JP6102884B2 - エンジンの吸気装置 - Google Patents

エンジンの吸気装置 Download PDF

Info

Publication number
JP6102884B2
JP6102884B2 JP2014211668A JP2014211668A JP6102884B2 JP 6102884 B2 JP6102884 B2 JP 6102884B2 JP 2014211668 A JP2014211668 A JP 2014211668A JP 2014211668 A JP2014211668 A JP 2014211668A JP 6102884 B2 JP6102884 B2 JP 6102884B2
Authority
JP
Japan
Prior art keywords
engine
passage
intake
path
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014211668A
Other languages
English (en)
Other versions
JP2016079882A (ja
Inventor
房利 田中
房利 田中
美貴子 古城
美貴子 古城
元雄 早川
元雄 早川
茂博 迫川
茂博 迫川
均 本郷
均 本郷
律文 入江
律文 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2014211668A priority Critical patent/JP6102884B2/ja
Priority to US14/882,935 priority patent/US9920722B2/en
Priority to DE102015013421.3A priority patent/DE102015013421B4/de
Publication of JP2016079882A publication Critical patent/JP2016079882A/ja
Application granted granted Critical
Publication of JP6102884B2 publication Critical patent/JP6102884B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/005Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes
    • F02B27/006Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes of intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10072Intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/04Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues in exhaust systems only, e.g. for sucking-off combustion gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10078Connections of intake systems to the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

ここに開示する技術は、エンジンの吸気装置に関する。
特許文献1には、内燃機関の制御装置と、当該装置により制御される吸気装置(インテークマニホールド)とが開示されている。この吸気装置は、各気筒毎に独立吸気通路を有している。各独立吸気通路は、上流側では、第1吸気通路と第2吸気通路とに分岐して、それぞれがサージタンク内の容積室に連通していると共に、下流側では、両通路が合流して1本の通路を構成している。第1吸気通路及び第2吸気通路は、互いに異なる所定のエンジン回転数で、それぞれ動的過給効果を得られるように構成されていて、さらに、両通路の分岐部には、可変バルブが設けられている。この制御装置は、エンジンの運転状態に応じて可変バルブの開度を連続的に変更することにより、中回転域の第1回転数付近と、高回転域の第2回転数付近との間で、動的過給効果を発揮させて体積効率を高め、エンジンのトルク向上効果を得るようにしている。
特開2010−14079号公報
ところで、前記特許文献1のような可変吸気システムは、独立吸気通路内に可変バルブを設けるため、当該可変バルブ、及び、その制御系の分だけ、重量及び製造コストが増大してしまうという不都合がある。
しかしながら、容積室と各気筒内とを1本の独立吸気通路で連通させたのでは、特定のエンジン回転数においてでしか動的過給効果が得られないため、狭い回転域でしかエンジンのトルクの向上効果が得られない。
吸気装置において、重量及び製造コストを抑止しつつ、高回転側における体積効率を高めて、高回転側の広い回転域にわたって、エンジンのトルク向上効果を得たい、という要求がある。
ここに開示する技術は、かかる点に鑑みてなされたものであり、その目的とするところは、エンジンの吸気装置において、重量及び製造コストを抑止しつつ、高回転側における体積効率を高めることにある。
ここに開示する技術は、複数の気筒を有するエンジンの吸気装置であって、容積室を形成するサージタンクと、前記容積室と前記複数の気筒内とを、各気筒毎に独立して連通する複数の独立吸気通路を形成するように、その上流側の一端部が前記サージタンクに接続される一方、その下流側の他端部が前記エンジンに接続される、複数の独立吸気管と、を含み且つ、前記エンジンの側部に取り付けられる吸気マニホールドを備える。
前記複数の独立吸気通路は、それぞれ、前記容積室から延びる第1上流側通路と、前記第1上流側通路から連続すると共に、前記気筒に接続される下流側通路とから成り、最高トルク回転数よりも高回転側の第1回転数で動的過給効果が得られるように、該第1回転数に同調する気柱固有振動数となるよう構成される第1経路、及び、前記第1上流側通路とは別に、前記容積室から延びて前記下流側通路に連続する第2上流側通路と、前記下流側通路とから成り、前記最高トルク回転数よりも高回転側で且つ、前記第1回転数とは異なる第2回転数で動的過給効果が得られるように、該第2回転数に同調する気柱固有振動数となるよう構成される第2経路を有する。
前記第1経路及び前記第2経路は、前記エンジンの運転状態に拘らず、常時開通される。
前記第1上流側通路及び前記第2上流側通路は、それぞれ、前記サージタンクの反エンジン側の側面に設けた第1開口部及び第2開口部を介して前記容積室に連通される。
前記第1開口部及び第2開口部は、それぞれ、前記エンジンの気筒軸の方向に並んで配設される。
そして、前記第1回転数と前記第2回転数との間の差が、最高エンジン回転数の15%以下になるように構成される。
ここでいう「動的過給効果」とは、吸気弁の開弁時に生じて前記独立吸気通路内を伝搬する圧力波を利用することにより、気筒内に吸気を押し込んで、体積効率を高めるものである。こうした動的過給効果としては、一吸気行程中に、吸気弁の直上流側と容積室との間を一往復する圧力波(1次の脈動)を利用した、いわゆる慣性過給効果である。
この構成によると、各独立吸気通路において、第1上流側通路と下流側通路とから成る第1経路、及び、第2上流側通路と下流側通路とから成る第2経路は、それぞれ、最高トルク回転数よりも高回転側の第1回転数及び第2回転数で、動的過給効果が得られるように構成されていて、いずれも、エンジンの運転状態に拘らず、常時開通される。また、第1上流側通路及び第2上流側通路は、それぞれ、サージタンクにおける反エンジン側の側面、つまり、サージタンクにおける同じ側面に並んで接続される。
本願発明者等は、前記のように構成された吸気装置において、さらに、第1回転数と第2回転数との間の差が、最高エンジン回転数の15%以下であれば、最高トルク回転数より高回転側の、第1回転数及び第2回転数を含む比較的広い回転域にわたって、体積効率を高めることができる、ということを見出した。
すなわち、第1回転数と第2回転数との間の差は、前記の範囲内に設定された場合には、比較的小さくなって、その分だけ、第1経路を伝搬する圧力波に係る気柱固有振動数と、第2経路を伝搬する圧力波に係る気柱固有振動数とが比較的近接するため、各経路を伝搬する圧力波間の干渉による悪影響が低減され、両圧力波に係る動的過給効果が双方とも有効に発揮される、ということと、各独立吸気通路の上流側は、2本の通路で構成されるため、通路断面積が大きくなることにより、吸気の圧力損失が低減される、ということから、前記最高トルク回転数より高回転側の、第1回転数及び第2回転数を含む、高回転側における比較的広い回転域にわたって、体積効率を高めることができる、と考えられる。その結果、高回転側における比較的広い回転域にわたって、エンジンのトルク向上効果を得ることができる。
また、前記吸気装置は、第1上流側通路及び第2上流側通路をそれぞれ、エンジンの運転状態に拘らず常時開通させるため、従来の可変吸気システムのように可変バルブに相当する部材を必要としない。このため、当該部材、及び、その制御系の分だけ、重量及び製造コストを抑止することができる。
従来の可変吸気システムは、2本の通路のそれぞれによって動的過給効果が得られる回転数の差を、比較的大きくした上で、可変バルブによって、一方の通路の開閉を行うことにより、低回転域から高回転域に至る比較的広い回転域にわたって、体積効率を高めるようにしたものであるが、本構成の吸気装置は、高回転側において、動的過給効果が得られる回転数差を、比較的小さくした上で、第1経路及び第2経路の開閉を行わずに常時開通することで、高回転側の広い回転域にわたって、体積効率を高めるようにしたものである。
また、第1上流側通路と第2上流側通路とを、サージタンクにおける同じ側面に接続することで、第1経路の経路長と第2経路の経路長との間の差を、比較的小さくすることが可能になる。これは、動的過給効果が得られる第1回転数と第2回転数との間の差を小さくする上で有利な構成である。
また、第1上流側通路及び第2上流側通路の開口端を容積室の一側に接続しているから、容積室から第1上流側通路又は第2上流側通路に流入する吸気を、互いに同方向に流す上で有利になる。そうすることで、各通路を通過した吸気をスムーズに合流させることができる。
また、前記下流側通路の断面積に相当する真円の径をRとしたときに、前記第1経路と前記第2経路との間の経路長の差D、及び、前記径Rが、1<D/R≦2の関係を満たすように構成される、としてもよい。
本願発明者等は、第1経路と第2経路との間の経路長の差Dと、下流側通路における径Rとが前記関係(1<D/R≦2)を満たすならば、第1回転数と第2回転数との間の差が比較的小さくなって、最高トルク回転数より高回転側の回転域において、前述のトルク向上効果が得られることを見出した。この関係式は、動的過給効果が得られる第1回転数と第2回転数とが比較的近い(上限値)ことを意味すると共に、第1上流側通路と第2上流側通路とを互いに干渉することなく配設することが可能になる(下限値)ことを意味する。
さらに、前記径Rは、前記下流側通路を形成する前記独立吸気管における最小断面積に相当する真円の径である、としてもよい。
このように選ばれる径Rが前記関係を満たすことで、前記のような効果を発揮させるのに適した吸気装置が得られる。
また、前記第1上流側通路及び前記第2上流側通路は、それぞれ、前記サージタンクの反エンジン側の前記側面から、前記エンジンに対し離れる方向に延びた後に、前記下流側通路に連続するように構成される、としてもよい。
この構成によると、サージタンクから第1上流側通路又は第2上流側通路に流入した吸気を、互いに同方向に流す上で一層有利になるから、各通路を通過した吸気をスムーズに合流させることができる。
以上説明したように、前記のエンジンの吸気装置は、エンジンの運転状態に拘らず常時開通した第1経路及び第2経路を有し且つ、第1経路で動的過給効果が得られる第1回転数と、第2経路で動的過給効果が得られる第2回転数とが所定の関係を有するように構成したから、重量及び製造コストを抑止しつつ、高回転側の比較的広い回転域にわたって体積効率が高まり、エンジンのトルク向上効果を得ることができる。
実施形態に係る吸気装置を適用したエンジンが車両に搭載された状態を概略的に示す平面図である。 前記吸気装置を構成する吸気マニホールドを車両左側且つ後側から見た斜視図である。 前記吸気マニホールドを前記エンジンに取り付けた状態の縦断面を示す概略図である。 前記エンジンの排気マニホールドを概略的に示す平面図である。 実施形態に係る吸気マニホールドと、従来構成に係る吸気マニホールドとで、エンジンから出力されるトルクを比較したグラフである。
以下、エンジンの吸気装置の実施形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎない。
この実施形態に係るエンジン10は、火花点火式のエンジンであり、その側部には、吸気装置2を構成する吸気マニホールド20と、排気マニホールド40とが取り付けられる。
図1は、吸気マニホールド20を取り付けたエンジン10が車両Vに搭載された状態を示している。この実施形態では、エンジン10は、車両Vの前部のエンジンルーム内(車両前後方向に延びる左右のフロントサイドフレーム7間)において、ダッシュパネル3の車幅方向中央部の下部に設けたトンネル部(凹部3aの下部)の前方に縦置きに搭載されるものである。なお、車両VはFR車である。
エンジン10は、この実施形態では、直列4気筒エンジンであって、4つの気筒11が車両前後方向に直列に並んでいる。つまり、図1に示すように、エンジン10は、前側(図1の紙面左側)から順に、第1気筒11、第2気筒11、第3気筒11及び第4気筒11を有している。以下では、特段の事情がない限り、4つの気筒11のうち、特に第3気筒11に係る構成を説明することにすると共に、この第3気筒11を単に“気筒11”と記載することにする。このエンジン10の車両左側の面には、樹脂製の吸気マニホールド20が取付固定されている。一方で、エンジン10の車両右側の面には、後述の排気マニホールド40(図1においては省略)が取付固定されている。
具体的に、エンジン10は、4つの気筒11が設けられたシリンダブロック(不図示)と、このシリンダブロック上に配設されたシリンダヘッド17(図3参照)とを有している。エンジン10の各気筒11内には、ピストン(不図示)が往復動可能にそれぞれ嵌挿されていて、このピストンは、コンロッド(不図示)を介してクランクシャフト(不図示)と連結されている。
シリンダヘッド17には、各気筒11毎に、吸気ポート12及び排気ポート13が2つずつ形成されていると共に、これら吸気ポート12及び排気ポート13の気筒11側の開口を開閉する吸気弁14及び排気弁(不図示)がそれぞれ配設されている。吸気弁14、及び排気弁は、それぞれ、吸気弁駆動機構及び排気弁駆動機構によって駆動される。
エンジン10が運転するとき、各気筒11毎に、互いに異なるタイミングで、吸気行程、圧縮行程、膨張行程及び排気行程が実行される。この実施形態では、第1気筒11、第3気筒11、第4気筒11及び第2気筒11の順で、各行程が実行される。
前記のように構成されるエンジン10の吸気マニホールド20は、サージタンク22を備えており、このサージタンク22の上部から車両前側に向けて吸気導入通路部36が延びている。この吸気導入通路部36の先端部(車両前側の端部)には、スロットル弁を有するスロットルボディ60が設けられている。このスロットルボディ60は、車両Vの前端部から後側に延びてきた、途中にエアクリーナ65を有する吸気側連結ダクト66に接続されている。
図2は、吸気マニホールド20の外観を示しており、図3は、吸気マニホールド20をエンジン10に取り付けた状態のA−A断面(図2の矢印A参照)、つまり、第3気筒11を縦断する断面図を示している。なお、以下に説明する吸気マニホールド20についての前、後、左、右、上及び下は、それぞれ、吸気マニホールド20が車両Vに搭載された状態での前、後、左、右、上及び下のことであり、車両Vについての前、後、左、右、上及び下と同じである。
なお、以下の説明における“上流”及び“下流”は、それぞれ、エンジン10が運転するときの吸気及び排気の流れ方向を意味する。
吸気マニホールド20は、容積室21を形成する略矩形箱状のサージタンク22を備えている。この容積室21は、図3に示すように、サージタンク22の内壁部によって、前後方向に延びる略矩形状の空間として区画されている。
また、サージタンク22には、図1に示すように、容積室21に吸気を導入するための通路を形成する吸気導入通路部36が接続されている。この吸気導入通路部36は、サージタンク22の上面及び前側の面の上端部から、前側に向かって延びている。そして、この吸気導入通路部36の前側端部に、スロットルボディ60(スロットル弁)を介して吸気側連結ダクト66が接続される。これにより、吸気側連結ダクト66内に吸入された吸気が、スロットルボディ60、及び、吸気導入通路部36により形成される通路を通過して、サージタンク22内の容積室21に導入されることになる。
この実施形態に係る吸気マニホールド20をエンジン10に取付固定した状態では、容積室21に導入された吸気は、この容積室21と4つの気筒11内とを各気筒11毎に独立して連通する4つの独立吸気通路23を通過した後、各吸気ポート12を通過して各気筒11内に流入することになる。
そこで、吸気マニホールド20は、前記のような独立吸気通路23をエンジン10の各気筒11毎に独立して構成する、4つの略管状の独立吸気管24を備えている。
4つの独立吸気管24は、前後方向に沿って、各気筒11毎に並んでいて、各独立吸気管24の上流側の一端部(以下、単に上流端部と記載)がサージタンク22の左側の側面に接続されている。また、各独立吸気管24の下流側(後述の下流側管部24c)の他端部(以下、単に下流端部と記載)には、開口端25dが設けられていて、その付近には、エンジン10に接続可能な締結部27が設けられている。
以下で説明するように、4つの独立吸気管24は、それぞれ、容積室21から延びる第1上流側通路25a、第1上流側通路25aとは別に、容積室21から延びて第1上流側通路25aに合流する第2上流側通路25b、及び、第1上流側通路25aと第2上流側通路25bとから連続して前記開口端25dまで延びる下流側通路25cを形成している。つまり、4つの独立吸気通路23は、それぞれ、上流側では2本に分岐しており、第1上流側通路25aと下流側通路25cとから成る第1経路23a、及び、第2上流側通路25bと下流側通路25cとから成る第2経路23bを有している。
具体的に、4つの独立吸気管24は、それぞれ、前後方向に並んだ状態で、サージタンク22の左側の側面から上側且つ右側に湾曲するように延びていて、サージタンク22の上側を覆うように延設されている。こうした構成により、各独立吸気管24は、図3に示すように、サージタンク22を、その左側から上側にかけて囲うように延びる、略C字状の縦断面を有することになる。
そして、各独立吸気管24は、前記上流端部及びその近傍部において、サージタンク22の左側の側面から左方且つ上方に向かって湾曲しながら延びる、第1上流側管部24aと第2上流側管部24bとから成る2本の管部を有する。この実施形態では、上側に設けた一方を第1上流側管部24aとし、下側に設けた他方を第2上流側管部24bとする。両管部24a,24bは、双方とも略曲管状の形状を有し、上下に並んだ状態でサージタンク22に接続されていて、第1上流側通路25a及び第2上流側通路25bをそれぞれ形成している。
なお、サージタンク22の左側面と第1上流側管部24a及び第2上流側管部24bとの間の接続部には、各独立吸気管24毎に、第1開口部22a及び第2開口部22bがそれぞれ設けられている。これらの第1開口部22a及び第2開口部22bは、エンジンの上下方向(言い換えるとエンジンの気筒軸の方向)に並んで配設されていて、第1上流側通路25a及び第2上流側通路25bは、それぞれ、この第1開口部22a及び第2開口部22bを上流端として、容積室21に連通接続されている。
前述したように、吸気マニホールド20は、エンジン10の車両左側の一面に取り付けられるから、サージタンク22の左側面に開口する第1開口部22a及び第2開口部22bは、双方とも、エンジン10に取り付けた吸気マニホールド20において、前記サージタンク22における反エンジン側の側面(つまり、エンジン10の反対側に位置する一面)に設けられることになる。ゆえに、そうした同じ一面に接続される第1上流側管部24a部及び第2上流側管部24bは、双方とも、上流端部及びその近傍部においては、エンジン10から離れる方向に向かって延びることになる。そのことで、第1上流側通路25a及び第2上流側通路25bは、それぞれ、エンジン10に対し離れる方向に延びた後に、下流側通路25cに連続することになる。
図3に示すように、第1上流側管部24a及び第2上流側管部24bは、双方とも、サージタンク22の左側面から左方且つ上方に向かって湾曲しながら延びた後、サージタンク22の略左方にて集合する。第1上流側管部24aと第2上流側管部24bとが集合してから各独立吸気管24の下流端部までの部分は、各気筒11毎に、下流側管部24cを構成している。この下流側管部24cは、サージタンク22を上側からまわり込んでから右方に向かって延びるように曲成された、略円弧状に延びる1本の曲管状に形成されており、下流側通路25cを形成している。下流側管部24cは、前記締結部27を介してエンジン10の吸気ポート12に接続される。
図3にも示すように、第2開口部22bは、第1開口部22aよりも下方に設けられているため、第2開口部22bから延びる第2上流側通路25bは、第1開口部22aから延びる第1上流側通路25aよりも下方から延びることになる。したがって、第2上流側通路25bの通路長L12、すなわち、第2開口部22bから第1上流側通路25aに合流するまでの長さL12は、第1上流側通路25aよりも上方に長く延びる分だけ、第1上流側通路25aの通路長L11、すなわち、第1開口部22aから第2上流側通路25bに合流するまでの長さL11よりも長く取られることになる(つまり、L12>L11)。
また、各下流側管部24cの下流端部及びその近傍部には、吸気マニホールド20をエンジン10のシリンダヘッド17に締結するための、前後方向に延びる締結部27とされている。この締結部27は、サージタンク22に対して上側に離れた位置に位置していて、締結部27におけるエンジン側(右側)の端部は、ボルト28を介してエンジン10のシリンダヘッド17の左側面に締結固定される。
また、図2及び図3に示すように、下流側管部24c及び締結部27の下側部分と、サージタンク22の上側部分とは、上下方向に延びる架橋部29によって一体的に連結されている。
締結部27がエンジン10のシリンダヘッド17の左側面に締結固定されたとき、各独立吸気管24に係る下流側通路25cと、前記シリンダヘッド17に設けられた各気筒11毎の吸気ポート12とが連通接続される。前述したように、吸気ポート12は、各気筒11毎に2つずつ設けられているため、図3の囲み内に示すように、各下流側通路25cにおいて吸気ポート12に接続される開口端25dは、これら2つの吸気ポート12に対応して2つに仕切られている。
各独立吸気管24により形成される、第1上流側通路25a、第2上流側通路25b及び下流側通路25cは、それぞれ、容積室21と4つの気筒11内とを、各気筒11毎に独立して連通する4つの独立吸気通路23を構成している。
各独立吸気通路23は、第1上流側通路25aと下流側通路25cとから成る第1経路23a、及び、第2上流側通路25bと下流側通路25cとから成る第2経路23bを有している。
したがって、前記吸気マニホールド20を取り付けたエンジン10を運転させたとき、容積室21に導入された吸気は、図3の1点破線に示すように、各気筒11の吸気弁14の開閉に応じて、第1経路23a又は第2経路23b、及び、各吸気ポート12を順次通過して、各気筒11内に導かれることになる。
また、この吸気マニホールド20には、従来の可変吸気システムとは異なり、可変バルブを設けておらず、第1経路23a及び第2経路23bは、双方とも、エンジン10の運転状態に拘らず、常時開通している。
なお、前記のように、第1上流側通路25a及び第2上流側通路25bは、第1開口部22a及び第2開口部22bの近傍部においては、互いに略平行に延びている。ゆえに、容積室21から第1上流側通路25a及び第2上流側通路25bに流入した直後の吸気は、互いに略平行に流れることになる。
また、前記のように、第2上流側通路25bは、第1上流側通路25aよりも上方に向かって長く延びている。そのため、第2上流側通路25bと下流側通路25cとから成る第2経路23bの経路長L2(=L12+L10)は、第1上流側通路25aと下流側通路25cとから成る第1経路23aの経路長L1(=L11+L10)よりも長く延びることになる。以下では、第2経路23bと第1経路23aとの間の経路長の差をD(=L2−L1=L12−L11>0)と記載する。
また、第1上流側通路25a及び第2上流側通路25bは、容積室21との連通部付近では、それぞれ、互いに略同一の断面積を有している。一方で、下流側通路25cの断面積は、概ね、第1上流側通路25a及び第2上流側通路25bのそれぞれと略同一に構成されているものの、締結部27付近においては、第1上流側通路25a及び第2上流側通路25bよりも小さな断面積を有するように構成されている。下流側通路25cの断面積、つまり、下流側管部24cにおいて、その内壁により囲まれる領域の断面積Sは、その開口端25dにて最小となる。以下では、開口端25dにおける下流側通路25cの断面積をSとする。前述のように、開口端25dは、2つに仕切られている。ゆえに、ここでいう断面積Sとは、2つに仕切られた各開口端25dそれぞれの断面積の和を意味している。
以下では、各独立吸気通路23の断面積の大きさを特徴付ける量として、その径Rを利用する。この実施形態では、その断面積Sに相当する真円の直径、つまり、各開口端25dそれぞれの断面積の和と同一の面積を有する真円の直径を径Rと定義する。つまり、下流側通路25cの開口端25dにおける径Rは、S=Pi×(R/2)×(R/2)より算出されることになる(ここで、Piは円周率)。
この実施形態に係る第1経路23a及び第2経路23bは、その経路長が互いに異なることに起因して、互いに異なるエンジン回転数で、それぞれ動的過給効果(主に慣性過給効果であるが、共鳴過給効果も含まれる)を発揮するように構成されている。
第1経路23aから得られる動的過給効果を考える。そのとき、吸気弁14の開弁動作に伴い生じる圧力波は、第1経路23aを伝搬することにより、吸気ポート12における吸気弁14の直上流側部分と、容積室21との間を往復することになる。この実施形態に係るエンジン10、及びその吸気マニホールド20は、吸気弁14の開弁時に生じた圧力波が、吸気弁14が閉弁する前に、一往復して吸気弁14の直上流側まで戻ってくるようにすることで(1次の脈動で)、その気筒11内へ吸気を押し込むようにしている。そうすることで、体積効率が高まり、ひいては、エンジン10のトルク向上効果が得られる。こうした動的過給効果は、エンジン回転数が、吸気マニホールド20の形態に基づいて定まる所定の回転数付近にあるときに、得られることになる。
第1経路23aは、エンジン10の回転数が所定の第1回転数V1にあるときに、その経路が連通接続された気筒11に対し、動的過給効果を発揮するように、第1回転数V1に同調する気柱固有振動数となるよう構成されている。この第1回転数V1は、サージタンク22、第1経路23a及び吸気ポート12の形態等に基づいて定まるものであり、この実施形態では、エンジン10から出力されるトルクが最高となるエンジン回転数(以下では、これを最高トルク回転数と記載する)Vtを上回る(つまり、Vt<V1)ように構成されている。
第2経路23bについても、エンジン10の回転数が所定の第2回転数V2にあるときに、その経路が連通接続された気筒11に対し、動的過給効果を発揮するように、第2回転数V2に同調する気柱固有振動数となるよう構成されている。この第2回転数V2は、サージタンク22、第2経路23b及び吸気ポート12の形態等に応じて定まるものであり、この実施形態では、前記最高トルク回転数Vtを上回る一方で、前記第1回転数V1を下回る(つまり、Vt<V2<V1)ように構成されている。第1回転数V1と第2回転数V2との間の回転数差Vdは、第1経路23aと第2経路23bとの間の形態の差異に基づいて定まる。第2経路23bは、第1上流側通路25aではなく第2上流側通路25bを含んで構成されていて、第1経路23aよりも経路長が長いため、動的過給効果が発揮されるエンジン回転数は、低くなる。
なお、前記最高トルク回転数Vtは、この実施形態では、エンジン10において設定されたエンジン回転数域のほぼ中央に相当する。
ここで、吸気マニホールド20は、前述の回転数差Vdが、エンジン10において設定されたエンジン回転数の上限(以下では、これを最高エンジン回転数と記載する)Veの15%以下となるように、つまり、“Vd/Ve=(V1−V2)/Ve≦0.15”の関係(以下では、これを関係式Fと記載)を満たすように構成されている。これは、第1経路23aによって動的過給効果が得られるエンジン回転数V1と、第2経路23bによって動的過給効果が得られるエンジン回転数V2とが比較的近いことを意味している。前述したように、第1経路23aを構成する第1上流側通路25aの第1開口部22aと、第2経路23bを構成する第2上流側通路25bの第2開口部22bとは、サージタンク22の反エンジン側の同じ側面において、気筒軸の方向に並んで設けられているから、第1経路23aの経路長L1と第2経路23bの経路長L2との間の経路長差Dは比較的小さくなる。そして、経路長の差Dが小さくなった分だけ、第1経路23aで動的過給効果が発揮される第1回転数V1と、第2経路23bで動的過給効果が発揮される第2回転数V2とが近くなって、その回転数差Vdも小さくなる。また、前述の第1経路23a及び第2経路23bの経路長の差Dと、前述の開口端25dにおける径Rとが、“1<D/R≦2”の関係(以下では、これを関係式Gと記載)を満たすように、吸気マニホールド20を構成してもよい。つまり、D/Rは、経路長の差が大きいほど大きくなるが、2以下であることで、経路長の差が比較的小さくなって、回転数差Vdも小さくなる。このように、第1回転数V1と第2回転数V2との差を、比較的小さくすることにより、詳細は後述するが、最高トルク回転数Vtを超える高回転側における比較的広い回転域にわたって、体積効率を高めることが可能になる。
また、吸気弁14が開閉される時間間隔が比較的長くなる、前記最高トルク回転数よりも低回転側の回転域では、第1経路23a又は第2経路23bを2回以上往復する圧力波(2次脈動,3次脈動)を利用することで、体積効率を高めるようにしている。
このように、最高トルク回転数Vtを超える高回転側においては、吸気マニホールド20において常時開通する第1経路23aと第2経路23bとによる動的過給効果を利用して、エンジン10のトルク向上効果を得るようにしている一方で、最高トルク回転数Vtを含むような中回転域においては、いわゆる4‐2‐1排気システムを有する排気マニホールド40によって各気筒11の掃気を促進することで、エンジン10のトルク向上効果を得るようにしている。
図4は、この実施形態における排気マニホールド40の構造を概略的に示していて、この排気マニホールド40は、各気筒11毎に独立して接続される、4つの独立排気管41を有している。
各独立排気管41は、前記4つの独立吸気管24と同様に、エンジン10に接続される端部が2つに分岐していて、分岐したそれぞれの端部が、各気筒11毎に2つずつ設けられた排気ポート13に接続されている。
排気マニホールド40は、いわゆる、4‐2‐1排気システムを構成している。つまり、この実施形態では、4つの独立排気管41は、下流側にて、それぞれに通じる気筒11からの排気順序が隣り合わないもの同士で、2本ずつ集合された後、それよりもさらに下流側で、集合された2本が1本に集合されることになる。この実施形態では、前述のように、第1気筒11、第3気筒11、第4気筒11及び第2気筒11の順で排気されるように構成されているため、排気マニホールド40は、第1気筒11及び第4気筒11に係る独立排気管41が集合して成る第1集合管42aと、第2気筒11及び第3気筒11に係る独立排気管41が集合して成る第2集合管42bと、それよりさらに下流側で構成される、第1集合管42a及び第2集合管42bが集合して成る、1本の排気側連結ダクト43と、を有している。
このようにして構成された排気マニホールド40をエンジン10に適用することにより、気筒11間の排気干渉による悪影響を低減すると共に、気筒11内からの排気を吸い出して掃気性を高めている。詳細は省略するが、こうした効果は、エンジン回転数が中回転域にあるときに、得られることになる。こうして、中回転域のエンジンのトルク向上効果を得ている。
次に、この実施形態に係る吸気装置2を適用したエンジン10(つまり、前述の吸気マニホールド20を取り付けたエンジン10)から出力されるトルクについて、図5を用いて説明する。
図5は、エンジン回転数と、エンジン10から出力されるトルクとの間の関係を示すグラフである。図5において実線で示した曲線C2は、この実施形態に係る吸気マニホールド20を適用したときに出力されるトルクを示している。吸気マニホールド20は、第1回転数V1と第2回転数V2とのそれぞれで、動的過給効果が得られるように構成されている。具体的にエンジン10は、排気量1.5Lのガソリンエンジンであり、第1経路23aと第2経路23bとの経路長差Dは、53mm、開口端25dにおける径Rは、36mmであり、D/Rは、1.47である。また、エンジン10は、最高回転7000rpmに構成されており、最高トルク回転数は約4000rpm、前述の第1回転数V1及び第2回転数V2は、それぞれ、7000rpm及び6000rpmである。したがって、最高エンジン回転数Veは7000rpm、第1回転数V1と第2回転数V2との回転数差Vdは、1000rpm、Vd/Veは、0.143(≒0.15)である。図5の曲線C2に示すように、この実施形態に係る吸気マニホールド20を適用したときに出力されるトルクは、紙面左方から紙面右方に向かうにつれて、すなわち、高回転側に向かうにつれて、概ね増大し、紙面左右中程に示した前述の最高トルク回転数Vtにて、最大となる。それより右方では、つまり、最高トルク回転数Vtよりも高回転側では、概ね減少していく。
一方で、図5において破線で示した曲線C1は、公知の吸気装置を適用したとき(つまり、公知の吸気マニホールドを取り付けたとき)に出力されるトルクを示している。この“公知の吸気マニホールド”は、1本の吸気通路を有しているものであり、前記第1回転数V1で動的過給効果が得られるように構成されている。この曲線C1に示すように、公知の吸気マニホールドを適用したときに出力されるトルクは、最高トルク回転数Vtよりも高回転側では、この実施形態に係る吸気マニホールド20を適用したときに出力されるトルクを下回っている。
つまり、この実施形態に係る吸気マニホールド20と、公知の吸気マニホールドとを比較したときに、実施形態に係る吸気マニホールド20は、第2回転数V2付近においてトルクが向上するだけではなく、最高トルク回転数Vtよりも高回転側の全域にわたって、公知の吸気マニホールドよりもトルクの向上が図られる。これは、次の理由によると考えられる。
つまり、第1経路23aを伝搬する圧力波に係る第1回転数V1、及び、第2経路23bを伝搬する圧力波に係る第2回転数V2は、双方とも、最高トルク回転数Vtよりも高回転側になるよう構成されていて、その差Vdは比較的小さい。そのことで、各回転数に対応する気柱固有振動数が比較的近接するため、第1経路23aを伝搬する圧力波と、第2経路を伝搬する圧力波との間の干渉が抑止され、双方からの動的過給効果が有効に発揮されることになる結果、第1回転数V1と第2回転数V2とを含む比較的広い回転域にわたって、エンジン10の体積効率が高められ、トルク向上効果が得られることになる、と考えられる。
さらに、この実施形態に係る吸気マニホールド20では、各独立吸気通路23は、上流側では、第1上流側通路25aと第2上流側通路25bとの2つの通路を含むため、1本の通路から構成される公知の吸気マニホールドと比較して、断面積が大きい。したがって、断面積が大きい分だけ流路抵抗が低減されるから、この実施形態に係る吸気マニホールド20は、吸気の圧力損失が低減し、そのことによっても、エンジン10のトルク向上効果が得られることになる、と考えられる。
以上説明したように、この実施形態に係る吸気マニホールド20は、高回転側の比較的広い回転域にわたって、体積効率を高めて、トルクの向上効果を得ることができる。
関係式Fは、第1経路23a及び第2経路23bを伝搬する圧力波に係る気柱固有振動数が、干渉による悪影響を十分に低減できる程に近接するための条件として構成されている。したがって、関係式Fが成立する範囲では、高回転側の比較的広い範囲にわたるトルクの向上効果を得ることができる。なお、(V1−V2)/Veは、0以上である。
また、第1経路23a及び第2経路23bは、可変バルブを用いることなく、常時開通しているため、当該バルブ、及び、その制御系の分だけ部品点数が減少し、重量及び製造コストを抑止することができる。
さらに、第1上流側通路25a及び第2上流側通路25bを、それぞれ、サージタンク22における同じ側面に接続することで、第1経路23aの経路長L1と第2経路23bの経路長L2との間の差Dを小さくすることができる。このことで、第1回転数V1と第2回転数V2との間の差Vdを小さくすることができる。
また、第1開口部22a及び第2開口部22bを、反エンジン側の側面に並んで設けたから、容積室21から第1上流側通路25a又は第2上流側通路25bに流入する吸気を、互いに同方向に流す上で有利になる。そうすることで、各通路を通過した吸気をスムーズに合流させることができる。
また、関係式Gは、第1開口部22aと第2開口部22bとを互いに干渉させることなく配設可能な条件(下限側)と、第1経路23a及び第2経路23bを伝搬する圧力波の振動数が、干渉による悪影響を十分に低減できる程に近接する(上限値)ための条件(上限側)とから構成されている。
また、第1経路23a又は第2経路23bを2回以上往復する圧力波も利用することにより、吸気弁14が開閉される時間間隔が比較的長くなる、前記最高トルク回転数Vtよりも低回転側の回転域においても、体積効率を高めて、エンジン10のトルク向上効果を得ることができる。
また、排気側には4‐2‐1排気システムを採用しているため、中回転域において出力されるトルクを、一層向上させている。
また、関係式Gにて用いる通路幅Rとして、下流側通路25cにおける開口端25dの通路幅を利用することで、前記のような効果を発揮させるのに適した吸気マニホールド20が得られる。
前記第1上流側通路25a及び前記第2上流側通路25bは、それぞれ、前記サージタンク22の前記側面から、前記エンジン10に対し離れる方向に延びた後に、前記下流側通路25cに連続するように構成されている。ゆえに、容積室21から第1上流側通路25a及び第2上流側通路25bに流入した直後の吸気を互いに同方向に流す上で一層有利になり、それぞれを通過した吸気をスムーズに合流させることができる。
(他の実施形態)
この実施形態では、排気マニホールド40として、4‐2‐1排気システムを構成するものを適用することで、中回転域における掃気性を高めていたが、これに限定されるわけではない。例えば、排気マニホールドとして、いわゆるエゼクタ効果によって掃気性を高める構成を採用してもよい。つまり、排気マニホールドとして、先細りに形成された各独立排気管を束ねて集合させたものを適用することで、ある気筒から排気が噴出されたときに、他の気筒に続く独立排気管等に負圧が作用して、そこから排気が下流側に吸い出されることになる。そのことで、4‐2‐1排気システムと同様に、中回転域においてエンジンのトルク向上効果を得ることができる。
10 エンジン
11 気筒
2 吸気装置
20 吸気マニホールド
21 容積室
22 サージタンク
22a 第1開口部
22b 第2開口部
23 独立吸気通路
23a 第1経路
23b 第2経路
24 独立吸気管
25a 第1上流側通路
25b 第2上流側通路
25c 下流側通路
Vt 最高トルク回転数
Ve 最高エンジン回転数
V1 第1回転数
V2 第2回転数

Claims (4)

  1. 複数の気筒を有するエンジンの吸気装置であって、
    容積室を形成するサージタンクと、
    前記容積室と前記複数の気筒内とを、各気筒毎に独立して連通する複数の独立吸気通路を形成するように、その上流側の一端部が前記サージタンクに接続される一方、その下流側の他端部が前記エンジンに接続される、複数の独立吸気管と、を含み且つ、前記エンジンの側部に取り付けられる吸気マニホールドを備え、
    前記複数の独立吸気通路は、それぞれ、前記容積室から延びる第1上流側通路と、前記第1上流側通路から連続すると共に、前記気筒に接続される下流側通路とから成り、最高トルク回転数よりも高回転側の第1回転数で動的過給効果が得られるように、該第1回転数に同調する気柱固有振動数となるよう構成される第1経路、及び、前記第1上流側通路とは別に、前記容積室から延びて前記下流側通路に連続する第2上流側通路と、前記下流側通路とから成り、前記最高トルク回転数よりも高回転側で且つ、前記第1回転数とは異なる第2回転数で動的過給効果が得られるように、該第2回転数に同調する気柱固有振動数となるよう構成される第2経路を有し、
    前記第1経路及び前記第2経路は、前記エンジンの運転状態に拘らず、常時開通され、
    前記第1上流側通路及び前記第2上流側通路は、それぞれ、前記サージタンクの反エンジン側の側面に設けた第1開口部及び第2開口部を介して前記容積室に連通され、
    前記第1開口部及び第2開口部は、それぞれ、前記エンジンの気筒軸の方向に並んで配設され、
    前記第1回転数と前記第2回転数との間の差が、最高エンジン回転数の15%以下になるように構成される、エンジンの吸気装置。
  2. 請求項1に記載のエンジンの吸気装置において、
    前記下流側通路の断面積に相当する真円の径をRとしたときに、前記第1経路と前記第2経路との間の経路長の差D、及び、前記径Rが、1<D/R≦2の関係を満たすように構成される、エンジンの吸気装置。
  3. 請求項2に記載のエンジンの吸気装置において、
    前記径Rは、前記下流側通路を形成する前記独立吸気管における最小断面積に相当する真円の径である、エンジンの吸気装置。
  4. 請求項1から請求項3のいずれか1つに記載のエンジンの吸気装置において、
    前記第1上流側通路及び前記第2上流側通路は、それぞれ、前記サージタンクの反エンジン側の前記側面から、前記エンジンに対し離れる方向に延びた後に、前記下流側通路に連続するように構成される、エンジンの吸気装置。
JP2014211668A 2014-10-16 2014-10-16 エンジンの吸気装置 Active JP6102884B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014211668A JP6102884B2 (ja) 2014-10-16 2014-10-16 エンジンの吸気装置
US14/882,935 US9920722B2 (en) 2014-10-16 2015-10-14 Intake system of engine
DE102015013421.3A DE102015013421B4 (de) 2014-10-16 2015-10-15 Ansaugsystem für einen Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014211668A JP6102884B2 (ja) 2014-10-16 2014-10-16 エンジンの吸気装置

Publications (2)

Publication Number Publication Date
JP2016079882A JP2016079882A (ja) 2016-05-16
JP6102884B2 true JP6102884B2 (ja) 2017-03-29

Family

ID=55638013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014211668A Active JP6102884B2 (ja) 2014-10-16 2014-10-16 エンジンの吸気装置

Country Status (3)

Country Link
US (1) US9920722B2 (ja)
JP (1) JP6102884B2 (ja)
DE (1) DE102015013421B4 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT520379A1 (de) * 2017-12-22 2019-03-15 Avl List Gmbh Luftansauganlage für eine mehrzylindrige Brennkraftmaschine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156458U (ja) * 1987-04-02 1988-10-13
US4919086A (en) 1989-02-22 1990-04-24 Siemens-Bendix Automotive Electronics Ltd. Integrated tuned induction system
JPH03182623A (ja) * 1989-12-08 1991-08-08 Suzuki Motor Corp 内燃機関の吸気装置
DE4307313A1 (de) 1993-03-09 1994-09-15 Vdo Schindling Gehäuse für die Ansaugluftführung bei Brennkraftmaschinen
US5526789A (en) * 1995-05-04 1996-06-18 Ford Motor Company Internal combustion engine intake system with variable tuning
JP2001073893A (ja) * 1999-09-05 2001-03-21 Honda Motor Co Ltd 不整地走行車両用シュノーケルダクトの構造
US6382162B2 (en) * 2000-01-31 2002-05-07 Honda Giken Kogyo Kabushiki Kaisha Variable intake apparatus for in-line four-cylinder internal combustion engine
JP2003120447A (ja) * 2001-10-17 2003-04-23 Hitachi Ltd 内燃機関のインテークマニホールド、及び多連独立吸気通路体
JP2004270559A (ja) * 2003-03-10 2004-09-30 Honda Motor Co Ltd 車両用吸気装置
DE102005022589B3 (de) * 2005-05-17 2006-05-24 Pierburg Gmbh Luftansaugkanalsystem für eine Verbrennungskraftmaschine
JP4449849B2 (ja) * 2005-07-25 2010-04-14 トヨタ自動車株式会社 残留燃料除去装置
JP2010014079A (ja) * 2008-07-07 2010-01-21 Denso Corp 内燃機関の制御装置
JP5983343B2 (ja) * 2012-11-20 2016-08-31 アイシン精機株式会社 吸気制御弁および吸気装置

Also Published As

Publication number Publication date
US20160108870A1 (en) 2016-04-21
JP2016079882A (ja) 2016-05-16
US9920722B2 (en) 2018-03-20
DE102015013421A1 (de) 2016-04-21
DE102015013421B4 (de) 2021-06-24

Similar Documents

Publication Publication Date Title
JP2543537B2 (ja) V型多気筒エンジンの吸気装置
US4846117A (en) Intake system for multiple-cylinder engine
JP6102884B2 (ja) エンジンの吸気装置
JP4906548B2 (ja) 多気筒内燃機関の吸気マニホルド
JP4906549B2 (ja) 多気筒内燃機関の吸気マニホルド
JPH03281927A (ja) エンジンの吸気装置
JPH03286129A (ja) 多気筒エンジンの吸気装置
JP2009097336A (ja) 直列4気筒エンジンの過給装置
JPH02123227A (ja) エンジンの吸気装置
JPH01106922A (ja) V型エンジンの吸気装置
JP6930220B2 (ja) 内燃機関のシリンダヘッド
JP2006105035A (ja) 多気筒エンジンの吸気装置
JP7288303B2 (ja) エンジンのシリンダヘッド構造
KR101136489B1 (ko) 듀얼 플레넘 흡기매니폴드
JPH0752334Y2 (ja) V型多気筒内燃機関の吸気装置
JP6997966B2 (ja) エンジンの排気構造
JPH03168325A (ja) 多気筒エンジンの吸気装置
JP2009127609A (ja) 多気筒内燃機関の吸気装置
JP6783166B2 (ja) 内燃機関の吸気装置
JPS61229925A (ja) 多気筒エンジンの吸気装置
JPH11229981A (ja) インテークマニホールド
JP2019124146A (ja) 排気管装置及び排気方法
JP2009008020A (ja) 多気筒内燃機関の吸気装置
JP6168862B2 (ja) エンジン
JP4538184B2 (ja) 内燃機関の吸気管構造

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6102884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150