処理を実行すればよい。このような構成によれば、前記一定量を、差圧センサのばらつき等に起因する前後差圧の変化量のばらつきより大きな値に設定することで、プレ再生処理の実行時における前後差圧の変化速度に相関する物理量をより正確に検出することができる。
次に、本発明に係わる再生手段は、前記プレ再生処理の実行時における前記差圧センサの検出値の変化速度が大きいときは小さいときに比べ、前記フィルタに堆積しているPMの酸化速度(単位時間あたりに酸化されるPMの量)が大きくなり、且つ前記フィルタの温度が高いときは低いときに比べ、前記フィルタに堆積しているPMの酸化速度が大きくなるという特性に基づいて、前記プレ再生処理の実行時における前記差圧センサの検出値の変化速度に対応する、前記フィルタの温度と該フィルタに堆積しているPMの酸化速度との関係を推定して、推定された関係において前記フィルタの温度が前記第一目標温度と等しい場合のPM酸化速度を求め、そのPM酸化速度に基づいて前記フィルタ再生処理の実行時に前記フィルタに残存しているPMの量を演算して、前記フィルタに残存しているPMの量が所定の終了判定値以下になったときに前記フィルタ再生処理を終了してもよい。このような構成によれば、フィルタ再生処理の実行時間を、フィルタに堆積しているPMの酸化速度に適した長さにすることができる。
なお、プレ再生処理が実行される際にフィルタにSOFが堆積していると、欠陥煤比率が前記所定期間における前後差圧の変化速度に正確に反映され難くなる。詳細には、SOFは、欠陥煤よりも酸化され易い。そのため、フィルタにSOFが堆積している状態でプレ再生処理が実行された場合と、フィルタにSOFが堆積していない状態でプレ再生処理が実行された場合とでは、たとえ欠陥煤比率が同じであっても、前記所定期間における前後差圧の変化速度は、フィルタにSOFが堆積している場合の方が大きくなる。よって、フィルタにSOFが堆積している状態でプレ再生処理が実行された場合における差圧センサの検出値の変化速度に応じて、フィルタ再生処理の実行時間が調整されると、その実行
時間が欠陥煤比率に適した時間より短くなる可能性がある。
そこで、本発明に係わる再生手段は、前記プレ再生処理を実行する前に、前記フィルタを前記第二目標温度より低く、且つSOFが酸化される温度である第三目標温度まで昇温させることにより、前記フィルタに堆積しているSOFを酸化及び除去する処理であるSOF除去処理を実行してもよい。このような構成によれば、フィルタにSOFが堆積している状態でプレ再生処理が実行されることが抑制されるため、フィルタ再生処理の実行時間を、フィルタに堆積しているPMの欠陥煤比率に適した長さにすることが可能となる。その結果、フィルタに残存しているPMの量が想定よりも多い状態で、フィルタ再生処理が終了されることが抑制される。
本発明によれば、内燃機関の排気通路に設けられたフィルタに堆積しているPMを酸化及び除去するためのフィルタ再生処理を実行する内燃機関の排気浄化装置において、フィルタに堆積しているPMを効率的に酸化及び除去することにある。
本発明を適用する内燃機関とその吸排気系の概略構成を示す図である。 欠陥煤が有する格子欠陥の概念について説明するための図である。 欠陥煤が酸化される概念について説明するための図である。 フィルタ温度とPM酸化速度との相関について、堆積欠陥煤比率がPM酸化速度に与える影響について説明するための図である。 プレ再生処理及びフィルタ再生処理の一連の流れを示すタイミングチャートである。 プレ再生処理の実行時における差圧センサの検出値(前後差圧)の変化速度とフィルタ再生処理の実行時間との関係を示す図である。 プレ再生処理を一定時間実行する場合における差圧センサの検出値(前後差圧)の変化量とフィルタ再生処理の実行時間との関係を示す図である。 プレ再生処理を差圧センサの検出値の変化量が一定量に達するまで実行する場合におけるプレ再生処理の実行に要した時間(所要時間)とフィルタ再生処理の実行時間との関係を示す図である。 第1の実施形態において、フィルタに堆積しているPMを酸化及び除去する場合にECUによって実行される処理ルーチンを示すフローチャートである。 第1の実施形態において、フィルタに堆積しているPMを酸化及び除去する場合にECUによって実行される処理ルーチンの変形例を示すフローチャートである。 第2の実施形態において、欠陥煤比率に対応する、フィルタ温度と再生速度との関係に基づいて、フィルタ再生処理の実行時におけるPM酸化速度Vpmを求める手順を説明する図である。 第2の実施形態において、フィルタに堆積しているPMを酸化及び除去する場合にECUによって実行される処理ルーチンを示すフローチャートである。
以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範囲をそれらのみに限定する趣旨のものではない。
<実施形態1>
先ず、本発明の第1の実施形態について図1乃至図10に基づいて説明する。図1は、本発明を適用する内燃機関とその吸排気系の概略構成を示す図である。図1に示す内燃機関1は、軽油を燃料とする圧縮着火式の内燃機関(ディーゼルエンジン)であり、気筒2
内へ燃料を噴射する燃料噴射弁3を備えている。
内燃機関1は、吸気通路4と接続されている。吸気通路4には、エアフローメータ40とスロットル弁41とが設けられている。エアフローメータ40は、吸気通路4内を流れる吸気(空気)の量(質量)に応じた電気信号を出力する。スロットル弁41は、エアフローメータ40より下流の吸気通路4に配置され、吸気通路4の通路断面積を変更することで、内燃機関1の吸入空気量を調整する。
内燃機関1は、排気通路5と接続されている。排気通路5には、フィルタケーシング50が配置されている。フィルタケーシング50は、排気中のPMを捕集するパティキュレートフィルタ50a(以下、単に「フィルタ50a」と称する)を収容している。このフィルタ50aは、ウォールフロー型のパティキュレートフィルタであり、その基材には酸化触媒が担持されている。そして、フィルタケーシング50より上流の排気通路5には、排気中へ未燃燃料を添加する燃料添加弁51が設けられている。
フィルタケーシング50より下流の排気通路5には、フィルタケーシング50から流出する排気の温度に相関した電気信号を出力する排気温度センサ52が配置されている。また、排気通路5には、フィルタ50aより上流の排気圧力とフィルタ50aより下流の排気圧力との差(以下、「前後差圧」と称する)に応じた電気信号を出力する差圧センサ53が取り付けられている。
このように構成された内燃機関1には、ECU(Electronic Control Unit)10が併
設されている。ECU10は、CPU、ROM、RAM、バックアップRAM等から構成される電子制御ユニットである。ECU10は、前述したエアフローメータ40、排気温度センサ52、差圧センサ53に加え、アクセルポジションセンサ7やクランクポジションセンサ8等の各種センサと電気的に接続されている。アクセルポジションセンサ7は、図示しないアクセルペダルの操作量(アクセル開度)に相関した電気信号を出力するセンサである。クランクポジションセンサ8は、内燃機関1の機関出力軸(クランクシャフト)の回転位置に相関する電気信号を出力するセンサである。これら各種センサの出力信号は、ECU10に入力されるようになっている。
また、ECU10は、上記の燃料噴射弁3、スロットル弁41、および燃料添加弁51等の各種機器と電気的に接続されている。ECU10は、上記した各種センサの出力信号に基づいて、上記の各種機器を制御する。例えば、ECU10は、アクセルポジションセンサ7やクランクポジションセンサ8の出力信号に基づいて混合気の目標空燃比を演算し、その目標空燃比とエアフローメータ40の出力信号とから1気筒あたりの目標燃料噴射量(燃料噴射時間)を演算する。そして、ECU10は、目標燃料噴射量に従って燃料噴射弁3を制御する。また、ECU10は、内燃機関1の運転期間中において、フィルタ50aにPMが堆積することに起因するフィルタ50aの目詰まりを抑制するために、該フィルタ50aに堆積しているPMを酸化及び除去するためのフィルタ再生処理を適宜に実行する。以下、本実施形態におけるフィルタ再生処理の実行方法について説明する。
ここで、フィルタ50aに堆積するPMの量(PM堆積量)ΣPMが所定の閾値ΣPMthrを超えると、フィルタ50aの圧力損失に起因する背圧が過大となって、内燃機関1の出力低下や燃料消費率の悪化等の不具合を招く。そのため、ECU10は、内燃機関1の運転期間中に所定の周期でフィルタ50aのPM堆積量ΣPMを推定し、そのPM堆積量ΣPMが前記所定の閾値ΣPMthrに達したときにフィルタ再生処理を実行する。フィルタ50aのPM堆積量ΣPMは、単位時間あたりにフィルタ50aに捕集されるPMの量と、単位時間あたりにフィルタ50aで酸化されるPMの量と、の差を積算する方法により推定される。その際、単位時間あたりにフィルタ50aに捕集されるPMの量は
、単位時間あたりに内燃機関1から排出されるPM量に、フィルタ50aの仕様に応じて定まる捕集率を乗算することで、求められる。単位時間あたりに内燃機関1から排出されるPMの量は、内燃機関1の運転状態から推定されるものとする。一方、単位時間あたりにフィルタ50aで酸化されるPMの量は、フィルタ50aの温度と、PM堆積量ΣPMの前回値と、フィルタ50aへ流入する排気の酸素濃度と、フィルタ50aへ流入する排気のNO濃度と、をパラメータとして演算される。フィルタ50aの温度は、排気温度センサ52の検出値に基づいて推定されるものとする。フィルタ50aへ流入する排気の酸素濃度は、内燃機関1の運転状態から推定されてもよく、又は酸素濃度センサによって検出されてもよい。フィルタ50aへ流入する排気のNO濃度は、内燃機関1の運転状態から推定されてもよく、又はNOセンサの検出値から推定されててもよい。なお、フィルタ50aのPM堆積量ΣPMは、差圧センサ53により検出される前後差圧と、排気流量(燃料噴射量と吸入空気量との総和)と、をパラメータとして演算されてもよい。このような方法により、ECU10がPM堆積量ΣPMを求めることにより、本発明に係わる「取得手段」が実現される。
フィルタ再生処理の具体的な実行方法としては、燃料添加弁51から排気に燃料を添加することにより、その添加燃料をフィルタ50aに担持されている酸化触媒で酸化させて、その際に発生する反応熱でフィルタ50aをPMの酸化可能な温度(第一目標温度)まで昇温させる方法を用いることができる。なお、燃料添加弁51を備えていない内燃機関1においては、排気行程にある気筒2の燃料噴射弁3から燃料を噴射(ポスト噴射)させることにより、フィルタ50aへ未燃燃料を供給してもよい。また、フィルタ50aを電気的に加熱するヒータが内燃機関1に併設されている場合は、該ヒータによってフィルタ50aを前記第一目標温度まで昇温させてもよい。ここで、前記第一目標温度は、内燃機関1から排出されるPMが効率的に酸化及び除去される温度であって、フィルタ再生処理の実行中にフィルタ50aが過昇温しない温度に定められる。
ところで、フィルタ再生処理の実行時においてフィルタ50aで単位時間あたりに酸化されるPMの量(PM酸化速度)は、フィルタ50aに堆積しているPMの酸化し易さに依存する。すなわち、フィルタ50aに堆積しているPMの総量のうち、酸化し易いPMの堆積量が多くなるほど、フィルタ再生処理の実行時において単位時間あたりに酸化されるPMの量が多くなる。しかしながら、従来では、PMを構成するSOFと煤との間には酸化し易さに違いがあるが、煤の酸化し易さは一様であると考えられていた。そのため、フィルタ50aに堆積しているPMの総量に対してSOFの堆積量が占める割合に基づいて、フィルタ再生処理の実行時間を調整する方法は提案されていたが、煤の酸化し易さに違いがあることを考慮してフィルタ再生処理の実行時間を調整する方法は未だ提案されていない。
煤の酸化特性について、本願発明者らが鋭意の実験及び検証を行った結果、内燃機関1から排出される煤の酸化し易さは一様ではなく、その結晶構造によって酸化し易さが異なることを見出した。すなわち、本願発明者らは、内燃機関1から排出される煤には、酸化され易い結晶構造を持つ煤が含まれることを見出した。なお、酸化され易い結晶構造を持つ煤とは、前述したように、格子欠陥の多い煤(欠陥煤)であると推測される。図2は、本発明における格子欠陥の概念を示したものである。図2に示すように、炭素原子が構成する結晶格子において、原子配列の乱れによって格子密度が低くなっている領域が、本発明における格子欠陥である。そして、本発明における欠陥煤とは、上記した格子欠陥を多数有する煤であって、前述したように、ラマン分光法で得られるスペクトルにおいて欠陥由来のDバンドのピーク値が所定値以上となる煤のことをいう。また、図3は、上記した欠陥煤が酸化される概念を示したものである。図3に示すように、欠陥煤は格子欠陥周辺が酸化物(例えば、NO)によって酸化され易いため、煤全体として酸化され易いと推測される。よって、フィルタ50aに堆積しているPMの総量(PM堆積量ΣPM)に対
して欠陥煤の堆積量が占める割合(欠陥煤比率)が大きい場合は小さい場合に比べ、フィルタ再生処理の実行時において単位時間あたりに酸化されるPMの量が多くなる。すなわち、欠陥煤比率が大きい場合は小さい場合に比べ、フィルタ再生処理の実行時におけるPMの酸化速度が大きくなる。図4は、フィルタ温度とPMの酸化速度との相関について、堆積欠陥煤比率が該PM酸化速度に与える影響について説明するための図である。図4において、フィルタ50aに堆積しているPMの酸化速度は、フィルタ50aの温度が高くなるほど大きくなる。さらに、フィルタ50aに堆積しているPMの酸化速度は、欠陥煤比率が小さい場合より大きい場合の方が大きくなる。これらの特性を考慮せずにフィルタ再生処理の実行時間が設定されると、前述したように、フィルタ再生処理の実行時間が過剰に長くなったり、又は過剰に短くなったりするため、燃料消費率の悪化、フィルタ50aの熱劣化、又は機関出力の低下等を招く可能性がある。その結果、フィルタ50aに堆積しているPMを効率的に酸化及び除去することができない可能性がある。
そこで、本実施形態のフィルタ再生処理では、フィルタ50aに堆積している煤の欠陥煤比率を考慮して、フィルタ再生処理の実行時間を調整するようにした。具体的には、フィルタ再生処理の実行前にプレ再生処理を所定期間実行して、そのプレ再生処理の実行時における前後差圧の変化速度に基づいてフィルタ再生処理の実行時間を調整する。図5は、プレ再生処理及びフィルタ再生処理が実行された場合におけるフィルタ50aの温度(フィルタ温度)とフィルタ50aへ流入する排気のNO濃度と前後差圧との経時変化を示すタイミングチャートである。なお、図5中のt1は、フィルタ50aのPM堆積量ΣPMが前述の所定の閾値ΣPMthrに達したタイミングを示す。図5に示すように、ECU10は、PM堆積量ΣPMが前記所定の閾値ΣPMthrに達したときに(図5中のt1)、先ずプレ再生処理を所定期間(図5中のt1〜t2の期間)実行し、そのプレ再生処理が終了したときにフィルタ再生処理を開始する。ここでいうプレ再生処理は、フィルタ50aの温度を、欠陥煤が酸化する温度以上であって、且つ格子欠陥の少ない煤が酸化する温度(第一目標温度)より低い第二目標温度まで昇温させるとともに、フィルタ50aへ流入する排気に含まれるNOの濃度をプレ再生処理の実行前より高める処理である。NOの存在下においては、欠陥煤は、格子欠陥の少ない煤に比べ、より低い温度で酸化される。そのため、前記第二目標温度は、NOの存在下において、欠陥煤が酸化され、且つ欠陥格子の少ない煤が酸化されない温度(例えば、400℃程度)に設定されるものとする。また、ここでいう所定期間は、フィルタ再生処理の実行に要する期間より十分に短い期間であって、且つフィルタに堆積している欠陥煤の極一部が酸化される程度の短い期間である。このような方法によりプレ再生処理が実行されると、欠陥煤比率が大きい場合は小さい場合に比べ、プレ再生処理の実行時において単位時間あたりに酸化されるPMの量が多くなり、それに伴ってプレ再生処理の実行時における差圧センサ53の検出値(前後差圧)の変化速度(減少速度)が大きくなる。つまり、前記プレ再生処理の実行時における前後差圧の変化速度が大きい場合は小さい場合に比べ、欠陥煤比率が高いとみなすことができる。よって、前記プレ再生処理の実行時における前後差圧の変化速度が大きい場合は小さい場合に比べ、フィルタ再生処理の実行時間をより短くすれば、フィルタ再生処理の実行時間が過剰に長くなったり、又は過剰に短くなったりすることを抑制することができる。
なお、プレ再生処理の実行時における前後差圧の変化速度は、プレ再生処理が開始されたとき(図5中のt1)の差圧センサ53の検出値(前後差圧)ΔP1とプレ再生処理が終了されたとき(図5中のt2)の差圧センサ53の検出値(前後差圧)ΔP2との差(ΔP1−ΔP2)を、プレ再生処理の実行時間(t2−t1)で除算することにより、求めることができる。また、プレ再生処理の実行時における前後差圧の変化速度とフィルタ再生処理の実行時間との関係は、予め実験等を利用した適合処理によって求めておき、それらの関係をマップ又は関数式の形態でECU10のROMに記憶させておくものとする。その際、プレ再生処理の実行時における前後差圧の変化速度とフィルタ再生処理の実行
時間との関係は、図6に示すように、プレ再生処理の実行時における前後差圧の変化速度が大きい場合は小さい場合に比べ、フィルタ再生処理の実行時間が短くなるように定められるものとする。なお、図6においては、プレ再生処理の実行時における前後差圧の変化速度とフィルタ再生処理の実行時間との関係が略線形の関係になっているが、内燃機関やフィルタの仕様によっては非線形の関係になる場合もあり得る。
ここで、前記所定期間は、予め設定された一定時間であってもよい。ここでいう一定時間は、フィルタ再生処理の実行に要する時間より十分に短い時間であって、且つフィルタに堆積している欠陥煤の極一部が酸化される程度の短い時間である。その場合、ECU10は、プレ再生処理の実行時における差圧センサ53の検出値(前後差圧)の変化量をパラメータとして、フィルタ再生処理の実行時間を設定してもよい。具体的には、図7に示すように、前記所定期間における差圧センサ53の検出値の変化量(前後差圧の変化量)が大きい場合は小さい場合に比べ、フィルタ再生処理の実行時間が短くされればよい。このように所定期間が定められると、プレ再生処理の実行時間を可及的に短い期間に抑えることができる。なお、図7においては、プレ再生処理の実行時における前後差圧の変化量とフィルタ再生処理の実行時間との関係が略線形の関係になっているが、内燃機関やフィルタの仕様によっては非線形の関係になる場合もあり得る。
また、前記所定期間は、該プレ再生処理の開始時からの差圧センサ53の検出値(前後差圧)の変化量が一定量に達するまでの期間であってもよい。ここでいう一定量は、差圧センサのばらつき等に起因する前後差圧の変化量のばらつきより大きな値である。その場合、ECU10は、前記所定期間の長さをパラメータとして、フィルタ再生処理の実行時間を設定してもよい。具体的には、図8に示すように、プレ再生処理の開始時からの差圧センサ53の検出値(前後差圧)の変化量が一定量に達するまでに要した時間(所要時間)が短い場合は長い場合に比べ、フィルタ再生処理の実行時間が短くされればよい。このように所定期間が定められると、プレ再生処理の実行時における前後差圧の変化速度に相関する物理量を、より正確に検出することができる。なお、図8においては、プレ再生処理の実行時間(所要時間)とフィルタ再生処理の実行時間との関係が略線形の関係になっているが、内燃機関やフィルタの仕様によっては非線形な関係なる場合もあり得る。
以下、本実施形態において、フィルタ50aに堆積しているPMを酸化及び除去する手順について、図9に沿って説明する。図9は、フィルタ50aに堆積しているPMを酸化及び除去する際にECU10によって実行される処理ルーチンを示すフローチャートである。この処理ルーチンは、予めECU10のROMに記憶されており、該ECU10によって繰り返し実行される。
図9の処理ルーチンでは、ECU10は、先ずS101の処理において、フィルタ50aのPM堆積量ΣPMが前記所定の閾値ΣPMthr以上であるか否かを判別する。その際、PM堆積量ΣPMは、前述したように、内燃機関1の運転状態から推定されてもよく、又は差圧センサ53の検出値(前後差圧)から推定されてもよい。S101の処理において否定判定された場合は、ECU10は、プレ再生処理及びフィルタ再生処理を実行せずに、本処理ルーチンの実行を終了する。一方、S101の処理において肯定判定された場合は、ECU10は、S102の処理へ進む。
S102の処理では、ECU10は、差圧センサ53の検出値(前後差圧)ΔP1を読み込む。続いて、ECU10は、S103の処理へ進み、プレ再生処理を開始する。具体的には、ECU10は、フィルタ50aの温度を第二目標温度まで昇温させるとともに、フィルタ50aへ流入する排気に含まれるNOの濃度をプレ再生処理の実行前より高める。フィルタ50aを昇温させる方法は、前述したフィルタ再生処理と同様に、燃料添加弁51から排気に燃料を添加する方法、又は燃料噴射弁3からポスト噴射する方法を用い
るものとする。また、フィルタ50aへ流入する排気のNO濃度を高める方法としては、燃料噴射弁3の燃料噴射時期を圧縮行程の上死点(TDC)前まで進角させる方法を用いることができる。なお、排気通路5を流れる排気の一部をEGRガスとして吸気通路4へ還流させるためのEGR装置が内燃機関1に併設されている場合は、ECU10は、EGR装置により還流されるEGRガスの量をプレ再生処理の実行前より少なくなることにより、フィルタ50aへ流入する排気のNO濃度を高めてもよい。
S104の処理では、ECU10は、プレ再生処理の開始時からの経過時間が一定時間以上になったか否かを判別する。S104の処理で否定判定された場合は、ECU10は、該S104の処理を再度実行することで、プレ再生処理の実行を継続する。一方、S104の処理で肯定判定された場合は、ECU10は、S105の処理へ進み、差圧センサ53の検出値(前後差圧)ΔP2を読み込む。
S106の処理では、ECU10は、前記プレ再生処理の終了後に実行されるフィルタ再生処理の実行時間を設定する。詳細には、前記S102の処理で読み込まれた前後差圧ΔP1と前記S105の処理で読み込まれた前後差圧ΔP2との差(ΔP1−ΔP2)を前記一定時間で除算することにより、前後差圧の変化速度を演算する。なお、前記S102の処理で読み込まれた前後差圧ΔP1は、プレ再生処理の開始時におけるフィルタ50aの前後差圧に相当する。また、前記S105の処理で読み込まれた前後差圧ΔP2は、プレ再生処理の終了時におけるフィルタ50aの前後差圧に相当する。次に、ECU10は、上記した手順で求められた前後差圧の変化速度を引数として、前述した図6のマップへアクセスすることで、前後差圧の変化速度に対応する、フィルタ再生処理の実行時間を導出する。なお、前述の図7の説明で述べたように、前記一定時間における前後差圧ΔPの変化量(ΔP1−ΔP2)をパラメータとして、フィルタ再生処理の実行時間を設定してもよい。
S107の処理では、ECU10は、プレ再生処理を終了して、フィルタ再生処理を開始する。その際、フィルタ50aの温度は、前記第二目標温度から前記第一目標温度まで上昇される。
S108の処理では、ECU10は、フィルタ再生処理が開始された時点からの経過時間が、前記S106で設定された実行時間に達したか否かを判別する。S108の処理において否定判定された場合は、ECU10は、該S108の処理を再度実行することで、フィルタ再生処理の実行を継続する。一方、S108の処理において肯定判定された場合は、ECU10は、S109の処理へ進み、フィルタ再生処理を終了する。
このようにECU10が図9の処理ルーチンすることにより、本発明に係わる「再生手段」が実現される。そのため、フィルタ再生処理の実行時間を、フィルタ50aに堆積しているPMの欠陥煤比率に応じた長さにすることができることができる。その結果、フィルタ50aに堆積しているPMを効率的に酸化及び除去することができる。
なお、図9の処理ルーチンは、プレ再生処理を一定時間実行する場合の処理ルーチンであるが、前後差圧ΔPの変化量が一定量に達するまでプレ再生処理が実行されてもよい。その場合は、図10に示すように、図9中のS104−S106の処理の代わりに、S201−S205の処理を実行すればよい。詳細には、ECU10は、S201の処理においてプレ再生処理の開始時からの経過時間(所要時間)の計測を開始する。続いて、S202の処理では、ECU10は、差圧センサ53の検出値(前後差圧)ΔP2を読み込む。S203の処理では、ECU10は、前記S102の処理で読み込まれた前後差圧ΔP1と前記S202の処理で読み込まれた前後差圧ΔP2との差(ΔP1−ΔP2)が一定量以上であるか否かを判別する。該S203の処理で否定判定された場合は、ECU10
は、S202の処理へ戻り、プレ再生処理の実行を継続する。一方、該S203の処理で肯定判定された場合は、ECU10は、S204の処理へ進み、プレ再生処理の実行時間(所要時間)の計測を終了する。そして、ECU10は、S205の処理へ進み、前記所要時間を引数として前述した図8のマップへアクセスすることにより、フィルタ再生処理の実行時間を導出する。このような方法によれば、前記一定量を、差圧センサ53のばらつき等に起因する前後差圧ΔPの変化量のばらつきより大きな値に設定することで、プレ再生処理の実行時における実際の前後差圧の変化量をより正確に検出することができる。なお、ECU10は、前記一定量(前後差圧ΔPの変化量(ΔP1−ΔP2))を前記所要時間で除算することにより、前後差圧の変化速度を演算して、その変化速度と前述した図6のマップとに基づいて、フィルタ再生処理の実行時間を設定してもよい。
ところで、プレ再生処理の実行時における前後差圧ΔPの変化速度は、フィルタ50aに堆積しているPMの欠陥煤比率が同じであっても、排気流量に応じて変化する可能性ががある。そのため、プレ再生処理は、アイドル運転状態のような定常運転状態にあるときに実行されるようにしてもよい。
<実施形態2>
次に、本発明の第2の実施形態について図11及び図12に基づいて説明する。ここでは、前述した第1の実施形態と異なる構成について説明し、同様の構成については説明を省略する。
前述した第1の実施形態と本実施形態との相違点は、プレ再生処理の実行時における前後差圧ΔPの変化速度に対応する、フィルタ50aの温度(以下、単に「フィルタ温度」と称する)とPM酸化速度との関係を求め、その関係においてフィルタ50aの温度が前記第一目標温度と等しくなるときのPM酸化速度に基づいて、フィルタ再生処理の実行時間を調整する点にある。
具体的には、ECU10は、先ず、前後差圧ΔPとPM堆積量ΣPMとの相関に基づいて、前後差圧ΔPの変化速度を欠陥煤の酸化速度に換算する。続いて、ECU10は、下記の式(1)に基づいて欠陥煤の堆積量を演算する。
[欠陥煤堆積量]=[欠陥煤酸化速度]/([NO2濃度]*[O2濃度]*k)・・・(1)
上記した式(1)において、NO濃度は、プレ再生処理の実行時にフィルタ50aへ流入する排気のNO濃度である。O濃度は、プレ再生処理の実行時にフィルタ50aへ流入する排気のO濃度である。また、kは、排気の温度に基づいて定められる係数である。
続いて、ECU10は、上記の式(1)に基づいて算出された欠陥煤堆積量を、フィルタ50aに堆積しているPMの総量(PM堆積量ΣPM)で除算することにより、欠陥煤比率を演算する。ECU10は、このようにして演算された欠陥煤比率のPMがフィルタ50aに堆積していると想定した場合における、フィルタ温度とPM酸化速度との関係を推定する。具体的には、前述の図4の説明で述べたような関係の中から、上記のようにして演算された欠陥煤比率に対応する、フィルタ温度とPM酸化速度との関係を抽出すればよい。その際、前述の図4に示すような関係は、予め実験的に求めておくものとする。
次に、ECU10は、上記した手順で求められた、フィルタ温度とPM酸化速度との関係において、図11に示すように、フィルタ50aの温度が前記第一目標温度と等しくなるときのPM酸化速度(図11中のVpm)を求める。このようにして求められるPM酸化速度Vpmは、フィルタ温度が第一目標温度と等しくなる状況下において単位時間あたりに酸化されるPMの量ΔPMと言い換えることができる。そこで、ECU10は、フィ
ルタ再生処理の実行時において、単位時間あたりに酸化されるPMの量ΔPMを、フィルタ50aのPM堆積量ΣPMから減算して、フィルタ50aに残存しているPMの量(以下、「PM残量ΣPMra」と称する)を求める処理を繰り返し実行し、そのPM残量ΣPMraが所定の終了判定値ΣPMrathr以下になったときに、フィルタ再生処理を終了する。ここで、前記PM酸化速度Vpmは、前述したように、欠陥煤比率が低い場合より高い場合の方が大きくなる。すなわち、フィルタ再生処理の実行時において、単位時間あたりに酸化されるPMの量ΔPMは、欠陥煤比率が低い場合より高い場合の方が多くなる。よって、フィルタ再生処理が実行された際に、前記PM残量ΣPMraが前記所定の終了判定値ΣPMrathr以下まで減少するのに要する時間(フィルタ再生処理の実行時間)は、欠陥煤比率が低い場合より高い場合の方が短くなる。その結果、フィルタ再生処理の実行時間は、フィルタ50aに堆積しているPMの酸化速度に適した長さに調整されることになる。
以下、本実施形態において、フィルタ50aに堆積しているPMを酸化及び除去する手順について、図12に沿って説明する。図12は、フィルタ50aに堆積しているPMを酸化及び除去する際にECU10によって実行される処理ルーチンを示すフローチャートである。図12では、前述した図9の処理ルーチンのS106の処理の代わりにS301の処理が実行され、且つ図9の処理ルーチンのS108の処理の代わりにS302−S303の処理が実行される。
先ず、S301の処理では、ECU10は、フィルタ再生処理が実行されていると想定した場合(フィルタ50aの温度が第一目標温度と等しいと想定した場合)において、単位時間あたりに酸化されるPMの量ΔPMを演算する。詳細には、ECU10は、先ず前記S102の処理で読み込まれた前後差圧ΔP1と前記S105の処理で読み込まれた前後差圧ΔP2との差(ΔP1−ΔP2)を前記一定時間で除算することにより、前後差圧の変化速度を演算する。続いて、ECU10は、前後差圧ΔPの変化速度を欠陥煤の酸化速度に換算し、その欠陥煤の酸化速度と前述の式(1)とに基づいて欠陥煤堆積量を演算する。また、ECU10は、欠陥煤堆積量をPM堆積量ΣPMで除算することにより、フィルタ50aに堆積しているPMの欠陥煤比率を演算する。さらに、ECU10は、欠陥煤比率と第一目標温度と前述した図4に示す相関とに基づいて、フィルタ再生処理が実行されていると想定した場合における単位時間あたりに酸化されるPMの量ΔPMを演算する。
ECU10は、前記S301の処理を実行した後に、S107の処理を実行へ進み、フィルタ再生処理を開始する。そして、ECU10は、S107の処理を実行した後に、S302−S303の処理を実行する。S302の処理では、ECU10は、下記の式(2)に基づいてPM残量ΣPMraを演算する。
ΣPMra=ΣPMraold−ΔPM・・・(2)
上記した式(2)において、ΣPMraoldは、該S302の処理の前回の実行時において算出されたPM残量である。また、ΔPMは、前記S301の処理で演算された、単位時間あたりに酸化されるPMの量である。
S303の処理では、ECU10は、前記S302の処理で算出されたPM残量ΣPMraが前述した所定の終了判定値ΣPMrathr以下であるか否かを判別する。該S303の処理において否定判定された場合は、ECU10は、前記S302の処理へ戻り、フィルタ再生処理の実行を継続する。一方、該S303の処理において肯定判定された場合は、ECU10は、S109の処理へ進み、フィルタ再生処理を終了させる。
以上述べた実施形態によれば、フィルタ再生処理の実行時間を、フィルタ50aに堆積しているPMのPM酸化速度に適した長さにすることができる。そのため、フィルタ50
aに堆積しているPMを、より効率的に酸化及び除去することができる。
<他の実施形態>
フィルタ50aに堆積するPMには、SOFが含まれている場合がある。SOFは、欠陥煤よりも酸化され易い。そのため、フィルタ50aにSOFが堆積している場合は、フィルタ50aにSOFが堆積していない場合に比べ、プレ再生処理の実行時における前後差圧ΔPの変化速度が大きくなる。よって、プレ再生処理の実行時における前後差圧ΔPの変化速度に基づいて調整される、フィルタ再生処理の実行時間は、フィルタ50aにSOFが堆積していない場合に比べ、フィルタ50aにSOFが堆積している場合の方が短くなる。その結果、フィルタ50aのPM残量ΣPMraが想定より多い状態(例えば、前述の所定の終了判定値ΣPMrathrより多い状態)でフィルタ再生処理が終了されて、フィルタ再生処理の効率が低下する可能性がある。
そこで、プレ再生処理の実行前に、フィルタ50aに堆積しているSOFを酸化及び除去するための処理であるSOF除去処理を実行してもよい。SOF除去処理は、フィルタ50aの温度を、プレ再生処理実行時の第二目標温度より低く、且つSOFが酸化される温度へ上昇させる処理である。その際、フィルタ50aの温度を上昇させる方法は、前述したフィルタ再生処理やプレ再生処理と同様に、燃料添加弁51から排気へ燃料を添加する方法、又は燃料噴射弁3からポスト噴射する方法を用いるものとする。
このように、プレ再生処理の実行前にSOF除去処理が実行されると、SOFの堆積に起因する、フィルタ再生処理の効率低下を抑制することができる。なお、SOF除去処理は、フィルタ50aに堆積しているPMに実際にSOFが含まれているか否かにかかわらず、プレ再生処理の実行前に必ず実行されてもよいが、フィルタ50aに堆積しているPMに含まれるSOF量の割合(以下、「SOF比率」と称する)が所定の比率を超えていると推定された場合に限り実行されてもよい。その際、SOF比率は、内燃機関1の運転履歴やフィルタ50aの温度履歴等に基づいて推定されればよい。ここでいう「所定の比率」は、プレ再生処理が実行される際のSOF比率が該所定の比率を超えると、フィルタ再生処理の効率が低下すると考えられる値であり、予め実験等を利用して適合作業によって求めておくものとする。
1 内燃機関
2 気筒
3 燃料噴射弁
4 吸気通路
5 排気通路
10 ECU
40 エアフローメータ
41 スロットル弁
50 フィルタケーシング
51 燃料添加弁
52 排気温度センサ
53 差圧センサ

Claims (4)

  1. 内燃機関の排気通路に配置され、前記内燃機関から排出されるPMを捕集するフィルタと、
    前記フィルタより上流の排気圧力と前記フィルタより下流の排気圧力との差である前後差圧を検出する差圧センサと、
    前記フィルタに捕集されているPMの量であるPM堆積量を取得する取得手段と、
    前記取得手段により取得されるPM堆積量が所定の閾値以上であるときに、前記フィルタを第一目標温度まで昇温させることにより、該フィルタに捕集されているPMを酸化及び除去する処理であるフィルタ再生処理を実行する再生手段と、
    を備え、
    前記再生手段は、前記取得手段により取得されるPM堆積量が前記所定の閾値以上となったときに、前記フィルタを前記第一目標温度より低い第二目標温度まで昇温させるとともに前記フィルタへ流入する排気に含まれる二酸化窒素の濃度を高める処理であるプレ再生処理を所定期間実行し、そのプレ再生処理の終了後に前記フィルタ再生処理を実行するものであって、前記プレ再生処理の実行時における前記差圧センサの検出値の変化速度が大きい場合における前記フィルタ再生処理の実行時間は前記変化速度が小さい場合における前記フィルタ再生処理の実行時間より短くなるように、前記フィルタ再生処理を実行するものである、内燃機関の排気浄化装置において、
    前記再生手段は、前記プレ再生処理の実行時における前記差圧センサの検出値の変化速度が大きいときは小さいときに比べ、前記フィルタに堆積しているPMの酸化速度が大きくなり、且つ前記フィルタの温度が高いときは低いときに比べ、前記フィルタに堆積しているPMの酸化速度が大きくなるという特性に基づいて、前記プレ再生処理の実行時における前記差圧センサの検出値の変化速度に対応する、前記フィルタの温度と該フィルタに堆積しているPMの酸化速度との関係を推定して、推定された関係において前記フィルタの温度が前記第一目標温度と等しい場合のPMの酸化速度を求め、そのPMの酸化速度に基づいて前記フィルタ再生処理の実行時における前記フィルタに残存しているPMの量を演算して、前記フィルタに残存しているPMの量が所定の終了判定値以下になったときに前記フィルタ再生処理を終了することを特徴とする内燃機関の排気浄化装置。
  2. 内燃機関の排気通路に配置され、前記内燃機関から排出されるPMを捕集するフィルタと、
    前記フィルタより上流の排気圧力と前記フィルタより下流の排気圧力との差である前後差圧を検出する差圧センサと、
    前記フィルタに捕集されているPMの量であるPM堆積量を取得する取得手段と、
    前記取得手段により取得されるPM堆積量が所定の閾値以上であるときに、前記フィルタを第一目標温度まで昇温させることにより、該フィルタに捕集されているPMを酸化及び除去する処理であるフィルタ再生処理を実行する再生手段と、
    を備え、
    前記再生手段は、前記取得手段により取得されるPM堆積量が前記所定の閾値以上となったときに、前記フィルタを前記第一目標温度より低い第二目標温度まで昇温させるとともに前記フィルタへ流入する排気に含まれる二酸化窒素の濃度を高める処理であるプレ再生処理を所定期間実行し、そのプレ再生処理の終了後に前記フィルタ再生処理を実行するものであって、前記プレ再生処理の実行時における前記差圧センサの検出値の変化速度が大きい場合における前記フィルタ再生処理の実行時間は前記変化速度が小さい場合における前記フィルタ再生処理の実行時間より短くなるように、前記フィルタ再生処理を実行するものである、内燃機関の排気浄化装置において、
    前記再生手段は、前記プレ再生処理を実行する前に、前記フィルタを前記第二目標温度より低く、且つSOFが酸化される温度である第三目標温度まで昇温させることにより、前記フィルタに堆積しているSOFを酸化及び除去する処理であるSOF除去処理を実行することを特徴とする内燃機関の排気浄化装置。
  3. 請求項1において、前記再生手段は、前記プレ再生処理を実行する前に、前記フィルタを前記第二目標温度より低く、且つSOFが酸化される温度である第三目標温度まで昇温させることにより、前記フィルタに堆積しているSOFを酸化及び除去する処理であるSOF除去処理を実行することを特徴とする内燃機関の排気浄化装置。
  4. 内燃機関の排気通路に配置され、前記内燃機関から排出されるPMを捕集するフィルタと、
    前記フィルタより上流の排気圧力と前記フィルタより下流の排気圧力との差である前後差圧を検出する差圧センサと、
    前記フィルタに捕集されているPMの量であるPM堆積量を取得する取得手段と、
    前記取得手段により取得されるPM堆積量が所定の閾値以上であるときに、前記フィルタを第一目標温度まで昇温させることにより、該フィルタに捕集されているPMを酸化及び除去する処理であるフィルタ再生処理を実行する再生手段と、
    を備える内燃機関の排気浄化装置において、
    前記再生手段は、前記取得手段により取得されるPM堆積量が前記所定の閾値以上となったときに、前記フィルタを前記第一目標温度より低い第二目標温度まで昇温させるとともに前記フィルタへ流入する排気に含まれる二酸化窒素の濃度を高める処理であるプレ再生処理を所定期間実行し、そのプレ再生処理の終了後に前記フィルタ再生処理を実行するものであって、前記プレ再生処理の実行時における前記差圧センサの検出値の変化速度が大きい場合における前記フィルタ再生処理の実行時間は前記変化速度が小さい場合における前記フィルタ再生処理の実行時間より短くなり且つ零より大きくなるように、前記フィルタ再生処理を実行することを特徴とする内燃機関の排気浄化装置。
JP2016013581A 2016-01-27 2016-01-27 内燃機関の排気浄化装置 Active JP6365560B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016013581A JP6365560B2 (ja) 2016-01-27 2016-01-27 内燃機関の排気浄化装置
CN201710053593.1A CN107013291B (zh) 2016-01-27 2017-01-22 用于内燃机的排气控制系统
EP17152677.5A EP3199220B1 (en) 2016-01-27 2017-01-23 Exhaust gas control system for internal combustion engine
US15/416,235 US10302000B2 (en) 2016-01-27 2017-01-26 Exhaust gas control system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016013581A JP6365560B2 (ja) 2016-01-27 2016-01-27 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
JP2017133415A JP2017133415A (ja) 2017-08-03
JP6365560B2 true JP6365560B2 (ja) 2018-08-01

Family

ID=57906463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016013581A Active JP6365560B2 (ja) 2016-01-27 2016-01-27 内燃機関の排気浄化装置

Country Status (4)

Country Link
US (1) US10302000B2 (ja)
EP (1) EP3199220B1 (ja)
JP (1) JP6365560B2 (ja)
CN (1) CN107013291B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2564833B (en) * 2017-03-23 2019-11-27 Ford Global Tech Llc An after treatment system, engine assembly and associated methods
CN109611230A (zh) * 2018-10-19 2019-04-12 北汽福田汽车股份有限公司 可溶性有机物清除方法和装置
US11022016B2 (en) * 2019-01-03 2021-06-01 Deere & Company Exhaust gas treatment system and method with improved regeneration
JP7088079B2 (ja) * 2019-02-28 2022-06-21 トヨタ自動車株式会社 内燃機関の制御装置
CN113719366B (zh) * 2021-09-22 2022-08-23 潍柴动力股份有限公司 一种车辆的dpf驻车再生控制方法及装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3757860B2 (ja) * 2001-12-18 2006-03-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP3896870B2 (ja) 2002-03-01 2007-03-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2003314249A (ja) 2002-04-25 2003-11-06 Denso Corp 内燃機関の排ガス浄化装置
JP4505176B2 (ja) * 2002-09-17 2010-07-21 いすゞ自動車株式会社 内燃機関の排気ガス浄化システム
JP2004225616A (ja) 2003-01-23 2004-08-12 Toyota Motor Corp 内燃機関の排気浄化装置
JP4291627B2 (ja) * 2003-06-10 2009-07-08 トヨタ自動車株式会社 粒子状物質を除去する方法
JP4075724B2 (ja) 2003-07-30 2008-04-16 日産自動車株式会社 内燃機関の排気浄化装置
JP4506539B2 (ja) * 2005-04-08 2010-07-21 株式会社デンソー 内燃機関の排気浄化装置
US7877985B2 (en) * 2005-05-18 2011-02-01 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
US7980065B2 (en) 2007-07-19 2011-07-19 Corning Incorporated Regeneration method for ceramic honeycomb structures
JP2009030538A (ja) * 2007-07-27 2009-02-12 Nissan Motor Co Ltd エンジンの排気浄化装置
JP5609139B2 (ja) 2010-02-18 2014-10-22 いすゞ自動車株式会社 Dpfの再生制御方法
GB2496876B (en) 2011-11-24 2017-12-06 Ford Global Tech Llc Detection of soot burn in a vehicle
JP5905427B2 (ja) * 2013-09-27 2016-04-20 三菱重工業株式会社 Dpf再生制御装置
DE112014000017B4 (de) * 2014-02-26 2021-07-22 Komatsu Ltd. Vorrichtung zum Feststellen von Fehlfunktion für Abgasreinigungsvorrichtung sowie Verfahren zum Feststellen von Fehlfunktion für Abgasreinigungsvorrichtung
CN105201609B (zh) * 2015-10-10 2018-09-21 安徽江淮汽车集团股份有限公司 一种dpf主动再生方法及其控制系统

Also Published As

Publication number Publication date
CN107013291A (zh) 2017-08-04
EP3199220B1 (en) 2018-12-05
US10302000B2 (en) 2019-05-28
CN107013291B (zh) 2019-07-05
JP2017133415A (ja) 2017-08-03
US20170211451A1 (en) 2017-07-27
EP3199220A1 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6365560B2 (ja) 内燃機関の排気浄化装置
JP4445314B2 (ja) コンピューターによる圧力センサーの診断システム及び方法
JP6311731B2 (ja) 内燃機関の排気浄化装置
US20130014641A1 (en) Failure detection apparatus and failure detection method for a particulate filter
US8051646B2 (en) Particulate filter regenerating system
JP2008031854A (ja) 内燃機関の排ガス浄化装置
JP2008190470A (ja) 排気浄化フィルタの再生装置
JP2009191694A (ja) 内燃機関の排気浄化装置
JP2009270503A (ja) 内燃機関の排気浄化装置
JP6089945B2 (ja) 排気浄化装置の制御装置
JP4506060B2 (ja) パティキュレートフィルタの再生制御装置
JP2006274906A (ja) 排気浄化装置
KR20120011564A (ko) 배기가스 후처리 방법 및 이를 수행하는 시스템
JP4973355B2 (ja) 内燃機関の排気浄化システム
JP2010249076A (ja) 内燃機関の排気浄化装置
CN110714822B (zh) Dpf再生的控制方法及控制系统
JP2005273653A (ja) フィルタの劣化診断装置
JP6642199B2 (ja) 排気浄化装置
JP2007016617A (ja) 触媒劣化判定装置
JP4802922B2 (ja) 内燃機関のパティキュレートフィルタ再生システム
JP4403915B2 (ja) ディーゼルエンジンの排気後処理装置
JP5906917B2 (ja) Dpfの再生方法及び排気ガス浄化システム
WO2018007702A1 (fr) Procede d'adaptation d'une estimation d'une vitesse de combustion des suies d'un filtre a particules de moteur thermique
JP2007239477A (ja) 排ガス浄化フィルタのパティキュレート堆積量検出装置及び検出方法
JP6926964B2 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R151 Written notification of patent or utility model registration

Ref document number: 6365560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151