WO2020245918A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2020245918A1
WO2020245918A1 PCT/JP2019/022184 JP2019022184W WO2020245918A1 WO 2020245918 A1 WO2020245918 A1 WO 2020245918A1 JP 2019022184 W JP2019022184 W JP 2019022184W WO 2020245918 A1 WO2020245918 A1 WO 2020245918A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
refrigerant
temperature
refrigeration cycle
heat exchanger
Prior art date
Application number
PCT/JP2019/022184
Other languages
English (en)
French (fr)
Inventor
康敬 落合
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP19931732.2A priority Critical patent/EP3982063A4/en
Priority to US17/603,397 priority patent/US20220178603A1/en
Priority to PCT/JP2019/022184 priority patent/WO2020245918A1/ja
Priority to JP2021524546A priority patent/JP7138790B2/ja
Publication of WO2020245918A1 publication Critical patent/WO2020245918A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration cycle device provided with a refrigeration cycle circuit.
  • it relates to abnormality detection of a valve in a circuit.
  • the air conditioner includes a compressor, a condenser, an electronic expansion valve and an evaporator.
  • a temperature sensor for detecting the temperature of the evaporator is provided between the electronic expansion valve and the evaporator. Further, the suction port of the evaporator is provided with a temperature sensor that detects and detects the suction air temperature.
  • abnormality detection of the electronic expansion valve is performed based on the detection temperature of each temperature sensor.
  • two solenoid valves for switching the flow direction of the refrigerant in each of the plurality of indoor heat exchangers are provided for each indoor heat exchanger.
  • an abnormality that occurs in either the electronic expansion valve or the solenoid valve is accurately detected. There was a problem that it could be difficult to do.
  • An object of the present invention is to provide a refrigeration cycle device capable of more accurately detecting a valve abnormality in order to solve the above-mentioned problems.
  • the refrigeration cycle device includes a refrigeration cycle circuit that connects a compressor, a refrigerant flow path switching device, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger to circulate the refrigerant, and an outdoor heat exchanger and expansion.
  • a first branch portion for branching the refrigerant between the valves a second branch portion for branching the refrigerant between the indoor heat exchanger and the refrigerant flow path switching device, and a first branch portion and a second branch portion.
  • the compressor operates and the expansion valve When there is a temperature difference between the detection temperature of the first temperature sensor and the detection temperature of the second temperature sensor in the operating state in which the first valve is in the fully closed state, the first valve is in the open state, and the second valve is in the closed state. When this is done, it is detected that at least one of the expansion valve and the second valve is abnormal.
  • the first valve when an abnormality occurs in at least one of the expansion valve and the second valve in an operating state in which the expansion valve is fully closed, the first valve is open, and the second valve is closed, the first valve is the second.
  • the first valve is the second.
  • FIG. It is a figure which shows the structure of the refrigeration cycle apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the combination pattern of the state which each of the electronic expansion valve 21a, the low pressure valve 45a and the high pressure valve 46a can take in the refrigerating cycle apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the operation of the electronic expansion valve 21a, the low pressure valve 45a, and the high pressure valve 46a in the state pattern 1 in the refrigerating cycle apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the graph which shows the temperature distribution of the refrigerant in the room heat exchanger 22a in the state pattern 1 in the refrigerating cycle apparatus which concerns on Embodiment 1.
  • FIG. 1 It is a figure which shows the operation of the electronic expansion valve 21a, the low pressure valve 45a, and the high pressure valve 46a in the state pattern 2 in the refrigeration cycle apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the graph which shows the temperature distribution of the refrigerant in the room heat exchanger 22a in the state pattern 2 in the refrigerating cycle apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the operation of the electronic expansion valve 21a, the low pressure valve 45a, and the high pressure valve 46a in the state pattern 3 in the refrigeration cycle apparatus which concerns on Embodiment 1.
  • FIG. 1 shows the flowchart in the example of the flow of the 1st abnormality detection processing executed by the control device 3 of the refrigeration cycle apparatus which concerns on Embodiment 1.
  • FIG. 2nd abnormality detection processing executed by the control device 3 of the refrigeration cycle apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the flowchart in the example of the flow of the 3rd abnormality detection processing executed by the control device 3 of the refrigeration cycle apparatus which concerns on Embodiment 1.
  • FIG. 1 is a diagram showing a configuration of a refrigeration cycle device according to the first embodiment.
  • a refrigerating cycle device a multi-type air conditioner capable of performing simultaneous cooling and heating operation is illustrated.
  • the refrigeration cycle apparatus of the present embodiment includes a refrigeration cycle circuit 10 for circulating a refrigerant and a control device 3 for controlling the entire refrigeration cycle apparatus including the refrigeration cycle circuit 10.
  • the refrigerating cycle apparatus includes an outdoor unit 1, an indoor unit 2a, an indoor unit 2b, and a flow dividing controller 4.
  • the equipment and the like constituting the refrigeration cycle circuit 10 are separately housed in the outdoor unit 1, the indoor unit 2a and the indoor unit 2b, and the flow dividing controller 4.
  • the compressor 11, the refrigerant flow path switching device 14, the outdoor heat exchanger 12, the electronic expansion valve 21a and the electronic expansion valve 21b, and the indoor heat exchanger 22a and the indoor heat exchanger 22b are connected via the refrigerant piping. It has a structure connected in a ring shape.
  • the set of the electronic expansion valve 21a and the indoor heat exchanger 22a and the set of the electronic expansion valve 21b and the indoor heat exchanger 22b are connected in parallel with each other.
  • the number of pairs of the electronic expansion valve 21 and the indoor heat exchanger 22 is assumed to be two, but the number of pairs of the electronic expansion valve 21 and the indoor heat exchanger 22 is one or one. It may be 3 or more.
  • the refrigeration cycle circuit 10 has a bypass flow path 44 composed of an electronic expansion valve 21a and an electronic expansion valve 21b, and a bypass pipe for passing a refrigerant by bypassing the indoor heat exchanger 22a and the indoor heat exchanger 22b. ..
  • One end side of the bypass flow path 44 is connected to a first branch portion 41 provided between the outdoor heat exchanger 12, the electronic expansion valve 21a, and the electronic expansion valve 21b in the refrigeration cycle circuit 10.
  • a gas-liquid separator 43 is provided in the first branch portion 41.
  • the other end side of the bypass flow path 44 is branched into a plurality of branch flow paths 44a and branch flow paths 44b configured as a part of the bypass pipe.
  • the branch flow path 44a and the branch flow path 44b are provided corresponding to the indoor unit 2a and the indoor unit 2b, which will be described later, respectively.
  • the number of branch flow paths 44a and branch flow paths 44b is the same as the number of indoor units 2a and indoor units 2b, that is, the number of indoor heat exchangers 22a and indoor heat exchangers 22b.
  • the branch flow path 44a is connected to the second branch section 42a side of the refrigeration cycle circuit 10 provided between the indoor heat exchanger 22a and the refrigerant flow path switching device 14.
  • branch flow path 44b is connected to the second branch portion 42b side provided between the indoor heat exchanger 22b and the refrigerant flow path switching device 14 in the refrigeration cycle circuit 10.
  • the second branch portion 42a and the second branch portion 42b are provided corresponding to the indoor unit 2a and the indoor unit 2b, respectively.
  • the number of the second branch portions 42a and the second branch portion 42b is the same as the number of the indoor units 2a and the indoor unit 2b, that is, the number of the indoor heat exchangers 22a and the indoor heat exchangers 22b.
  • a low pressure valve 45a is provided between the second branch portion 42a and the refrigerant flow path switching device 14. Further, in the refrigeration cycle circuit 10, a low pressure valve 45b is provided between the second branch portion 42b and the refrigerant flow path switching device 14.
  • the low-pressure valve 45a and the low-pressure valve 45b through which the low-pressure refrigerant mainly passes are examples of the first valve, respectively.
  • the low-pressure valve 45a and the low-pressure valve 45b are provided corresponding to the indoor unit 2a and the indoor unit 2b, respectively.
  • the number of low-pressure valves 45a and low-pressure valves 45b is the same as the number of indoor units 2a and 2b, that is, the number of indoor heat exchangers 22a and indoor heat exchangers 22b.
  • a high pressure valve 46a is provided between the branch flow path 44a of the bypass flow path 44 and the second branch portion 42a. Further, a high pressure valve 46b is provided between the branch flow path 44b of the bypass flow path 44 and the second branch portion 42b.
  • the high-pressure valve 46a and the high-pressure valve 46b through which the high-pressure refrigerant mainly passes are examples of the second valve, respectively.
  • the high-pressure valve 46a and the high-pressure valve 46b are provided corresponding to the indoor unit 2a and the indoor unit 2b, respectively.
  • the number of high-pressure valves 46a and high-pressure valves 46b is the same as the number of indoor units 2a and 2b, that is, the number of indoor heat exchangers 22a and indoor heat exchangers 22b.
  • the refrigeration cycle device includes an outdoor unit 1, a flow dividing controller 4, and two indoor units 2a and 2b.
  • the equipment in the outdoor unit 1 and the equipment in the flow distribution controller 4 are connected via two refrigerant pipes. Further, the equipment in the flow dividing controller 4 and the respective equipments of the two indoor units 2a and 2b are connected via two refrigerant pipes.
  • one outdoor unit 1 is illustrated, but the number of outdoor units 1 may be two or more.
  • one distribution controller 4 is illustrated, but the number of distribution controllers 4 may be two or more.
  • two indoor units 2a and 2b are illustrated, but the number of indoor units 2 may be one or three or more. Then, the outdoor unit 1 and the flow dividing controller 4 may be connected via three refrigerant pipes.
  • the outdoor unit 1 is installed outdoors, for example.
  • the outdoor unit 1 includes the compressor 11, the refrigerant flow path switching device 14, the outdoor heat exchanger 12, and the check valves 171 to 174. Further, the outdoor unit 1 includes an outdoor fan 13, a high pressure pressure sensor 15, and a low pressure pressure sensor 16.
  • the compressor 11 is a fluid machine that sucks in a low-pressure low-temperature gas refrigerant, compresses it, and discharges it as a high-pressure high-temperature gas refrigerant.
  • the compressor 11 operates, the refrigerant circulates in the refrigeration cycle circuit 10.
  • an inverter-driven compressor whose operating frequency can be adjusted is used.
  • the operation of the compressor 11 is controlled by the control device 3.
  • the refrigerant flow path switching device 14 is a valve that switches the flow direction of the refrigerant between the cooling main operation and the heating main operation.
  • the refrigerant flow path switching device 14 is controlled by the control device 3 to set the flow path shown by the solid line in FIG. 1 during the cooling main operation and the flow path shown by the broken line in FIG. 1 during the heating main operation.
  • the cooling main operation is an operation mode executed when the cooling load in the indoor unit 2a and the indoor unit 2b is larger than the heating load.
  • the cooling-based operation shall include a full cooling operation in which the cooling operation is performed in all the indoor units 2a and 2b.
  • the heating main operation is an operation mode executed when the heating load in the indoor unit 2a and the indoor unit 2b is larger than the cooling load.
  • the heating-based operation shall include a full heating operation in which the heating operation is performed in all the indoor units 2a and 2b.
  • the outdoor heat exchanger 12 is a heat exchanger that functions as a condenser during cooling-based operation and as an evaporator during heating-based operation. In the outdoor heat exchanger 12, heat exchange between the refrigerant and the outdoor air is performed.
  • the outdoor fan 13 is configured to supply outdoor air to the outdoor heat exchanger 12.
  • a propeller fan driven by a motor (not shown) is used.
  • the outdoor fan 13 When the outdoor fan 13 operates, the outdoor air is sucked into the outdoor unit 1, and the outdoor air that has passed through the outdoor heat exchanger 12 is discharged to the outside of the outdoor unit 1.
  • the operation of the outdoor fan 13 is controlled by the control device 3.
  • the high-pressure pressure sensor 15 is provided in the discharge pipe between the compressor 11 and the refrigerant flow path switching device 14, that is, on the discharge side of the compressor 11 in the refrigeration cycle circuit 10.
  • the high-pressure pressure sensor 15 becomes the discharge pressure of the compressor 11, detects the high-pressure pressure Pd on the high-pressure side in the refrigeration cycle circuit 10, and outputs the detection signal to the control device 3.
  • the condensation temperature Tc of the refrigerant in the refrigeration cycle circuit 10 is calculated based on the high pressure Pd in the refrigeration cycle circuit 10.
  • the low pressure pressure sensor 16 is provided in the refrigerating cycle circuit 10 on the suction pipe between the refrigerant flow path switching device 14 and the compressor 11, that is, on the suction side of the compressor 11.
  • the low pressure pressure sensor 16 detects the low pressure pressure Ps on the low pressure side in the refrigeration cycle circuit 10 and outputs the detection signal to the control device 3.
  • the control device 3 calculates the evaporation temperature Te of the refrigerant in the refrigeration cycle circuit 10 based on the low pressure Ps in the refrigeration cycle circuit 10.
  • the indoor unit 2a is installed indoors, for example.
  • the indoor unit 2a houses the above-mentioned electronic expansion valve 21a and the indoor heat exchanger 22a. Further, the indoor unit 2a includes an indoor fan 25a, a first temperature sensor TH1a, a second temperature sensor TH2a, and a third temperature sensor TH3a.
  • the electronic expansion valve 21a is a valve that adiabatically expands the refrigerant.
  • the opening degree of the electronic expansion valve 21a is controlled by the control device 3 so that the superheat degree SH or the supercooling degree SC of the refrigerant in the refrigeration cycle circuit 10 approaches the target value.
  • the electronic expansion valve 21a is an example of a throttle device. It does not have to be an electronic expansion valve as long as the opening degree can be adjusted based on control.
  • the indoor heat exchanger 22a is a heat exchanger that functions as an evaporator when the indoor unit 2a performs a cooling operation and functions as a condenser when the indoor unit 2a performs a heating operation. is there. In the indoor heat exchanger 22a, heat exchange between the refrigerant and the indoor air is performed.
  • the indoor fan 25a is configured to supply indoor air to the indoor heat exchanger 22a.
  • a centrifugal fan or a cross-flow fan driven by a motor (not shown) is often used.
  • the indoor fan 25a When the indoor fan 25a operates, the indoor air is sucked into the indoor unit 2a, and the conditioned air that has passed through the indoor heat exchanger 22a is supplied to the room.
  • the operation of the indoor fan 25a is controlled by the control device 3.
  • the first temperature sensor TH1a detects the indoor temperature TH1 in the room where the air related to harmony is supplied from the indoor unit 2a, and outputs a detection signal including the detected temperature to the control device 3.
  • the first temperature sensor TH1a is provided, for example, at the suction port of the indoor unit 2a, which is on the upstream side of the indoor heat exchanger 22a in the flow of indoor air.
  • the second temperature sensor TH2a is provided between the electronic expansion valve 21a and the indoor heat exchanger 22a in the refrigeration cycle circuit 10.
  • the second temperature sensor TH2a detects the liquid side temperature TH2 temperature, which is the temperature of the refrigerant through which the liquid refrigerant of the indoor heat exchanger 22a flows, and outputs a detection signal including the detected temperature to the control device 3. Therefore, the second temperature sensor TH2a detects the temperature of the refrigerant on the refrigerant inlet side of the indoor heat exchanger 22a during the cooling operation of the indoor unit 2a.
  • the third temperature sensor TH3a is provided between the indoor heat exchanger 22a, the low pressure valve 45a, and the high pressure valve 46a in the refrigeration cycle circuit 10.
  • the third temperature sensor TH3a detects the gas side temperature TH3, which is the temperature of the refrigerant through which the gas refrigerant of the indoor heat exchanger 22a flows, and outputs a detection signal including the detected temperature to the control device 3. Therefore, the third temperature sensor TH3a detects the temperature on the refrigerant outlet side of the indoor heat exchanger 22a during the cooling operation of the indoor unit 2a.
  • the indoor unit 2b has the same configuration as the indoor unit 2a.
  • the indoor unit 2b includes an electronic expansion valve 21b, an indoor heat exchanger 22b, an indoor fan 25b, a first temperature sensor TH1b, a second temperature sensor TH2b, and a third temperature sensor TH3b.
  • the diversion controller 4 is installed indoors, for example.
  • the flow dividing controller 4 is a repeater provided between the outdoor unit 1 and the indoor unit 2a and the indoor unit 2b in the flow of the refrigerant.
  • the flow dividing controller 4 includes the above-mentioned first branch portion 41, second branch portion 42a and second branch portion 42b, gas-liquid separator 43, bypass flow path 44, branch flow path 44a and branch flow path 44b, and low pressure valve 45a. And the low pressure valve 45b, the high pressure valve 46a and the high pressure valve 46b, the valve 47 and the low pressure bypass flow path 48 are accommodated.
  • the valve 47 controls the flow of refrigerant by opening and closing. For example, during the total cooling operation, the valve 47 is opened so that the liquid refrigerant from the outdoor unit 1 flows to the indoor unit 2a and the indoor unit 2b. Further, for example, when the valve 47 is closed, the gas refrigerant flowing into the flow dividing controller 4 from the outdoor unit 1 passes through the gas-liquid separator 43 and the bypass flow path 44 among the indoor unit 2a and the indoor unit 2b. , It is supplied to the indoor unit 2 during the heating operation. The liquid refrigerant flowing out of the indoor unit 2 passes through, for example, a low-pressure bypass flow path 48 that serves as a bypass pipe.
  • Each of the low-pressure valve 45a and the low-pressure valve 45b and the high-pressure valve 46a and the high-pressure valve 46b is an on-off valve capable of opening and closing the flow path.
  • an electromagnetic valve, an electric valve or the like is used as the low pressure valve 45a and the low pressure valve 45b and the high pressure valve 46a and the high pressure valve 46b.
  • the operations of the low-pressure valve 45a and the low-pressure valve 45b and the high-pressure valve 46a and the high-pressure valve 46b are controlled by the control device 3.
  • the control device 3 When the indoor unit 2a is used for cooling operation, the low pressure valve 45a is opened and the high pressure valve 46a is closed.
  • the low pressure valve 45a is closed and the high pressure valve 46a is opened.
  • the low pressure valve 45b is opened and the high pressure valve 46b is closed.
  • the indoor unit 2b is used for heating operation, the low pressure valve 45b is closed and the high pressure valve 46b is open.
  • the control device 3 has a microcomputer provided with a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an I / O port, and the like.
  • the control device 3 controls the operation of the entire refrigeration cycle device based on detection signals from various sensors provided in the refrigeration cycle circuit 10 and the like, operation signals from an operation unit (not shown), and the like.
  • the control device 3 includes, for example, a compressor 11, a refrigerant flow path switching device 14, an outdoor fan 13, an electronic expansion valve 21a and an electronic expansion valve 21b, an indoor fan 25a and an indoor fan 25b, a low pressure valve 45a and a low pressure valve 45b, and a high pressure valve. Controls equipment such as 46a and high pressure valve 46b. As shown in FIG.
  • control device 3 is provided in the outdoor unit 1, but the installation location of the control device 3 is not particularly limited.
  • the control device 3 may be provided in either the indoor unit 2a or the indoor unit 2b, or may be provided in the flow dividing controller 4. Further, the control device 3 may be installed independently.
  • the control device 3 in the present embodiment particularly performs an abnormality determination process related to abnormality detection of the electronic expansion valve 21a and the electronic expansion valve 21b, and the high pressure valve 46a and the high pressure valve 46b. Therefore, the control device 3 has a storage unit 31, an extraction unit 32, a calculation unit 33, a comparison unit 34, and a determination unit 35 as functional blocks.
  • the storage unit 31 stores pressure data related to each detection of the high pressure pressure sensor 15 and the low pressure pressure sensor 16. Further, the storage unit 31 stores temperature data related to detection of the first temperature sensor TH1a and the first temperature sensor TH1b, the second temperature sensors TH2a and TH2b, and the third temperature sensor TH3a and the third temperature sensor TH3b, respectively. .. Here, these data are periodically acquired during the operation of the refrigeration cycle circuit 10. In addition, the storage unit 31 stores various data necessary for the control device 3 to perform the abnormality determination process.
  • the extraction unit 32 extracts the data required for performing the abnormality determination process from the data stored in the storage unit 31. For example, when anomaly detection of the electronic expansion valve 21a and the high pressure valve 46a corresponding to the indoor unit 2a is performed, the data when the refrigeration cycle circuit 10 and the indoor unit 2a are operating in a specific operating state is used.
  • the specific operating state when detecting the abnormality of the electronic expansion valve 21a and the high pressure valve 46a is that the indoor unit 2a is in the thermo-off or stopped state when the compressor 11 is operating, and the electronic expansion valve 21a is fully occupied. This is an operating state in which the low pressure valve 45a is opened and the high pressure valve 46a is closed.
  • the refrigeration cycle circuit 10 and the indoor unit 2a are operating in a specific operating state.
  • the refrigeration cycle circuit 10 either the cooling operation or the heating main operation may be executed.
  • the data when the refrigeration cycle circuit 10 and the indoor unit 2b are operating in a specific operating state is used.
  • the specific operating state when detecting the abnormality of the electronic expansion valve 21b and the high pressure valve 46b is that when the compressor 11 is operating, the indoor unit 2b is in the thermo-off or stopped state, and the electronic expansion valve 21b is fully occupied. This is an operating state in which the low pressure valve 45b is in the closed state, the high pressure valve 45b is in the closed state, and the high pressure valve 46b is in the closed state.
  • the refrigeration cycle circuit 10 and the indoor unit 2b are operating in a specific operating state.
  • the refrigeration cycle circuit 10 either the cooling operation or the heating main operation may be executed.
  • the extraction unit 32 extracts the data obtained by the specific operation performed when the operation mode switching unit 37 is switched to the abnormality detection mode.
  • the calculation unit 33 performs necessary calculations based on the data extracted by the extraction unit 32. Further, the comparison unit 34 compares the value obtained by the calculation unit 33 with the threshold value or the value obtained by the calculation by the calculation unit 33.
  • the determination unit 35 determines an abnormality in at least one of the electronic expansion valve 21a and the electronic expansion valve 21b, the low pressure valve 45a and the low pressure valve 45b, and the high pressure valve 46a and the high pressure valve 46b. Perform processing.
  • the notification unit 36 and the operation mode switching unit 37 are connected to the control device 3.
  • the notification unit 36 and the operation mode switching unit 37 may be provided in the control device 3 as a part of the control device 3.
  • the notification unit 36 notifies various information such as an abnormality of the electronic expansion valve 21a and the electronic expansion valve 21b and the high pressure valve 46a and the high pressure valve 46b by a command from the control device 3.
  • the notification unit 36 has at least one of a display unit that visually notifies information and an audio output unit that audibly notifies information.
  • the operation mode switching unit 37 receives the operation mode switching operation by the user and sends a signal related to the operation to the control device 3.
  • the control device 3 switches the operation mode based on the signal output from the operation mode switching unit 37.
  • the operation mode of the refrigeration cycle apparatus in the present embodiment includes, for example, a normal operation mode and an abnormality detection mode.
  • the normal operation mode the refrigeration cycle device is operated in an operating state in response to requests from the indoor unit 2a and the indoor unit 2b side. For example, when there is a cooling request from all the indoor units 2a and 2b, the full cooling operation is performed.
  • the abnormality detection mode is a mode for detecting an abnormality in the electronic expansion valve 21a and the electronic expansion valve 21b, and the high pressure valve 46a and the high pressure valve 46b. Therefore, in the abnormality detection mode, the indoor unit 2a or the indoor unit 2b is in the thermo-off state of the cooling operation regardless of the request from the indoor unit 2a and the indoor unit 2b side.
  • the indoor unit 2a is in the thermo-off state of the cooling operation, it is possible to detect an abnormality in the electronic expansion valve 21a and the high pressure valve 46a.
  • the abnormality detection of the electronic expansion valve 21b and the high pressure valve 46b is possible.
  • the operation of the refrigeration cycle device will be described by taking cooling-based operation as an example.
  • the refrigerant flow path switching device 14 is switched so that the flow path shown by the solid line in FIG. 1 is formed.
  • the cooling operation in which the indoor unit 2a is in the thermo-off or stopped state and the indoor unit 2b performs the cooling operation will be taken as an example.
  • the indoor fan 25a is driven, but the refrigeration cycle is in the same state as when it is stopped. Therefore, the refrigerant does not flow into the indoor unit 2a.
  • the low pressure valve 45a is set to the open state.
  • the high pressure valve 46a is set to the closed state. Then, the electronic expansion valve 21a is fully closed. Further, the low pressure valve 45b is set to the open state for the valve related to the indoor unit 2b in which the cooling operation is performed. Further, the high pressure valve 46b is set to the closed state.
  • the opening degree of the electronic expansion valve 21b is controlled so that, for example, the superheat degree SH at the outlet of the indoor heat exchanger 22a approaches the target superheat degree SHm, respectively.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 passes through the refrigerant flow path switching device 14 and flows into the outdoor heat exchanger 12.
  • the gas refrigerant flowing into the outdoor heat exchanger 12 is condensed by heat exchange with the outdoor air supplied by the outdoor fan 13 to become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 12 flows into the indoor heat exchanger 22b via the check valve 171, the gas-liquid separator 43, the valve 47, and the electronic expansion valve 21b.
  • the indoor heat exchanger 22b and the indoor heat exchanger 22b function as evaporators.
  • the liquid refrigerant flowing into the indoor heat exchanger 22b evaporates by heat exchange with the indoor air supplied by the indoor fan 25b, and becomes a low-pressure gas refrigerant.
  • the refrigerant condensed by the indoor heat exchanger 22b is sucked into the compressor 11 via the low pressure valve 45b, the check valve 174, and the refrigerant flow path switching device 14.
  • the low-pressure constant constant control performed by the control device 3 will be described.
  • the operating frequency of the compressor 11 is controlled so that the suction pressure of the compressor 11, which is the low-pressure pressure Ps in the refrigeration cycle circuit 10, becomes constant.
  • the outdoor fan control performed by the control device 3 will be described.
  • the control device 3 controls the rotation speed of the outdoor fan 13 so that the temperature difference between the condensation temperature Tc and the outside air temperature becomes constant.
  • the steady control during the cooling operation of the indoor unit 2a and the indoor unit 2b will be described by taking the indoor unit 2b as an example.
  • the low pressure pressure Ps is controlled to be constant. Therefore, superheat degree control is executed as a method of changing the air conditioning capacity of the indoor unit 2b.
  • the target superheat degree SHm of the superheat degree SH at the outlet of the indoor heat exchanger 22b is adjusted so that the indoor unit 2b can obtain the desired air conditioning capacity.
  • the amount of heat exchanged in the indoor heat exchanger 22b changes according to the magnitude of the degree of superheat SH. Therefore, by adjusting the target superheat degree SHm of the superheat degree SH, the indoor unit 2b can exhibit an appropriate air conditioning capacity.
  • the target superheat degree SHm of the superheat degree SH is set to a small value.
  • the target superheat degree SHm of the superheat degree SH is set to a large value.
  • the opening degree of the electronic expansion valve 21b is controlled so that the superheat degree SH at the outlet of the indoor heat exchanger 22b approaches the target superheat degree SHm. As a result, the required amount of refrigerant is supplied to the indoor heat exchanger 22b.
  • the electronic expansion valve 21a the indoor heat exchanger 22a, the first temperature sensor TH1a, the second temperature sensor TH2a, and the third temperature corresponding to the indoor unit 2a that has stopped operating in a specific operating state.
  • the sensor TH3a, the low-pressure valve 45a, and the high-pressure valve 46a will be described as examples.
  • FIG. 2 is a diagram showing an example of a combination pattern in which each of the electronic expansion valve 21a, the low pressure valve 45a, and the high pressure valve 46a can be in the refrigeration cycle apparatus according to the first embodiment.
  • the refrigeration cycle apparatus is controlled to be in the specific operating state described above. Therefore, the indoor unit 2a is in the thermo-off or stopped state.
  • the refrigeration cycle circuit 10 either the cooling main operation or the heating main operation may be executed.
  • FIG. 3 is a diagram showing the operation of the electronic expansion valve 21a, the low pressure valve 45a, and the high pressure valve 46a in the state pattern 1 in the refrigeration cycle apparatus according to the first embodiment.
  • the electronic expansion valve 21a, the low pressure valve 45a, and the high pressure valve 46a are all in a normal state.
  • the electronic expansion valve 21a is in a fully closed state. Further, the low pressure valve 45a is in the open state, and the high pressure valve 46a is in the closed state.
  • FIG. 4 is a graph showing a graph showing the temperature distribution of the refrigerant in the indoor heat exchanger 22a in the state pattern 1 in the refrigeration cycle apparatus according to the first embodiment.
  • the horizontal axis of FIG. 4 represents the position in the refrigerant flow path in the indoor heat exchanger 22a, and the vertical axis of FIG. 4 represents the temperature.
  • the right end of the graph represents the refrigerant inlet of the indoor heat exchanger 22a during the cooling operation.
  • the temperature at the right end of the graph corresponds to the gas side temperature TH3 of the indoor heat exchanger 22a detected by the third temperature sensor TH3a.
  • the left end of the graph represents the refrigerant outlet of the indoor heat exchanger 22a during the cooling operation.
  • the temperature at the left end of the graph corresponds to the liquid side temperature TH2 of the indoor heat exchanger 22a detected by the second temperature sensor TH2a.
  • FIG. 5 is a diagram showing the operation of the electronic expansion valve 21a, the low pressure valve 45a, and the high pressure valve 46a in the state pattern 2 in the refrigeration cycle apparatus according to the first embodiment.
  • the state pattern 2 is a state in which the electronic expansion valve 21a is open-locked.
  • the open lock of the electronic expansion valve 21a is one of the abnormalities of the electronic expansion valve 21a, and is a state in which the electronic expansion valve 21a is fixed in the open state due to the sticking of the valve body in the electronic expansion valve 21a. is there.
  • the electronic expansion valve 21a In the normal state pattern 1, the electronic expansion valve 21a is fully closed, whereas in the state pattern 2, the electronic expansion valve 21a is maintained in the open state.
  • FIG. 6 is a graph showing a graph showing the temperature distribution of the refrigerant in the indoor heat exchanger 22a in the state pattern 2 in the refrigeration cycle apparatus according to the first embodiment.
  • the horizontal axis and the vertical axis of FIG. 6 are the same as those of FIG.
  • the part where TH3 is installed is in a superheated gas state, but when the electronic expansion valve 21a is unlocked and the state pattern 2 is reached, the refrigerant flows through the indoor heat exchanger 22a. Therefore, the two-phase refrigerant passing through the indoor heat exchanger 22a evaporates by heat exchange with the indoor air. As a result, as shown in FIG. 6, the liquid side temperature TH2 becomes equivalent to the evaporation temperature. On the other hand, the refrigerant is overheated near the outlet of the indoor heat exchanger 22a. Therefore, the gas side temperature TH3 detects a temperature higher than the evaporation temperature.
  • FIG. 7 is a diagram showing the operation of the electronic expansion valve 21a, the low pressure valve 45a, and the high pressure valve 46a in the state pattern 3 in the refrigeration cycle apparatus according to the first embodiment.
  • the state pattern 3 is a state in which the high pressure valve 46a is open-locked.
  • the open lock of the high pressure valve 46a is one of the abnormalities of the high pressure valve 46a, and is a state in which the high pressure valve 46a is fixed in the open state by sticking the valve body in the high pressure valve 46a.
  • the high pressure valve 46a is in the closed state
  • the state pattern 3 the high pressure valve 46a is in the open state.
  • FIG. 8 is a graph showing a graph showing the temperature distribution of the refrigerant in the indoor heat exchanger 22a in the state pattern 3 in the refrigeration cycle apparatus according to the first embodiment.
  • the horizontal axis and the vertical axis of FIG. 8 are the same as those of FIG.
  • the thick solid line curve C11 shows the temperature distribution of the refrigerant when a sufficient time has passed since the state pattern 1 was changed to the state pattern 3.
  • the thin solid line curve C131 shows the temperature distribution of the refrigerant immediately after the change from the state pattern 1 to the state pattern 3.
  • the thin solid line curve C12 shows the change in the temperature distribution of the refrigerant from the temperature distribution shown by the curve C11 to the temperature distribution shown by the curve C13 in chronological order.
  • the gas side temperature TH3 is the same temperature as the room temperature TH1, but when the high pressure valve 46a is open-locked as in the state pattern 3, the room heat exchanger 22a has a high temperature. Refrigerant flows in and condenses, and the refrigerant accumulates. Therefore, in the indoor heat exchanger 22a, the gas refrigerant is liquefied by heat exchange with the indoor air, and the inside of the indoor heat exchanger 22a is gradually filled with the two-phase refrigerant. As a result, as shown in FIG. 8, the gas side temperature TH3 and the liquid side temperature TH2 approach the condensation temperature Tc from the room temperature TH1. This temperature difference changes depending on the cooling performance of the indoor heat exchanger 22.
  • the high-pressure valve 46a since the high-pressure valve 46a is in the open state, a part of the high-pressure refrigerant flows into the low-pressure side of the refrigeration cycle circuit 10 through the bypass flow path 44 and the branch flow path 44a. As a result, the low pressure Ps in the refrigeration cycle circuit 10 rises.
  • the compressor 11 is controlled so that the high-pressure pressure Pd approaches a constant target high-pressure pressure Pdm, and the operating frequency of the compressor 11 increases as the low-pressure pressure Ps rises. Therefore, the amount of the refrigerant passing through the compressor 11 increases by the amount of the refrigerant flowing through the bypass flow path 44.
  • the high-pressure pressure Pd in the refrigeration cycle circuit 10 can be maintained at the target high-pressure pressure Pdm by increasing the operating frequency of the compressor 11, the operating efficiency of the refrigeration cycle device decreases, but the indoor unit 2b is the same as the normal state pattern 1. May work with.
  • the operating frequency range is set in the compressor 11, the operating frequency of the compressor 11 cannot be set higher than the maximum operating frequency which is the upper limit of the operating frequency range. Therefore, if the high pressure Pd in the refrigerating cycle circuit 10 cannot be maintained at the target high pressure Pdm even if the operating frequency of the compressor 11 is increased to the maximum operating frequency, the low pressure Ps of the refrigerating cycle circuit 10 rises. The capacity of the indoor unit 2b is reduced.
  • the state pattern 3 a part of the refrigerant discharged from the compressor 11 is not supplied to either the indoor unit 2a or the indoor unit 2b, is bypassed, and is sucked into the compressor 11. Therefore, if the amount of refrigerant passing through the compressor 11 is compared with the total amount of refrigerant passing through each of the electronic expansion valves 21a and the electronic expansion valves 21b of all the indoor units 2a and 2b, the state pattern 3 It can be determined whether or not it is.
  • the amount of refrigerant Groc passing through the compressor 11 can be calculated by using the operating frequency of the compressor 11 and the density of the refrigerant sucked into the compressor 11.
  • the following formula (1) is an example of a formula for calculating the amount of refrigerant Groc passing through the compressor 11.
  • Gro is the amount of refrigerant [kg / h] passing through the compressor 11.
  • Vst is the amount of push-out [m 3 ] of the compressor 11.
  • ⁇ s is the density [kg / m 3 ] of the refrigerant sucked into the compressor 11.
  • ⁇ v is the volumetric efficiency of the compressor 11, and is a constant value of 0 ⁇ ⁇ v ⁇ 1.
  • the total amount of refrigerant ⁇ Gric that passes through each of the electronic expansion valve 21a and the electronic expansion valve 21b is the total amount of each refrigerant amount that passes through the electronic expansion valve 21a and the electronic expansion valve 21b.
  • the amount of refrigerant Gric passing through the electronic expansion valve 21a can be calculated using the pressure difference between the high pressure pressure Pd and the low pressure pressure Ps in the refrigeration cycle circuit 10, the Cv value of the electronic expansion valve 21a, and the like.
  • the following formula (2) is an example of a formula for calculating the amount of refrigerant Gric passing through the electronic expansion valve 21a.
  • Gric is the amount of refrigerant [kg / h] that passes through the electronic expansion valve 21a.
  • Cv is a Cv value of the electronic expansion valve 21a.
  • ⁇ P is the pressure difference [MPa (abs)] between the high pressure pressure Pd and the low pressure pressure Ps in the refrigeration cycle circuit 10.
  • ⁇ LEV is the density [kg / m 3 ] of the refrigerant at the inlet of the electronic expansion valve 21a.
  • This equation (2) is a modification of the following equation (3), which is a relational expression between the flow rate of the fluid and the Cv value, by multiplying the density ⁇ .
  • the Cv value is one of the capacitance coefficients of a valve or the like.
  • the pressure difference is 1 [psi (pound-force per square inch)] in a specific travel (operating range)
  • the flow rate when fresh water of 60 degrees Fahrenheit flowing through the valve is flown is US [gallon]. It is defined as the flow rate value expressed in [/ min].
  • QL [m 3 / h] is the flow rate of the liquid (h is time).
  • ⁇ P [MPa (abs)] is the primary (inlet) side absolute pressure P1-2 secondary (outlet) side absolute pressure P2.
  • ⁇ (ref) [kg / m 3 ] is the refrigerant density
  • the amount of refrigerant Groc passing through the compressor 11 is larger than the total amount of refrigerants ⁇ Gric passing through each of the electronic expansion valve 21a and the electronic expansion valve 21b (Groc> ⁇ Gric), it is determined that the state pattern 3 is satisfied. be able to.
  • the amount of refrigerant Groc passing through the compressor 11 and the electronic expansion valve 21 It is possible to determine whether or not the state pattern 3 is satisfied by using the amount of refrigerant Gric that passes through the above. That is, when the amount of refrigerant Gro passing through the compressor 11 is larger than the amount of refrigerant Gric passing through the electronic expansion valve 21b (Groc> Gric), it can be determined that the state pattern 3 is satisfied.
  • the state pattern 3 is determined even when the value obtained by subtracting the target low pressure pressure Psm from the low pressure pressure Ps in the refrigeration cycle circuit 10 is larger than the threshold value and the compressor 11 is operating at the maximum operating frequency. can do.
  • the threshold value is set to a value larger than the absolute value of the error of the high pressure pressure Pd allowed by the constant high pressure control, for example.
  • the state pattern 2 and the state pattern 3 will be described together.
  • a temperature difference occurs between the gas side temperature TH3 or the liquid side temperature TH2 and the room temperature TH1. Therefore, when a temperature difference occurs between the gas side temperature TH3 or the liquid side temperature TH2 and the room temperature TH1, it can be determined that the state pattern 2 or the state pattern 3 is present.
  • the notification unit 36 may notify that either the electronic expansion valve 21a or the high pressure valve 46a is abnormal.
  • the abnormality determination process executed by the control device 3 will be described with respect to the abnormality detection of at least one of the low pressure valve 45a, the high pressure valve 46a, and the electronic expansion valve 21a.
  • the control device 3 repeatedly executes at least one of the abnormality determination processes shown in FIGS. 9 to 11 at set time intervals.
  • a case where the control device 3 executes the abnormality determination process related to the abnormality detection of the high pressure valve 46a or the electronic expansion valve 21a will be described.
  • the abnormality determination process related to the abnormality detection of the high pressure valve 46b or the electronic expansion valve 21b can also be executed in the same flow.
  • FIG. 9 is a diagram showing a flowchart in an example of the flow of the first abnormality detection process executed by the control device 3 of the refrigeration cycle device according to the first embodiment.
  • the control device 3 performs an abnormality determination process related to abnormality detection of the high pressure valve 46a and the electronic expansion valve 21a.
  • the control device 3 executes the abnormality determination process of the high pressure valve 46a and the electronic expansion valve 21a in one flow, but the abnormality detection process of the high pressure valve 46a and the abnormality of the electronic expansion valve 21a
  • the detection process may be executed in a different flow.
  • step S001 the control device 3 determines whether or not the compressor 11 operates and the outdoor heat exchanger 12 functions as a condenser based on the instructed operation mode.
  • the outdoor heat exchanger 12 is a condenser
  • the refrigeration cycle device is performing the cooling operation.
  • the control device 3 determines that the compressor 11 is operating and the outdoor heat exchanger 12 is functioning as a condenser, the process proceeds to step S002, and in other cases, the first abnormality detection process is terminated.
  • step S002 the control device 3 determines whether or not the indoor unit 2a is in the thermo-off state or stopped during the cooling operation. This determination can be rephrased as determining whether or not the electronic expansion valve 21a is in the closed state, the low pressure valve 45a is in the open state, and the high pressure valve 46a is in the closed state.
  • the control device 3 determines that the indoor unit 2a is in the thermo-off state or stopped during the cooling operation, the process proceeds to step S003, and in other cases, the first abnormality detection process is terminated.
  • step S003 the temperature data at the room temperature TH1 and the liquid side temperature TH2 or the gas side temperature TH3 is acquired.
  • the liquid side temperature TH2 and the gas side temperature TH3 either one may be used, but data of both temperatures may be acquired.
  • the data of the room temperature TH1 is acquired based on the detection signal of the first temperature sensor TH1a.
  • the data of the liquid side temperature TH2 is acquired based on the detection signal of the second temperature sensor TH2a.
  • the data of the gas side temperature TH3 is acquired based on the detection signal of the third temperature sensor TH3a.
  • step S004 the control device 3 determines whether or not the gas side temperature TH3 is equal to the room temperature TH1 and whether or not the liquid side temperature TH2 is equal to the room temperature TH1.
  • the fact that the gas side temperature TH3 and the room temperature TH1 are equal and the liquid side temperature TH2 and the room temperature TH1 are equal indicate that there is no temperature difference.
  • the temperature difference does not have to be 0, and a margin may be provided.
  • the control device 3 determines whether or not the gas side temperature TH3 is equal to the room temperature TH1.
  • the control device 3 determines the comparison between the liquid side temperature TH2 and the room temperature TH1 in step S007 described later, it is a method of determining whether or not the liquid side temperature TH2 is equal to the room temperature TH1. Is efficient.
  • step S005 the control device 3 determines that the electronic expansion valve 21a or the high pressure valve 46a is abnormal. This is because when the gas side temperature TH3 is not equal to the room temperature TH1 or the liquid side temperature TH2 is not equal to the room temperature TH1, the state pattern 2 or the state pattern is not the normal state pattern 1 described above. This is because it corresponds to 3.
  • step S006 the control device 3 performs a process of notifying the notification unit 36 that the electronic expansion valve 21a or the high pressure valve 46a is abnormal.
  • the processes of steps S007 to S011 are performed, the processes of steps S005 and S006 can be omitted. Further, the process performed by the control device 3 may be completed in step S006.
  • step S007 the control device 3 determines whether or not the liquid side temperature TH2 is higher than the temperature of the room temperature TH1. If the control device 3 determines that the liquid side temperature TH2 is higher than the room temperature TH1, the process proceeds to step S008, and if the control device 3 determines that the liquid side temperature TH2 is lower than the room temperature TH1, the process proceeds to step S010.
  • the determination process in step S007 may be performed after the elapsed time from the determination in step S004 exceeds a preset threshold time, that is, after the gas side temperature TH3 stabilizes. ..
  • the gas side temperature TH3 and the room temperature TH1 may be compared and processed.
  • the control device 3 proceeds to step S008 when the gas side temperature TH3 is determined to be higher than the room temperature TH1, and the gas side temperature TH3 is set. If it is determined that the room temperature is lower than TH1, the process proceeds to step S010.
  • step S008 the control device 3 determines that the high pressure valve 46a has an open lock abnormality. This is because when the liquid side temperature TH2 is higher than the room temperature TH1, it corresponds to the state pattern 3.
  • step S009 the control device 3 performs a process of notifying the notification unit 36 that the high pressure valve 46a is abnormal. Then, the first abnormality detection process is terminated.
  • step S010 the control device 3 determines that the electronic expansion valve 21a has an open lock abnormality. This is because when the liquid side temperature TH2 is lower than the room temperature TH1, it corresponds to the state pattern 2.
  • step S011 the control device 3 performs a process of notifying the notification unit 36 that the electronic expansion valve 21a is abnormal. After that, the first abnormality detection process is terminated.
  • FIG. 10 is a diagram showing a flowchart in an example of the flow of the second abnormality detection process executed by the control device 3 of the refrigeration cycle device according to the first embodiment.
  • the control device 3 executes at least one of the second abnormality detection process shown in FIG. 10 and the third abnormality detection process shown in FIG. 11 described later together with the first abnormality detection process described with reference to FIG. It may be.
  • step S101 the control device 3 determines whether or not the compressor 11 operates and the outdoor heat exchanger 12 functions as a condenser.
  • the process proceeds to step S102, and in other cases, the second abnormality detection process is terminated.
  • step S102 the control device 3 determines whether or not the indoor unit 2a is in the thermo-off state or stopped during the cooling operation. This determination can be rephrased as determining whether or not the electronic expansion valve 21a is in the closed state, the low pressure valve 45a is in the open state, and the high pressure valve 46a is in the closed state.
  • the control device 3 determines that the indoor unit 2a is in the thermo-off state or stopped in the cooling operation, the process proceeds to step S103, and in other cases, the second abnormality detection process is terminated.
  • step S103 the control device 3 acquires the data of the amount of refrigerant Groc passing through the compressor 11 and the data of the total amount of refrigerant ⁇ Gric passing through each of the electronic expansion valve 21a and the electronic expansion valve 21b.
  • the data of the amount of refrigerant Groc on the outdoor unit 1 side is acquired based on, for example, the above-mentioned equation (1).
  • the data of the total amount of refrigerant ⁇ Gric on the indoor unit 2b side is acquired, for example, based on the above-mentioned equation (2) or the like.
  • step S104 the control device 3 determines whether or not the amount of refrigerant Groc on the outdoor unit 1 side is larger than the total amount of refrigerant ⁇ Gric on the indoor unit 2b side.
  • the control device 3 determines that the amount of refrigerant Groc is larger than the total amount of refrigerant ⁇ Gric
  • the control device 3 proceeds to step S105.
  • the control device 3 determines that the refrigerant amount Groc is equal to the total refrigerant amount ⁇ Gric, the control device 3 ends the second abnormality detection process.
  • step S105 the control device 3 determines that the high pressure valve 46a is abnormal. This is because when the refrigerant amount Groc on the outdoor unit 1 side is larger than the total refrigerant amount ⁇ Gric on the indoor unit 2b side, it corresponds to the state pattern 3.
  • step S106 the control device 3 performs a process of notifying the notification unit 36 that the high pressure valve 46a is abnormal. After that, the second abnormality detection process is terminated.
  • FIG. 11 is a diagram showing a flowchart in an example of the flow of the third abnormality detection process executed by the control device 3 of the refrigeration cycle device according to the first embodiment.
  • the third abnormality detection process the abnormality of the high pressure valve 46a is detected.
  • step S201 the control device 3 determines whether or not the compressor 11 operates and the outdoor heat exchanger 12 functions as a condenser.
  • the control device 3 determines that the compressor 11 is operating and the outdoor heat exchanger 12 is functioning as a condenser, the process proceeds to step S202, and in other cases, the second abnormality detection process is terminated.
  • step S202 the control device 3 determines whether or not the indoor unit 2a is in the thermo-off state or stopped during the cooling operation. This determination can be rephrased as determining whether or not the electronic expansion valve 21a is in the closed state, the low pressure valve 45a is in the open state, and the high pressure valve 46a is in the closed state.
  • the control device 3 determines that the indoor unit 2a is in the thermo-off state or stopped in the cooling operation, the process proceeds to step S203, and in other cases, the third abnormality detection process is terminated.
  • step S203 the control device 3 acquires each data of the low pressure pressure Ps and the target low pressure pressure Psm.
  • the low pressure pressure Ps data is acquired based on the detection signal of the low pressure pressure sensor 16.
  • the data of the target low pressure pressure Psm is stored in the storage unit 31 in advance.
  • step S204 the control device 3 determines whether or not Ps-Psm, which is a value obtained by subtracting the target low-pressure pressure Psm from the low-pressure pressure Ps, is larger than the preset threshold pressure Pth31.
  • Ps-Psm a value obtained by subtracting the target low-pressure pressure Psm from the low-pressure pressure Ps
  • the control device 3 proceeds to step S205.
  • the control device 3 determines that the threshold pressure is Pth31 or less, the control device 3 ends the third abnormality detection process.
  • step S205 the control device 3 determines that the high pressure valve 46a is abnormal. This is because when the value obtained by subtracting the target low pressure pressure Psm from the low pressure pressure Ps is larger than the threshold pressure Pth31, it corresponds to the state pattern 3.
  • step S206 the control device 3 performs a process of notifying the notification unit 36 that the high pressure valve 46a is abnormal. After that, the third abnormality detection process is terminated.
  • step S204 the control device 3 determines whether or not the value obtained by subtracting the target low pressure pressure Psm from the low pressure pressure Ps is larger than the threshold pressure Pth31 and the compressor 11 is operating at the maximum operating frequency. May be determined. Then, when the control device 3 determines that the value obtained by subtracting the target low pressure pressure Psm from the low pressure pressure Ps is larger than the threshold pressure Pth31 and the compressor 11 is operating at the maximum operating frequency, the process proceeds to step S205. In other cases, the third abnormality detection process is terminated.
  • the refrigeration cycle apparatus includes the refrigeration cycle circuit 10, the bypass flow path 44, the low pressure valve 45a, the high pressure valve 46a, the first temperature sensor TH1a, and the second temperature. It includes a sensor TH2a and a notification unit 36.
  • the refrigeration cycle circuit 10 includes a compressor 11, a refrigerant flow path switching device 14, an outdoor heat exchanger 12, an electronic expansion valve 21a, and an indoor heat exchanger 22a.
  • the bypass flow path 44 is a refrigeration cycle circuit 10 in which a first branch portion 41 provided between the outdoor heat exchanger 12 and the electronic expansion valve 21a, an indoor heat exchanger 22a, and a refrigerant flow path switching device 14 are provided. It is connected to the second branch portion 42a provided between them.
  • the low pressure valve 45a is provided between the second branch portion 42a and the refrigerant flow path switching device 14 in the refrigeration cycle circuit 10. Further, the high pressure valve 46a is provided in the bypass flow path 44.
  • the first temperature sensor TH1a detects the indoor temperature TH1 which is the temperature in the room where the air that has passed through the indoor heat exchanger 22a is supplied.
  • the second temperature sensor TH2a detects the liquid side temperature TH2, which is the temperature of the liquid side refrigerant of the indoor heat exchanger 22a.
  • the third temperature sensor TH3a detects the gas side temperature TH3, which is the temperature of the gas side refrigerant of the indoor heat exchanger 22a.
  • the notification unit 36 is configured to notify an abnormality.
  • the compressor 11 operates, and the indoor heat exchanger 22b functions as an evaporator.
  • the indoor heat exchanger 22a the electronic expansion valve 21a is fully closed, the low pressure valve 45a is open, and the high pressure valve 46a is closed.
  • the indoor unit 2a is thermo-off or stopped during cooling operation. Operate in the state. In such an operating state, when the control device 3 determines that the gas side temperature TH3 is not equal to the room temperature TH1 and the liquid side temperature TH2 is not equal to the room temperature TH1, the notification unit 36 determines that the electron Notifies an abnormality of the expansion valve 21a or the high pressure valve 46a.
  • the high-pressure valve 46a is an example of the second valve.
  • the low pressure valve 45a is an example of the first valve.
  • the electronic expansion valve 21a is an example of a throttle device.
  • the abnormality of the electronic expansion valve 21a or the high pressure valve 46a can be detected more accurately and earlier. Further, in the refrigeration cycle apparatus of the present embodiment, since the abnormality of the electronic expansion valve 21a or the high pressure valve 46a can be notified earlier, the electronic expansion valve 21a or the high pressure valve 46a can be restored earlier. Therefore, in the refrigerating cycle device of the present embodiment, the malfunction period of the indoor unit 2a can be shortened.
  • the notification unit 36 when the control device 3 determines that the liquid side temperature TH2 is lower than the room temperature TH1 in the above-mentioned operating state, the notification unit 36 causes an abnormality in the electronic expansion valve 21a. Can be notified.
  • the notification unit 36 when the control device 3 determines that the liquid side temperature TH2 is higher than the room temperature TH1 in the above-mentioned operating state, the notification unit 36 notifies the abnormality of the high pressure valve 46a. be able to.
  • the notification unit 36 can notify the abnormality of the high pressure valve 46a.
  • the control device 3 controls the compressor 11 so that the low pressure pressure Ps in the refrigeration cycle circuit 10 approaches the target low pressure pressure Psm. Therefore, in the above-mentioned operating state, when the control device 3 determines that the value obtained by subtracting the target low pressure pressure Psm from the low pressure pressure Ps is larger than the threshold value, the notification unit 36 may notify the abnormality of the high pressure valve 46a. it can.
  • the control device 3 controls the compressor 11 so that the low pressure pressure Ps in the refrigeration cycle circuit 10 approaches the target low pressure pressure Psm. Therefore, in the above-mentioned operating state, when the control device 3 determines that the value obtained by subtracting the target low pressure pressure Psm from the low pressure pressure Ps is larger than the threshold value and the compressor 11 is driven at the maximum operating frequency, it is determined.
  • the notification unit 36 can notify the abnormality of the high pressure valve 46a.
  • the refrigerating cycle apparatus further includes an operation mode switching unit 37 for switching the operation mode of the refrigerating cycle apparatus.
  • the operation mode switching unit 37 can at least switch to an operation mode in which the operation in the above operating state is performed. According to the refrigeration cycle device according to the present embodiment, even during the period during which the indoor unit 2a is performing the cooling operation, an abnormality in the high pressure valve 46a or the electronic expansion valve 21a is detected by temporarily turning off the thermostat. can do.
  • Embodiment 2 In the refrigeration cycle device of the first embodiment described above, the control device 3 detects an abnormality in all the valves of the high pressure valve 46a and the high pressure valve 46b and the electronic expansion valve 21a and the electronic expansion valve 21b which are the second valves. did. However, it is not limited to this.
  • the control device 3 may perform anomaly detection on a predetermined or selected valve.
  • the control device 3 controls the operating frequency of the compressor 11 so that the low pressure pressure Ps in the refrigeration cycle circuit 10 approaches the target low pressure pressure Psm.
  • the operating frequency of the compressor 11 may be controlled so that the high pressure Pd in the refrigeration cycle circuit 10 approaches the target high pressure Pdm.
  • the control device 3 when the value obtained by subtracting the target high pressure pressure Pdm from the high pressure pressure Pd is larger than the threshold value and the compressor 11 is operating at the maximum operating frequency, the high pressure valve 46a is abnormal. Is determined, and the notification unit 36 is notified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

冷凍サイクル装置は、圧縮機、冷媒流路切替装置、室外熱交換器、膨張弁および室内熱交換器を接続する冷凍サイクル回路と、室外熱交換器と膨張弁との間で冷媒を分岐する第1分岐部と、室内熱交換器と冷媒流路切替装置との間で冷媒を分岐する第2分岐部と、第1分岐部と第2分岐部とを接続して、冷媒の流路となるバイパス配管と、第2分岐部と冷媒流路切替装置との間に設けられた第1弁と、バイパス配管に設けられた第2弁と、室内熱交換器を通過した空気が供給される室内の温度を検出する第1温度センサと、室内熱交換器の液側冷媒の温度を検出する第2温度センサとを備え、圧縮機が動作し、膨張弁を全閉状態とし、第1弁を開状態とし、第2弁を閉状態とする運転状態において、第1温度センサの検出温度と第2温度センサの検出温度とに温度差があるとされたときには、膨張弁および第2弁の少なくとも一方の弁が異常であることを検知するものである。

Description

冷凍サイクル装置
 本発明は、冷凍サイクル回路を備えた冷凍サイクル装置に関するものである。特に、回路内の弁の異常検知に係るものである。
 従来、機器自身によって膨張弁の異常を検知する空気調和装置がある(たとえば、特許文献1参照)。この空気調和装置は、圧縮機、凝縮器、電子膨張弁および蒸発器を備える。電子膨張弁と蒸発器との間には、蒸発器の温度を検出する温度センサが設けられている。また、蒸発器の吸込口には、吸込空気温度を検出検知する温度センサが設けられている。異常検知装置では、各温度センサの検出温度に基づき、電子膨張弁の異常検知が行われる。
特開2000-274896号公報
 たとえば、冷暖同時運転を実行可能なマルチ型の冷凍サイクル装置では、複数の室内熱交換器のそれぞれでの冷媒の流れ方向を切り替えるための2つの電磁弁が室内熱交換器毎に設けられる。このように1つの室内熱交換器に対して電子膨張弁および2つの電磁弁が設けられた冷凍サイクル装置では、電子膨張弁および電磁弁のうちのいずれかの弁に生じた異常を正確に検知することが困難な場合があるという課題があった。
 本発明は、上述のような課題を解決するため、弁の異常をより正確に検知することができる冷凍サイクル装置を提供することを目的とする。
 本発明に係る冷凍サイクル装置は、圧縮機、冷媒流路切替装置、室外熱交換器、膨張弁および室内熱交換器を接続して、冷媒を循環させる冷凍サイクル回路と、室外熱交換器と膨張弁との間で冷媒を分岐させる第1分岐部と、室内熱交換器と冷媒流路切替装置との間で冷媒を分岐させる第2分岐部と、第1分岐部と第2分岐部とを接続して、冷媒の流路となるバイパス配管と、第2分岐部と冷媒流路切替装置との間に設けられた第1弁と、バイパス配管に設けられた第2弁と、室内熱交換器を通過した空気が供給される室内の温度を検出する第1温度センサと、室内熱交換器の液側冷媒の温度を検出する第2温度センサとを備え、圧縮機が動作し、膨張弁を全閉状態とし、第1弁を開状態とし、第2弁を閉状態とする運転状態において、第1温度センサの検出温度と第2温度センサの検出温度との間に温度差があるとされたときは、膨張弁および第2弁の少なくとも一方の弁が異常であることを検知するものである。
 本発明によれば、膨張弁を全閉状態とし、第1弁を開状態とし、第2弁を閉状態とする運転状態において、膨張弁および第2弁の少なくとも一方に異常が生じると、第1温度センサの検出温度と第2温度センサの検出温度とに温度差が生じる。したがって、本発明によれば、第1温度センサの検出温度と第2温度センサの検出温度とに温度差があるかどうかを判定することで、膨張弁および第2弁の少なくとも一方の弁が異常であることを、より正確に検知することができる。
実施の形態1に係る冷凍サイクル装置の構成を示す図である。 実施の形態1に係る冷凍サイクル装置において、電子膨張弁21a、低圧弁45aおよび高圧弁46aのそれぞれがとり得る状態の組合せパターンの例を示す図である。 実施の形態1に係る冷凍サイクル装置において、状態パターン1での電子膨張弁21a、低圧弁45aおよび高圧弁46aの動作を示す図である。 実施の形態1に係る冷凍サイクル装置における状態パターン1での室内熱交換器22a内の冷媒の温度分布を示すグラフを示す図である。 実施の形態1に係る冷凍サイクル装置における状態パターン2での電子膨張弁21a、低圧弁45aおよび高圧弁46aの動作を示す図である。 実施の形態1に係る冷凍サイクル装置における状態パターン2での室内熱交換器22a内の冷媒の温度分布を示すグラフを示す図である。 実施の形態1に係る冷凍サイクル装置における状態パターン3での電子膨張弁21a、低圧弁45aおよび高圧弁46aの動作を示す図である。 実施の形態1に係る冷凍サイクル装置における状態パターン3での室内熱交換器22a内の冷媒の温度分布を示すグラフを示す図である。 実施の形態1に係る冷凍サイクル装置の制御装置3で実行される第1異常検知処理の流れの例におけるフローチャートを示す図である。 実施の形態1に係る冷凍サイクル装置の制御装置3で実行される第2異常検知処理の流れの例におけるフローチャートを示す図である。 実施の形態1に係る冷凍サイクル装置の制御装置3で実行される第3異常検知処理の流れの例におけるフローチャートを示す図である。
 以下、実施の形態に係る冷凍サイクル装置について、図面などを参照しながら説明する。各図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、図面では、各構成部材の大きさの関係が、実際のものとは異なる場合がある。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に、構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、圧力および温度などの高低については、特に絶対的な値との関係で高低が定まっているものではなく、装置などにおける状態、動作などにおいて相対的に定まるものとする。そして、添字で区別などしている複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、添字などを省略して記載する場合がある。
実施の形態1.
 図1は、実施の形態1に係る冷凍サイクル装置の構成を示す図である。本実施の形態では、冷凍サイクル装置として、冷暖同時運転を実行可能なマルチ型の空気調和装置を例示している。図1に示すように、本実施の形態の冷凍サイクル装置は、冷媒を循環させる冷凍サイクル回路10と、冷凍サイクル回路10を含む冷凍サイクル装置全体を制御する制御装置3とを有する。ここで、本実施の形態においては、図1に示すように、冷凍サイクル装置は、室外機1、室内機2aおよび室内機2bおよび分流コントローラ4を有する。冷凍サイクル回路10を構成する機器などは、室外機1、室内機2aおよび室内機2b並びに分流コントローラ4に分かれて収容される。
 冷凍サイクル回路10は、圧縮機11、冷媒流路切替装置14、室外熱交換器12、電子膨張弁21aおよび電子膨張弁21b並びに室内熱交換器22aおよび室内熱交換器22bが、冷媒配管を介して環状に接続された構成を有する。冷凍サイクル回路10において、電子膨張弁21aおよび室内熱交換器22aの組と、電子膨張弁21bおよび室内熱交換器22bの組とは、互いに並列に接続されている。本実施の形態では、電子膨張弁21および室内熱交換器22の組の数が2つであるものとして説明するが、電子膨張弁21および室内熱交換器22の組の数は、1つまたは3つ以上であってもよい。
 また、冷凍サイクル回路10には、電子膨張弁21aおよび電子膨張弁21b並びに室内熱交換器22aおよび室内熱交換器22bをバイパスして冷媒を通過させるバイパス配管で構成されるバイパス流路44を有する。バイパス流路44の一端側は、冷凍サイクル回路10のうち、室外熱交換器12と電子膨張弁21aおよび電子膨張弁21bとの間に設けられた第1分岐部41に接続されている。第1分岐部41には、気液分離器43が設けられている。
 バイパス流路44の他端側は、バイパス配管の一部として構成される複数の分岐流路44aおよび分岐流路44bに分岐している。分岐流路44aおよび分岐流路44bは、後述する室内機2aおよび室内機2bにそれぞれ対応して設けられている。分岐流路44aおよび分岐流路44bの数は、室内機2aおよび室内機2bの台数、すなわち、室内熱交換器22aおよび室内熱交換器22bの数と同数である。分岐流路44aは、冷凍サイクル回路10のうち、室内熱交換器22aと冷媒流路切替装置14との間に設けられた第2分岐部42a側と接続されている。また、分岐流路44bは、冷凍サイクル回路10のうち、室内熱交換器22bと冷媒流路切替装置14との間に設けられた第2分岐部42b側と接続されている。第2分岐部42aおよび第2分岐部42bは、室内機2aおよび室内機2bにそれぞれ対応して設けられている。第2分岐部42aおよび第2分岐部42bの数は、室内機2aおよび室内機2bの台数、すなわち、室内熱交換器22aおよび室内熱交換器22bの数と同数である。
 冷凍サイクル回路10のうち、第2分岐部42aと冷媒流路切替装置14との間には、低圧弁45aが設けられている。また、冷凍サイクル回路10のうち、第2分岐部42bと冷媒流路切替装置14との間には、低圧弁45bが設けられている。主として低圧の冷媒が通過する低圧弁45aおよび低圧弁45bは、それぞれ、第1弁の一例である。低圧弁45aおよび低圧弁45bは、室内機2aおよび室内機2bにそれぞれ対応して設けられている。低圧弁45aおよび低圧弁45bの数は、室内機2aおよび室内機2bの台数、すなわち、室内熱交換器22aおよび室内熱交換器22bの数と同数である。
 また、バイパス流路44の分岐流路44aと第2分岐部42aとの間には、高圧弁46aが設けられている。また、バイパス流路44の分岐流路44bと第2分岐部42bとの間には、高圧弁46bが設けられている。主として高圧の冷媒が通過する高圧弁46aおよび高圧弁46bは、それぞれ、第2弁の一例である。高圧弁46aおよび高圧弁46bは、室内機2aおよび室内機2bにそれぞれ対応して設けられている。高圧弁46aおよび高圧弁46bの数は、室内機2aおよび室内機2bの台数、すなわち、室内熱交換器22aおよび室内熱交換器22bの数と同数である。
 前述したように、冷凍サイクル装置は、室外機1と、分流コントローラ4と、2台の室内機2aおよび室内機2bとを有する。室外機1内の機器と分流コントローラ4内の機器との間は、2本の冷媒配管を介して接続されている。また、分流コントローラ4内の機器と2台の室内機2aおよび室内機2bのそれぞれの機器との間は、2本の冷媒配管を介して接続されている。ここで、本実施の形態では、1台の室外機1を例示しているが、室外機1の台数は2台以上であってもよい。また、本実施の形態では、1台の分流コントローラ4を例示しているが、分流コントローラ4の台数が2台以上であってもよい。さらに、本実施の形態では、2台の室内機2aおよび室内機2bを例示しているが、室内機2の台数は、1台または3台以上であってもよい。そして、室外機1と分流コントローラ4との間は、3本の冷媒配管を介して接続されていてもよい。
 室外機1は、たとえば、屋外に設置される。室外機1には、上記した圧縮機11、冷媒流路切替装置14および室外熱交換器12並びに逆止弁171~逆止弁174が収容されている。また、室外機1には、室外ファン13、高圧圧力センサ15および低圧圧力センサ16が収容されている。
 圧縮機11は、低圧低温のガス冷媒を吸入して圧縮し、高圧高温のガス冷媒として吐出する流体機械である。圧縮機11が動作すると、冷媒が冷凍サイクル回路10内を循環する。圧縮機11としては、運転周波数を調整可能なインバータ駆動の圧縮機が用いられる。圧縮機11の動作は、制御装置3により制御される。
 冷媒流路切替装置14は、冷房主体運転時と暖房主体運転時とで冷媒の流れ方向を切り替える弁である。冷媒流路切替装置14は、制御装置3の制御により、冷房主体運転時には、図1の実線で示す流路が設定され、暖房主体運転時には、図1の破線で示す流路が設定される。冷房主体運転は、室内機2aおよび室内機2bでの冷房負荷が、暖房負荷よりも大きいときに実行される運転モードである。冷房主体運転には、全ての室内機2aおよび室内機2bで冷房運転が行われる全冷房運転も含まれるものとする。また、暖房主体運転は、室内機2aおよび室内機2bでの暖房負荷が、冷房負荷よりも大きいときに実行される運転モードである。暖房主体運転には、全ての室内機2aおよび室内機2bで暖房運転が行われる全暖房運転も含まれるものとする。冷媒流路切替装置14としては、たとえば四方弁が用いられる。
 室外熱交換器12は、冷房主体運転時には凝縮器として機能し、暖房主体運転時には蒸発器として機能する熱交換器である。室外熱交換器12では、冷媒と室外空気との熱交換が行われる。
 室外ファン13は、室外熱交換器12に室外空気を供給するように構成されている。室外ファン13としては、たとえば、モータ(図示せず)によって駆動するプロペラファンが用いられる。室外ファン13が動作すると、室外空気が室外機1の内部に吸入され、室外熱交換器12を通過した室外空気が、室外機1の外部に排出される。室外ファン13の動作は、制御装置3により制御される。
 高圧圧力センサ15は、冷凍サイクル回路10のうち、圧縮機11と冷媒流路切替装置14との間の吐出配管、すなわち、圧縮機11の吐出側に設けられている。高圧圧力センサ15は、圧縮機11の吐出圧力となり、冷凍サイクル回路10内において高圧側となる高圧圧力Pdを検出し、検出信号を制御装置3に出力する。制御装置3では、冷凍サイクル回路10内の高圧圧力Pdに基づいて、冷凍サイクル回路10内の冷媒の凝縮温度Tcが演算される。
 低圧圧力センサ16は、冷凍サイクル回路10のうち、冷媒流路切替装置14と圧縮機11との間の吸入配管、すなわち、圧縮機11の吸入側に設けられている。低圧圧力センサ16は、冷凍サイクル回路10内において低圧側となる低圧圧力Psを検出し、検出信号を制御装置3に出力する。制御装置3は、冷凍サイクル回路10内の低圧圧力Psに基づいて、冷凍サイクル回路10内の冷媒の蒸発温度Teを演算する。
 室内機2aは、たとえば、屋内に設置される。室内機2aには、前述した電子膨張弁21aおよび室内熱交換器22aが収容されている。また、室内機2aには、室内ファン25a、第1温度センサTH1a、第2温度センサTH2aおよび第3温度センサTH3aが収容されている。
 電子膨張弁21aは、冷媒を断熱膨張させる弁である。電子膨張弁21aの開度は、冷凍サイクル回路10内の冷媒の過熱度SHまたは過冷却度SCが目標値に近づくように、制御装置3によって制御される。電子膨張弁21aは、絞り装置の一例である。制御に基づいて、開度を調整できるものであれば、電子膨張弁でなくてもよい。
 室内熱交換器22aは、室内機2aで冷房運転が実行される場合には、蒸発器として機能し、室内機2aで暖房運転が実行される場合には、凝縮器として機能する熱交換器である。室内熱交換器22aでは、冷媒と室内空気との熱交換が行われる。
 室内ファン25aは、室内熱交換器22aに室内空気を供給するように構成される。室内ファン25aとしては、たとえば、モータ(図示せず)によって駆動する遠心ファンまたはクロスフローファンが用いられることが多い。室内ファン25aが動作すると、室内空気が室内機2aの内部に吸入され、室内熱交換器22aを通過した調和空気が室内に供給される。室内ファン25aの動作は、制御装置3により制御される。
 第1温度センサTH1aは、室内機2aから調和に係る空気が供給される室内の室内温度TH1を検出し、検出温度を含む検出信号を制御装置3に出力する。第1温度センサTH1aは、たとえば、室内空気の流れにおいて、室内熱交換器22aの上流側となる室内機2aの吸込口に設けられている。
 第2温度センサTH2aは、冷凍サイクル回路10のうち、電子膨張弁21aと室内熱交換器22aとの間に設けられている。第2温度センサTH2aは、室内熱交換器22aの液冷媒が流れる冷媒の温度である液側温度TH2温度を検出し、検出温度を含む検出信号を制御装置3に出力する。したがって、第2温度センサTH2aは、室内機2aの冷房運転時に室内熱交換器22aの冷媒入口側における、冷媒の温度を検出することになる。
 第3温度センサTH3aは、冷凍サイクル回路10のうち、室内熱交換器22aと低圧弁45aおよび高圧弁46aとの間に設けられている。第3温度センサTH3aは、室内熱交換器22aのガス冷媒が流れる冷媒の温度であるガス側温度TH3を検出し、検出温度を含む検出信号を制御装置3に出力する。したがって、第3温度センサTH3aは、室内機2aの冷房運転時に室内熱交換器22aの冷媒出口側の温度を検出することになる。
 室内機2bは、室内機2aと同様の構成を有する。室内機2bには、電子膨張弁21b、室内熱交換器22b、室内ファン25b、第1温度センサTH1b、第2温度センサTH2bおよび第3温度センサTH3bが収容されている。
 分流コントローラ4は、たとえば、屋内に設置される。分流コントローラ4は、冷媒の流れにおいて、室外機1と室内機2aおよび室内機2bのそれぞれとの間に設けられる中継機である。分流コントローラ4には、前述した第1分岐部41、第2分岐部42aおよび第2分岐部42b、気液分離器43、バイパス流路44、分岐流路44aおよび分岐流路44b、低圧弁45aおよび低圧弁45b、高圧弁46aおよび高圧弁46b、弁47並びに低圧バイパス流路48が収容されている。
 弁47は、開閉により、冷媒の流れを制御する。たとえば、全冷房運転時には、弁47は開放され、室外機1からの液冷媒が室内機2aおよび室内機2bに流れるようにする。また、たとえば、弁47が閉止されていると、室外機1から分流コントローラ4に流入したガス冷媒は、気液分離器43およびバイパス流路44を介して、室内機2aおよび室内機2bのうち、暖房運転中の室内機2に供給される。室内機2から流出した液冷媒は、たとえば、バイパス管となる低圧バイパス流路48を通過する。
 低圧弁45aおよび低圧弁45b並びに高圧弁46aおよび高圧弁46bのそれぞれは、流路を開閉可能な開閉弁である。低圧弁45aおよび低圧弁45b並びに高圧弁46aおよび高圧弁46bとしては、電磁弁または電動弁などが用いられる。低圧弁45aおよび低圧弁45b並びに高圧弁46aおよび高圧弁46bのそれぞれの動作は、制御装置3により制御される。室内機2aで冷房運転が行われる場合には、低圧弁45aが開状態となり、高圧弁46aが閉状態となる。また、室内機2aで暖房運転が行われる場合には、低圧弁45aが閉状態となり、高圧弁46aが開状態となる。同様に、室内機2bで冷房運転が行われる場合には、低圧弁45bが開状態となり、高圧弁46bが閉状態となる。また、室内機2bで暖房運転が行われる場合には、低圧弁45bが閉状態となり、高圧弁46bが開状態となる。
 制御装置3は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、I/Oポートなどを備えたマイクロコンピュータを有する。制御装置3は、冷凍サイクル回路10などに設けられた各種センサからの検出信号および操作部(図示せず)からの操作信号などに基づき、冷凍サイクル装置全体の動作を制御する。制御装置3は、たとえば、圧縮機11、冷媒流路切替装置14、室外ファン13、電子膨張弁21aおよび電子膨張弁21b、室内ファン25aおよび室内ファン25b、低圧弁45aおよび低圧弁45b並びに高圧弁46aおよび高圧弁46bなどの機器を制御する。図1に示すように、本実施の形態では、制御装置3を室外機1に設けているが、制御装置3の設置場所については、特に限定しない。たとえば、制御装置3は、室内機2aまたは室内機2bのいずれかに設けられていてもよいし、分流コントローラ4に設けられていてもよい。また、制御装置3が独立して設置されていてもよい。
 本実施の形態における制御装置3は、特に、電子膨張弁21aおよび電子膨張弁21b並びに高圧弁46aおよび高圧弁46bの異常検知に関わる異常判定処理を行う。このため、制御装置3は、機能ブロックとして、記憶部31、抽出部32、演算部33、比較部34および判定部35を有する。記憶部31は、高圧圧力センサ15および低圧圧力センサ16のそれぞれの検出に係る圧力のデータを記憶する。また、記憶部31は、第1温度センサTH1aおよび第1温度センサTH1b、第2温度センサTH2aおよびTH2b並びに第3温度センサTH3aおよび第3温度センサTH3bのそれぞれの検出に係る温度のデータを記憶する。ここで、これらのデータは、冷凍サイクル回路10の運転中に定期的に取得される。また、記憶部31は、制御装置3が異常判定処理を行うために必要な各種データの記憶を行う。
 抽出部32は、記憶部31に記憶されたデータの中から、異常判定処理を行うために必要となるデータを抽出する。たとえば、室内機2aに対応する電子膨張弁21aおよび高圧弁46aの異常検知を行う場合には、冷凍サイクル回路10および室内機2aが特定の運転状態で運転しているときのデータが用いられる。電子膨張弁21aおよび高圧弁46aの異常検知を行う際の特定の運転状態とは、圧縮機11が動作しているときに、室内機2aがサーモオフまたは停止状態にあり、電子膨張弁21aが全閉状態となり、低圧弁45aが開状態となり、高圧弁46aが閉状態となる運転状態のことである。たとえば、室内機2aが冷房運転のサーモオフ状態にあるときには、冷凍サイクル回路10および室内機2aは、特定の運転状態で運転している。このとき、冷凍サイクル回路10では、冷房運転または暖房主体運転のいずれが実行されていてもよい。
 同様に、室内機2bに対応する電子膨張弁21bおよび高圧弁46bの異常検知には、冷凍サイクル回路10および室内機2bが特定の運転状態で運転しているときのデータが用いられる。電子膨張弁21bおよび高圧弁46bの異常検知を行う際の特定の運転状態とは、圧縮機11が動作しているときに、室内機2bがサーモオフまたは停止状態にあり、電子膨張弁21bが全閉状態となり、低圧弁45bが開状態となり、高圧弁46bが閉状態となる運転状態のことである。たとえば、室内機2bが冷房運転のサーモオフ状態にあるときには、冷凍サイクル回路10および室内機2bは特定の運転状態で運転している。このとき、冷凍サイクル回路10では、冷房運転または暖房主体運転のいずれが実行されていてもよい。本実施の形態では、後述するように、抽出部32は、運転モード切替部37において異常検知モードに切り替えられた場合に行われる特定の運転によって得られたデータを抽出する。
 演算部33は、抽出部32で抽出されたデータに基づき、必要な演算を行う。また、比較部34は、演算部33が演算して得られた値と閾値との比較または演算部33での演算により得られた値同士の比較を行う。
 判定部35は、比較部34での比較結果に基づき、電子膨張弁21aおよび電子膨張弁21b、低圧弁45aおよび低圧弁45b並びに高圧弁46aおよび高圧弁46bのうちの少なくとも1つについて、異常判定処理を行う。
 また、制御装置3には、報知部36および運転モード切替部37が接続されている。報知部36および運転モード切替部37は、制御装置3の一部として制御装置3に備えられていてもよい。報知部36は、制御装置3からの指令により、電子膨張弁21aおよび電子膨張弁21b並びに高圧弁46aおよび高圧弁46bの異常などの各種情報を報知する。報知部36は、情報を視覚的に報知する表示部および情報を聴覚的に報知する音声出力部の少なくとも一方を有する。
 運転モード切替部37は、ユーザによる運転モードの切替操作を受け付け、操作に係る信号を制御装置3に送る。運転モード切替部37で運転モードの切替操作が行われると、制御装置3は、運転モード切替部37から出力される信号に基づき、運転モードを切り替える。本実施の形態における冷凍サイクル装置の運転モードには、たとえば、通常運転モードと異常検知モードとが含まれている。通常運転モードでは、冷凍サイクル装置は、室内機2aおよび室内機2b側からの要求に応じた運転状態で運転する。たとえば、全ての室内機2aおよび室内機2bから冷房要求がある場合には、全冷房運転が行われる。
 一方、異常検知モードでは、電子膨張弁21aおよび電子膨張弁21b並びに高圧弁46aおよび高圧弁46bの異常検知を行うためのモードである。このため、異常検知モードでは、室内機2aおよび室内機2b側からの要求に関わらず、室内機2aまたは室内機2bが冷房運転のサーモオフ状態になる。ここで、通常運転モードの実行中であっても、室内機2aが冷房運転のサーモオフ状態である場合には、電子膨張弁21aおよび高圧弁46aの異常検知が可能である。また、通常運転モードの実行中であっても、室内機2bが冷房運転のサーモオフ状態である場合には、電子膨張弁21bおよび高圧弁46bの異常検知が可能である。
 次に、冷凍サイクル装置の動作について、冷房主体運転を例に挙げて説明する。冷房主体運転が行われる場合、冷媒流路切替装置14は、図1の実線で示す流路が形成されるように切り替えられる。ここでは、室内機2aがサーモオフまたは停止状態であり、室内機2bで冷房運転が行われる冷房運転を例に挙げる。ここで、室内機2aがサーモオフ状態では、室内ファン25aは駆動しているが、冷凍サイクルについては、停止しているときと同様の状態となる。したがって、室内機2aには、冷媒は流れない。このとき、室内機2aに係る弁については、低圧弁45aが、開状態に設定される。また、高圧弁46aが、閉状態に設定される。そして、電子膨張弁21aは、全閉状態になる。また、冷房運転が行われる室内機2bに係る弁については、低圧弁45bが、開状態に設定される。また、高圧弁46bが、閉状態に設定される。そして、電子膨張弁21bは、たとえば、室内熱交換器22aの出口での過熱度SHがそれぞれ目標過熱度SHmに近づくように、開度が制御される。ここで、図1並びに後述する図3、図5および図7では、低圧弁45aおよび低圧弁45b、高圧弁46aおよび高圧弁46b並びに電子膨張弁21aおよび電子膨張弁21bのうち、開状態の弁を白抜きで表しており、閉状態の弁を黒塗りで表している。
 圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置14を通過し、室外熱交換器12に流入する。室外熱交換器12に流入したガス冷媒は、室外ファン13により供給される室外空気との熱交換によって凝縮し、高圧の液冷媒となる。室外熱交換器12を流出した高圧の液冷媒は、逆止弁171、気液分離器43、弁47および電子膨張弁21bを介して室内熱交換器22bに流入する。冷房主体運転時には、室内熱交換器22bおよび室内熱交換器22bは、蒸発器として機能する。
 室内熱交換器22bに流入した液冷媒は、室内ファン25bにより供給される室内空気との熱交換によって蒸発し、低圧のガス冷媒となる。室内熱交換器22bで凝縮した冷媒は、低圧弁45b、逆止弁174および冷媒流路切替装置14を介して圧縮機11に吸引される。
 次に、制御装置3が行う低圧圧力一定制御について説明する。本実施の形態のようなマルチ型の空気調和装置では、複数の室内機2aおよび室内機2bを能力不足なく冷房運転させる必要がある。そこで、圧縮機11の運転周波数は、冷凍サイクル回路10内の低圧圧力Psとなる圧縮機11の吸入圧力が一定になるように制御される。
 さらに、制御装置3が行う室外ファン制御について説明する。冷房主体運転時において、制御装置3は、凝縮温度Tcと外気温度との温度差が一定となるように、室外ファン13の回転数を制御する。
 室内機2aおよび室内機2bにおける冷房運転時の定常制御について、室内機2bを例に挙げて説明する。冷凍サイクル回路10では、低圧圧力Psが一定に制御される。このため、室内機2bの空調能力を変更する方法として、過熱度制御が実行される。過熱度制御では、室内機2bが所望の空調能力を得られるように、室内熱交換器22bの出口での過熱度SHの目標過熱度SHmを調整する。室内熱交換器22bにおける熱交換量は、過熱度SHの大小に応じて変化する。このため、過熱度SHの目標過熱度SHmが調整されることにより、室内機2bは、適正な空調能力を発揮することができる。室内機2bの設定温度と室内温度TH1との温度差が大きい場合、過熱度SHの目標過熱度SHmは、小さい値に設定される。室内機2bの設定温度と室内温度TH1との温度差が小さい場合、過熱度SHの目標過熱度SHmは、大きい値に設定される。電子膨張弁21bの開度は、室内熱交換器22bの出口での過熱度SHが目標過熱度SHmに近づくように制御される。これにより、必要な量の冷媒が、室内熱交換器22bに供給される。
 次に、本実施の形態の冷凍サイクル装置における電子膨張弁21および高圧弁46の異常について説明する。以下の説明では、特定の運転状態において、運転を停止している室内機2aに対応する、電子膨張弁21a、室内熱交換器22a、第1温度センサTH1a、第2温度センサTH2a、第3温度センサTH3a、低圧弁45aおよび高圧弁46aを例に挙げて説明する。
 図2は、実施の形態1に係る冷凍サイクル装置において、電子膨張弁21a、低圧弁45aおよび高圧弁46aのそれぞれがとり得る状態の組合せパターンの例を示す図である。ここで、冷凍サイクル装置は、前述した特定の運転状態となる制御が行われているものとする。したがって、室内機2aは、サーモオフまたは停止状態にある。ここで、冷凍サイクル回路10では、冷房主体運転または暖房主体運転のいずれが実行されていてもよい。
 図3は、実施の形態1に係る冷凍サイクル装置において、状態パターン1での電子膨張弁21a、低圧弁45aおよび高圧弁46aの動作を示す図である。図2および図3に示すように、状態パターン1は、電子膨張弁21a、低圧弁45aおよび高圧弁46aがいずれも正常な状態にある。電子膨張弁21aは全閉状態にある。また、低圧弁45aは、開状態であり、高圧弁46aは、閉状態である。
 図4は、実施の形態1に係る冷凍サイクル装置における状態パターン1での室内熱交換器22a内の冷媒の温度分布を示すグラフを示す図である。図4の横軸は、室内熱交換器22a内の冷媒流路における位置を表しており、図4の縦軸は、温度を表している。グラフの右端は、冷房運転時における室内熱交換器22aの冷媒入口を表している。グラフの右端での温度は、第3温度センサTH3aで検出される室内熱交換器22aのガス側温度TH3に相当する。グラフの左端は、冷房運転時における室内熱交換器22aの冷媒出口を表している。グラフの左端での温度は、第2温度センサTH2aで検出される室内熱交換器22aの液側温度TH2に相当する。
 正常な状態パターン1では、電子膨張弁21aは閉じており、室内熱交換器22a内に冷媒が供給されない。したがって、正常な状態パターン1では、図4に示すように、液側温度TH2およびガス側温度TH3は、室内温度TH1に近づくこととなる(TH2=TH3=TH1)。
 図5は、実施の形態1に係る冷凍サイクル装置における状態パターン2での電子膨張弁21a、低圧弁45aおよび高圧弁46aの動作を示す図である。図2および図5に示すように、状態パターン2は、電子膨張弁21aが開ロックとなった状態である。電子膨張弁21aの開ロックとは、電子膨張弁21aの異常の1つであり、電子膨張弁21a内の弁体の固着によって、電子膨張弁21aが開状態で固定されてしまう状態のことである。正常な状態パターン1では、電子膨張弁21aは、全閉しているのに対し、状態パターン2では、電子膨張弁21aは開状態に維持される。
 図6は、実施の形態1に係る冷凍サイクル装置における状態パターン2での室内熱交換器22a内の冷媒の温度分布を示すグラフを示す図である。図6の横軸および縦軸は、図4と同様である。
 正常な状態パターン1では、TH3が設置された部分では過熱ガス状態だが、電子膨張弁21aに開ロックが生じて状態パターン2になると、室内熱交換器22aには冷媒が流れる。このため、室内熱交換器22a内を通過する二相冷媒が室内空気との熱交換によって蒸発する。これにより、図6に示すように、液側温度TH2は蒸発温度と同等となる。一方、室内熱交換器22aの流出口付近になると冷媒は過熱される。このため、ガス側温度TH3は、蒸発温度よりも高い温度を検出する。以上より、状態パターン2になると、液側温度TH2は、蒸発温度Teと同等の温度となる。また、ガス側温度TH3と液側温度TH2とには、温度差が発生する(Te=TH2<TH3)。
 図7は、実施の形態1に係る冷凍サイクル装置における状態パターン3での電子膨張弁21a、低圧弁45aおよび高圧弁46aの動作を示す図である。図2および図7に示すように、状態パターン3は、高圧弁46aが開ロックとなった状態である。高圧弁46aの開ロックとは、高圧弁46aの異常の1つであり、高圧弁46a内の弁体が固着することによって、高圧弁46aが開状態で固定されてしまう状態のことである。正常な状態パターン1では、高圧弁46aが閉状態であるのに対し、状態パターン3では、高圧弁46aは、開状態となっている。冷凍サイクル装置が、暖房運転から冷房運転に切り替わったとき、高圧弁46aに開ロックが生じていると、高圧弁46aが閉状態にならない。これにより、状態パターン1ではなく、状態パターン3になる。
 図8は、実施の形態1に係る冷凍サイクル装置における状態パターン3での室内熱交換器22a内の冷媒の温度分布を示すグラフを示す図である。図8の横軸および縦軸は、図4と同様である。太実線の曲線C11は、状態パターン1から状態パターン3に変化してから十分に時間が経過したときの冷媒の温度分布を示している。細実線の曲線C131は、状態パターン1から状態パターン3に変化した直後の冷媒の温度分布を示している。細実線の曲線C12は、曲線C11で示す温度分布から曲線C13で示す温度分布に至るまでの冷媒の温度分布の変化を時系列で示している。
 正常な状態パターン1では、ガス側温度TH3は、室内温度TH1と同等温度であるが、状態パターン3のように、高圧弁46aに開ロックが生じていると、室内熱交換器22aには高温の冷媒が流入して凝縮し、冷媒が貯留する。このため、室内熱交換器22a内において、ガス冷媒が室内空気との熱交換によって液化し、室内熱交換器22a内は、二相冷媒で徐々に満たされる。これにより、図8に示すように、ガス側温度TH3および液側温度TH2が、室内温度TH1から凝縮温度Tcに近づく。この温度差は、室内熱交換器22の冷却性能により変化する。
 また、状態パターン3では、高圧弁46aが開状態であるため、高圧冷媒の一部が、バイパス流路44および分岐流路44aを通って、冷凍サイクル回路10の低圧側に流入する。これにより、冷凍サイクル回路10内の低圧圧力Psが上昇する。圧縮機11は、高圧圧力Pdが一定の目標高圧圧力Pdmに近づくように制御されており、低圧圧力Psの上昇に伴い、圧縮機11の運転周波数は増加する。したがって、圧縮機11を通過する冷媒量は、バイパス流路44を流通してしまう冷媒量の分だけ増加する。圧縮機11の運転周波数の増加によって冷凍サイクル回路10内の高圧圧力Pdを目標高圧圧力Pdmに維持できる場合、冷凍サイクル装置の運転効率が低下するものの、室内機2bは正常な状態パターン1と同様に動作する可能性がある。一方で、圧縮機11には運転周波数範囲が設定されているため、圧縮機11の運転周波数を、運転周波数範囲の上限である最大運転周波数よりも高くすることはできない。したがって、圧縮機11の運転周波数を最大運転周波数まで増加させても冷凍サイクル回路10内の高圧圧力Pdを目標高圧圧力Pdmに維持できなくなると、冷凍サイクル回路10の低圧圧力Psが上昇して、室内機2bの能力が低下してしまう。
 状態パターン3では、圧縮機11から吐出された冷媒の一部が、室内機2aおよび室内機2bのいずれにも供給されず、バイパスして、圧縮機11に吸引される。このため、圧縮機11を通過する冷媒量と、全ての室内機2aおよび室内機2bの電子膨張弁21aおよび電子膨張弁21bのそれぞれを通過する冷媒量の総和とを比較すれば、状態パターン3であるか否かを判定することができる。
 圧縮機11を通過する冷媒量Grocは、圧縮機11の運転周波数および圧縮機11に吸入される冷媒の密度などを用いて算出できる。次式(1)は、圧縮機11を通過する冷媒量Grocの算出式の一例である。式(1)において、Grocは、圧縮機11を通過する冷媒量[kg/h]である。また、Vstは、圧縮機11の押しのけ量[m]である。Fは、圧縮機11の運転周波数[Hz](=[1/S])である。ρsは、圧縮機11に吸入される冷媒の密度[kg/m]である。そして、ηvは、圧縮機11の体積効率であり、0≦ηv≦1の一定値である。
[数1]
 Groc=Vst×F×ρs×ηv×3600     …(1)
 電子膨張弁21aおよび電子膨張弁21bのそれぞれを通過する冷媒量の総和ΣGricは、電子膨張弁21aおよび電子膨張弁21bを通過する各冷媒量Gricの総和である。たとえば、電子膨張弁21aを通過する冷媒量Gricは、冷凍サイクル回路10内の高圧圧力Pdと低圧圧力Psとの圧力差および電子膨張弁21aのCv値などを用いて算出することができる。次式(2)は、電子膨張弁21aを通過する冷媒量Gricの算出式の一例である。ここで、Gricは、電子膨張弁21aを通過する冷媒量[kg/h]である。また、Cvは、電子膨張弁21aのCv値である。ΔPは、冷凍サイクル回路10内の高圧圧力Pdと低圧圧力Psとの圧力差[MPa(abs)]である。そして、ρLEVは、電子膨張弁21aの入口での冷媒の密度[kg/m]である。
[数2]
 Gric=86.4×Cv×(ΔP×ρLEV)1/2  …(2)
 この、式(2)は、流体の流量とCv値の関係式となる次式(3)に、密度ρをかけて変形させたものである。ここで、Cv値は、バルブなどの容量係数の1つである。JIS規格では、特定のトラベル(動作範囲)において、圧力差が1[psi(pound-force per square inch)]のとき、バルブを流れる華氏60度の清水を流した時の流量を、US[ガロン/min]で表す流量数値と定義される。また、QL[m/h]は、液体の流量(hは時間)である。さらに、ΔP[MPa(abs)]は、1次(入口)側絶対圧力P1-2次(出口)側絶対圧力P2である。そして、GLは、水を1としたときの液体の比重であり、GL=ρ(ref)ρ(water)で表される。ここで、ρ(ref)[kg/m]は、冷媒密度であり、ρ(water)[kg/m]は、水密度=約1000[kg/m]である。
[数3]
 QL=Cv/{0.366×(GL/ΔP)1/2}   …(3)
 圧縮機11を通過する冷媒量Grocが、電子膨張弁21aおよび電子膨張弁21bのそれぞれを通過する冷媒量の総和ΣGricよりも大きい場合(Groc>ΣGric)には、状態パターン3であると判定することができる。ここで、本実施の形態のように、圧縮機11から吐出された冷媒が、1台の室内機2のみに供給される場合には、圧縮機11を通過する冷媒量Grocと電子膨張弁21を通過する冷媒量Gricとを用いて、状態パターン3であるか否かを判定することができる。すなわち、圧縮機11を通過する冷媒量Grocが、電子膨張弁21bを通過する冷媒量Gricよりも大きい場合(Groc>Gric)には、状態パターン3であると判定することができる。
 また、冷凍サイクル回路10内の低圧圧力Psから目標低圧圧力Psmを減じた値が閾値よりも大きい場合にも、状態パターン3であると判定することができる。あるいは、冷凍サイクル回路10内の低圧圧力Psから目標低圧圧力Psmを減じた値が閾値よりも大きく、かつ圧縮機11が最大運転周波数で運転している場合にも、状態パターン3であると判定することができる。閾値は、たとえば、高圧一定制御で許容される高圧圧力Pdの誤差の絶対値よりも大きい値に設定される。
 状態パターン2および状態パターン3についてまとめて説明する。状態パターン2および状態パターン3ではいずれも、ガス側温度TH3または液側温度TH2と室内温度TH1とに温度差が発生する。このため、ガス側温度TH3または液側温度TH2と室内温度TH1に温度差が発生した場合、状態パターン2または状態パターン3であると判定することができる。
 さらに、ガス側温度TH3または液側温度TH2が、室内温度TH1よりも高い場合は、高圧弁46aの開ロック異常であり、ガス側温度TH3または液側温度TH2が、室内温度TH1よりも低い場合は、電子膨張弁21aの開ロック異常であると判定することができる。このとき、電子膨張弁21aまたは高圧弁46aのいずれかが異常であることを報知部36が報知するようにしてもよい。
 次に、低圧弁45a、高圧弁46aおよび電子膨張弁21aのうちの少なくとも1つの異常検知に関し、制御装置3が実行する異常判定処理について説明する。制御装置3は、図9~図11に示す異常判定処理のうち、少なくとも1つの処理を、設定された時間間隔で繰り返し実行する。ここでは、制御装置3が、高圧弁46aまたは電子膨張弁21aの異常検知に係る異常判定処理を実行する場合について説明する。高圧弁46bまたは電子膨張弁21bの異常検知に係る異常判定処理についても、同様の流れで実行することができる。
 図9は、実施の形態1に係る冷凍サイクル装置の制御装置3で実行される第1異常検知処理の流れの例におけるフローチャートを示す図である。第1異常検知処理では、制御装置3は、高圧弁46aおよび電子膨張弁21aの異常検知に係る異常判定処理を行う。図9に示すフローチャートでは、制御装置3が、高圧弁46aおよび電子膨張弁21aの異常判定処理を1つの流れで実行するものとするが、高圧弁46aの異常検知処理と電子膨張弁21aの異常検知処理とを別の流れで実行するようにしてもよい。
 まず、ステップS001では、制御装置3は、指示された運転モードに基づき、圧縮機11が動作し、室外熱交換器12が凝縮器として機能しているかどうかを判定する。室外熱交換器12が凝縮器であるときは、冷凍サイクル装置は、冷房運転を行っていることになる。制御装置3は、圧縮機11が動作し、室外熱交換器12が凝縮器として機能していると判定すると、ステップS002に進み、それ以外の場合には、第1異常検知処理を終了する。
 ステップS002では、制御装置3は、制御装置3は、室内機2aが冷房運転のサーモオフ状態または停止しているか否かを判定する。この判定は、電子膨張弁21aが閉状態、低圧弁45aが開状態および高圧弁46aが閉状態となる運転状態であるか否かの判定と言い換えることもできる。制御装置3は、室内機2aが冷房運転のサーモオフ状態または停止していると判定すると、ステップS003に進み、それ以外の場合には第1異常検知処理を終了する。
 ステップS003では、室内温度TH1と、液側温度TH2またはガス側温度TH3とにおける温度のデータを取得する。液側温度TH2およびガス側温度TH3については、どちらか一方でよいが、両方の温度のデータを取得してもよい。室内温度TH1のデータは、第1温度センサTH1aの検出信号に基づき、取得される。液側温度TH2のデータは、第2温度センサTH2aの検出信号に基づき、取得される。ガス側温度TH3のデータは、第3温度センサTH3aの検出信号に基づき、取得される。
 次に、ステップS004では、制御装置3は、ガス側温度TH3が室内温度TH1と等しいか否かおよび液側温度TH2が室内温度TH1と等しいか否かを判定する。ここで、ガス側温度TH3と室内温度TH1とが等しいおよび液側温度TH2と室内温度TH1とが等しいとは、温度差がないことを示す。温度差がないかどうかの判定については、温度差が0である必要はなく、マージンをもたせてもよい。制御装置3は、ガス側温度TH3が室内温度TH1と等しくないまたは液側温度TH2が室内温度TH1と等しくないの少なくとも一方であると判定すると、ステップS005に進む。また、制御装置3は、ガス側温度TH3または液側温度TH2が室内温度TH1と等しいと判定すると、第1異常検知処理を終了する。ここでは、制御装置3は、ガス側温度TH3が室内温度TH1と等しいか否かについて判定を行った。ただ、後述するステップS007において、制御装置3は、液側温度TH2と室内温度TH1との比較を判定を行っていることから、液側温度TH2が室内温度TH1と等しいか否かを判定する方が効率的である。
 ステップS005では、制御装置3は、電子膨張弁21aまたは高圧弁46aが異常であると判定する。これは、ガス側温度TH3が、ガス側温度TH3が室内温度TH1と等しくないまたは液側温度TH2が室内温度TH1と等しくないときには、前述した正常な状態パターン1ではなく、状態パターン2または状態パターン3に該当するためである。
 次に、ステップS006では、制御装置3は、電子膨張弁21aまたは高圧弁46aが異常であることを報知部36に報知させる処理を行う。ここで、たとえば、ステップS007~ステップS011の処理を行う場合、ステップS005およびステップS006の処理は、省略することも可能である。また、制御装置3が行う処理は、ステップS006で終了してもよい。
 次に、ステップS007では、制御装置3は、液側温度TH2が室内温度TH1の温度よりも高いか否かを判定する。制御装置3が、液側温度TH2が室内温度TH1よりも高いと判定すると、ステップS008に進み、液側温度TH2が室内温度TH1よりも低いと判定すると、ステップS010に進む。ここで、ステップS007の判定処理は、ステップS004の判定を行ってからの経過時間が、あらかじめ設定された閾値時間を超えた後、すなわち、ガス側温度TH3が安定した後に行うようにしてもよい。また、ここでは、液側温度TH2と室内温度TH1とを比較処理する場合を例に示したが、ガス側温度TH3と室内温度TH1とを比較処理してもよい。ガス側温度TH3を用いた場合も液側温度TH2の場合と同様に、制御装置3は、ガス側温度TH3が室内温度TH1よりも高いと判定した場合はステップS008に進み、ガス側温度TH3が室内温度TH1よりも低いと判定した場合はステップS010に進む。
 ステップS008では、制御装置3は、高圧弁46aが開ロックの異常であると判定する。これは、液側温度TH2が室内温度TH1よりも高い場合は、状態パターン3に該当するためである。
 次に、ステップS009では、制御装置3は、高圧弁46aが異常であることを報知部36に報知させる処理を行う。そして、第1異常検知処理を終了する。
 ステップS010では、制御装置3は、電子膨張弁21aが開ロックの異常であると判定する。これは、液側温度TH2が室内温度TH1よりも低い場合は、状態パターン2に該当するためである。
 次に、ステップS011では、制御装置3は、電子膨張弁21aが異常であることを報知部36に報知させる処理を行う。その後、第1異常検知処理を終了する。
 図10は、実施の形態1に係る冷凍サイクル装置の制御装置3で実行される第2異常検知処理の流れの例におけるフローチャートを示す図である。第2異常検知処理では、高圧弁46aの異常検知が行われる。ここで、制御装置3は、図10に示す第2異常検知処理および後述する図11に示す第3異常検知処理の少なくとも一方を、図9に基づいて説明した第1異常検知処理と共に実行するようにしてもよい。
 まず、ステップS101では、制御装置3は、圧縮機11が動作し、室外熱交換器12が凝縮器として機能しているかどうかを判定する。制御装置3は、圧縮機11が動作し、室外熱交換器12が凝縮器として機能していると判定すると、ステップS102に進み、それ以外の場合には、第2異常検知処理を終了する。
 ステップS102では、制御装置3は、制御装置3は、室内機2aが冷房運転のサーモオフ状態または停止しているか否かを判定する。この判定は、電子膨張弁21aが閉状態、低圧弁45aが開状態および高圧弁46aが閉状態となる運転状態であるか否かの判定と言い換えることもできる。制御装置3は、室内機2aが冷房運転のサーモオフ状態または停止していると判定すると、ステップS103に進み、それ以外の場合には第2異常検知処理を終了する。
 ステップS103では、制御装置3は、圧縮機11を通過する冷媒量Grocのデータと、電子膨張弁21aおよび電子膨張弁21bのそれぞれを通過する冷媒量の総和ΣGricのデータとを取得する。室外機1側の冷媒量Grocのデータは、たとえば、前述した式(1)に基づき取得される。室内機2b側の冷媒量の総和ΣGricのデータは、たとえば、前述した式(2)などに基づき、取得される。
 次に、ステップS104では、制御装置3は、室外機1側の冷媒量Grocが室内機2b側の冷媒量の総和ΣGricよりも大きいか否かを判定する。制御装置3は、冷媒量Grocが冷媒量の総和ΣGricよりも大きいと判定したときにはステップS105に進む。一方、制御装置3は、冷媒量Grocが冷媒量の総和ΣGricと等しいと判定したときには、第2異常検知処理を終了する。
 ステップS105では、制御装置3は、高圧弁46aが異常であると判定する。これは、室外機1側の冷媒量Grocが室内機2b側の冷媒量の総和ΣGricよりも大きい場合には、状態パターン3に該当するためである。
 次に、ステップS106では、制御装置3は、高圧弁46aが異常であることを報知部36に報知させる処理を行う。その後、第2異常検知処理を終了する。
 図11は、実施の形態1に係る冷凍サイクル装置の制御装置3で実行される第3異常検知処理の流れの例におけるフローチャートを示す図である。第3異常検知処理では、高圧弁46aの異常検知が行われる。
 まず、ステップS201では、制御装置3は、圧縮機11が動作し、室外熱交換器12が凝縮器として機能しているかどうかを判定する。制御装置3は、圧縮機11が動作し、室外熱交換器12が凝縮器として機能していると判定すると、ステップS202に進み、それ以外の場合には、第2異常検知処理を終了する。
 ステップS202では、制御装置3は、制御装置3は、室内機2aが冷房運転のサーモオフ状態または停止しているか否かを判定する。この判定は、電子膨張弁21aが閉状態、低圧弁45aが開状態および高圧弁46aが閉状態となる運転状態であるか否かの判定と言い換えることもできる。制御装置3は、室内機2aが冷房運転のサーモオフ状態または停止していると判定すると、ステップS203に進み、それ以外の場合には第3異常検知処理を終了する。
 ステップS203では、制御装置3は、低圧圧力Psおよび目標低圧圧力Psmの各データを取得する。低圧圧力Psのデータは、低圧圧力センサ16の検出信号に基づき取得される。目標低圧圧力Psmのデータは、あらかじめ記憶部31に記憶されている。
 次に、ステップS204では、制御装置3は、低圧圧力Psから目標低圧圧力Psmを減じた値であるPs-Psmが、あらかじめ設定されている閾値圧力Pth31よりも大きいか否かを判定する。制御装置3は、低圧圧力Psから目標低圧圧力Psmを減じた値が、閾値圧力Pth31よりも大きいと判定すると、ステップS205に進む。一方、制御装置3は、閾値圧力Pth31以下であると判定すると、第3異常検知処理を終了する。
 ステップS205では、制御装置3は、高圧弁46aが異常であると判定する。これは、低圧圧力Psから目標低圧圧力Psmを減じた値が閾値圧力Pth31よりも大きい場合には、状態パターン3に該当するためである。
 次に、ステップS206では、制御装置3は、高圧弁46aが異常であることを報知部36に報知させる処理を行う。その後、第3異常検知処理を終了する。
 ここで、制御装置3は、上記のステップS204において、低圧圧力Psから目標低圧圧力Psmを減じた値が閾値圧力Pth31よりも大きく、かつ、圧縮機11が最大運転周波数で動作しているか否かを判定してもよい。そして、制御装置3は、低圧圧力Psから目標低圧圧力Psmを減じた値が閾値圧力Pth31よりも大きく、かつ、圧縮機11が最大運転周波数で動作していると判定すると、ステップS205に進む。それ以外の場合には、第3異常検知処理を終了する。
 以上、説明したように、実施の形態1に係る冷凍サイクル装置は、冷凍サイクル回路10と、バイパス流路44と、低圧弁45aと、高圧弁46aと、第1温度センサTH1aと、第2温度センサTH2aと、報知部36とを備えている。そして、冷凍サイクル回路10は、圧縮機11、冷媒流路切替装置14、室外熱交換器12、電子膨張弁21aおよび室内熱交換器22aを有する。バイパス流路44は、冷凍サイクル回路10において、室外熱交換器12と電子膨張弁21aとの間に設けられた第1分岐部41と、室内熱交換器22aと冷媒流路切替装置14との間に設けられた第2分岐部42aとの間を接続している。また、低圧弁45aは、冷凍サイクル回路10のうち、第2分岐部42aと冷媒流路切替装置14との間に設けられている。さらに、高圧弁46aは、バイパス流路44に設けられている。第1温度センサTH1aは、室内熱交換器22aを通過した空気が供給される室内の温度である室内温度TH1を検出する。第2温度センサTH2aは、室内熱交換器22aの液側冷媒の温度である液側温度TH2を検出する。第3温度センサTH3aは、室内熱交換器22aのガス側冷媒の温度であるガス側温度TH3を検出する。報知部36は、異常を報知するように構成されている。そして、冷凍サイクル装置は、圧縮機11が動作し、室内熱交換器22bが蒸発器として機能する。一方、室内熱交換器22aは、電子膨張弁21aが全閉状態となり、低圧弁45aが開状態となり、高圧弁46aが閉状態となる運転状態である、室内機2aが冷房運転のサーモオフまたは停止状態での運転を行う。このような運転状態において、制御装置3が、ガス側温度TH3が室内温度TH1と等しくないおよび液側温度TH2が室内温度TH1と等しくないの少なくとも一方であると判定すると、報知部36は、電子膨張弁21aまたは高圧弁46aの異常を報知する。ここで、高圧弁46aは、第2弁の一例である。低圧弁45aは、第1弁の一例である。電子膨張弁21aは、絞り装置の一例である。
 以上のような本実施の形態の冷凍サイクル装置の構成により、電子膨張弁21aまたは高圧弁46aの異常をより正確に、かつ、より早期に検知することができる。また、本実施の形態の冷凍サイクル装置では、電子膨張弁21aまたは高圧弁46aの異常をより早期に報知できるため、電子膨張弁21aまたは高圧弁46aをより早期に復旧させることができる。したがって、本実施の形態の冷凍サイクル装置においては、室内機2aの不調期間を短縮することができる。
 また、本実施の形態に係る冷凍サイクル装置では、前述した運転状態において、制御装置3が、液側温度TH2が室内温度TH1よりも低いと判定すると、報知部36は、電子膨張弁21aの異常を報知することができる。
 また、本実施の形態に係る冷凍サイクル装置では、前述した運転状態において、制御装置3が、液側温度TH2が室内温度TH1高いと判定すると、報知部36は、高圧弁46aの異常を報知することができる。
 また、本実施の形態に係る冷凍サイクル装置では、前述した運転状態において、制御装置3が、圧縮機11を通過する冷媒量が、電子膨張弁21bを通過する冷媒量よりも多いと判定すると、報知部36は、高圧弁46aの異常を報知することができる。
 また、本実施の形態に係る冷凍サイクル装置では、制御装置3は、冷凍サイクル回路10内の低圧圧力Psが目標低圧圧力Psmに近づくように、圧縮機11を制御する。このため、前述した運転状態において、制御装置3が、低圧圧力Psから目標低圧圧力Psmを減じた値が閾値よりも大きいと判定すると、報知部36は、高圧弁46aの異常を報知することができる。
 また、本実施の形態に係る冷凍サイクル装置では、制御装置3は、冷凍サイクル回路10内の低圧圧力Psが目標低圧圧力Psmに近づくように、圧縮機11を制御する。このため、前述した運転状態において、制御装置3が、低圧圧力Psから目標低圧圧力Psmを減じた値が閾値よりも大きく、かつ、圧縮機11が最大運転周波数で駆動していると判定すると、報知部36は、高圧弁46aの異常を報知することができる。
 前述した運転状態において、低圧弁45aに異常が生じ、バイパス流路44を流通する冷媒量が増加してしまうと、圧縮機11の運転周波数を最大運転周波数まで増加させても、低圧圧力Psを目標低圧圧力Psmに維持できなくなる。したがって、本実施の形態に係る冷凍サイクル装置によれば、高圧弁46aの異常をより正確に検知できる。
 また、本実施の形態に係る冷凍サイクル装置は、冷凍サイクル装置の運転モードを切り替える運転モード切替部37をさらに備えている。運転モード切替部37は、少なくとも、上記運転状態での運転が行われる運転モードに切り替え可能である。本実施の形態に係る冷凍サイクル装置によれば、室内機2aで冷房運転が行われる期間であっても、一時的にサーモオフにするなどして、高圧弁46aまたは電子膨張弁21aの異常を検知することができる。
実施の形態2.
 上述した実施の形態1の冷凍サイクル装置では、制御装置3は、第2弁となる高圧弁46aおよび高圧弁46b並びに電子膨張弁21aおよび電子膨張弁21bのすべての弁について異常検知を行うものとした。ただし、これに限定するものではない。制御装置3は、あらかじめ定められたまたは選択された弁について、異常検知を行うようにしてもよい。
 また、実施の形態1の冷凍サイクル装置においては、制御装置3が、冷凍サイクル回路10内の低圧圧力Psが目標低圧圧力Psmに近づくように、圧縮機11の運転周波数を制御する例について説明した。ただし、これに限定するものではない。たとえば、冷凍サイクル回路10内の高圧圧力Pdが目標高圧圧力Pdmに近づくように、圧縮機11の運転周波数を制御してもよい。この場合には、制御装置3は、高圧圧力Pdから目標高圧圧力Pdmを減じた値が閾値よりも大きく、かつ、圧縮機11が最大運転周波数で動作しているときに、高圧弁46aが異常であると判定し、報知部36に報知させる。
 1 室外機、2,2a,2b 室内機、3 制御装置、4 分流コントローラ、10 冷凍サイクル回路、11 圧縮機、12 室外熱交換器、13 室外ファン、14 冷媒流路切替装置、15 高圧圧力センサ、16 低圧圧力センサ、171,172,173,174 逆止弁、21,21a,21b 電子膨張弁、22,22a,22b 室内熱交換器、25,25a,25b 室内ファン、31 記憶部、32 抽出部、33 演算部、34 比較部、35 判定部、36 報知部、37 運転モード切替部、41 第1分岐部、42a,42b 第2分岐部、43 気液分離器、44 バイパス流路、44a,44b 分岐流路、45,45a,45b 低圧弁、46,46a,46b 高圧弁、47 弁、48 低圧バイパス流路、TH1a,TH1b 第1温度センサ、TH2a,TH2b 第2温度センサ、TH3a,TH3b 第3温度センサ。

Claims (8)

  1.  圧縮機、冷媒流路切替装置、室外熱交換器、膨張弁および室内熱交換器を接続して、冷媒を循環させる冷凍サイクル回路と、
     前記室外熱交換器と前記膨張弁との間で前記冷媒を分岐させる第1分岐部と、
     前記室内熱交換器と前記冷媒流路切替装置との間で前記冷媒を分岐させる第2分岐部と、
     前記第1分岐部と前記第2分岐部とを接続して、前記冷媒の流路となるバイパス配管と、
     前記第2分岐部と前記冷媒流路切替装置との間に設けられた第1弁と、
     前記バイパス配管に設けられた第2弁と、
     前記室内熱交換器を通過した空気が供給される室内の温度を検出する第1温度センサと、
     前記室内熱交換器の液側冷媒の温度を検出する第2温度センサとを備え、
     前記圧縮機が動作し、前記膨張弁を全閉状態とし、前記第1弁を開状態とし、前記第2弁を閉状態とする運転状態において、
     前記第1温度センサの検出温度と前記第2温度センサの検出温度との間に温度差があるとされたときは、前記膨張弁および前記第2弁の少なくとも一方の弁が異常であることを検知する冷凍サイクル装置。
  2.  前記運転状態において、前記第2温度センサの検出温度が、前記第1温度センサの検出温度よりも低いときには、前記膨張弁が異常であることを検知する請求項1に記載の冷凍サイクル装置。
  3.  前記運転状態において、前記第2温度センサの検出温度が、前記第1温度センサの検出温度よりも高いときには、前記第2弁の異常であることを検知する請求項1に記載の冷凍サイクル装置。
  4.  前記圧縮機が、最大運転周波数で動作しているときには、前記膨張弁および前記第2弁のうち、前記第2弁が異常であることを検知する請求項1に記載の冷凍サイクル装置。
  5.  前記圧縮機は、前記冷凍サイクル回路内における低圧側の前記冷媒の圧力を、目標低圧圧力とする制御がなされ、
     前記運転状態において、前記低圧側の前記冷媒の圧力と前記目標低圧圧力とに差が発生しているときには、前記膨張弁および前記第2弁のうち、前記第2弁が異常であることを検知する請求項1に記載の冷凍サイクル装置。
  6.  前記圧縮機は、前記冷凍サイクル回路内における高圧側の前記冷媒の圧力を、目標高圧圧力とする制御がなされ、
     前記運転状態において、前記高圧側の前記冷媒の圧力と前記目標高圧圧力とに差が発生しているときには、前記膨張弁および前記第2弁のうち、前記第2弁が異常であることを検知する請求項1に記載の冷凍サイクル装置。
  7.  前記弁が異常である旨を報知する報知部を備える請求項1~請求項6のいずれか一項に記載の冷凍サイクル装置。
  8.  前記冷媒流路切替装置は、指示に基づいて少なくとも前記運転状態での運転が行われる運転モードに切り替えられる請求項1~請求項7のいずれか一項に記載の冷凍サイクル装置。
PCT/JP2019/022184 2019-06-04 2019-06-04 冷凍サイクル装置 WO2020245918A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19931732.2A EP3982063A4 (en) 2019-06-04 2019-06-04 REFRIGERATION CIRCUIT DEVICE
US17/603,397 US20220178603A1 (en) 2019-06-04 2019-06-04 Refrigeration cycle apparatus
PCT/JP2019/022184 WO2020245918A1 (ja) 2019-06-04 2019-06-04 冷凍サイクル装置
JP2021524546A JP7138790B2 (ja) 2019-06-04 2019-06-04 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/022184 WO2020245918A1 (ja) 2019-06-04 2019-06-04 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2020245918A1 true WO2020245918A1 (ja) 2020-12-10

Family

ID=73652016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022184 WO2020245918A1 (ja) 2019-06-04 2019-06-04 冷凍サイクル装置

Country Status (4)

Country Link
US (1) US20220178603A1 (ja)
EP (1) EP3982063A4 (ja)
JP (1) JP7138790B2 (ja)
WO (1) WO2020245918A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113551369A (zh) * 2021-07-09 2021-10-26 珠海格力电器股份有限公司 一种用于检测制冷系统堵塞的控制系统及堵塞检测方法
WO2022239072A1 (ja) * 2021-05-10 2022-11-17 三菱電機株式会社 検査装置及び検査方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116045450A (zh) * 2022-12-22 2023-05-02 珠海格力电器股份有限公司 一种空调的控制方法、装置、空调和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274896A (ja) 1999-03-24 2000-10-06 Tokyo Gas Co Ltd 膨張弁の異常検知方法及び空調装置
KR20050114111A (ko) * 2004-05-31 2005-12-05 엘지전자 주식회사 냉난방 동시형 멀티 에어컨의 밸브 고장검출장치 및 그고장검출방법
JP2016508590A (ja) * 2013-02-28 2016-03-22 三菱電機株式会社 空気調和装置
CN106352472A (zh) * 2016-08-19 2017-01-25 广东美的暖通设备有限公司 多联机系统及其联动故障检测方法
KR20180085275A (ko) * 2017-01-18 2018-07-26 엘지전자 주식회사 멀티형 공기조화기의 제어방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755299A (ja) * 1993-08-20 1995-03-03 Mitsubishi Electric Corp 空気調和装置
JP2002071188A (ja) 2000-08-30 2002-03-08 Mitsubishi Electric Building Techno Service Co Ltd 熱媒供給異常検出装置
KR100447204B1 (ko) * 2002-08-22 2004-09-04 엘지전자 주식회사 냉난방 동시형 멀티공기조화기 및 그 제어방법
JP3952951B2 (ja) * 2003-01-08 2007-08-01 ダイキン工業株式会社 冷凍装置
WO2010109571A1 (ja) * 2009-03-23 2010-09-30 三菱電機株式会社 空気調和装置
JP6053826B2 (ja) * 2012-12-28 2016-12-27 三菱電機株式会社 空気調和装置
US12018872B2 (en) * 2019-02-28 2024-06-25 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274896A (ja) 1999-03-24 2000-10-06 Tokyo Gas Co Ltd 膨張弁の異常検知方法及び空調装置
KR20050114111A (ko) * 2004-05-31 2005-12-05 엘지전자 주식회사 냉난방 동시형 멀티 에어컨의 밸브 고장검출장치 및 그고장검출방법
JP2016508590A (ja) * 2013-02-28 2016-03-22 三菱電機株式会社 空気調和装置
CN106352472A (zh) * 2016-08-19 2017-01-25 广东美的暖通设备有限公司 多联机系统及其联动故障检测方法
KR20180085275A (ko) * 2017-01-18 2018-07-26 엘지전자 주식회사 멀티형 공기조화기의 제어방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3982063A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239072A1 (ja) * 2021-05-10 2022-11-17 三菱電機株式会社 検査装置及び検査方法
EP4339527A4 (en) * 2021-05-10 2024-05-01 Mitsubishi Electric Corporation INSPECTION DEVICE AND INSPECTION METHOD
CN113551369A (zh) * 2021-07-09 2021-10-26 珠海格力电器股份有限公司 一种用于检测制冷系统堵塞的控制系统及堵塞检测方法
CN113551369B (zh) * 2021-07-09 2022-04-26 珠海格力电器股份有限公司 一种用于检测制冷系统堵塞的控制系统及堵塞检测方法

Also Published As

Publication number Publication date
JPWO2020245918A1 (ja) 2021-10-28
EP3982063A4 (en) 2022-06-08
JP7138790B2 (ja) 2022-09-16
US20220178603A1 (en) 2022-06-09
EP3982063A1 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
EP3348934B1 (en) Air conditioner
EP2075517B1 (en) Air conditioning system
EP3205954B1 (en) Refrigeration cycle device
JP6628911B1 (ja) 冷凍サイクル装置
WO2020245918A1 (ja) 冷凍サイクル装置
JP2007218532A (ja) 空気調和装置
CN106247652A (zh) 空调系统及其控制方法
WO2008032581A1 (en) Refrigeration device
JP2019086251A (ja) マルチ型空気調和装置の制御装置、マルチ型空気調和装置、マルチ型空気調和装置の制御方法及びマルチ型空気調和装置の制御プログラム
JP2006078026A5 (ja)
JP6577264B2 (ja) 空調調和機
JP6733424B2 (ja) 空気調和装置
JP7150135B2 (ja) 冷凍サイクル装置
EP1972861B1 (en) Simultaneous Heating and Cooling Type Multi-Air Conditioner and Method for Controlling the Same
KR101329752B1 (ko) 공기조화 시스템
KR20190041091A (ko) 공기조화기
JP7278065B2 (ja) 冷凍サイクル装置
KR20120114997A (ko) 공기 조화기
JP2015222157A (ja) 空気調和装置
KR101392316B1 (ko) 공기조화 시스템
WO2021084774A1 (ja) 冷凍サイクル装置
KR20190081837A (ko) 공기조화 시스템
KR20220083495A (ko) 복합 칠러 시스템 및 이의 동작 방법
KR101450545B1 (ko) 공기조화 시스템
WO2009119130A1 (ja) マルチ型空気調和機、室内ユニットの室内側電子膨張弁の動作確認方法、コンピュータプログラムおよび故障診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524546

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019931732

Country of ref document: EP

Effective date: 20220104