JP6120979B2 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP6120979B2
JP6120979B2 JP2015539894A JP2015539894A JP6120979B2 JP 6120979 B2 JP6120979 B2 JP 6120979B2 JP 2015539894 A JP2015539894 A JP 2015539894A JP 2015539894 A JP2015539894 A JP 2015539894A JP 6120979 B2 JP6120979 B2 JP 6120979B2
Authority
JP
Japan
Prior art keywords
failure
refrigerant
unit
diagnosis
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015539894A
Other languages
English (en)
Other versions
JP2016508590A (ja
Inventor
章吾 玉木
章吾 玉木
万誉 篠崎
万誉 篠崎
河西 智彦
智彦 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JP2016508590A publication Critical patent/JP2016508590A/ja
Application granted granted Critical
Publication of JP6120979B2 publication Critical patent/JP6120979B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0311Pressure sensors near the expansion valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、少なくとも1台以上の熱源ユニットと複数台の利用ユニットとが接続されている蒸気圧縮式の空気調和装置に関し、特に、空気調和装置の不具合部分を自動で検知することを可能とする空気調和装置に関するものである。
従来から、少なくとも1台以上の熱源ニットに複数台の利用ユニットを冷媒延長配管を介して接続することによって形成した空気調和装置が存在している。このような空気調和装置では、運転状態に異常がみられた場合、あるいは定期点検の場合等に、作業者が現場に行き、不具合部分を補修、修理するということがなされている。しかしながら、空気調和装置は、多くの部品により構成されているため、不具合部分の探索には作業者の経験や能力に大きく影響を受け、不具合部分の特定には時間を多く要してしまうケースが多くみられる。メンテナンス及びサービス体制を強化するためには、不具合部分の特定を短時間にて行うことが重要であり、これまでに様々な不具合部分の探索方法が開発されてきた。
そのようなものとして、圧縮機のモータ回転速度を固定することで、圧縮機の入口と出口の冷媒の状態を一定にし、また、室外機ファンの回転速度を固定することで、凝縮器での熱交換の度合いを一定にすることで冷媒量比を精度よく計算するという技術が開示されている(例えば、特許文献1参照)。
また、圧縮機回転数一定制御にて圧縮機によって吸入及び吐出される冷媒の流量を安定させ、かつ、室内膨張弁を制御することによる室内熱交過熱度一定制御を実施することで、室内熱交換器及びガス冷媒連絡配管における冷媒量を一定にして、冷媒回路内の冷媒量を判定するという技術が開示されている(例えば、特許文献2参照)。
さらに、電磁膨張弁を有する分岐ユニットと分岐ユニットの各分岐口に室内機が接続され、暖房運転の室内機全台運転を実施し、電磁膨張弁を一つずつ閉めていくことによって室内機と分岐ユニットの配管と配線の対応関係を検知するという技術が開示されている(例えば、特許文献3参照)。
特開2012―132601号公報(図4等) 特開2006―313057号公報(図9等) 特開2012―017886号公報(図10等)
しかしながら、特許文献1〜3に記載されているような技術では、各診断に対する診断方法が開示されているだけに留まり、現地で不具合箇所が特定できていない場合において、どの診断を先にすればよいかということについての情報は一切記載されていない。また、特許文献1〜3に記載されているような技術では、複数箇所を対象に故障の診断を実施した場合、一つ一つの診断に時間がかかるため、故障部位の特定に時間がかかってしまう。さらに、特許文献1〜3に記載されているような技術では、診断項目によってどのような運転状態を作り出せばよいかということについての記載もない。
本発明は、上記のような課題を解決するためになされたものであり、診断順序を最適化し、かつ、診断方法によって故障検知に最適な故障診断運転を実施することで、短時間、かつ、高精度に不具合部位を自動で特定することを可能とする空気調和装置を得ることを目的とする。
本発明に係る空気調和装置は、圧縮機と、熱源側熱交換器と、利用側減圧機構と、利用側熱交換器とを冷媒が循環するように配管で接続された冷媒回路と、冷媒の温度及び冷媒の圧力のうち少なくとも1つを検知する運転状態センサと、空気調和装置の構成機器の故障を特定する故障診断運転の実施を指令する診断運転指令部、及び、故障の有無を判定する判定部を有するコントローラ制御装置と、前記故障診断運転中に各機器の制御を実施する制御部を有するユニット制御装置と、を備え、前記制御部は、前記故障診断運転中における前記構成機器の故障診断を、機器動作を強制変更した時の動作前後の前記運転状態センサの出力値が所定値以内又は閾値以内の時に故障検知する応答検知診断モードと、前記故障診断運転の運転状態が安定している時の前記運転状態センサの検出値により故障検知する性能検知診断モードと、に区別して有し、前記応答検知診断モードを実施してから、前記性能検知診断モードを実施するものであり、前記故障診断運転中における前記圧縮機の運転周波数を固定し、前記故障診断運転中における熱源側送風機の回転数を外気温度と前記圧縮機の運転周波数に基づいて固定し、前記利用側減圧機構の開度を前記運転状態センサにより検出される運転状態が所定値となるように制御するものである。
本発明に係る空気調和装置によれば、故障箇所が不明であっても、短時間、かつ、高精度に不具合部位を自動で特定することが可能になる。
本発明の実施の形態1に係る空気調和装置の冷媒回路構成を示す概略図である。 本発明の実施の形態1に係る空気調和装置の制御装置の電気的な構成を示すブロック図である。 本発明の実施の形態1に係る空気調和装置の故障診断運転中の運転状態を示したタイムチャート図である。 冷媒量に対する過冷却熱交換器の高圧出口過冷却度の変化を示した概略図である。 本発明の実施の形態1に係る空気調和装置の故障診断運転時の診断順序を示したフローチャート図である。 本発明の実施の形態1に係る空気調和装置の伝送線の配線状態を示した概略図である。 本発明の実施の形態2に係る空気調和装置の据付け工事完了後に故障診断運転を用いた据付け工事の適正完了確認の際の処理の流れを示したフローチャート図である。 本発明の実施の形態2に係る空気調和装置の故障診断運転中の圧縮機の運転周波数の状態を示したタイムチャート図である。 本発明の実施の形態3に係る空気調和装置の冷媒回路構成を示す概略図である。
以下、図面に基づいて本発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。加えて、明細書では数式に文中の記号に対して、[ ]の中にその記号の単位を書くことにする。そして、無次元(単位なし)の場合は、[−]と表記する。
実施の形態1.
図1は、本発明の実施の形態1に係る空気調和装置100の冷媒回路構成を示す概略図である。図2は、空気調和装置100のユニット制御装置101及びコントローラ制御装置121の構成を示すブロック図である。図1及び図2に基づいて、空気調和装置100の構成について説明する。
この空気調和装置100は、ビルやマンション、商業施設に設置され、蒸気圧縮式にて空調用冷媒を循環させる冷凍サイクル運転を行うことによって、利用ユニット303a,303bにて選択された冷房指令(冷房ON/OFF)又は暖房指令(暖房ON/OFF)を個別に処理し、冷房と暖房の同時運転を実施することができるものである。
[空気調和装置100の機器構成]
空気調和装置100は、熱源ユニット301と、中継ユニット302と、利用ユニット303a,303bと、を有している。熱源ユニット301と中継ユニット302とは、それぞれ冷媒配管である高圧配管8と低圧配管20とで接続されている。中継ユニット302と利用ユニット303a,303bとは、それぞれ冷媒配管である室内液枝配管15a,15bと室内ガス枝配管18a,18bとで接続されている。以下の説明において、利用ユニット303a,303bをまとめて利用ユニット303と称する場合がある。
また、空気調和装置100には、空気調和装置100の全体的な動作を制御するユニット制御装置101と、ユニット制御装置101への運転動作の指令の伝達、及び運転状態のモニターが可能な、例えばノートPCやタブレット端末式PCにより構成される外部コントローラ320と、が備えられている。
なお、実施の形態1では、図1に示すように、1台の熱源ユニット301に、2台の利用ユニット303a,303bを中継ユニット302を介して接続した場合について説明するが、各ユニットの台数を特に限定するものではない。例えば、2台以上の熱源ユニット301、2台以上の中継ユニット302、及び3台以上の利用ユニット303を接続した場合についても同様に実施することができる。また、空気調和装置100に用いられる冷媒は、特に限定しない。例えば、R410A、R407C、R404A、R32、HFO−1234yf、自然冷媒(炭化水素やヘリウム、二酸化炭素等)等を用いることができる。
<熱源ユニット301>
熱源ユニット301は、たとえば屋外に設置され、利用ユニット303a,303bにて要求される運転に応じて利用ユニット303a,303bに冷媒を供給する。熱源ユニット301は、圧縮機1と、圧縮機インバータ35と、油分離器2と、四方弁3と、熱源側熱交換器4と、熱源側送風機5と、送風機モータ6と、逆止弁ブロック7(逆止弁7a〜7d、配管24、配管28)と、アキュムレータ(液溜め)21と、配管31と、キャピラリー30と、電磁弁29と、を有している。
圧縮機1は、冷媒を吸入、圧縮して高温高圧の状態にするものである。圧縮機インバータ35は、圧縮機1の運転周波数を所定値にでき、任意の値に制御することができるものである。
油分離器2は、圧縮機1から流出する油と冷媒とを分離し、油を配管31の方向へ、冷媒を四方弁3の方向へ流す機能を有している。なお、油分離器2は、必須なものではない。
四方弁3は、冷媒の流れの方向を切り換えるための弁であり、第1から第4までのポートを有している。第1ポートが圧縮機1の吐出側、第2ポートが熱源側熱交換器4、第3ポートが圧縮機1の吸入側、第4ポートが低圧配管20に繋がっている。そして、四方弁3は、第1ポートと第2ポートとが連通すると同時に第3ポートと第4ポートが閉鎖される状態(図1の実線で示す状態)と、第3ポートと第4ポートとが連通すると同時に第1ポートと第2ポートが閉鎖される状態(図1の破線で示す状態)とに設定が切換え可能に構成されている。なお、四方弁3は、冷房運転又は暖房運転の一方だけを利用するときは必須なものではない。
熱源側熱交換器4は、たとえば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり、外気等の熱媒体と冷媒との熱交換を行うものである。熱源側熱交換器4は、暖房運転時には蒸発器、冷房運転時には凝縮器として機能する。
熱源側送風機5は、熱源側熱交換器4に空気を供給するものであり、プロペラファン等で構成されている。熱源側送風機5は、熱源側熱交換器4の近傍に設置するとよい。
送風機モータ6は、熱源側送風機5を駆動し、かつ、空気の流量を可変することが可能なものであり、例えば、DCファンモータである。
逆止弁ブロック7は、冷媒の流れを方向を制御するために設けられている。逆止弁ブロック7は、配管24及び配管28を有している。配管24は、四方弁3と逆止弁7bの間である接続点dと、逆止弁7aと高圧配管8との間である接続点bと、をつなぐ配管である。配管28は、逆止弁7bと低圧配管20との間である接続点cと、逆止弁7aと熱源側熱交換器4との間である接続点aと、をつなぐ配管である。逆止弁7aは接続点aから接続点bの方向にのみ冷媒の流れを許容し、逆止弁7bは接続点cから接続点dの方向にのみ冷媒の流れを許容する。逆止弁7cは配管24に設置され、接続点dから接続点bの方向にのみ冷媒の流れ許容し、逆止弁7dは配管28に設置され、接続点cから接続点aの方向にのみ冷媒の流れを許容する。なお、逆止弁ブロック7は、必須なものではない。
アキュムレータ21は、圧縮機1の吸入側に設けられ、空気調和装置100の運転に過剰な冷媒を貯留する機能、及び運転状態が変化する際に一時的に発生する液冷媒を滞留させることで圧縮機1に大量の液冷媒が流入するのを防ぐ機能を有している。
配管31は、油分離器2と圧縮機1の吸入側とを接続している配管である。
電磁弁29は、配管31に設けられ、起動時において、配管31を経由して圧縮機1の吸入部とアキュムレータ21との間に油を流す機能を有している。また、電磁弁29は、起動時において、配管31に冷媒を流すことで低圧圧力が極端に低下するのを防ぐ機能を有している。さらに、電磁弁29は、高圧圧力上昇時に冷媒を低圧側にバイパスさせることで高圧圧力を適正範囲とする機能を有している。
キャピラリー30は、電磁弁29と並列になるように設けられ、運転中に配管31を経由した油を減圧してから圧縮機吸入部に流す機能を有している。
また、熱源ユニット301には、圧力センサ201が圧縮機1の吐出側に、圧力センサ212がアキュムレータ21の上流側に、それぞれ設けられており、設置場所の冷媒圧力を計測する。
さらに、熱源ユニット301には、温度センサ202が圧縮機1の吐出側に、温度センサ203が熱源側熱交換器4の液側に、温度センサ215がアキュムレータ21の上流側に、それぞれ設けられ、設置場所の冷媒温度を計測する。
またさらに、熱源ユニット301には、温度センサ204が空気吸込口に設けられており、外気温度を計測する。
さらに、熱源ユニット301には、ユニット制御装置101が設けられており、熱源ユニット301に設けられている各センサで計測された情報は、ユニット制御装置101に送られるようになっている。なお、ユニット制御装置101については、後段で詳細に説明する。
<中継ユニット302>
中継ユニット302は、たとえば屋内に設置され、利用ユニット303a,303bにて要求される運転に応じて冷媒の流れを制御する。中継ユニット302は、気液分離器9と、電磁弁19a,19bと、電磁弁26a,26bと、逆止弁14a,14bと、逆止弁27a,27bと、過冷却熱交換器11と、過冷却熱交換器13と、液減圧機構12と、バイパス減圧機構22と、配管10と、配管23と、配管25と、を有している。
配管10は、気液分離器9と過冷却熱交換器11との間を接続する。
配管23は、過冷却熱交換器13の高圧側出口と逆止弁14a,14bとの間と、低圧配管20と電磁弁19a,19bとの間を接続する。
配管25は、気液分離器9と電磁弁26a,26bとの間を接続する。
気液分離器9は、高圧配管8を流れた冷媒をガス冷媒と液冷媒とに分離するものである。気液分離器9で分離された液冷媒は配管10へ、ガス冷媒は配管25へと流れる。
電磁弁19a,19b及び電磁弁26a,26bは、接続されている利用ユニット303a,303bの冷媒の流れ方向を制御するものである。電磁弁19a,19bは、一方が低圧配管20に、他方が利用ユニット303a,303bに接続されている。電磁弁26a,26bは、一方が配管25に、他方が利用ユニット303a,303bに接続されている。
逆止弁14a,14bは、過冷却熱交換器13から室内液枝配管15a,15bへの方向のみに冷媒の流れを許容するものである。
逆止弁27a,27bは、室内液枝配管15a,15bから過冷却熱交換器13への方向のみに冷媒の流れを許容するものである。
過冷却熱交換器11は、二重管熱交換器で構成されており、内側(図1では上側)をバイパス減圧機構22を通過した低圧冷媒が流れ、外側(図1では下側)を配管10を通過した高圧冷媒が流れる。過冷却熱交換器11において、高圧冷媒と低圧冷媒との間で熱交換を行い、高圧冷媒が冷却され、低圧冷媒が加熱される。
過冷却熱交換器13は、二重管熱交換器で構成されており、内側(図1では上側)をバイパス減圧機構22を通過した低圧冷媒が流れ、外側(図1では下側)を液減圧機構12又は逆止弁27a,27bを通過した高圧冷媒が流れる。過冷却熱交換器13において、高圧冷媒と低圧冷媒との間で熱交換を行い、高圧冷媒が冷却され、低圧冷媒が加熱される。
液減圧機構12及びバイパス減圧機構22は、冷媒の流量を制御でき、開度を可変に設定できるものである。
また、中継ユニット302には、圧力センサ206が過冷却熱交換器11の高圧側と液減圧機構12との間に、圧力センサ207が液減圧機構12と過冷却熱交換器13の高圧側との間に、それぞれ設けられ、設置場所の冷媒圧力を計測する。
さらに、中継ユニット302には、温度センサ205が過冷却熱交換器11の高圧側と液減圧機構12の間に、温度センサ208が過冷却熱交換器13の高圧側と逆止弁14a,14bとの間に、温度センサ213がバイパス減圧機構22の出口側に、温度センサ214が過冷却熱交換器11の低圧側出口側に、それぞれ設けられ、設置場所の冷媒温度を計測する。
なお、中継ユニット302に設けられている各センサで計測された情報は、熱源ユニット301のユニット制御装置101に送られるようになっている。
<利用ユニット303a,303b>
利用ユニット303a,303bは、室内等の空調対象空間に冷熱又は温熱を供給できる位置に設置され、空調対象空間の冷房運転又は暖房運転を実行するものである。利用ユニット303a,303bは、利用側減圧機構16a,16bと、利用側熱交換器17a,17bと、を有している。利用側減圧機構16aと利用側熱交換器17aとが直列に接続され、利用側減圧機構16bと利用側熱交換器17bとが直列に接続されている。
利用側減圧機構16a,16bは、冷媒の流量を制御でき、開度を可変に設定できるものである。
利用側熱交換器17a,17bは、たとえば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり、室内空気と冷媒との熱交換を行うものである。利用側熱交換器17a,17bは、暖房運転時には凝縮器、冷房運転時には蒸発器として機能する。
また、利用ユニット303a,303bには、温度センサ209a,209bが利用側熱交換器17a,17bの液側に、温度センサ210a,210bが利用側熱交換器17a,17bのガス側に、それぞれ設けられ、設置場所の冷媒温度を計測する。
さらに、利用ユニット303a,303bには、温度センサ211a,211bが空気吸込口に設けられ、設置場所の空気温度を計測する。
なお、利用ユニット303a,303bに設けられている各センサで計測された情報は、熱源ユニット301のユニット制御装置101に送られるようになっている。
また、空気調和装置100に設置されている温度センサ又は圧力センサは、それぞれ冷媒の温度又は圧力を検出する運転状態センサとしての機能を有している。
(ユニット制御装置101、コントローラ制御装置121)
熱源ユニット301内には、例えば、マイクロコンピュータにより構成されたユニット制御装置101が設けられている。
また、外部コントローラ320には、例えば、S/Wにて実装されたコントローラ制御装置121が設けられている。
図2は、空気調和装置100のユニット制御装置101及びコントローラ制御装置121の構成を示すブロック図である。図2に基づいて、ユニット制御装置101及びコントローラ制御装置121について更に詳細に説明する。なお、図2には、各センサ(圧力センサ(圧力センサ201、206、207、212)、温度センサ(温度センサ202〜205、208、209a,209b、210a,210b、211a,211b、213〜215))及びアクチュエータ(圧縮機1、四方弁3、減圧機構(液減圧機構12、利用側減圧機構16a,16b、バイパス減圧機構22)、熱源側送風機5、電磁弁19a,19b、電磁弁26a,26b、電磁弁29等)の接続状態を示している。
ユニット制御装置101には、測定部102、制御演算部103、制御部104、ユニット通信部105が設けられている。
各種温度センサ、圧力センサによって検知された各諸量は、測定部102に入力される。測定部102に入力された情報は制御演算部103に送られる。制御演算部103は、測定部102に入力された情報に基づき、例えば検出圧力の飽和温度を計算するなどの各種制御動作を決定するための演算を行う。制御部104は、制御演算部103の演算結果に基づいて圧縮機1や熱源側送風機5などの各機器の制御をするようになっている。
また、ユニット通信部105は、電話回線、LAN回線、無線などの通信手段からの通信データ情報の入力、及び、外部への情報の出力を実行する。ユニット通信部105では、利用側リモコン(図示せず)により出力された冷房指令(冷房ON/OFF)、または、暖房指令(暖房ON/OFF)を通信してユニット制御装置101に入力したり、コントローラ制御装置121と測定値や機器制御方法を通信したりする。
コントローラ制御装置121には、入力部122、外部通信部123、診断運転指令部124、記憶部125、診断演算部126、判定部127、表示部128が設けられている。
入力部122では、作業者から、故障診断運転の開始や故障診断したい部位の入力が行われる。
外部通信部123は、電話回線、LAN回線、無線などの通信手段からの通信データ情報の入力、及び、外部への情報の出力を実行するものであり、入力部122の入力情報や故障診断運転時の各機器制御方法をユニット通信部105に送信したり、ユニット通信部105から圧力や温度などの運転状態を受信したりする。
診断運転指令部124は、入力部122にて入力された故障診断指令及びユニット制御装置101の異常信号に基づいて故障診断運転の診断項目を決定するものである。
記憶部125は、例えば半導体メモリなどによって構成され、故障診断運転時の各機器制御方法や各故障診断の診断手順や診断に必要なパラメータを記憶するものである。
診断演算部126は、故障診断に必要な演算を実施するものである。
判定部127は、診断部位の故障有無を判定したり、空気調和装置100の運転状態が安定であるかを判定したりする。
表示部128は、外部コントローラ320に搭載されている例えば液晶などのディスプレイであり、診断した部位の故障有無や空気調和装置100の運転状態を表示するものである。
なお、ユニット制御装置101は、熱源ユニット301に配置されているが、図1では単に設置場所の一例を示しているに過ぎない。ユニット制御装置101が配置場所は、特に限定されない。例えば、ユニット制御装置101を中継ユニット302、利用ユニット303に設置してもよいし、各ユニットとは別の場所に設置してもよい。
[空気調和装置100の運転モード]
空気調和装置100は、利用ユニット303a,303bで要求される空調指令に応じて熱源ユニット301、利用ユニット303a,303bに搭載されている各機器の制御を行う。そして、空気調和装置100は、例えば、利用ユニット303a,303bともに冷房運転である全冷運転モード、利用ユニット303a,303bともに暖房運転となる全暖運転モード、利用ユニット303aが冷房運転、利用ユニット303bが暖房運転となり、冷房負荷が暖房負荷よりも高い冷主運転モード、利用ユニット303aが冷房運転、利用ユニット303bが暖房運転となり、暖房負荷が冷房負荷よりも高い暖主運転モードを実施することができる。これらの運転モードをまとめて通常運転モードと称する。
(通常運転モード:全冷運転モード)
全冷運転モードでは、四方弁3は圧縮機1の吐出側を熱源側熱交換器4のガス側と接続し、圧縮機1の吸入側を接続点dと接続する。また、電磁弁19a,19bは開路、電磁弁26a,26bは閉路、電磁弁29は起動所定時間に開路後は閉路、液減圧機構12は全開となっている。
圧縮機1から吐出した高温・高圧のガス冷媒は、油分離器2及び四方弁3を経由して、熱源側熱交換器4に流入し、熱源側送風機5により送風される室外空気に放熱する。この冷媒は、熱源側熱交換器4から流出した後、逆止弁7aを経由して、高圧配管8、気液分離器9を流れた後、配管10を経由して、過冷却熱交換器11にて低圧冷媒により冷却される。この冷媒は、過冷却熱交換器11を流出した後、全開となっている液減圧機構12を経由して過冷却熱交換器13にて低圧冷媒により更に冷却される。その後、この冷媒は、逆止弁14a,14bとバイパス減圧機構22に流れる冷媒に分配される。
逆止弁14a,14bに流れた冷媒は、室内液枝配管15a,15bを経由して、利用側減圧機構16a,16bにて減圧されて低圧二相冷媒となる。この低圧二相冷媒は、利用側熱交換器17a、17bに流入し、室内空気を冷却して低圧ガス冷媒となる。この低圧ガス冷媒は、利用側熱交換器17a、17dから流出した後、室内ガス枝配管18a,18bを経由して、電磁弁19a,19bを通過し、バイパス減圧機構22を流れた冷媒と合流する。
一方、バイパス減圧機構22に流入した冷媒は、バイパス減圧機構22にて減圧され、低圧二相冷媒となった後、過冷却熱交換器13の低圧側に流入し、高圧冷媒によって加熱される。この冷媒は、過冷却熱交換器13から流出した後、過冷却熱交換器11の低圧側にて、さらに高圧冷媒に加熱される。その後、この冷媒は、配管23を流れ、逆止弁14a,14bを流れた冷媒と合流する。合流した冷媒は、低圧配管20、逆止弁7b、四方弁3を経由して、アキュムレータ21に流れた後に再び圧縮機1に吸入される。
なお、利用側減圧機構16a,16bは、利用側熱交換器17a,17bの過熱度が所定値となるように制御部104にて制御されている。利用側熱交換器17a,17bの過熱度は、温度センサ210a,210bの検出温度から温度センサ209a,209bの検出温度を差し引くことにより求まる。また、バイパス減圧機構22は、過冷却熱交換器11の低圧出口過熱度が所定値となるように制御部104にて制御されている。過冷却熱交換器11の低圧出口過熱度は、温度センサ213の検出温度から温度センサ214の検出温度を差し引くことにより求まる。
さらに、圧縮機1の運転周波数は、蒸発温度が所定値となるように制御部104にて制御される。蒸発温度は、圧力センサ212で検出される冷媒圧力の飽和温度である。またさらに、熱源側送風機5の回転数は、凝縮温度が所定値となるように制御部104にて制御されている。凝縮温度は、圧力センサ201で検出される冷媒圧力の飽和温度である。
(通常運転モード:全暖運転モード)
全暖運転モードでは、四方弁3は圧縮機1の吐出側を接続点dと接続し、圧縮機1の吸入側を熱源側熱交換器4のガス側と接続する。また、電磁弁19a,19bは閉路、電磁弁26a,26bは開路、電磁弁29は起動所定時間に開路後は閉路、液減圧機構12は全閉となっている。
圧縮機1から吐出した高温・高圧のガス冷媒は、油分離器2、四方弁3、逆止弁7c、及び、高圧配管8を経由して気液分離器9に流れる。気液分離器9に流入した冷媒は、その後、配管25、電磁弁26a,26bを経由して、室内ガス枝配管18a,18bを流れ、利用側熱交換器17a,17bに流入する。利用側熱交換器17a,17bに流入した冷媒は、室内空気を加熱して高圧液冷媒となる。この冷媒は、利用側熱交換器17a,17bを流出した後、利用側減圧機構16a,16bにて減圧されて中間圧の二相冷媒となる。
この冷媒は、室内液枝配管15a,15bを流れ、逆止弁27a,27bを経由して、過冷却熱交換器13の高圧側を流れ、バイパス減圧機構22にて更に減圧され、低圧二相冷媒となる。この冷媒は、過冷却熱交換器13の低圧側、過冷却熱交換器11の低圧側を流れる。その後、この冷媒は、配管23、低圧配管20、逆止弁7dを経由して熱源側熱交換器4に流入する。熱源側熱交換器4に流入した冷媒は、熱源側送風機5により送風される室外空気より吸熱し、低圧ガス冷媒となる。この冷媒は、熱源側熱交換器4から流出した後、四方弁3を経由してアキュムレータ21を通過後、再び圧縮機1に吸入される。
なお、利用側減圧機構16a,16bは、利用側熱交換器17a,17bの過冷却度が所定値となるように制御部104にて制御されている。利用側熱交換器17a,17bの過冷却度は、圧力センサ206の検出圧力から求まる飽和温度から温度センサ209a,209bの検出温度を差し引くことにより求まる。また、バイパス減圧機構22は、液減圧機構12の差圧が所定値となるように制御部104にて制御されている。液減圧機構12の差圧は圧力センサ206の検出圧力から圧力センサ207の検出圧力を差し引くことにより求まる。
さらに、圧縮機1の運転周波数は、凝縮温度が所定値となるように制御部104にて制御される。またさらに、熱源側送風機5の回転数は、蒸発温度が所定値となるように制御部104にて制御されている。
(通常運転モード:冷主運転モード)
冷主運転モードでは、四方弁3は圧縮機1の吐出側を熱源側熱交換器4のガス側と接続し、圧縮機1の吸入側を接続点dと接続する。また、電磁弁19aは開路、電磁弁19bは閉路、電磁弁26aは閉路,26bは開路、電磁弁29は起動所定時間に開路後は閉路、となっている。
圧縮機1から吐出した高温・高圧のガス冷媒は、油分離器2及び四方弁3を経由して、熱源側熱交換器4に流入し、熱源側送風機5により送風される室外空気に放熱する。この冷媒は、熱源側熱交換器4から流出した後、逆止弁7aを経由して、高圧配管8を流れ、気液分離器9に流入する。気液分離器9に流入した冷媒は、気液分離器9の作用により配管10を流れる冷媒と配管25を流れる冷媒とに分配される。配管10に流れた冷媒は、過冷却熱交換器11にて低圧冷媒により冷却され、液減圧機構12にて減圧されて中間圧冷媒となり、配管25を流れた冷媒と合流する。
一方、配管25に流れた冷媒は、電磁弁26b、室内ガス枝配管18bを通過後、利用側熱交換器17bにて室内空気を加熱して高圧液冷媒となる。利用側熱交換器17bを流出した冷媒は、その後、利用側減圧機構16bにて減圧されて中間圧冷媒となった後、室内液枝配管15b、逆止弁27bを流れ、配管10を流れた冷媒と合流する。
合流した冷媒は、その後、過冷却熱交換器13にて低圧冷媒により冷却され、逆止弁14aとバイパス減圧機構22に流れる冷媒に分配される。逆止弁14aに流れた冷媒は、室内液枝配管15aを経由して、利用側減圧機構16aにて減圧され低圧二相冷媒となり、利用側熱交換器17aにて室内空気を冷却して低圧ガス冷媒となる。この冷媒は、その後、室内ガス枝配管18aを経由して、電磁弁19aを通過し、バイパス減圧機構22を流れた冷媒と合流する。
一方、バイパス減圧機構22に流入した冷媒は、バイパス減圧機構22で減圧され、低圧二相冷媒となった後、過冷却熱交換器13の低圧側に流入し、高圧冷媒によって加熱される。この冷媒は、その後、過冷却熱交換器11の低圧側にて、更に高圧冷媒に加熱される。この冷媒は、その後、逆止弁14aを流れた冷媒と合流する。合流した冷媒は、低圧配管20、逆止弁7b、四方弁3を経由して、アキュムレータ21に流れた後に再び圧縮機1に吸入される。
なお、利用側減圧機構16aは、利用側熱交換器17aの過熱度が所定値となるように制御部104にて制御されている。利用側減圧機構16bは、利用側熱交換器17bの過冷却度が所定値となるように制御部104にて制御されている。液減圧機構12は、液減圧機構12の差圧が所定値となるように制御部104にて制御されている。また、バイパス減圧機構22は、過冷却熱交換器11の低圧出口過熱度が所定値となるように制御部104にて制御されている。
さらに、圧縮機1の運転周波数は、蒸発温度が所定値となるように制御部104にて制御されている。またさらに、熱源側送風機5の回転数は、凝縮温度が所定値となるように、制御部104にて制御されている。
(通常運転モード:暖主運転モード)
暖主運転モードでは、四方弁3は圧縮機1の吐出側を接続点dと接続し、圧縮機1の吸入側を熱源側熱交換器4のガス側と接続する。また、電磁弁19aは開路、電磁弁19bは閉路、電磁弁26aは閉路、26bは開路、電磁弁29は起動所定時間に開路後は閉路、液減圧機構12は全閉開度となっている。
圧縮機1から吐出した高温・高圧のガス冷媒は、油分離器2、四方弁3、逆止弁7c、及び、高圧配管8を経由して気液分離器9に流れる。気液分離器9に流入した冷媒は、その後、配管25、電磁弁26bを経由して、室内ガス枝配管18bに流れ、利用側熱交換器17bに流入する。利用側熱交換器17bに流入した冷媒は、室内空気を加熱して高圧液冷媒となる。この冷媒は、利用側熱交換器17bを流出した後、利用側減圧機構16bにて減圧されて中間圧の二相冷媒となる。
この冷媒は、室内液枝配管15bに流れ、逆止弁27bを経由して、過冷却熱交換器13の高圧側を流れ、逆止弁14aとバイパス減圧機構22に流れる冷媒とに分配される。逆止弁14aに流れた冷媒は、室内液枝配管15aを経由して、利用側減圧機構16aにて減圧され低圧二相冷媒となり、利用側熱交換器17aにて室内空気を冷却して低圧ガス冷媒となる。この冷媒は、その後、室内ガス枝配管18aを経由して、電磁弁19aを通過し、バイパス減圧機構22を流れた冷媒と合流する。
一方、バイパス減圧機構22に流れた冷媒は、バイパス減圧機構22にて減圧され、低圧二相冷媒となる。この冷媒は、その後、過冷却熱交換器13にて高圧冷媒より加熱される。この冷媒は、その後、過冷却熱交換器11の低圧側を流れ、配管25を経由して逆止弁14aを流れた冷媒と合流する。合流した冷媒は、低圧配管20、逆止弁7dを経由して熱源側熱交換器4にて熱源側送風機5により送風される室外空気より吸熱し、低圧ガス冷媒となる。この冷媒は、その後、四方弁3を経由してアキュムレータ21を通過後、再び圧縮機1に吸入される。
なお、利用側減圧機構16aは、利用側熱交換器17aの過熱度が所定値となるように制御部104にて制御されている。利用側減圧機構16bは、利用側熱交換器17bの過冷却度が所定値となるように制御部104にて制御されている。また、バイパス減圧機構22は、液減圧機構12の差圧が所定値となるように制御部104にて制御されている。
さらに、圧縮機1の運転周波数は、凝縮温度が所定値となるように制御部104にて制御されている。またさらに、熱源側送風機5の回転数は、蒸発温度が所定値となるように制御部104にて制御されている。
<故障診断の実施>
空気調和装置100の定期点検時あるいは不具合発生時、サービスマン(作業者)がコントローラ制御装置121を搭載した外部コントローラ320を持って、ユニット設置現場に行き、メンテナンス作業をすることになる。メンテナンス作業では、機器の不具合を探索することになるが、そのときに、空気調和装置100では、後段で詳細に説明する手法を用いて、空気調和装置100の故障有無の確認及び故障部位の特定を自動で実施できるようになっている。
まず、サービスマンがコントローラ制御装置121の入力部122に故障診断運転モードの開始を入力する。そうすると、コントローラ制御装置121では、診断運転指令部124にて故障診断運転モードという特殊運転モードの実施が決定される。そして、コントローラ制御装置121では、外部通信部123がユニット制御装置101のユニット通信部105に決定指令を送信する。こうすることで、空気調和装置100では故障診断運転モードが開始される。故障診断運転モードでは、利用ユニット303a,303bを全台運転させる。そのときの運転モードは、例えば全台冷房運転とし、冷媒流れが全冷運転モードと同様になるようにして運転を開始する。
<故障モードの区別>
故障診断運転実施時は、もちろん現場にサービスマンがいるので、作業時間短縮のために故障診断運転をできるだけ短時間にて実施したい。以下に、故障診断運転に要する時間を短縮するための方法について説明する。
空気調和装置100では、まず、故障診断運転での構成機器の故障診断方法によって診断項目(診断モード)を2種類に区別した。つまり、運転中の機器の動作を変更して変更前後でのセンサ出力値の応答の有無により故障検知するものを応答検知診断(応答検知診断モード)とし、定常状態時の冷媒圧力や温度などの運転状態により故障検知するものを性能検知診断(性能検知診断モード)として区別した。
応答検知診断の対象となる故障モードとしては、具体的には例えば、センサハズレ、電磁弁ロック、LEV(減圧機構)ロック、圧縮機インバータ不良、送風機モータ不良、分岐口誤設定である。各診断にて機器の動作前後にてセンサ出力値が所定値以内又は閾値以下となる場合に応答が無いとして診断対象機器の故障検知とする。
性能検知診断の対象となる故障モードとしては、具体的には例えば、配管詰まり、圧縮機1の効率低下、熱源側熱交換器4の汚れ(熱交汚れ)、冷媒漏れ(冷媒量不足)である。
故障診断運転モード開始後、しばらくの間は、アキュムレータ21から液冷媒が移動するため、運転状態が安定(定常状態)となるまでには時間がかかる。性能検知診断では運転状態が安定である必要があるため、この間の性能検知診断は困難である。一方、応答検知診断では機器に動作の強制変更を指令し指令前後でのセンサ応答の有無により故障診断をするため、運転状態が安定でなくとも診断可能である。そのため、応答検知診断を先に実施する。
さらに、性能検知診断では運転状態が適正であるか、つまり性能の低下(機器の劣化)の有無がないかどうかで故障判定するため、制御機器であるLEV、電磁弁、インバータ、モータ等が動くことを予め確認しておかないと誤判定をしてしまう可能性がある。こういう理由からも、応答検知診断を先に実施する必要がある。以上より、空気調和装置100では、以下に示す故障診断運転を実施することで、応答検知診断を早期に実施することができるようになっている。
応答検知診断では診断中に意図しない高圧圧力変動及び低圧圧力変動があると診断を適切に実施するのは困難である。そのため、故障診断運転中は圧縮機1の運転周波数を固定とする。また、熱源側送風機5の回転数Va[rpm]を、圧縮機1の運転周波数F[Hz]及び外気温度Ta[℃]によって固定値とする。つまり、Va=f(F,Ta)の関係を有するデータテーブルを記憶部125に記憶しておく。データテーブルは、例えば、凝縮温度が全冷運転モードで目標値と同じとなるように作成する。
図3は、空気調和装置100の故障診断運転中の各アクチュエータ等の運転状態を示したタイムチャート図である。図4は、冷媒量に対する過冷却熱交換器13の高圧出口過冷却度の変化を示した概略図である。図3及び図4に基づいて、空気調和装置100の故障診断運転中の運転状態のタイミングについて説明する。
空気調和装置100では、運転起動後、所定時間(例えば3分間)待機した後に、応答検知診断を実施する。応答検知診断中は、圧縮機1の運転周波数と熱源側送風機5の回転数を積極的に固定する。応答検知診断では機器動作を強制変更するため、圧縮機1の運転周波数が高いと運転状態(例えば高圧圧力)が極端に変化し、異常運転となる可能性がある。そのため、圧縮機1の運転周波数を低周波数(例えば30Hz)とする。空気調和装置100では、このように運転を実施するようにしたので、高圧圧力と低圧圧力の変動が抑制されて運転状態が安定とならなくとも応答検知診断を実行することができる。また、機器動作を強制変更して異常運転を回避することができる。
減圧機構については個体差が大きく、開度を固定とすると運転状態がどのようになるか予測しづらい。そのため、通常運転モードと同じく運転状態によって(運転状態センサの検出値によって)制御とする。例えば、利用側減圧機構16a,16bでは、全冷運転モードと同様に、利用側熱交換器17a,17bの出口過熱度が所定値(例えば目標値2℃)となるように制御する。このように減圧機構の開度を運転状態により制御することで、機器によらず、冷媒分布を意図した状態にすることが可能となる。なお、その他の減圧機構、電磁弁の制御についても、故障診断運転の冷媒流れを全冷運転モードとしているため、全冷運転モードと同様とする。
空気調和装置100では、応答検知診断終了後、圧縮機1の運転周波数を高周波数とし、運転状態が安定するまで待機する。そして、空気調和装置100は、運転状態が安定したら、次に性能検知診断を実施する。性能検知診断では圧縮機1の運転周波数を応答検知診断で設定した周波数以上(例えば60Hz)とした方が、高精度に故障判定を実施できる。例えば、冷媒漏れ診断の場合では、図4に示すように、圧縮機1の運転周波数が高くなるほど冷媒量に対する過冷却度の変化が大きくなり、液冷媒量の有無を高精度に判定できる。
また他にも、配管詰まりの場合は詰まり部の圧力損失が大きくなり、圧縮機効率低下の場合は圧縮機効率が高くなり、熱交汚れの場合は熱交換器にて処理する熱量が多い方が空気と冷媒の温度差が大きくなる。このように、性能検知診断では圧縮機1の運転周波数を高容量とした方が故障有無を判断するパラメータの値が大きくなるため、高精度に故障判定が可能である。
また、診断時間を短時間にするために、運転状態が安定となるまでの時間を短縮したい。そのため、性能検知診断においても、圧縮機1の運転周波数と熱源側送風機5の回転数を積極的に固定する。なお、性能検知診断時の熱源側送風機5の回転数は、圧縮機1の運転周波数が高周波数となるため、応答検知診断時よりも高回転数にて固定となる。このようにすることで、高圧圧力と低圧圧力の変動が抑制されるため、減圧機構の開度も目的の運転状態に制御されるのが容易となる。その結果、早期に運転状態が安定となる。性能検知診断終了後、故障診断運転を終了とする。
図5は、空気調和装置100の故障診断運転時の診断順序を示したフローチャート図である。図5を用いて、空気調和装置100の故障診断運転時の処理動作の流れを説明する。
空気調和装置100が故障診断運転を開始すると(ステップS1)、ステップS2にてセンサ値適正判定検知、つまり応答検知診断による故障診断を実施する。その後、空気調和装置100は、ステップS3にて運転状態が安定であると判定するための運転安定判定値(安定判定指標)に変動がなくなるまで待機する。運転安定判定値が一定となったら、ステップS4にて運転状態適正検知、つまり性能検知診断による故障診断を実施し、その後、故障診断運転を終了する。
ステップS3における性能検知診断実施前の運転状態の安定は運転安定判定値の変動有無により判定する。アキュムレータ21からの液冷媒の移動がなくなれば機器動作も安定し、運転状態の変動もなくなる。そのため、アキュムレータ21から冷媒が高圧側に移動したことがわかるものを判定値として選ぶ。
冷媒が高圧側に移動することで、利用側減圧機構16a,16bの入口の冷媒状態が湿ってくるため、利用側熱交換器17a,17bの出口の過熱度が小さくなり、制御部104の制御により、利用側減圧機構16a,16bの開度は減少する。さらに、冷媒が高圧側移動すると、過冷却熱交換器13の高圧出口過冷却度がついてくる。そのため、利用側減圧機構16a,16bの開度と、過冷却熱交換器13の高圧出口過冷却度を安定判定値とする。例えば、所定時間(例えば5分間)において、全ての利用側減圧機構16a,16bの開度変化が5%以内、かつ、過冷却熱交換器13の高圧出口過冷却度変化が1℃以内とすることで、運転状態の安定を検知することができる。
ここで、例えば、過冷却度のみにすると、冷媒量不足時のような過冷却度が常に0のときに運転状態変化を観測できなくなり、また、状態の変化が小さく、機器が動作しているのにも関わらず運転状態が安定していると誤判定してしまう可能性がある。また、減圧機構開度のみにすると、機器動作に対して過冷却度の応答に時間がかかるため、過冷却度など運転状態が変化しているのに運転状態が安定していると誤判定してしまう可能性がある。そのため、運転状態と機器動作の二つの指標により安定を判定することで、運転状態の安定を高精度に判定することができる。
なお、安定判定値にする過冷却度は、過冷却熱交換器13の高圧出口過冷却度に限定されず、圧縮機1の吐出から利用側減圧機構16a,16bの間のいずれの位置の過冷却度としてもよい。また、減圧機構も制御部104にて運転状態が所定値となるように制御されている減圧機構であればどれでもよく、バイパス減圧機構22の開度としてもよい。冷媒が高圧側に移動することで、バイパス減圧機構22の入口の冷媒状態も湿ってくるからである。
<故障モードとその診断方法>
ここから具体的に故障内容とその診断方法について説明する。まず、応答検知診断の診断項目のものについて説明する。上述したように、応答検知診断の対象となる故障モードとしては、センサハズレ、電磁弁ロック、LEVロック、圧縮機インバータ不良、送風機モータ不良、分岐口誤設定等がある。
センサハズレとは、例えば、冷媒温度検出のために配管部に設置(密着)している温度センサが配管部から離れてしまう故障である。吐出温度を検出している温度センサ202にハズレがあると、吐出温度上昇を検知できず、圧縮機1を損傷させる可能性がある。センサのハズレを検出する方法としては、圧縮機1の起動後において、各ユニットが設置されている周囲の空気温度と温度センサのセンサ計測値の差が所定値以内(例えば3℃以内)となった場合にセンサハズレとして検出する。熱源ユニット301の場合、周囲空気温度は外気温度であるため、温度センサ204の検出温度となる。利用ユニット303a,303bの場合、周囲空気温度は室内温度であるため、温度センサ211a,211bの検出温度となる。中継ユニット302の場合、周囲空気温度は普通屋内に設置されるため、利用ユニット303a,303bの検出温度の平均値を用いる。
電磁弁ロックとは、電磁弁が開路又は閉路からロックして動かなくなる故障である。例えば、電磁弁29が開ロックすると、冷媒が常に低圧にバイパスする状態となるため、利用側熱交換器17a,17bの冷房あるいは暖房能力が不足する。電磁弁ロックの検知方法としては、電磁弁を開路又は閉路に強制変更し、変更前後での圧力センサ又は温度センサの検出値の変化が所定値以内であるかを比較する。空気調和装置100の運転中に電磁弁29を強制開路指令して、高圧圧力が低下(例えば0.2MPa以上低下)し、かつ、低圧圧力が上昇(例えば0.1MPa以上上昇)すれば電磁弁路ロックしていないと判定する。なお、高圧圧力とは圧力センサ201の検出圧力であり、低圧圧力とは圧力センサ212の検出圧力である。
LEVロックとは、LEV(減圧機構)がロックして開度を指令しても動かない状態になる故障である。例えば、利用側減圧機構16a,16bがロックしてしまうと、所定の冷媒流量となるように利用側熱交換器17a,17bに流すことができなくなり、利用側熱交換器17a,17bの冷房又は暖房の能力が多寡又は不足の状態となる。LEVロックを検知する方法としては、LEV開度を所定開度に強制変更し、その時の変更前後での圧力センサ又は温度センサの検出値の変化が所定値以内であるかを比較する。例えば、利用側減圧機構16a,16bを全閉開度に指令して、温度センサ210a,210bの検出温度が高くなる(例えば3℃以上高くなる)、又は、全開に指令して、温度センサ210a,210bの検出温度が低くなれば(例えば3℃以上低くなれば)、LEVロックしていないと判定する。
なお、電磁弁ロック及びLEVロックは、上記で取りあげた以外の電磁弁あるいはLEV(減圧機構)についても、同様に動作変更前後でのセンサ値の比較により故障を判定することは可能である。
圧縮機インバータ不良とは、圧縮機1の運転周波数が変更できなくなる圧縮機インバータ35の故障である。圧縮機インバータ不良の検知方法としては、圧縮機1の運転周波数の強制増速を指令して、変更前に対して変更後の高圧圧力が上昇しない(例えば0.2MPa以上上昇しない)場合に圧縮機インバータ不良として判定する。なお、高圧圧力とは圧力センサ201の検出圧力である。
送風機モータ不良とは、熱源側送風機5の回転数が変更できなくなる送風機モータ6の故障である。送風機モータ不良の検知方法としては、熱源側送風機5の回転数の強制減速を指令して、変更前に対して変更後の高圧圧力が上昇しない(例えば0.2MPa以上上昇しない)場合に圧縮機インバータ不良として判定する。
図6は、空気調和装置100の伝送線の配線状態を示した概略図である。図6に基づいて、分岐口誤設定について説明する。ユニット間の伝送線を渡り配線(図6に示す破線)にて接続した場合など、通常、中継ユニット302の各分岐口における利用ユニット303a,303bの接続について、冷媒配管の接続と電気的な接続とはそれぞれ独立しており、利用ユニット303a,303bがどの分岐口につながっているかは別途設定が必要である。
例えば、利用ユニット側にて設定するとしたとき、利用ユニット303aでは分岐口Aに接続していると設定することで、利用ユニット303aが冷房運転となった場合に、電磁弁19aが開路、電磁弁26aが閉路となり、冷房を正常に行うことができる。しかし、利用ユニット303aが室内液枝配管15aと室内ガス枝配管18aに接続されているにも係わらず、分岐口Bに接続していると設定すると(分岐口誤設定)、利用ユニット303aが冷房運転となった場合に、電磁弁19b、が開路、電磁弁26bが閉路となり、電磁弁19aが閉路のままとなってしまうため、冷房を正常に行うことができない。
分岐口誤設定の検出方法としては以下の通りである。利用ユニット303aにおいて、電磁弁19a、電磁弁26aが冷房流路(電磁弁19a開路、電磁弁26a閉路)の場合は利用ユニット303aに低圧低温の冷媒が流れるため、利用側液温度は室内温度よりも低くなる。ここで、利用側液温度は温度センサ209aの検出温度であり、室内温度は温度センサ211aの検出温度である。一方、電磁弁19a、電磁弁26aが暖房流路(電磁弁19a閉路、電磁弁26a開路)の場合は利用ユニット303aに高圧高温の冷媒が流れるため、利用側液温度は室内温度よりも高くなる。この違いを利用して検出する。つまり、利用ユニット303aに設定されている分岐口の電磁弁を冷房流路から暖房流路に切換えて利用側液温度が閾値以上に高くなれば、例えば、室内温度よりも高くなれば分岐口誤設定はしてないと判定する。
次に、性能検知診断の診断項目のものについて説明する。上述したように、性能検知診断の対象となる故障モードとしては、配管詰まり、圧縮機1の効率低下、熱源側熱交換器4の汚れ(熱交汚れ)、冷媒漏れ(冷媒量不足)等がある。
配管詰まりとは、配管内に固形不純物が詰まり、冷媒が流れにくくなる故障である。例えば、低圧配管20の配管に詰まりが発生すると、低圧配管20での圧力損失が増加し、利用側熱交換器17a,17bの冷房又は暖房の能力が著しく低下する。配管詰まりの検出方法としては、低圧配管20の配管仕様から圧力損失演算値(ΔPcalc)を求めて、圧力損失実測値(ΔPreal)と比較する。
圧力損失演算値ΔPcalc[Pa]は以下の式1にて求まる。
(式1)
ΔPcalc=λ×(L/D)×Gr^2/(2×ρPGm×A^2)
ここで、λは摩擦係数「−」であり、従来提案されている実験式から計算できる。また、Aは低圧配管20の配管断面積[m^2]、Dは配管内径[m]、Lは配管長[m]である。熱源ユニット301に接続される低圧配管20の配管径と厚さは決まっており、そこから配管内径Dと配管断面積Aが求まる。さらに、また、配管長L[m]は作業者が配管長を予め入力、もしくは具体的な値が未知の場合は長め、普通、短めから入力する。例えば、配管長の具体的な値が未知の場合、長め、普通、短めのそれぞれの項目に基準の長さ(例えば長めは100m、普通は60m、短めは30mなど)を予め記憶させておくことで、現場での設置状況からおよそ推定できる長さが入力されることになる。
Grは低圧配管20の冷媒流量[kg/s]であり、圧縮機1の吐出流量と同じであるとして、高圧圧力と低圧圧力と圧縮機1の運転周波数より求めることができる。ρPGmは低圧配管20の冷媒密度[kg/m^3]であり、圧力センサ212の検出圧力から演算される冷媒飽和ガス密度と温度センサ213の検出温度を飽和温度とした場合に演算される冷媒飽和ガス密度との平均値である。また、圧力損失実測値ΔPreal[Pa]は温度センサ213の検出温度を飽和温度とした場合に演算される圧力から圧力センサ212の検出圧力を差し引いて求める。
以上により、両圧力損失が求まり、圧力損失実測値ΔPrealが圧力損失演算値ΔPcalcに対して所定値以上大きい場合に、低圧配管20にて配管詰まりがあると検知する。
圧縮機1の効率低下とは、圧縮機1の劣化により、圧縮機効率(ここでは断熱効率を指す)が低下し、圧縮機入力[kW]が増加する故障である。圧縮機1の効率低下を検知する方法は以下の通りである。つまり、開発時のデータから求まる断熱効率(開発機断熱効率)に対して現在の運転状態から求まる断熱効率(実機断熱効率)が所定割合(%)以上低い場合に圧縮機1の効率低下として検知する。開発機断熱効率は、開発時の試験データやシミュレーションから高圧圧力、低圧圧力、圧縮機1の運転周波数に対する開発機断熱効率のデータテーブルを作成し、現在の故障検知運転時の高圧圧力、低圧圧力、圧縮機1の運転周波数から演算する。
なお、高圧圧力は圧力センサ201の検出圧力、低圧圧力は圧力センサ212の検出圧力である。実機断熱効率ηc_realは以下の式(2)にて求める。
(式2)
Δηc_real=(hdad−hs)/(hd−hs)
ここで、hdadは圧縮機1の断熱圧縮時の吐出比エンタルピー[kJ/kg]であり、低圧圧力と高圧圧力と吸入温度から求まる。吸入温度は温度センサ214の検出温度である。hsは圧縮機1の吸入比エンタルピーであり、低圧圧力と吸入温度から求まる。hdは圧縮機1の吐出比エンタルピーであり、高圧圧力と吐出温度より求まる。吐出温度は温度センサ202の検出温度である。
熱交汚れがあると熱源側熱交換器4の性能が低下し、熱源側熱交換器4が全冷運転モードにて凝縮器になると高圧圧力が増加し、また、全暖運転モードにて蒸発器になると低圧圧力が低下し、圧縮機1の入力が増加して、結果、運転性能が低下する。熱交汚れを検知する方法としては、故障診断運転中にて高圧圧力が所定値以上である場合は熱源側熱交換器4の性能が著しく低下しているとして、汚れとして検出する。なお、熱源側熱交換器4の設置場所付近に物が置かれている場合、風路圧損の増加、風量低下する。この場合も熱交換器汚れと同様の方法にて検出することが可能である。
冷媒漏れにより空気調和装置100の冷媒量が不足してしまうと、高圧圧力と低圧圧力が低下し、利用ユニット303a,303bの冷房能力が不足となる。冷媒漏れを検知する方法としては、故障診断時の運転状態から、例えば、過冷却熱交換器13の高圧出口過冷却度が2℃以下となっている場合に、冷媒漏れとして検出する。なお、過冷却熱交換器13の高圧出口過冷却度は圧力センサ207の検出圧力の飽和温度から温度センサ208の温度を差し引くことにより求める。
なお、以上に示した故障診断の診断手順と診断に必要なパラメータは、コントローラ制御装置121の記憶部125に記憶されている。また、診断に必要な演算は、診断演算部126により演算され、その演算結果により、判定部127より、故障の有無を判定する。そして、判定結果を表示部128に表示する。判定結果を表示部128にて表示するようにしたため、作業者は故障箇所を容易に判断することが可能となる。
<診断箇所の限定>
ここで、異常発生時における故障部分の探索の場合、異常内容によっては故障部分をある程度予測することができる。そのため、異常内容によって故障診断項目を限定して診断運転を実施させることで、早期に故障箇所を発見することができる。例えば、高圧圧力異常上昇となっている場合には、故障部分として、熱交汚れ、電磁弁29の電磁弁ロック、送風機モータ6のモータ不良が考えられ、また、一部の部屋のみが不冷(利用ユニット303aからは冷風がでない)となる場合は、利用側減圧機構16aのLEVロック、利用ユニット303aの分岐口誤設定が考えられるため、これらの診断に限定して実施する。
<診断運転時の冷媒流れ>
本実施の形態1では、故障診断運転での冷媒流れを全冷運転モードをベースとしたが、これに限定されず、全暖運転モードをベースとしてもよい。特に外気温度が低い場合は全冷運転モードが困難となるため、全暖運転モードの冷媒流れをベースに各機器制御を実施する。
以上により、空気調和装置100では、故障診断運転にて故障部位の特定を実施することが可能となる。つまり、空気調和装置100は、圧縮機1の運転周波数と熱源側送風機5の回転数を応答検知診断及び性能検知診断によって積極的に固定し、故障診断運転を実施することにより、故障箇所が不明であったとしても不具合部位を短時間で高精度に自動特定し、表示することができる。そのため、作業者の経験や能力によらず、適切に不具合部分を発見及び補修することができ、かつ、作業時間が短縮されるため、サービス体制が強化される。
実施の形態2.
実施の形態2では上述した実施の形態1との相違点を中心に説明するものとし、実施の形態1と同一作用である部分には、同一符号を付して説明を省略するものとする。なお、実施の形態2に係る空気調和装置の機器構成は、実施の形態1に係る空気調和装置100の機器構成と同様である。実施の形態1と異なる部分は、空気調和装置の据付け工事後に工事状態が適正であるかを判定するために故障診断運転を実施するところである。
据付け工事では、作業者が現地にて熱源ユニット301と中継ユニット302を高圧配管8及び低圧配管20で接続し、中継ユニット302と利用ユニット303a,303bを室内液枝配管15a,15b及び室内ガス枝配管18a,18bで接続する。その後、利用ユニット303a,303bにて室内液枝配管15a,15bと室内ガス枝配管18a,18bが接続されている分岐口を設定し、冷媒を充填する。以上が主な据付け工事作業となる。
据付け工事は、手作業にて実施されるため、ミスの発生する可能性も高い。据付けミスが発生すると、後日、作業者が現場に行って状況を改めて確認することになるため、サービス時間増加に繋がってしまう。そこで、実施の形態2では、故障診断運転を工事適正完了の判定に用いることで、工事ミスをゼロ又は限りなくゼロに近づけ、工事ミスによるサービス時間の増加を抑制するようにしている。据付け工事時に高頻度に発生するミスとしては、冷媒充填ミス(充填量不足)と分岐口設定ミスの2つが考えられる。作業者は工事現場に外部コントローラ320を持って行き、据付け工事作業終了後に故障診断運転にてこの2つの診断を実施する。
<据付け工事の適正完了確認>
図7は、実施の形態2に係る空気調和装置の据付け工事完了後に故障診断運転を用いた据付け工事の適正完了確認の際の処理の流れを示したフローチャート図である。図7を用いて、実施の形態2に係る空気調和装置の据付け工事後に工事状態が適正であるかを判定するための故障診断運転について説明する。
実施の形態2に係る空気調和装置が故障診断運転を開始すると(ステップS11)、ステップS12にてセンサ値適正判定検知、つまり応答検知診断による故障診断(例えば分岐口誤設定)を実施する。なお、分岐口誤設定の診断方法は、実施の形態1と同様である。その後、ステップS13にて分岐口設定が適正でないと診断されたら、ステップS14にて作業者は利用ユニット303a,303bの分岐口設定を確認し、設定が適正となるように再設定する。
それから、実施の形態2に係る空気調和装置は、再度ステップS12にて診断し、ステップS13にて分岐口設定が適正となっていることを確認する。その後、ステップS15にて運転安定判定値の変動がないと判定したら、ステップS16にて運転状態適正検知、つまり性能検知診断による故障診断(冷媒充填量)を実施する。冷媒充填量診断方法としては以下の通りである。故障診断時の運転状態から、例えば、過冷却熱交換器13の高圧出口過冷却度が2℃以下となっている場合は冷媒充填量不足として判定する。又は、過冷却熱交換器13の高圧出口過冷却度が20℃以上となっている場合は冷媒過充填として検出する。
そして、ステップS17にて冷媒充填量は適正でなく、冷媒量が不足、あるいは過充填と判定された場合は、ステップS18にて作業者は冷媒を追加する、あるいは抜き取りをして冷媒充填量を調整する。その後、実施の形態2に係る空気調和装置では、冷媒充填量が調整されたため、再度ステップS15にて運転安定判定値の変動がないことを確認し、ステップS16にて診断を実施する。ステップS17にて冷媒充填量が適正と判定されるまでステップS18→ステップS15→ステップS16の流れを繰り返す。ステップS17にて冷媒充填量が適正と判定されたら、故障診断運転を終了する。
図8は、実施の形態2に係る空気調和装置の故障診断運転中の圧縮機1の運転周波数の状態を示したタイムチャート図である。図8に基づいて、実施の形態2に係る空気調和装置の故障診断運転中の圧縮機1の運転周波数の状態のタイミングについて説明する。
実施の形態2に係る空気調和装置では、分岐口設定及び冷媒充填量ともに状態が適正となるまで、圧縮機1の運転周波数を積極的に固定したまま、繰り返し同じ項目の故障診断を実施している。このように、実施の形態2では、工事が適正(故障判定が無し)となるまで診断を継続して繰り返し実施することで、工事ミス修正後の再診断の時間を短縮することができる。つまり、ユニットを停止して再度始動させてしまうと起動時の待機時間などがあるため診断に時間がかかってしまうことになるが、実施の形態2では、このような事態を回避できる。また、実施の形態2では、工事が適正に行われたことを表示させるので、工事が適正に行われたことを確実に確認することができる。
以上により、実施の形態2に係る空気調和装置では、実施の形態1に係る空気調和装置100と同様の効果を奏するだけでなく、故障診断運転を工事適正完了の判定に用いることで、工事ミスをゼロ又は限りなくゼロに近づけ、工事ミスによるサービス時間の増加を抑制が可能になっている。
なお、工事後の適正診断時によらず、定期点検、不具合発生時の故障診断においても、圧縮機1を運転しながら修理できる機器については同様に診断を継続して繰り返し実施するようにしてもよい。こうすることで、作業時間を短縮することができる。
実施の形態3.
図9は、本発明の実施の形態3に係る空気調和装置300の冷媒回路構成を示す概略図である。図9に基づいて、空気調和装置300の構成について説明する。なお、実施の形態3では上述した実施の形態1との相違点を中心に説明するものとし、実施の形態1と同一作用である部分には、同一符号を付して説明を省略するものとする。
空気調和装置300は、中継ユニットを備えていない点で実施の形態1に係る空気調和装置100と異なっている。具体的には、空気調和装置300では、第2熱源ユニット304と利用ユニット303a,303bとが冷媒配管である室内液配管36及び室内ガス配管37で接続されて構成されている。そして、空気調和装置300は、利用ユニット303a,303bにて選択された冷房指令(冷房ON/OFF)又は暖房指令(暖房ON/OFF)を処理することでき、冷房又は暖房を実施することができる。
<第2熱源ユニット304>
第2熱源ユニット304は、たとえば屋外に設置され、利用ユニット303a,303bにて要求される運転に応じて利用ユニット303a,303bに冷媒を供給する。第2熱源ユニット304は、圧縮機1と、圧縮機インバータ35と、四方弁3と、熱源側熱交換器4と、熱源側送風機5と、送風機モータ6と、過冷却熱交換器13と、アキュムレータ21と、バイパス減圧機構22と、配管23と、を有している。各機器の機能は、実施の形態1に係る空気調和装置100に備えられている各機器と同様である。
また、第2熱源ユニット304には、圧力センサ201が圧縮機1の吐出側に、圧力センサ212がアキュムレータ21の上流側に、それぞれ設けられており、設置場所の冷媒圧力を計測する。
さらに、第2熱源ユニット304には、温度センサ202が圧縮機1の吐出側に、温度センサ203が熱源側熱交換器4の液側に、温度センサ208が過冷却熱交換器13の高圧側と室内液配管36の間に、温度センサ213がバイパス減圧機構22と過冷却熱交換器13の低圧側の間に、温度センサ214が過冷却熱交換器13の低圧側出口に、それぞれ設けられ、設置場所の冷媒温度を計測する。
またさらに、第2熱源ユニット304には、温度センサ204が空気吸込口に設けられており、外気温度を計測する。
加えて、アキュムレータ21には液面検知センサ230が設置されており、アキュムレータ21に存在する油及び冷媒の液面高さを検知する。
なお、第2熱源ユニット304には、ユニット制御装置101が設けられており、第2熱源ユニット304に設けられている各センサで計測された情報は、ユニット制御装置101に送られるようになっている。
[空気調和装置300の運転モード]
空気調和装置300は、利用ユニット303a,302bで要求される空調指令に応じて第2熱源ユニット304、利用ユニット303a,302bに搭載されている各機器の制御を行う。そして、空気調和装置300は、全冷運転モード、全暖運転モードを実施することができる。これらの運転モードをまとめて通常運転モードと称する。
(通常運転モード:全冷運転モード)
全冷運転モードでは、四方弁3は圧縮機1の吐出側を熱源側熱交換器4のガス側と接続し、圧縮機1の吸入側を室内ガス配管37と接続する。
圧縮機1から吐出した高温・高圧のガス冷媒は、四方弁3を経由して、熱源側熱交換器4に流入し、熱源側送風機5により送風される室外空気に放熱する。この冷媒は、熱源側熱交換器4から流出した後、過冷却熱交換器13にて低圧冷媒により冷却される。この冷媒は、その後、室内液配管36とバイパス減圧機構22に流れる冷媒に分配される。室内液配管36に流れた冷媒は、利用側減圧機構16a,16bにて減圧され低圧二相冷媒となり、利用側熱交換器17a,17bにて室内空気を冷却して低圧ガス冷媒となる。この低圧ガス冷媒は、利用側熱交換器17a、17bから流出した後、室内ガス配管37、四方弁3を経由し、バイパス減圧機構22を流れた冷媒と合流する。
一方、バイパス減圧機構22に流入した冷媒は、バイパス減圧機構22にて減圧され、低圧二相冷媒となった後、過冷却熱交換器13の低圧側に流入し、高圧冷媒によって加熱される。この冷媒は、過冷却熱交換器13から流出した後、配管23を流れ、室内液配管36を流れた冷媒と合流する。合流した冷媒は、アキュムレータ21に流れた後に再び圧縮機1に吸入される。
(通常運転モード:全暖運転モード)
全暖運転モードでは、四方弁3は圧縮機1の吐出側を室内ガス配管37と接続し、圧縮機1の吸入側を熱源側熱交換器4のガス側と接続する。また、バイパス減圧機構22は全閉となっている。
圧縮機1から吐出した高温・高圧のガス冷媒は、四方弁3を経由して、室内ガス配管37を流れ、利用側熱交換器17a,17bにて室内空気を加熱して高圧液冷媒となる。この冷媒は、その後、利用側減圧機構16a,16bにて減圧され、低圧二相冷媒となり、室内液配管36を経由して、過冷却熱交換器13に流入する。この冷媒は、熱源側熱交換器4にて室外空気より吸熱し、低圧ガス冷媒となり、四方弁3を経由してアキュムレータ21を通過後、再び圧縮機1に吸入される。
<アキュムレータ21の液面による安定判定>
空気調和装置300もまた実施の形態1の空気調和装置100と同様に、図5に示すフローチャート図に基づいて故障診断運転を実施し、故障部位の検出及び表示を実施することができるようになっている。
ここで、図5のステップS4では運転安定判定値の変動がないかを判定することで、アキュムレータ21からの液冷媒の移動がなくなるのを検知しており、実施の形態1では、運転安定判定値を減圧機構開度及び過冷却度としていた。これに対し、実施の形態3では、アキュムレータ21に液面検知センサ230が設置されており、アキュムレータ21の液面高さを検知することができるようにしている。
そのため、実施の形態3では、運転安定判定値をアキュムレータ21の液面高さとし、液面高さの変動がない(油による液面だけ存在)と検知した場合に、運転安定判定値に変動がないとする。こうすることによって、アキュムレータ21に存在する液冷媒の液面を直接検知することができるため、運転状態の変動及び安定をより高精度に判定することができるようになる。
以上により、空気調和装置300では、実施の形態1に係る空気調和装置100と同様の効果を奏するだけでなく、運転状態の変動及び安定をより高精度に判定することができる。なお、実施の形態3で説明した内容を実施の形態1又は2に適用してもよいことは言うまでもない。この場合、図1のアキュムレータ21に液面検知センサ230を備えた構成となる。
1 圧縮機、2 油分離器、3 四方弁、4 熱源側熱交換器、5 熱源側送風機、6 送風機モータ、7 逆止弁ブロック、7a 逆止弁、7b 逆止弁、7c 逆止弁、7d 逆止弁、8 高圧配管、9 気液分離器、10 配管、11 過冷却熱交換器、12 液減圧機構、13 過冷却熱交換器、14a 逆止弁、14b 逆止弁、15a 室内液枝配管、15b 室内液枝配管、16a 利用側減圧機構、16b 利用側減圧機構、17a 利用側熱交換器、17b 利用側熱交換器、18a 室内ガス枝配管、18b 室内ガス枝配管、19a 電磁弁、19b 電磁弁、20 低圧配管、21 アキュムレータ、22 バイパス減圧機構、23 配管、24 配管、25 配管、26a 電磁弁、26b 電磁弁、27a 逆止弁、27b 逆止弁、28 配管、29 電磁弁、30 キャピラリー、31 配管、35 圧縮機インバータ、36 室内液配管、37 室内ガス配管、100 空気調和装置、101 ユニット制御装置、102 測定部、103 制御演算部、104 制御部、105 ユニット通信部、121 コントローラ制御装置、122 入力部、123 外部通信部、124 診断運転指令部、125 記憶部、126 診断演算部、127 判定部、128 表示部、201 圧力センサ、202 温度センサ、203 温度センサ、204 温度センサ、205 温度センサ、206 圧力センサ、207 圧力センサ、208 温度センサ、209a 温度センサ、209b 温度センサ、210a 温度センサ、210b 温度センサ、211a 温度センサ、211b 温度センサ、212 圧力センサ、213 温度センサ、214 温度センサ、215 温度センサ、230 液面検知センサ、300 空気調和装置、301 熱源ユニット、302 中継ユニット、303 利用ユニット、303a 利用ユニット、303b 利用ユニット、304 第2熱源ユニット、320 外部コントローラ、a 接続点、b 接続点、c 接続点、d 接続点。

Claims (9)

  1. 圧縮機と、熱源側熱交換器と、利用側減圧機構と、利用側熱交換器とを冷媒が循環するように配管で接続された冷媒回路と、
    冷媒の温度及び冷媒の圧力のうち少なくとも1つを検知する運転状態センサと、
    空気調和装置の構成機器の故障を特定する故障診断運転の実施を指令する診断運転指令部、及び、故障の有無を判定する判定部を有するコントローラ制御装置と、
    前記故障診断運転中に各機器の制御を実施する制御部を有するユニット制御装置と、を備え、
    前記制御部は、
    前記故障診断運転中における前記構成機器の故障診断を、
    機器動作を強制変更した時の動作前後の前記運転状態センサの出力値が所定値以内又は閾値以内の時に故障検知する応答検知診断モードと、
    前記故障診断運転の運転状態が安定している時の前記運転状態センサの検出値により故障検知する性能検知診断モードと、に区別して有し、
    前記応答検知診断モードを実施してから、前記性能検知診断モードを実施するものであり、
    前記故障診断運転中における前記圧縮機の運転周波数を固定し、
    前記故障診断運転中における熱源側送風機の回転数を外気温度と前記圧縮機の運転周波数に基づいて固定し、
    前記利用側減圧機構の開度を前記運転状態センサにより検出される運転状態が所定値となるように制御する
    空気調和装置。
  2. 圧縮機と、熱源側熱交換器と、利用側減圧機構と、利用側熱交換器とを冷媒が循環するように配管で接続された冷媒回路と、
    冷媒の温度及び冷媒の圧力のうち少なくとも1つを検知する運転状態センサと、
    空気調和装置の構成機器の故障を特定する故障診断運転の実施を指令する診断運転指令部、及び、故障の有無を判定する判定部を有するコントローラ制御装置と、
    前記故障診断運転中に各機器の制御を実施する制御部を有するユニット制御装置と、を備え、
    前記制御部は、
    前記故障診断運転中における前記構成機器の故障診断を、
    機器動作を強制変更した時の動作前後の前記運転状態センサの出力値が所定値以内又は閾値以内の時に故障検知する応答検知診断モードと、
    前記故障診断運転の運転状態が安定している時の前記運転状態センサの検出値により故障検知する性能検知診断モードと、に区別して有し、
    前記応答検知診断モードを実施してから、前記性能検知診断モードを実施するものであり、
    異常状態の内容である異常信号を外部に出力するユニット通信部を前記ユニット制御装置に備え、
    前記ユニット通信部からの出力信号を受信する外部通信部を前記コントローラ制御装置に備え、
    前記診断運転指令部は、
    前記異常信号に基づいて、故障診断する部位を限定する
    空気調和装置。
  3. 圧縮機と、熱源側熱交換器と、利用側減圧機構と、利用側熱交換器とを冷媒が循環するように配管で接続された冷媒回路と、
    冷媒の温度及び冷媒の圧力のうち少なくとも1つを検知する運転状態センサと、
    空気調和装置の構成機器の故障を特定する故障診断運転の実施を指令する診断運転指令部、及び、故障の有無を判定する判定部を有するコントローラ制御装置と、
    前記故障診断運転中に各機器の制御を実施する制御部を有するユニット制御装置と、を備え、
    前記制御部は、
    前記故障診断運転中における前記構成機器の故障診断を、
    機器動作を強制変更した時の動作前後の前記運転状態センサの出力値が所定値以内又は閾値以内の時に故障検知する応答検知診断モードと、
    前記故障診断運転の運転状態が安定している時の前記運転状態センサの検出値により故障検知する性能検知診断モードと、に区別して有し、
    前記応答検知診断モードを実施してから、前記性能検知診断モードを実施するものであり、
    前記診断運転指令部は、
    前記応答検知診断モード又は前記性能検知診断モードにおいて、前記判定部によって故障判定無しと判定されるまで故障診断を繰り返し実施する
    空気調和装置。
  4. 前記圧縮機の運転周波数を変更する圧縮機インバータと、
    前記熱源側熱交換器に空気を送風する熱源側送風機と、
    前記熱源側送風機を駆動して回転数を変更する送風機モータと、
    前記配管の少なくとも一部に設けられた電磁弁と、を有し、
    前記応答検知診断モードにより診断する故障は、
    センサハズレ、減圧機構ロック、電磁弁ロック、圧縮機インバータ不良、及び、送風機モータ不良のうちの少なくともいずれか一つであり、
    前記性能検知診断モードにより診断する故障は、
    配管詰まり、圧縮機効率低下、熱交汚れ、及び、冷媒量不足のうちの少なくともいずれか一つである
    請求項1〜3のいずれか一項に記載の空気調和装置。
  5. 分岐口を介して複数台が並列に配管接続された前記利用側熱交換器及び前記利用側減圧機構がいずれの前記分岐口に配管接続されているかを記憶する記憶部を有し、
    前記応答検知診断モードにより診断する故障は、分岐口誤設定である
    請求項1〜4のいずれか一項に記載の空気調和装置。
  6. 前記制御部は、
    前記性能検知診断モードによる故障診断での前記圧縮機の運転周波数を前記応答検知診断モードによる故障診断での前記圧縮機の運転周波数以上とする
    請求項1〜3のいずれか一項に記載の空気調和装置。
  7. 前記判定部は、
    運転状態を安定であると判定する安定判定指標として、
    前記圧縮機から前記利用側減圧機構の間のいずれかの位置の過冷却度と、
    前記冷媒回路に設置してある少なくとも1つの減圧機構の開度と、を用い、
    前記安定判定指標の変動が所定値以内となった場合に運転状態が安定であると判定し、前記性能検知診断モードを実施する
    請求項1〜6のいずれか一項に記載の空気調和装置。
  8. 前記圧縮機の吸入側に設置した液溜めと、
    前記液溜めに設置され、前記液溜め内の液面高さを検知する液面検知センサと、を有し、
    前記判定部は、
    運転状態を安定であると判定する安定判定指標として、
    前記液面検知センサにより検出される液面高さを用い、
    前記安定判定指標の変動が所定値以内となった場合に運転状態が安定であると判定し、前記性能検知診断モードを実施する
    請求項1〜6のいずれか一項に記載の空気調和装置。
  9. 前記コントローラ制御装置は、
    前記故障診断運転で診断した診断モードに関して、故障の有無を表示する表示部を備えている
    請求項1〜8のいずれか一項に記載の空気調和装置。
JP2015539894A 2013-02-28 2014-02-27 空気調和装置 Active JP6120979B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/780,037 2013-02-28
US13/780,037 US9829230B2 (en) 2013-02-28 2013-02-28 Air conditioning apparatus
PCT/JP2014/001053 WO2014132650A1 (en) 2013-02-28 2014-02-27 Air-conditioning apparatus

Publications (2)

Publication Number Publication Date
JP2016508590A JP2016508590A (ja) 2016-03-22
JP6120979B2 true JP6120979B2 (ja) 2017-04-26

Family

ID=50272672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015539894A Active JP6120979B2 (ja) 2013-02-28 2014-02-27 空気調和装置

Country Status (4)

Country Link
US (1) US9829230B2 (ja)
JP (1) JP6120979B2 (ja)
CN (1) CN105008827B (ja)
WO (1) WO2014132650A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3869123A1 (en) * 2020-02-20 2021-08-25 Panasonic Intellectual Property Management Co., Ltd. Air conditioning apparatus

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3023716B1 (en) * 2013-07-18 2022-05-18 Hangzhou Sanhua Research Institute Co., Ltd. Method for controlling vehicle air-conditioning system, and vehicle air-conditioning system
US10480846B2 (en) * 2014-11-28 2019-11-19 Daikin Industries, Ltd. Refrigeration apparatus for container
JP6944987B2 (ja) * 2015-06-26 2021-10-06 ダイキン工業株式会社 空気調和システム
JP6645044B2 (ja) * 2015-06-26 2020-02-12 ダイキン工業株式会社 空気調和システム
CN105423484B (zh) * 2015-11-05 2018-07-24 广东爱晟电子科技有限公司 一种空调制冷剂不足的检测方法及检测电路
JP2017166728A (ja) * 2016-03-15 2017-09-21 三菱重工サーマルシステムズ株式会社 熱交換器の評価装置、熱交換器の評価方法、熱交換器の製造方法、並びに熱交換器の設計方法
EP3470755A4 (en) * 2016-06-09 2019-06-26 Mitsubishi Electric Corporation REFRIGERATING CYCLE APPARATUS
WO2017212631A1 (ja) * 2016-06-10 2017-12-14 三菱電機株式会社 車両用空調装置及び車両用空調装置の異常検知システム
EP3470291B1 (en) * 2016-06-10 2020-07-22 Mitsubishi Electric Corporation Vehicle air-conditioning device and railroad-car communication system
US10859299B2 (en) * 2016-11-16 2020-12-08 Mitsubishi Electric Corporation Air-conditioning apparatus and refrigerant leakage detection method
US10969165B2 (en) 2017-01-12 2021-04-06 Emerson Climate Technologies, Inc. Micro booster supermarket refrigeration architecture
CN110376005B (zh) * 2018-04-13 2023-08-22 开利公司 数据处理方法、制冷剂泄漏检测方法、系统故障检测方法以及系统性能检测方法
EP3919829B1 (en) * 2019-01-31 2023-05-24 Mitsubishi Electric Corporation Multi-unit air conditioning system
JP6628911B1 (ja) 2019-02-21 2020-01-15 三菱電機株式会社 冷凍サイクル装置
JP7295386B2 (ja) * 2019-02-27 2023-06-21 ダイキン工業株式会社 検査実行方法、管理サーバ
JP7150135B2 (ja) * 2019-02-28 2022-10-07 三菱電機株式会社 冷凍サイクル装置
CN110006132B (zh) * 2019-04-16 2020-01-07 珠海格力电器股份有限公司 一种机组故障处理的方法、装置及机组
WO2020245918A1 (ja) * 2019-06-04 2020-12-10 三菱電機株式会社 冷凍サイクル装置
JP6732087B1 (ja) * 2019-10-30 2020-07-29 三菱電機株式会社 冷凍サイクル装置
US20210278833A1 (en) * 2020-03-09 2021-09-09 Siemens Industry, Inc. Support system for automated building management assistance
JP7454977B2 (ja) * 2020-03-25 2024-03-25 ヤンマーパワーテクノロジー株式会社 ヒートポンプ
WO2021250815A1 (ja) * 2020-06-10 2021-12-16 三菱電機株式会社 冷凍サイクル装置
CN112303811B (zh) * 2020-10-27 2021-12-14 珠海格力电器股份有限公司 空调运行数据的处理方法、装置、系统、空调和存储介质
US11656615B2 (en) 2020-11-30 2023-05-23 Haier Us Appliance Solutions, Inc. Methods for detecting fan anomalies with built-in usage and sensory data
US20220390156A1 (en) * 2021-06-04 2022-12-08 Purdue Research Foundation Smart accumulator with oil circulation ratio sensing

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381549A (en) * 1980-10-14 1983-04-26 Trane Cac, Inc. Automatic fault diagnostic apparatus for a heat pump air conditioning system
US4660386A (en) * 1985-09-18 1987-04-28 Hansen John C Diagnostic system for detecting faulty sensors in liquid chiller air conditioning system
JPS6268115A (ja) * 1985-09-20 1987-03-28 Sanden Corp 自動車用空調装置の制御装置
US5203179A (en) * 1992-03-04 1993-04-20 Ecoair Corporation Control system for an air conditioning/refrigeration system
JPH06272928A (ja) * 1993-03-23 1994-09-27 Hitachi Bill Shisetsu Eng Kk 吸収冷温水機の診断方法
JP2823497B2 (ja) * 1993-11-12 1998-11-11 三洋電機株式会社 空気調和装置
US5623834A (en) * 1995-05-03 1997-04-29 Copeland Corporation Diagnostics for a heating and cooling system
JPH10148407A (ja) * 1996-11-20 1998-06-02 Yamaha Motor Co Ltd 空調装置
JP4138924B2 (ja) * 1998-01-05 2008-08-27 高砂熱学工業株式会社 冷凍機の運転状態の検知方法
JPH11223432A (ja) * 1998-02-04 1999-08-17 Hitachi Building Shisetsu Eng Kk 吸収式冷凍機の故障診断方法、および同故障診断装置
JP3442334B2 (ja) * 2000-02-24 2003-09-02 東京瓦斯株式会社 セントラルヒーティングシステムの故障診断装置及び故障診断方法
JP2002089979A (ja) 2000-09-14 2002-03-27 Zexel Valeo Climate Control Corp 冷凍サイクル及びこれに用いられる膨張弁
US20020040280A1 (en) * 2000-09-29 2002-04-04 Morgan Stephen A. System and method for refrigerant-based air conditioning system diagnostics
JP2002283838A (ja) * 2001-03-28 2002-10-03 Sanyo Electric Co Ltd 自動車用空調システム
US6826454B2 (en) * 2001-09-19 2004-11-30 Louis E. Sulfstede Air conditioning diagnostic analyzer
JP2005049001A (ja) 2003-07-28 2005-02-24 Matsushita Electric Ind Co Ltd 空気調和機
US20050126190A1 (en) * 2003-12-10 2005-06-16 Alexander Lifson Loss of refrigerant charge and expansion valve malfunction detection
JP4503646B2 (ja) * 2005-02-24 2010-07-14 三菱電機株式会社 空気調和装置
JP4479565B2 (ja) * 2005-03-29 2010-06-09 ダイキン工業株式会社 異常検知システム
JP3963190B2 (ja) 2005-04-07 2007-08-22 ダイキン工業株式会社 空気調和装置の冷媒量判定システム
JP2008082654A (ja) 2006-09-28 2008-04-10 Daikin Ind Ltd 冷凍装置の故障診断方法、及び冷凍装置
US20080078189A1 (en) 2006-09-28 2008-04-03 Sumitomo Heavy Industries, Ltd. Communication network system
US8024938B2 (en) 2006-11-14 2011-09-27 Field Diagnostic Services, Inc. Method for determining evaporator airflow verification
JP4017014B2 (ja) * 2006-12-20 2007-12-05 三菱電機株式会社 空気調和機
JP2010127568A (ja) 2008-11-28 2010-06-10 Mitsubishi Electric Corp 異常検出装置およびそれを備えた冷凍サイクル装置
JP2010151397A (ja) 2008-12-25 2010-07-08 Samsung Electronics Co Ltd 冷凍サイクル回路に用いられる故障診断装置
US20100174412A1 (en) * 2009-01-06 2010-07-08 Lg Electronics Inc. Air conditioner and method for detecting malfunction thereof
KR20110074109A (ko) * 2009-12-24 2011-06-30 엘지전자 주식회사 공기조화기 및 공기조화기의 제어방법
JP5220045B2 (ja) * 2010-02-15 2013-06-26 三菱電機株式会社 冷却装置
JP5609337B2 (ja) 2010-07-07 2014-10-22 株式会社富士通ゼネラル マルチ型空気調和機
US20120072029A1 (en) * 2010-09-20 2012-03-22 Heatvu Inc. Intelligent system and method for detecting and diagnosing faults in heating, ventilating and air conditioning (hvac) equipment
JP5718629B2 (ja) 2010-12-20 2015-05-13 株式会社サムスン日本研究所 冷媒量検知装置
US20120174412A1 (en) * 2011-01-11 2012-07-12 Chun-Feng Ho Utility knife using tilting status thereof for blade switching

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3869123A1 (en) * 2020-02-20 2021-08-25 Panasonic Intellectual Property Management Co., Ltd. Air conditioning apparatus

Also Published As

Publication number Publication date
WO2014132650A1 (en) 2014-09-04
US20140238060A1 (en) 2014-08-28
CN105008827B (zh) 2017-11-07
CN105008827A (zh) 2015-10-28
US9829230B2 (en) 2017-11-28
JP2016508590A (ja) 2016-03-22

Similar Documents

Publication Publication Date Title
JP6120979B2 (ja) 空気調和装置
JP5011957B2 (ja) 空気調和装置
JP4904908B2 (ja) 空気調和装置
JP6312697B2 (ja) 冷媒充填支援装置、空気調和装置及び冷媒充填支援プログラム
EP1970652B1 (en) Air conditioner
WO2018012489A1 (ja) 冷凍システム
EP3279580B1 (en) Air-conditioning device
JP5563609B2 (ja) 冷媒システム及びその制御方法
JP4093275B2 (ja) 空気調和装置
JP4075933B2 (ja) 空気調和装置
WO2007069581A1 (ja) 空気調和装置
EP2765371A1 (en) Refrigeration cycle device
US11536502B2 (en) Refrigerant cycle apparatus
WO2007069587A1 (ja) 空気調和装置
JP5078817B2 (ja) 冷凍サイクル装置
JP6218965B2 (ja) 空気調和装置及び空気調和システム
JP2008082654A (ja) 冷凍装置の故障診断方法、及び冷凍装置
JP2013204863A (ja) マルチ形空気調和機
JP6570745B2 (ja) 空気調和装置
JP2008064456A (ja) 空気調和装置
JP4562650B2 (ja) 空気調和装置
KR20180085275A (ko) 멀티형 공기조화기의 제어방법
JP2021055956A (ja) 冷凍サイクル装置及び判定システム
WO2016203507A1 (ja) 冷凍サイクル装置
JPWO2017094172A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170328

R150 Certificate of patent or registration of utility model

Ref document number: 6120979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250