JP6187287B2 - 銀粉及びその製造方法 - Google Patents

銀粉及びその製造方法 Download PDF

Info

Publication number
JP6187287B2
JP6187287B2 JP2014014490A JP2014014490A JP6187287B2 JP 6187287 B2 JP6187287 B2 JP 6187287B2 JP 2014014490 A JP2014014490 A JP 2014014490A JP 2014014490 A JP2014014490 A JP 2014014490A JP 6187287 B2 JP6187287 B2 JP 6187287B2
Authority
JP
Japan
Prior art keywords
silver
solution
reducing agent
amount
nucleus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014014490A
Other languages
English (en)
Other versions
JP2015110824A (ja
Inventor
大夢 西本
大夢 西本
良宏 岡部
良宏 岡部
研哉 伊藤
研哉 伊藤
栄治 石田
栄治 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014014490A priority Critical patent/JP6187287B2/ja
Publication of JP2015110824A publication Critical patent/JP2015110824A/ja
Application granted granted Critical
Publication of JP6187287B2 publication Critical patent/JP6187287B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、銀粉及びその製造方法に関するものであり、更に詳しくは、電子機器の配線層や電極等の形成に利用される樹脂型銀ペーストや焼成型銀ペーストの主たる成分となる銀粉及びその製造方法に関する。
電子機器における配線層や電極等の形成には、樹脂型銀ペーストや焼成型銀ペーストのような銀ペーストが多用されている。これらの銀ペーストは、塗布又は印刷した後、加熱硬化あるいは加熱焼成されることによって、配線層や電極等となる導電膜を形成する。
例えば、樹脂型銀ペーストは、銀粉、樹脂、硬化剤、溶剤等からなり、導電体回路パターン又は端子の上に印刷し、100℃〜200℃で加熱硬化させて導電膜とし、配線や電極を形成する。また、焼成型銀ペーストは、銀粉、ガラス、溶剤等からなり、導電体回路パターン又は端子の上に印刷し、600℃〜800℃に加熱焼成して導電膜とし、配線や電極を形成する。これらの銀ペーストで形成された配線や電極では、銀粉が連なることで電気的に接続した電流パスが形成されている。
銀ペーストに使用される銀粉は、粒径が0.1μmから数μmであり、形成する配線の太さや電極の厚さによって使用される銀粉の粒径が異なる。また、ペースト中に均一に銀粉を分散させることにより、均一な太さの配線や、均一な厚さの電極を形成することができる。
銀ペースト用の銀粉に求められる特性としては、用途及び使用条件により様々であるが、一般的且つ重要なことは、粒径が均一で凝集が少なく、ペースト中への分散性が高いことである。粒径が均一で、且つペースト中への分散性が高いと、硬化あるいは焼成が均一に進み、低抵抗で強度の大きい導電膜を形成できるからである。粒径が不均一で分散性が悪いと、印刷膜中に銀粒子が均一に存在しないため、配線や電極の太さや厚さが不均一となるばかりか、硬化あるいは焼成が不均一となるため、導電膜の抵抗が大きくなったり、導電膜が脆く弱いものになったりしやすい。
さらに、銀ペースト用の銀粉に求められる事項として、製造コストが低いことも重要である。銀粉はペーストの主成分であることから、ペースト価格に占める割合が大きいためである。製造コストの低減のためには、使用する原料や材料の単価が低いだけでなく、廃液や排気の処理コストが低いことも重要となる。
上述した銀ペーストに使用される銀粉の製造では、銀源として用いる原料は硝酸銀が一般的である。例えば、特許文献1では、硝酸銀をアンモニアに溶解した銀アンミン錯体を含む溶液と還元剤溶液とを連続的に混合し、還元して、均一な銀粉を得る方法が開示されている。
この特許文献1に示される製造方法によれば、平均粒径が0.1μm〜1.0μmであり、均一で凝集が少ない粒状銀粉が得られるとされている。しかしながら、硝酸銀はアンモニア水等への溶解過程で有毒な亜硝酸ガスを発生し、これを回収する装置が必要となる。また、廃水中に硝酸系窒素やアンモニア系窒素が多量に含まれるので、その処理のための装置も必要となる。さらに、硝酸銀は危険物であり劇物でもあるため、取り扱いに注意を要する。このように、硝酸銀を銀粉の原料として用いる場合は、環境に及ぼす影響やリスクが他の銀化合物に比べて大きいという問題点を抱えている。
そこで、硝酸銀を原料とせずに、塩化銀を還元して銀粉を製造する方法も提案されている。即ち、塩化銀を用いる場合には、アンモニア水に溶解したときに亜硝酸ガスが発生しないため、処理コストが安く、環境リスクが低くなるという利点を有している。さらに、塩化銀は危険物にも劇物にも該当せず、遮光の必要はあるものの、比較的取り扱いが容易な銀化合物であるという利点も有している。また、塩化銀は銀の精製プロセスの中間品としても存在し、電子工業用として十分な純度を有している。
特許文献2には、塩化銀をアンモニア水に溶解した銀溶液に、分散剤と銀微粒子スラリーを添加し、還元剤であるヒドラジンを添加して銀粉を得る方法が開示されている。しかしながら、この方法で得られる銀粉の粒径は、0.2μm〜3.0μmであり、均一性に問題がある。
さらに、特許文献3には、核含有還元剤溶液と銀錯体を含む粒子成長用銀溶液とを連続的に混合して反応液とし、該反応液中で銀錯体を還元して銀粒子を成長させる銀粉の製造方法が開示されている。しかしながら、この方法では、粒径の均一性に優れた銀粉が得られるものの、得られる銀粉の粒径が狙いとした粒径からずれ、粒径を安定させて銀粉が得られないという問題がある。
また、特許文献3に記載の方法で得られる銀粉の粒径は、0.2μm〜2.0μmであり、均一な粒径を有する銀粉が得られるものの、2.0μm以下の銀粉を用いて、高温で加熱焼成して導電膜を得る場合には、焼結が進行しすぎて導電膜の特性が低下するという問題が生じてしまう。また、この方法では、2.0μmを超える均一な粒径を有する銀粉が得られないという問題もある。
特開2010−070793号公報 特開2010−043337号公報 国際公開第2013/133103号
そこで、本発明は、このような従来の事情に鑑み、均一性を有し、所望の粒径範囲に制御された銀粉、及び、そのような銀粉を高い生産性でもって安定して製造することができる銀粉の製造方法を提供することを目的とする。
本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、核を成長させる銀溶液に含まれる固形粒子が得られる銀粉の粒径に大きな影響を及ぼしており、固形粒子を低減することで、銀粉の粒径を、所望の範囲に制御することが可能であるとの知見を得た。さらに、核の銀量に対する核を成長させる銀溶液中の銀量の比率を制御することで、粒径が大きく、かつ均一な銀粉を得ることができるとの知見を得て、本発明に至ったものである。
すなわち、本発明に係る銀粉の製造方法は、銀錯体を含む銀溶液と還元剤溶液とを連続的に混合して反応液とし、該反応液中の銀錯体を還元して銀粒子スラリーを得た後、濾過、洗浄、乾燥の各工程を経て銀粉を製造する銀粉の製造方法であって、銀錯体を含む核生成用銀溶液と、強還元剤を含む溶液と、分散剤とを混合して銀核溶液を得る銀核溶液調製工程と、上記銀核溶液調製工程により得られた銀核溶液と、上記強還元剤より標準電極電位が高い弱還元剤とを混合して核含有還元剤溶液を得る核含有還元剤溶液調製工程と、上記核含有還元剤溶液調製工程により得られた核含有還元剤溶液と、固形粒子の含有量が銀量に対して20質量ppm以下であり、銀錯体を含む粒子成長用銀溶液とを連続的に混合して反応液とし、該反応液中で銀錯体を還元して銀粒子を成長させる粒子成長工程とを有し、上記銀核溶液調製工程では、上記核生成用銀溶液中の銀量に対する上記強還元剤の当量が1.0当量以上4.0当量未満であり、上記強還元剤の標準電極電位が0.056V以下であり、上記核生成用銀溶液中の銀濃度が6.0g/L以下であり、上記粒子成長工程では、上記粒子成長用銀溶液中の銀量が上記核含有還元剤溶液中の銀量の1500倍〜250000倍である。
上記製造方法においては、上記核含有還元剤溶液との混合前に、上記粒子成長用銀溶液を限外ろ過するろ過工程をさらに有することが好ましく、上記限外ろ過の分画分子量が150,000以下であることが好ましい。
また、上記強還元剤と上記弱還元剤の標準電極電位の差が1.0V以上であることが好ましい。具体的には、上記強還元剤としてはヒドラジン一水和物を用い、上記弱還元剤としてはアスコルビン酸を用いることが好ましい。
また、上記粒子成長用銀溶液中の銀濃度は20g/L〜90g/Lであることが好ましい。
また、上記銀錯体としては、塩化銀をアンモニア水に溶解して得られた銀アンミン錯体であることが好ましく、上記核生成用銀溶液中の銀量に対するアンモニア量はモル比で20〜100であることが好ましい。
また、上記分散剤の混合量は、上記核含有還元剤溶液と粒子成長用銀溶液の混合後における粒子成長用銀溶液中の銀量に対して0.2質量%〜30質量%であることが好ましい。
また、上記分散剤としては、ポリビニルアルコール、ポリビニルピロリドン、変性シリコンオイル系界面活性剤、ポリエーテル系界面活性剤から選択される少なくとも1種を用いることが好ましい。
また、上記核含有還元剤溶液と粒子成長用銀溶液との混合において、各溶液を個別に反応管に供給し、該反応管内に配置したスタティックミキサーで混合することが好ましい。
また、一次粒子の平均粒径が2.0μmを超え、3.0μm以下であり、該一次粒子の粒径の標準偏差値を平均粒径で除した粒径の相対標準偏差値が0.3以下であることが好ましい
また、上記相対標準偏差は、0.25以下であることが好ましい。
本発明に係る銀粉の製造方法によれば、微粒を含まない均一な粒径の銀粉を所望の粒径で安定して製造することができる。したがって、この方法により製造された銀粉によれば、電子機器の配線層や電極等の形成に利用される樹脂型銀ペーストや焼成型銀ペースト等のペースト用銀粉として好適に用いることができる。
また、本発明による銀粉の製造方法は、銀粉の粒径制御が容易で安定しているため、量産性に優れたものであり、工業的価値が極めて大きいものである。
本発明を適用した銀粉の製造方法の工程図である。 実施例1において得られた銀核のSEM像である。 実施例1において得られた銀粉のSEM像である。 実施例2において得られた銀核のSEM像である。 実施例2において得られた銀粉のSEM像である。 比較例1において得られた銀核のSEM像である。 比較例1において得られた銀粉のSEM像である。
以下、本発明に係る銀粉の製造方法の具体的な実施形態について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない限りにおいて適宜変更することができる。
本実施の形態に係る銀粉の製造方法は、銀錯体を含む銀溶液と還元剤溶液とを連続的に混合して反応液とし、その反応液中の銀錯体を還元して銀粒子スラリーを得た後、濾過、洗浄、乾燥の各工程を経て銀粉を製造する方法であって、還元剤溶液に銀核を含有させることによって、均一で所望とする粒径の銀粉を得ることができる方法である。
従来、銀塩を原料として還元するプロセスでは、均一で大きな粒径の粒子を作製できないことが問題であった。しかしながら、本発明者の研究により、均一で2.0μmを超え、3.0μm以下の粒径の粒子を得るためには、粒子成長用銀溶液に含まれる固形粒子を除去し、還元剤溶液に銀核を添加し、添加する核数を制御することが有効であり、核含有還元剤溶液中の銀量と粒子成長用銀溶液中の銀量の比率により制御することができるとの知見を得た。
具体的には、強還元剤を含む溶液と銀錯体を含む核生成用銀溶液と分散剤とを混合して得た銀核溶液と、その強還元剤よりも標準電極電位が高い弱還元剤を混合して核含有還元剤溶液とする。そして、この核含有還元剤溶液と銀錯体を含む粒子成長用銀溶液とを混合して還元する。本実施の形態に係る銀粉の製造方法では、この核含有還元剤溶液中の銀量と粒子成長用銀溶液中の銀量の比率を制御することにより、均一で大きな粒径を有する銀粉を得ることができる。
ここで、強還元剤とは、還元力の強い還元剤であることを意味し、弱還元剤とは、その強還元剤より標準電極電位が高い、すなわち還元力の弱い還元剤であることを意味する。
また、本実施の形態に係る銀粉の製造方法は、銀核を含む銀核溶液と還元剤を混合して得られた核含有還元剤溶液と、銀錯体を含む粒子成長用銀溶液とを、定量的かつ連続的に一定の空間に供給し、これらを混合することで還元反応を生じせしめ、還元反応が終了した還元後液、すなわち銀粒子スラリーを定量的かつ連続的に排出する。このように、定量的かつ連続的に各溶液を供給して還元させることで、還元反応場の銀錯体の濃度と還元剤の濃度が一定に保たれ、一定の粒子成長を図ることができる。そしてこれによって、得られる銀粒子の大きさが揃い、粒度分布がシャープな銀粉を得ることができる。さらに、銀溶液と還元剤溶液の供給と銀粒子スラリーの排出を連続的に行うことで、連続的に銀粉を得ることができ、高い生産性でもって銀粉を製造することができる。
また、この銀粉の製造方法では、特に、出発原料である銀化合物として塩化銀を用い、例えば塩化銀をアンモニア水等に溶解して得られた銀錯体を用いることが好ましい。このように塩化銀を出発原料とすることにより、硝酸銀を出発原料としたときに必要となる亜硝酸ガスの回収装置を必要とせず、環境への影響も少ないプロセスとなり、製造コストを低くすることができる。なお、上述した観点から、核生成用銀溶液と粒子成長用銀溶液のいずれにおいても塩化銀を用いることが好ましい。
以下、本実施の形態に係る銀粉の製造方法について、より詳細に工程毎に説明する。
本実施の形態に係る銀粉の製造方法は、図1の工程図に示すように、銀核溶液を得る銀核溶液調製工程S1と、銀核溶液調製工程S1により得られた銀核溶液と還元剤を混合して核含有還元剤溶液を得る核含有還元剤溶液調製工程S2と、核含有還元剤溶液調製工程S2により得られた核含有還元剤溶液と銀錯体を含む粒子成長用銀溶液とを混合して、その銀錯体を還元して銀粒子を成長させる粒子成長工程S3とを有する。
この銀粉の製造方法においては、強還元剤による銀核の生成と弱還元剤による粒子成長を行うこと、またその銀核生成と粒子成長とを分離することが重要である。そして、銀核生成と粒子成長とで、標準電極電位が異なる還元剤を用いることが重要となる。強還元剤と弱還元剤を同時期に銀溶液に添加すると、核生成と粒子成長を十分に分離できないため、銀核からの粒子成長中に新たな核生成が起こり、微粒子が含まれる結果となって、粒径の均一性が十分な銀粒子が得られない。それに対して、強還元剤による均一な粒径を有する核を生成させた後、弱還元剤を添加して還元剤溶液とし、その還元剤溶液と銀溶液とを混合して粒子成長を行わせることで、均一な粒径の銀粒子を得ることができる。
[銀核溶液調製工程]
銀核溶液調製工程S1では、粒子成長の核となる銀核の溶液を生成させる。具体的には、この銀核溶液調製工程S1では、分散剤と強還元剤を含む溶液とを混合して得た強還元剤と分散剤を含む溶液に、銀錯体を含む核生成用銀溶液を添加して還元させることにより銀核溶液を得る。また、予め、銀錯体を含む核生成用銀溶液と分散剤を混合した後、強還元剤を含む溶液を添加して還元させてもよい。分散剤は、銀核生成時に溶液中に存在していればよく、核生成用銀溶液もしくは強還元剤を含む溶液の少なくとも一方と混合されていればよく、核生成用銀溶液と強還元剤を含む溶液の混合時に分散剤を混合してもよい。
強還元剤としては、上述のように還元力の強い還元剤であり、標準電極電位が0.056V以下の還元剤であることが好ましく、具体的には、ヒドラジン(−1.15V)やホルマリン(0.056V)等を好ましく用いることができる。その中でも、特に還元力が強いヒドラジンおよびその水和物を用いることが好ましく、ヒドラジン一水和物を用いることがより好ましい。このように、標準電極電位が0.056V以下の還元力が強い還元剤を用いることで、核として好適な微細で均一な銀微粒子を得ることができる。標準電極電位が0.056Vを越える還元力が弱い還元剤を用いると、還元速度が遅くなるため、核生成とともに粒子成長も同時に進行してしまうことがあり、均一な粒径の核が得られないとともに粒径が大きくなり、核として好ましい銀微粒子が得られない。
また、強還元剤の混合量は、核生成用銀溶液中の銀量に対して1.0当量以上、4.0当量未満とすることが好ましく、2.0当量以上、4.0当量未満とすることがより好ましい。強還元剤の混合量をこのような範囲とすることで、銀核溶液中に均一で沈殿しない銀核を形成することができる。そして、後述するように、その銀核溶液に弱還元剤を混合して得られた還元剤溶液と、ろ過した粒子成長用銀溶液とを混合することで、均一な粒径を有する銀粉を得ることができる。また、より好ましく強還元剤を核生成用銀溶液中の銀量に対して2.0当量以上、4.0当量未満の範囲で混合することによって、微細で、より粒径の均一性が高い銀核を得ることができる。
強還元剤の混合量を核生成用銀溶液中の銀量に対して1.0当量未満とした場合、銀核粒子が連結して沈殿し易くなるため、粒子成長時の核数が一定にならず、粒径制御が十分に行えないことがある。また、粒径が不均一な銀核となることにより粒子成長時の成長が不均一となり、均一な粒径を有する銀粉が得られないことがある。一方、強還元剤の混合量を4.0当量以上とした場合、銀核溶液中に粗大粒子が生成することがあるため好ましくない。
分散剤としては、ポリビニルアルコール、ポリビニルピロリドン、変性シリコンオイル系界面活性剤、ポリエーテル系界面活性剤から選択される少なくとも1種であることが好ましい。分散剤を使用しないと、還元反応により発生した銀核や核が成長した銀粒子が凝集を起こし、分散性が悪いものとなってしまう。
また、分散剤の混合量としては、後述する核含有還元剤溶液と粒子成長用銀溶液の混合後における粒子成長用銀溶液中の銀量、すなわち、反応液中の銀量から核含有還元剤溶液中の銀量を差し引いた粒子成長に用いられる銀量に対して0.2質量%〜30質量%とすることが好ましく、1.5質量%〜20質量%とすることがより好ましい。混合量が0.2質量%未満であると、凝集抑制効果が十分に得られず、一方で、混合量が30質量%を超えても、それ以上の凝集抑制効果の向上がなく、排水処理等の負荷が増加するのみとなる。なお、核生成用銀溶液中の銀量は、粒子成長用銀溶液中の銀量と比べて少量であるため、上述した添加量の分散剤を予め核生成用銀溶液中に添加することにより、核生成時にも十分な凝集防止効果を得ることができる。
また、分散剤としてポリビニルアルコールやポリビニルピロリドンを用いた場合、還元反応時に発泡する場合があるため、例えば後述する銀溶液に消泡剤を添加してもよい。
核生成用銀溶液は、銀化合物を錯化剤により溶解して得られた銀錯体を含む溶液であり、上述した強還元剤と分散剤を混合して還元させることによって銀核を生成させるための溶液である。
銀化合物としては、上述のように塩化銀を用いることが好ましい。塩化銀を用いることにより、硝酸銀を出発原料としたときのようなガス回収や環境影響の問題も少ない。このような塩化銀としては、高純度塩化銀が工業用に安定的に製造されている。この塩化銀を、例えばアンモニア水に溶解することによって銀溶液を得ることができる。塩化銀を溶解するアンモニア水は、工業的に用いられる通常のものでよいが、不純物混入を防止するため可能な限り高純度のものが好ましい。
核生成用銀溶液中の銀量に対するアンモニア量は、銀とアンモニアのモル比で20〜100とすることが好ましい。銀量に対するアンモニア量がモル比で20未満の場合、塩化銀を用いた場合には塩化銀がアンモニア水に溶解しにくいため、塩化銀の溶解残渣が発生して不均一な核として作用し、得られる銀粒子の粒径が不均一になることがある。一方、銀量に対するアンモニア量がモル比で100を越える場合、核生成反応速度が遅くなり、還元終了までに長時間を要するため、好ましくない。
核生成用銀溶液中の銀濃度としては、6.0g/L以下とすることが好ましい。銀濃度が6.0g/Lを越えると、核生成とともに粒子が成長して均一な粒径の銀核が得られない。核の成長を抑制してより微細で均一な粒径の銀核が分散した銀核溶液を得たい場合、銀濃度を1.0g/L以下とすることがより好ましい。これらのことから、核生成用銀溶液中の銀濃度を好ましくは6.0g/L以下、より好ましくは1.0g/L以下とすることによって、その銀量あたりに生成される核を微細で均一な粒径とするとともにその数をほぼ一定とすることができる。そして、これにより、核生成用銀溶液中の銀量と後述する粒子成長用銀溶液中の銀量との比により、生成する銀粒子の粒径を制御することができる。詳細は後述する。
このように、銀核溶液調製工程S1においては、上述した強還元剤を含む溶液と分散剤と核生成用銀溶液とを混合することにより、強還元剤によって銀溶液中の銀錯体を還元し、後述する粒子成長工程S3における銀粒子の成長の核となる銀粒子を生成させる。
なお、還元反応においては、反応の均一性あるいは反応速度を制御するために、上述した強還元剤を純水等で希釈して水溶液として用いることができる。
[核含有還元剤溶液調製工程]
核含有還元剤溶液調製工程S2では、銀核溶液調製工程S1にて調製した銀核溶液と還元剤とを混合して、核を含有した核含有還元剤溶液を得る。この核を含有した還元剤溶液が、後述する粒子成長工程S3における還元反応における還元剤として作用する。
核含有還元剤溶液調製工程S2において銀核溶液と混合する還元剤は、上述した銀核溶液調製工程S1にて添加した強還元剤よりも標準電極電位が高く、還元力の弱い弱還元剤である。具体的に、添加する弱還元剤としては、0.056Vを越える還元剤であることが好ましく、特にアスコルビン酸(0.058V)を用いることが好ましい。このアスコルビン酸は、還元作用が緩やかであり、核からの粒子成長が均一に進行するため特に好ましい。
また、強還元剤と弱還元剤の標準電極電位の差は、1.0V以上であることがより好ましい。標準電極電位の差が小さいと、後述する粒子成長用銀溶液との混合時に、新たな核が生成して微粒子の混在や粒径の不均一性が生じることがある。これに対し、標準電極電位の差が1.0V以上である強還元剤と弱還元剤とを組合せることで、粒子成長期における核生成を抑制することができ、均一な粒径の銀粒子を得ることができる。
また、弱還元剤の添加量としては、後述する粒子成長工程S3において粒子成長に用いられる粒子成長用銀溶液中の銀量に対して1当量〜3当量とすることが好ましい。添加量が粒子成長用銀溶液中の銀量に対して1当量未満の場合、未還元の銀が残留するため好ましくない。一方、添加量が3当量より多い場合には、コストが高くなるため好ましくない。
なお、後述する粒子成長工程S3での還元反応において、反応を均一にし、あるいは反応速度を制御するために、上述した還元剤溶液を純水等で希釈することができる。
[粒子成長工程]
粒子成長工程S3では、核含有還元剤調製工程S2にて得られた核含有還元剤溶液と、固形粒子の含有量が銀量に対して20質量ppm以下であり、銀錯体を含む粒子成長用銀溶液とを混合してその銀錯体を還元することによって、銀粒子を成長させて銀粒子スラリーを得る。
粒子成長用銀溶液は、上述した核生成用銀溶液と同様に銀化合物を錯化剤により溶解して得られた銀錯体を含む溶液をろ過した溶液である。この粒子成長用銀溶液は、調製した核含有還元剤溶液と混合させることによって銀溶液中の銀錯体を還元させ、還元剤溶液中の核に基づいて粒子を成長させて銀粒子スラリーを生成させるための溶液である。
ここで、固形粒子の含有量が銀溶液中の銀量に対して20質量ppm以下である粒子成長用銀溶液を用いること重要である。粒子成長用銀溶液に固形粒子が含まれると、後の粒子成長工程S3において、固形粒子が核として作用するため、見かけ上、核が増えた状態となるため、所望の値に粒径を制御することが困難となる。すなわち、核が増えた状態となるため、多くの核から銀粒子が成長することになり、一つの銀粒子の粒径が小さくなる。したがって、粒子成長用銀溶液に含まれる固形粒子の含有量を銀量に対して20質量ppm以下とすることによって、粒子成長工程S3で成長する核数を制御することができ、得られる銀粉の粒径を所望の値に安定して制御することができる。固形粒子の含有量は、粒子成長用銀溶液を分画分子量が10,000以下の限外ろ過器でろ過した後、限外ろ過で捕集された固形粒子を硝酸によって溶解し、分析することによって求めることができる。
粒子成長用銀溶液は、固形粒子の含有量が銀溶液中の銀量に対して20質量ppm以下であればよいが、核含有還元剤溶液との混合前に、粒子成長用銀溶液を限外ろ過することが好ましい。これによって、粒子成長用銀溶液に含有される固形粒子を低減することができる。銀溶液に含まれる不純物の粒径によって、ろ過精度を変える必要があるが、例えば分画分子量が150,000の限外ろ過を行った場合、10nm以上の不純物粒子を除去することができる。通常、10nm未満の固形粒子は含有量が少ないため、10nm以上の固形粒子を除去することによって、その含有量を銀溶液中の銀量に対して20質量ppm以下とすることができる。固形粒子の除去が不十分である場合には、さらに分画分子量の限外ろ過を行えばよいが、分画分子量が10,000以下のものを使用した場合、ろ過面積が狭くなり、ろ過速度の低下が顕著になるため、好ましくない。
粒子成長用銀溶液中の銀化合物としては、上述のように、硝酸銀を用いたときのようなガス回収や環境影響の問題が少ないという観点から塩化銀を用いることが好ましい。また、詳細な理由は不明であるが、塩化銀を用いることによって、核を用いた製造方法との組合せにより、高い生産性と粒径均一性の両立が可能となる。この塩化銀を、例えばアンモニア水に溶解することによって銀溶液を得ることができる。塩化銀を溶解するアンモニア水は、工業的に用いられる通常のものでよいが、不純物混入を防止するため可能な限り高純度のものが好ましい。
粒子成長用銀溶液中の銀濃度としては、20g/L〜90g/Lとすることが好ましい。銀濃度が低濃度であっても粒子の成長が生じて銀粒子を得ることはできるが、20g/L未満では、排水量が増大して高コストになるとともに、高い生産性でもって銀粉を製造することができない。一方で、銀濃度が90g/Lを越えると、アンモニア水に対する塩化銀の溶解度に近くなり、塩化銀が再析出する可能性があるため、好ましくない。粒子成長の速度を均一化して均一な粒径の銀粒子を得るためには、銀濃度を50g/L以下とすることがより好ましい。
本実施の形態に係る銀粉の製造方法においては、混合される核含有還元剤溶液中の銀量と粒子成長用銀溶液中の銀量との比により、得られる銀粉の粒径を制御することが可能であり、容易に所望とする粒径を有する銀粉を得ることができる。すなわち、銀核数と粒子成長用銀溶液中の銀量との比によって、銀粉の粒径を制御することが可能となる。また、この銀粉の製造方法においては、核の生成と粒子の成長とが分離されているため、反応液中の核の数を制御できる範囲が広くなり、容易に広範囲の粒径制御が可能となり、高い銀濃度で高い生産性でもって銀粉を得ることができる。具体的に、走査型電子顕微鏡観察による平均粒径が2.0μmを超え、3.0μm以下の銀粉を得るためには、粒子成長用銀溶液中の銀量を、核含有還元剤溶液中の銀量に対して1500〜250000倍とすることが必要であり、15000〜80000倍とすることが好ましい。
ここで、粒子成長工程S3においては、上述のように核含有還元剤溶液とろ過した銀錯体を含む粒子成長用銀溶液とを定量的かつ連続的に供給して混合することによって反応液とし、その反応液中で銀錯体を還元して銀粒子を成長させるようにする。このように、各溶液を定量的かつ連続的に供給して混合させることで、還元反応場の銀錯体の濃度と還元剤の濃度が一定に保たれ、一定の粒子成長を図ることができ、また高い生産性でもって銀粉を製造することができる。なお、以下の説明では、粒子成長用銀溶液を単に銀溶液といい、核含有還元剤溶液を単に還元剤溶液という場合がある。
核含有還元剤溶液と粒子成長用銀溶液とを連続的に供給して混合し銀錯体を還元するための反応管としては、粒子成長用銀溶液を供給する第1の供給管(銀溶液供給管)と、核含有還元剤溶液を供給する第2の供給管(還元剤溶液供給管)と、銀溶液と還元剤溶液とを混合する混合管とからなるものを用いることができる。このように、核含有還元剤溶液と粒子成長用銀溶液の各溶液を個別に反応管に供給し、混合管内で混合させて還元反応を生じさせる。具体的には、例えばY字管がその代表例として挙げられる。また、反応管においては、混合管内部であって各供給管から供給された溶液が合流した直後の位置からスタティックミキサーを配置させることができる。
各供給管や混合管の形状やサイズは、特に限定するものではないが、円柱状のものであることが、それぞれの配管同士を接続し易いという点で好ましい。また、特に混合管については、内部にスタティックミキサーを配置する必要があることから、円柱状のものであることが好ましい。
銀溶液供給管と還元剤溶液供給管の材質としては、それぞれ銀溶液や還元剤溶液と反応しない材質を選択すればよく、塩化ビニル、ポリプロピレン、ポリエチレン等から選択することができる。また、混合管の材質としては、銀溶液や還元剤溶液と反応しないことと、還元反応後の銀が付着しないことが選択上重要であり、ガラスであることが好ましい。
スタティックミキサーの材質としては、混合管と同様にガラスであることが好ましい。また、スタティックミキサーのエレメントの数は、特に限定されないが、少な過ぎると還元反応が均一に進まず微粒ができることになり好ましくなく、一方で、多過ぎても無用に混合管を長くする必要が生じるため好ましくない。したがって、各溶液の流量と流速によって適宜決めることが好ましい。
反応管においては、銀溶液と還元剤溶液との反応液が、上述したスタティックミキサーにより十分に撹拌混合されることによってその反応液中における還元反応が100%終了するまで、混合管内を流れることが望ましい。また、例えば、スタティックミキサーの下流側に、蛇管等を接続させて反応場を十分な長さとして、還元反応が100%終了するようにしてもよい。これにより、未還元の銀錯体が残留して粗大な銀粒子が生成されることを防止できる。
粒子成長用銀溶液と核含有還元剤溶液をそれぞれ反応管に供給する手段としては、一般的な定量ポンプを用いることができるが、脈動の小さいものが好ましい。また、粒子成長用銀溶液と核含有還元剤溶液の流量は、一方が他方の10倍以下であることが好ましい。各溶液の流量に10倍以上の差があると、均一に混合されにくいという問題がある。また、各溶液の流速は、0.1L/分以上、10L/分以下とすることが好ましい。流速が0.1L/分未満の場合では、生産性が悪化するため好ましくない。一方で、流速が10L/分より多い場合では、均一に混合され難くなるため好ましくない。
反応管内で銀溶液と還元剤溶液とが混合されて還元反応が終了した反応液は、一旦、所定の槽に受けるようにすることが好ましい(以下、この槽を「受槽」という)。受槽内では、還元により生成した銀粒子が沈降しないように攪拌することが必要になる。銀粒子が沈降すると、銀粒子同士が凝集体を形成し分散性が悪くなってしまい好ましくない。受槽内での攪拌は、銀粒子が沈降しない程度の能力で撹拌すればよく、一般的な攪拌機を用いて撹拌すればよい。受槽に入った反応液は、ポンプによりフィルタープレス等の濾過機に送液され、連続的に次の工程へと流すことができる。
以上のようにして銀粒子スラリーを生成すると、その銀粒子スラリーを濾過した後、洗浄し、乾燥することによって銀粉を生成する。
洗浄方法としては、特に限定されるものではないが、例えば銀粒子を水に投入し、撹拌機又は超音波洗浄器を使用して撹拌した後、フィルタープレス等で濾過して回収する方法が用いられる。この洗浄方法において、水への投入、撹拌洗浄及び濾過からなる操作を、数回繰り返して行うことが好ましい。また、洗浄に用いる水は、銀粉に対して有害な不純物元素を含有していない水を使用し、特に純水を使用することが好ましい。
次に、洗浄後の銀粉を乾燥させて、水分を蒸発させる。乾燥方法としては、特に限定されるものではないが、例えば洗浄後の銀粒子をステンレスバット上に置き、大気オーブン又は真空乾燥機等の市販の乾燥装置を用いて、40℃〜80℃程度の温度で加熱することにより行うことができる。
以上詳細に説明したが、上述した銀粉の製造方法によれば、微粒を含まない均一な粒径に制御した銀粉を製造することができる。具体的に、この製造方法により製造された銀粉は、走査型電子顕微鏡観察による一次粒子の平均粒径が2.0μmを超え、3.0μm以下であり、粒径の相対標準偏差(標準偏差σ/平均粒径d)が0.3以下、好ましくは0.25以下となる。ここで、一次粒子とは、外見上から判断して、単位粒子と考えられるものを意味する。
このような均一で粒度分布が狭い銀粉によれば、電子機器の配線層や電極等の形成に利用される樹脂型銀ペーストや焼成型銀ペースト等のペースト用銀粉として好適に用いることができる。
また、本実施の形態に係る銀粉の製造方法は、粒子成長用銀溶液と核含有還元剤溶液とを定量的かつ連続的に供給して混合することによって還元反応を生じさせているので、反応液中の銀濃度が一定に保たれ、一定の粒子成長を図ることができ、より一層に均一な粒径を有する銀粉を高い生産性でもって製造することができる。このように、本実施の形態に係る銀粉の製造方法は、銀粉の粒径制御が容易で量産性に優れており、その工業的価値は極めて大きい。
以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。
(実施例1)
塩化銀1.46g(住友金属鉱山(株)製)を36℃の25質量%アンモニア水68mLと純水1.5Lとの混合液へ撹拌しながら投入して溶解した。そこへ、50℃の純水6.77Lに溶解させた分散剤のポリビニルアルコール87.2g((株)クラレ製、PVA205)を投入して得られた核生成用銀溶液(溶液中の銀濃度は0.15g/L、銀量に対するアンモニア量のモル比で90)を、36℃に保持した。次に、強還元剤であるヒドラジン一水和物0.38mL(核生成用銀溶液中の銀量に対して3.0当量)を純水1.22Lへ添加して得られた還元剤溶液を、36℃に保持した。そして、核生成用銀溶液中に、61mL/分の流量で還元剤溶液を添加して銀核を生成させて銀核溶液とした。
次に、得られた銀核溶液から2.39Lを分取し、弱還元剤であるアスコルビン酸18.3kg(下記の粒子成長用銀溶液中の銀量に対して2.5当量)と分散剤であるポリビニルアルコール47.3gを純水108Lに溶解させた溶液と混合して、核含有還元剤溶液とした。なお、核含有還元剤溶液に添加したポリビニルアルコールの添加量は、粒子成長用銀溶液中の銀量に対して0.3質量%である。
一方、液温32℃に保持した25質量%アンモニア水216Lに、塩化銀15.3kg(住友金属鉱山(株)製)を撹拌しながら投入し溶解して銀錯体溶液を得た。この溶液を限外ろ過(分画分子量150,000)した。さらに、消泡剤((株)アデカ製、アデカノールLG−126)を体積比で100倍に希釈し、この消泡剤希釈液150mLを銀錯体溶液に添加して得られた粒子成長用銀溶液(溶液中の銀濃度は53g/L)を、温浴中において32℃に保持した。粒子成長用銀溶液の一部を採取して、分画分子量10,000の限外ろ過を行って固形粒子の含有量を求めたところ、溶液中の銀量に対して20質量ppm以下であることが確認された。なお、粒子成長用銀溶液中の銀量は、核含有還元剤溶液中の銀量の60000倍である。
チューブポンプ(MASTERFLEX製)を使用し、粒子成長用銀溶液と核含有還元剤溶液とを、それぞれ2.7L/分、0.90L/分で送液し混合して反応液とした。反応液中で銀錯体を還元して銀粒子スラリーを得て、受槽内に貯留した。2液の送液が終了した後、受槽内での攪拌を30分継続した。
撹拌終了後の反応液を、フィルタープレスを使用して濾過し、銀粒子を固液分離した。続いて、回収した銀粒子を0.05mol/LのNaOH水溶液137L中に投入し、そこへステアリン酸エマルジョン(中京油脂(株)製、セロゾール920)196gを添加し、15分間撹拌した後、フィルタープレスで濾過して回収した。0.05mol/LのNaOH水溶液への投入、撹拌、及び濾過からなる操作を更に2回繰返した後、回収した銀粒子を純水137L中に投入し、15分間の撹拌による洗浄と、フィルタープレスによる濾過からなる操作を行った。その後、銀粒子をステンレスバットに移し、真空乾燥機にて60℃で10時間乾燥して銀粉を得た。
図2に得られた銀核のSEM像を示し、図3に銀粉のSEM像を示す。これらのSEM像から明らかなように、得られた銀核と銀粉の双方ともに、均一な粒子からなるものであった。また、SEM像より300個以上の一次粒子の粒径を測長して粒子数で平均することで求めた銀核と銀粉の平均粒径は、それぞれ0.077μmと2.62μmであり、測定結果より得られた銀粉の粒径の相対標準偏差(標準偏差σ/平均粒径d)は0.23であり、均一で微粒がないことが確認された。また、添加した核数から計算される粒径は、2.90μmであり、狙いとした粒径の銀粉が得られていることが確認できた。
(実施例2)
銀核溶液と混合するポリビニルアルコールを182gにした以外は、実施例1と同様にして、銀粉を作製した。粒子成長用銀溶液の一部を採取して、分画分子量10,000の限外ろ過を行って固形粒子の含有量を求めたところ、溶液中の銀量に対して20質量ppm以下であることが確認された。なお、核含有還元剤溶液に添加したポリビニルアルコールの添加量は、粒子成長用銀溶液中の銀量に対して0.6質量%であり、粒子成長用銀溶液中の銀量は、核含有還元剤溶液中の銀量の60000倍である。
図4に得られた銀核のSEM像を示し、図5に銀粉のSEM像を示す。これらのSEM像から明らかなように、得られた銀核と銀粉の双方ともに、均一な粒子からなるものであった。また、SEM像より300個以上の一次粒子の粒径を測長して粒子数で平均することで求めた銀核と銀粉の平均粒径は、それぞれ0.072μmと2.20μmであり、測定結果より得られた銀粉の粒径の相対標準偏差(標準偏差σ/平均粒径d)は0.20であり、均一で微粒がないことが確認された。また、添加した核数から計算される粒径は、2.70μmであり、狙いとした粒径の銀粉が得られていることが確認できた。
(比較例1)
塩化銀45.0g(住友金属鉱山(株)製)を36℃の25質量%アンモニア水1025mLと純水175Lとの混合液へ撹拌しながら投入して溶解した。そこへ、50℃の純水50Lに溶解させた分散剤のポリビニルアルコール1350g((株)クラレ製、PVA205)を投入して得られた核生成用銀溶液(溶液中の銀濃度は0.15g/L、銀量に対するアンモニア量のモル比で45)を、36℃に保持した。次に、強還元剤であるヒドラジン一水和物9.72mL(核生成用銀溶液中の銀量に対して2.5当量)を純水37.6Lへ添加して得られた還元剤溶液を、36℃に保持した。そして、核生成用銀溶液中に、630mL/分の流量で還元剤溶液を添加して銀核を生成させて銀核溶液とした。
次に、得られた銀核溶液に、弱還元剤であるアスコルビン酸20.5kg(下記の粒子成長用銀溶液中の銀量に対して1.4当量)と純水69Lを添加して核含有還元剤溶液とした。なお、核含有還元剤溶液に添加したポリビニルアルコールの添加量は、粒子成長用銀溶液中の銀量に対して3.8質量%である。
一方、液温32℃に保持した25質量%アンモニア水270Lに、塩化銀12.6kg(住友金属鉱山(株)製)を撹拌しながら投入し溶解して銀錯体溶液を得た。この溶液を限外ろ過(分画分子量150,000)した。さらに、消泡剤((株)アデカ製、アデカノールLG−126)を体積比で100倍に希釈し、この消泡剤希釈液124mLを銀錯体溶液に添加して得られた粒子成長用銀溶液(溶液中の銀濃度は35g/L)を、温浴中において32℃に保持した。粒子成長用銀溶液の一部を採取して、分画分子量10,000の限外ろ過を行って固形粒子の含有量を求めたところ、溶液中の銀量に対して20質量ppm以下であることが確認された。なお、粒子成長用銀溶液中の銀量は、核含有還元剤溶液中の銀量の1060倍である。
チューブポンプ(MASTERFLEX製)を使用し、粒子成長用銀溶液と核含有還元剤溶液とを、それぞれ2.7L/分、0.90L/分で送液し混合して反応液とした。反応液中で銀錯体を還元して銀粒子スラリーを得て、受槽内に貯留した。2液の送液が終了した後、受槽内での攪拌を30分継続した。
撹拌終了後の反応液を、フィルタープレスを使用して濾過し、銀粒子を固液分離した。続いて、回収した銀粒子を0.05mol/LのNaOH水溶液114L中に投入し、そこへステアリン酸エマルジョン(中京油脂(株)製、セロゾール920)162gを添加し、15分間撹拌した後、フィルタープレスで濾過して回収した。0.05mol/LのNaOH水溶液への投入、撹拌、及び濾過からなる操作を更に2回繰返した後、回収した銀粒子を純水114L中に投入し、15分間の撹拌による洗浄と、フィルタープレスによる濾過からなる操作を行った。その後、銀粒子をステンレスバットに移し、真空乾燥機にて60℃で10時間乾燥して銀粉を得た。
図6に得られた銀核のSEM像を示し、図7に銀粉のSEM像を示す。これらのSEM像から明らかなように、得られた銀核と銀粉の双方ともに、均一な粒子からなるものであった。また、SEM像より300個以上の一次粒子の粒径を測長して粒子数で平均することで求めた銀核と銀粉の平均粒径は、それぞれ0.068μmと0.68μmであった。しかしながら、粒子成長用銀溶液中の銀量が、核含有還元剤溶液中の銀量の1500倍以下であるため、銀粉の粒径が小さくなり、2.0μmを超える銀粉は得られなかった。

Claims (13)

  1. 銀錯体を含む銀溶液と還元剤溶液とを連続的に混合して反応液とし、該反応液中の銀錯体を還元して銀粒子スラリーを得た後、濾過、洗浄、乾燥の各工程を経て銀粉を製造する銀粉の製造方法であって、
    銀錯体を含む核生成用銀溶液と、強還元剤を含む溶液と、分散剤とを混合して銀核溶液を得る銀核溶液調製工程と、
    上記銀核溶液調製工程により得られた銀核溶液と、上記強還元剤より標準電極電位が高い弱還元剤とを混合して核含有還元剤溶液を得る核含有還元剤溶液調製工程と、
    上記核含有還元剤溶液調製工程により得られた核含有還元剤溶液と、固形粒子の含有量が銀量に対して20質量ppm以下であり、銀錯体を含む粒子成長用銀溶液とを連続的に混合して反応液とし、該反応液中で銀錯体を還元して銀粒子を成長させる粒子成長工程と
    を有し、
    上記銀核溶液調製工程では、上記核生成用銀溶液中の銀量に対する上記強還元剤の当量が1.0当量以上4.0当量未満であり、上記強還元剤の標準電極電位が0.056V以下であり、上記核生成用銀溶液中の銀濃度が6.0g/L以下であり、
    上記粒子成長工程では、上記粒子成長用銀溶液中の銀量が上記核含有還元剤溶液中の銀量の1500倍〜250000倍であることを特徴とする銀粉の製造方法。
  2. 上記核含有還元剤溶液との混合前に、上記粒子成長用銀溶液を限外ろ過するろ過工程をさらに有することを特徴とする請求項1に記載の銀粉の製造方法。
  3. 上記限外ろ過の分画分子量が150,000以下であることを特徴とする請求項2に記載の銀粉の製造方法。
  4. 上記強還元剤と上記弱還元剤の標準電極電位の差が1.0V以上であることを特徴とする請求項1乃至請求項3の何れか1項に記載の銀粉の製造方法。
  5. 上記強還元剤はヒドラジン一水和物であり、上記弱還元剤はアスコルビン酸であることを特徴とする請求項1乃至請求項4の何れか1項に記載の銀粉の製造方法。
  6. 上記核生成用銀溶液中の銀濃度が1.0g/L以下であり、上記粒子成長用銀溶液中の銀濃度が20g/L〜90g/Lであることを特徴とする請求項1乃至請求項5の何れか1項に記載の銀粉の製造方法。
  7. 上記銀錯体が塩化銀をアンモニア水に溶解して得られた銀アンミン錯体であることを特徴とする請求項1乃至請求項6の何れか1項に記載の銀粉の製造方法。
  8. 上記核生成用銀溶液中の銀量に対するアンモニア量がモル比で20〜100であることを特徴とする請求項1乃至請求項7の何れか1項に記載の銀粉の製造方法。
  9. 上記分散剤の混合量が、上記核含有還元剤溶液と上記粒子成長用銀溶液の混合後における上記粒子成長用銀溶液中の銀量に対して0.2質量%〜30質量%であることを特徴とする請求項1乃至請求項8の何れか1項に記載の銀粉の製造方法。
  10. 上記分散剤がポリビニルアルコール、ポリビニルピロリドン、変性シリコンオイル系界面活性剤、ポリエーテル系界面活性剤から選択される少なくとも1種であることを特徴とする請求項1乃至請求項9の何れか1項に記載の銀粉の製造方法。
  11. 上記核含有還元剤溶液と上記粒子成長用銀溶液との混合において、各溶液を個別に反応管に供給し、該反応管内に配置したスタティックミキサーで混合することを特徴とする請求項1乃至請求項10の何れか1項に記載の銀粉の製造方法。
  12. 上記銀粉の一次粒子の平均粒径が2.0μmを超え、3.0μm以下であり、該一次粒子の粒径の標準偏差値を平均粒径で除した粒径の相対標準偏差値が0.3以下であることを特徴とする請求項1〜11の何れか1項に記載の銀粉の製造方法
  13. 上記相対標準偏差値が0.25以下であることを特徴とする請求項12に記載の銀粉の製造方法
JP2014014490A 2013-10-28 2014-01-29 銀粉及びその製造方法 Expired - Fee Related JP6187287B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014014490A JP6187287B2 (ja) 2013-10-28 2014-01-29 銀粉及びその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013223569 2013-10-28
JP2013223569 2013-10-28
JP2014014490A JP6187287B2 (ja) 2013-10-28 2014-01-29 銀粉及びその製造方法

Publications (2)

Publication Number Publication Date
JP2015110824A JP2015110824A (ja) 2015-06-18
JP6187287B2 true JP6187287B2 (ja) 2017-08-30

Family

ID=53525851

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2013269992A Expired - Fee Related JP6003880B2 (ja) 2013-10-28 2013-12-26 銀粉の製造方法
JP2014014490A Expired - Fee Related JP6187287B2 (ja) 2013-10-28 2014-01-29 銀粉及びその製造方法
JP2014042611A Expired - Fee Related JP6213311B2 (ja) 2013-10-28 2014-03-05 銀粉の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013269992A Expired - Fee Related JP6003880B2 (ja) 2013-10-28 2013-12-26 銀粉の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014042611A Expired - Fee Related JP6213311B2 (ja) 2013-10-28 2014-03-05 銀粉の製造方法

Country Status (1)

Country Link
JP (3) JP6003880B2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105268994A (zh) * 2015-12-02 2016-01-27 广东南海启明光大科技有限公司 一种含纳米银粒子的乳液制备方法
CN105499601B (zh) * 2015-12-21 2017-10-17 中国科学院理化技术研究所 一种银纳米团簇的制备方法
CN105499603B (zh) * 2015-12-25 2017-07-04 鲁东大学 蛹虫草提取液生物合成纳米银抑菌剂的方法
JP2017191011A (ja) * 2016-04-13 2017-10-19 株式会社村田製作所 粉体の評価方法
CN105869775A (zh) * 2016-05-13 2016-08-17 浙江光达电子科技有限公司 太阳能电池正面银浆用球形银粉的制备方法
CN105880630A (zh) * 2016-06-07 2016-08-24 上海纳米技术及应用国家工程研究中心有限公司 一种银纳米线的制备方法
CN109562448B (zh) * 2016-08-10 2021-01-22 阪东化学株式会社 金属银微粒子的制造方法
KR101826321B1 (ko) * 2016-11-30 2018-02-06 (주)차라도 건축물 기초 냉교 현상 차단공법
KR102007860B1 (ko) * 2017-11-06 2019-08-06 엘에스니꼬동제련 주식회사 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
KR102152836B1 (ko) * 2018-11-30 2020-09-07 엘에스니꼬동제련 주식회사 태양전지 전극용 도전성 페이스트 및 이를 사용하여 제조된 태양전지
CN112420239A (zh) * 2019-11-07 2021-02-26 陕西彩虹新材料有限公司 一种纳米低银高效晶硅太阳能用正银导体浆料的制备方法
CN110899691A (zh) * 2019-11-25 2020-03-24 江苏博迁新材料股份有限公司 一种可控烧结活性的银粉生产方法
CN111097922A (zh) * 2020-02-21 2020-05-05 深圳先进技术研究院 一种纳米银颗粒及其制备方法和用途
CN111243779A (zh) * 2020-03-09 2020-06-05 广东四维新材料有限公司 用于激光切割导电银浆和低温固化超细球状银粉及彼此的制备方法
CN113579229B (zh) * 2021-06-18 2023-04-18 西湖未来智造(杭州)科技发展有限公司 纳米金属3d打印墨水及其应用
CN113414401B (zh) * 2021-06-22 2022-03-15 山东建邦胶体材料有限公司 晶体硅太阳能perc电池银浆的银粉及其制备方法
CN114273666A (zh) * 2021-12-24 2022-04-05 浙江光达电子科技有限公司 一种太阳能电池银浆用银粉及其制备方法
CN114619039B (zh) * 2022-03-15 2023-01-31 江苏连银新材料有限公司 一种球形银粉及其制备方法和导电浆料
CN115464148B (zh) * 2022-09-21 2023-05-26 广东石油化工学院 一种花瓣状微纳米银粉的制备方法
CN116984622B (zh) * 2023-09-26 2024-02-09 东方电气集团科学技术研究院有限公司 一种诱导结晶型微米尺寸银粉生长的纳米晶种制备方法
CN117300138B (zh) * 2023-10-07 2024-04-16 龚辉 一种用于低温银浆的超细银粉的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE364589T1 (de) * 2002-01-29 2007-07-15 Asahi Kasei Chemicals Corp Verfahren zur herstellung von hochreinen kristallen von glykolsäure
JP4787938B2 (ja) * 2003-03-28 2011-10-05 ザ・プロウボウスト・フェロウズ・ファウンデーション・スカラーズ・アンド・ザ・アザー・メンバーズ・オブ・ボード・オブ・ザ・カレッジ・オブ・ザ・ホリー・アンド・アンデバイデッド・トリニティ・オブ・クイーン 銀ナノ粒子を用いた検体検出用センサ
JP5424545B2 (ja) * 2007-09-06 2014-02-26 住友金属鉱山株式会社 銅微粒子及びその製造方法、並びに銅微粒子分散液
JP2009120901A (ja) * 2007-11-14 2009-06-04 Ne Chemcat Corp 金−白金コアシェルナノ粒子のコロイド、及びその製造法
JP5415708B2 (ja) * 2008-03-26 2014-02-12 Dowaエレクトロニクス株式会社 銀粉の製造方法
JP5355007B2 (ja) * 2008-09-17 2013-11-27 Dowaエレクトロニクス株式会社 球状銀粉の製造方法
JP5725699B2 (ja) * 2009-08-21 2015-05-27 Dowaエレクトロニクス株式会社 銀粉および銀粉の製造方法
JP5683256B2 (ja) * 2010-12-24 2015-03-11 三菱製紙株式会社 銀ナノワイヤの製造方法
JP5790433B2 (ja) * 2011-11-18 2015-10-07 住友金属鉱山株式会社 銀粉及びその製造方法
US9744593B2 (en) * 2012-03-07 2017-08-29 Sumitomo Metal Mining Co., Ltd. Silver powder and method for producing same
JP5835077B2 (ja) * 2012-04-18 2015-12-24 住友金属鉱山株式会社 ニッケル粉及びその製造方法

Also Published As

Publication number Publication date
JP2015110823A (ja) 2015-06-18
JP2015110824A (ja) 2015-06-18
JP2015110826A (ja) 2015-06-18
JP6003880B2 (ja) 2016-10-05
JP6213311B2 (ja) 2017-10-18

Similar Documents

Publication Publication Date Title
JP6187287B2 (ja) 銀粉及びその製造方法
JP6119599B2 (ja) 銀粉の製造方法
TWI572563B (zh) Silver powder and its manufacturing method
JP6201875B2 (ja) 銀粉及びその製造方法
JP2010043337A (ja) 銀粉及びその製造方法
JP2012077372A (ja) 銀粉及びその製造方法
JP5949654B2 (ja) 銀粉およびその製造方法
JP2011001581A (ja) 銀粉及びその製造方法
JP6086046B2 (ja) 銀粉の製造方法及び銀粉の製造装置
JP5803830B2 (ja) 銀粉の製造方法
JP6115405B2 (ja) 銀粉の製造方法
JP6086145B2 (ja) 銀粉の製造方法
JP6115406B2 (ja) 銀粉の製造方法
JP2018053342A (ja) 銀粉の製造方法及び銀粉の製造装置
JP6135405B2 (ja) 銀粉及びその製造方法
JP2016138310A (ja) 銀粉及びその製造方法、並びに感光性銀ペースト
JP5884708B2 (ja) 銀粉の製造方法及びその製造装置
JP2014001455A (ja) 銀粉
JP2015214759A (ja) 銀粉の製造方法
JP2014065963A (ja) 銀粉の製造方法及び銀粉製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170717

R150 Certificate of patent or registration of utility model

Ref document number: 6187287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees