JP6086157B2 - 3レベルインバータ - Google Patents
3レベルインバータ Download PDFInfo
- Publication number
- JP6086157B2 JP6086157B2 JP2015540306A JP2015540306A JP6086157B2 JP 6086157 B2 JP6086157 B2 JP 6086157B2 JP 2015540306 A JP2015540306 A JP 2015540306A JP 2015540306 A JP2015540306 A JP 2015540306A JP 6086157 B2 JP6086157 B2 JP 6086157B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor switch
- diode
- level inverter
- module
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 claims description 94
- 239000003990 capacitor Substances 0.000 claims description 26
- 238000011084 recovery Methods 0.000 claims description 10
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 10
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 10
- 230000002457 bidirectional effect Effects 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 6
- 230000004888 barrier function Effects 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 9
- 238000010992 reflux Methods 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- SBEQWOXEGHQIMW-UHFFFAOYSA-N silicon Chemical compound [Si].[Si] SBEQWOXEGHQIMW-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/02—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/487—Neutral point clamped inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Description
図6において、1は太陽電池等の直流電源であり、その電圧Eは、直列に接続されたコンデンサ2,3により電圧E1,E2(通常はE1=E2)に分圧される。
MOSFETからなる半導体スイッチ(以下、単にスイッチともいう)4〜7は、順方向電流の導通/遮断を制御可能であり、逆方向電流に対しては常に導通状態となる。スイッチ6,7は互いに逆方向に直列接続され、順逆両方向の電流の導通/遮断を制御可能な双方向スイッチを構成している。ここでは、便宜的にスイッチ4,5を上下アーム、スイッチ6,7の直列回路を中間アームという。なお、リアクトル8及びコンデンサ9によりLCフィルタが構成され、コンデンサ9の両端の出力端子は変圧器100を介して電力系統300に連系している。
図7は、この回路の出力電圧波形を示しており、前述した3つの電圧レベルを有するU−M間電圧のパルス列をLCフィルタに通過させて出力電圧Voを正弦波に制御している。
一方、交流出力電圧Voは、変圧器100により系統電圧Vsとの間で整合がとられている。系統電圧Vsは僅かな範囲内で変動するが概ね一定であり、変圧器100の変圧比も、タップ切替等を行わなければ一定であるため、交流出力電圧Voは系統電圧Vsに比例したほぼ一定値に保つ必要がある。
従って、VoはE1,E2が運転範囲内の最小値であっても出力可能な電圧とし、このVoの大きさに基づいて変圧器100の変圧比を決定すると共に、E1,E2が小さい場合にはPWM制御のパルス幅を広く(図7(a))、E1,E2が大きい場合にはパルス幅を狭くして(図7(b))、Voを一定に保っている。
太陽光発電用の連系インバータでは、その発電電力を電力系統300に供給するため、図8(a)のように系統電圧Vsの位相すなわち出力電圧Voの位相と出力電流Iの位相とが概ね一致する力率1運転を行うが、意図的に無効電力を注入することにより、図8(b)のごとく極性不一致期間Tcを作って力率を低下させ、連系点の電圧調整を行う場合もある。
図7(a)のように直流電圧が低い場合、特にVoのピーク付近ではスイッチ4または5が導通する時間比率が大きくなり、上下アームでの導通損失比率が大きくなる。図7(b)のように直流電圧が高い場合は、スイッチ6,7が導通する時間比率が大きくなり、中間アームでの導通損失比率が大きくなる。なお、図7(c)のように、後述する電圧変動補償回路を用いて直流電圧が常に高くなるように設定した場合には、図7(a)と同様に上下アームでの導通損失比率が大きくなる。
以上のように、この従来技術では、動作条件によって各半導体スイッチの発生する導通損失の比率やスイッチング損失の内容が異なっている。
しかしながら、SiC-MOSFET等の新型素子は、従来品に比べて高価であり、この種の新型素子を全てのスイッチ4〜7に使用すると、装置のコストが上昇するという問題がある。
そこで、本発明の解決課題は、半導体スイッチの一部に従来型の安価な素子を利用することにより、コストを低減しつつ高効率化、小型化を可能にした3レベルインバータを提供することにある。
直流電源に、第1コンデンサと第2コンデンサとの直列回路、及び、前記第1半導体スイッチと前記第2半導体スイッチとの直列回路を並列に接続し、
前記第1コンデンサと前記第2コンデンサとの直列接続点に、順逆両方向の電流の導通/遮断を制御可能な双方向スイッチの一端を接続すると共に、前記第1半導体スイッチと前記第2半導体スイッチとの直列接続点に前記双方向スイッチの他端を接続し、
前記双方向スイッチが、
制御端子にオン信号またはオフ信号を印加して順方向電流の導通/遮断を制御可能であり、逆方向電流に対しては常に導通状態または常に遮断状態、もしくは耐圧を持たない非導通状態の何れかとなる第3半導体スイッチ及び第4半導体スイッチと、前記第3半導体スイッチに直列接続される第1ダイオードと、前記第4半導体スイッチに直列接続される第2ダイオードと、を有し、前記第3半導体スイッチと前記第1ダイオードとの直列回路、及び、前記第4半導体スイッチと前記第2ダイオードとの直列回路を逆方向に並列接続して構成され、
前記第1〜第4半導体スイッチの動作により3つの電圧レベルを出力可能な3レベルインバータにおいて、
前記第1半導体スイッチ及び前記第2半導体スイッチを、炭化珪素からなる半導体スイッチング素子により構成し、または、炭化珪素からなる半導体スイッチング素子と炭化珪素からなるショットキーバリアダイオードとの逆並列回路によって構成すると共に、
前記第3半導体スイッチ及び前記第4半導体スイッチとしてシリコンからなるIGBTまたはMOSFETを用い、かつ、前記第1ダイオード及び前記第2ダイオードとして、逆回復時間が前記第1半導体スイッチまたは前記第2半導体スイッチのスイッチング時間と同等以下であるものを用いたものである。
図1は、本発明の第1実施形態を示す回路図である。図1において、例えば太陽電池等の直流電源1(電圧をEとする)には、第1コンデンサ2及び第2コンデンサ3(各コンデンサの電圧はE1=E2とする)の直列回路と、SiC−MOSFET等の高速動作が可能な第1半導体スイッチ4及び第2半導体スイッチ5の直列回路とが、並列に接続されている。なお、図6と同様に、半導体スイッチ4,5の直列回路を上下アームと称する。
また、以下では、符号4,5をMOSFETとして説明する。
ダイオード10,11は逆回復損失が小さく、逆回復時間が半導体スイッチ4または半導体スイッチ5のスイッチング時間と同等以下である高速のダイオードであり、例えば、SiC−SBD等を用いることができる。勿論、逆回復損失が小さい高速のダイオードであれば、SiC−SBDでなくても良い。
一方、IGBTやダイオードは、順電圧降下特性に、電流に依存しない定電圧成分があるので、並列接続数を増やしても順電圧降下の低減には限度がある。従って、同じ電流に対する中間アームの導通損失について見る限り、図6よりも図1の方が大きくなる。
この効果は、出力力率が1またはそれに近い値、例えば0.8以上となるように設定すると、更に顕著となる。このように出力力率が1またはそれに近い値である場合には、図7における電圧印加期間Taが長くなる期間と出力電流の瞬時値が大きくなる期間とが概ね一致する。逆に言うと、中間アームの導通期間が長くなるのは電流の瞬時値が小さいゼロクロス付近であるから、そのときに順電圧降下が大きくなっても全体損失の増加は小さくなる。
出力電圧と出力電流との極性が一致する期間では、前述した図6(a)と同様の動作により、上下アームがターンオン損失及びターンオフ損失を発生し、中間アームが逆回復損失を発生する。この実施形態では、上下アームすなわち半導体スイッチ4,5にSiC−MOSFET等の高速の素子を用いており、中間アームのダイオード10,11にSiC−SBD等の高速の素子を用いているので、上下アーム及び中間アームにおける何れの損失も小さくなる。
出力電圧と出力電流との極性が一致しない期間では、前述した図6(b)と同様の動作により、中間アームのIGBT12,13がターンオン損失及びターンオフ損失を発生する。これらの損失はSiC−MOSFETによるものより大きくなるが、図8(b)に示したように極性不一致期間Tcは短く、更にこの期間Tcは出力電流Iの瞬時値が比較的小さいので、やはり全体損失への影響は小さくなる。
なお、同様の原理より、MOSFET4または5の逆並列ダイオードを、逆回復特性が劣るが安価な素子に置き換えることにより、コストを一層低減することも可能である。
この第2実施形態では、インバータの直流入力電圧変動が小さいという条件を、例えば太陽電池のような実際の直流電源1の特性に関わらず実現するために、電圧変動補償回路20を直流電源1とコンデンサ2,3の直列回路との間に接続してある。
この実施形態における電圧変動補償回路は、直流電源電圧が変動しても常に一定の直流電圧を出力可能な回路であれば、いかなる構成であっても良い。
図3(a)は、IGBT12のコレクタとダイオード11のカソードとの接続点をM点に接続し、IGBT13のコレクタとダイオード10のカソードとの接続点をU点に接続したもの、図3(b)はIGBT13のエミッタとダイオード10のアノードとの接続点をM点に接続し、IGBT12のエミッタとダイオード11のアノードとの接続点をU点に接続したものである。
また、図3(c)に示すように、図3(b)におけるIGBT12,13のコレクタ同士を接続しても良い。この図3(c)は、逆方向耐圧を持たないIGBT12,13の保護手段として、ダイオード10,11を逆電圧防止用の逆並列ダイオードとして兼用したものである。
図4は、図1または図2の回路に用いる半導体スイッチやダイオードをモジュール化した構成図である。
図4(a)は上下アームのMOSFET4,5を収納した第1モジュール201、図4(b)は中間アームのダイオード部(ダイオード10,11)を収納した第2モジュール202、図4(c)は中間アームのIGBT部(IGBT12,13)を収納した第3モジュール203である。なお、図4(b),(c)に示したモジュール202,203は、P点同士、N点同士、AC(U)点同士を互いに接続して使用される。また、図4(d)は、中間アームのダイオード10,11及びIGBT12,13をまとめて収納した第4モジュール210であり、前述した図3(c)の回路に相当している。
更に、図4(e),(f)は、中間アームを構成するIGBT13及びダイオード11を第5モジュール220に収納し、同じくIGBT12及びダイオード10を第6モジュール221に収納した例である。
この配置・配線構造においては、P,N点からU点を経由して流れる電流が、帰路であるM点電位で覆われている。配線バーを平行に配置すると、往復で逆方向になる電流によって発生する磁束が相殺され、インダクタンスが小さくなることはよく知られており、図5(a)の構造はこれを実現するためのものである。このような構造では、図4(a)〜(c)のような2レベルの回路で一般的に用いられる構成のモジュールをそのまま利用できる利点がある。
なお、モジュールの構成や配線バーの形状は、上述したものに限定されないことは言うまでもない。
2,3,9:コンデンサ
4,5:半導体スイッチ
8:リアクトル
10,11:ダイオード
12,13:半導体スイッチ
20:電圧変動補償回路(昇圧チョッパ)
21:半導体スイッチ
22:ダイオード
23:リアクトル
100:変圧器
101:一次巻線
102:二次巻線
201,202,203,210,220,221:モジュール
204,205,206,207,208,209,211,212,213,214,222,223,224,225:配線バー
300:電力系統
Claims (7)
- 制御端子にオン信号またはオフ信号を印加して順方向電流の導通/遮断を制御可能であり、逆方向電流に対しては常に導通状態となる第1半導体スイッチ及び第2半導体スイッチを備え、
直流電源に、第1コンデンサと第2コンデンサとの直列回路、及び、前記第1半導体スイッチと前記第2半導体スイッチとの直列回路を並列に接続し、
前記第1コンデンサと前記第2コンデンサとの直列接続点に、順逆両方向の電流の導通/遮断を制御可能な双方向スイッチの一端を接続すると共に、前記第1半導体スイッチと前記第2半導体スイッチとの直列接続点に前記双方向スイッチの他端を接続し、
前記双方向スイッチが、
制御端子にオン信号またはオフ信号を印加して順方向電流の導通/遮断を制御可能であり、逆方向電流に対しては常に導通状態または常に遮断状態、もしくは耐圧を持たない非導通状態の何れかとなる第3半導体スイッチ及び第4半導体スイッチと、前記第3半導体スイッチに直列接続される第1ダイオードと、前記第4半導体スイッチに直列接続される第2ダイオードと、を有し、前記第3半導体スイッチと前記第1ダイオードとの直列回路、及び、前記第4半導体スイッチと前記第2ダイオードとの直列回路を逆方向に並列接続して構成され、
前記第1〜第4半導体スイッチの動作により3つの電圧レベルを出力可能な3レベルインバータにおいて、
前記第1半導体スイッチ及び前記第2半導体スイッチを、炭化珪素からなる半導体スイッチング素子により構成し、または、炭化珪素からなる半導体スイッチング素子と炭化珪素からなるショットキーバリアダイオードとの逆並列回路によって構成すると共に、
前記第3半導体スイッチ及び前記第4半導体スイッチとしてシリコンからなるIGBTまたはMOSFETを用い、かつ、前記第1ダイオード及び前記第2ダイオードとして、逆回復時間が前記第1半導体スイッチまたは前記第2半導体スイッチのスイッチング時間と同等以下であるものを用いたことを特徴とする3レベルインバータ。 - 請求項1に記載した3レベルインバータにおいて、
交流出力電圧のピーク値が前記第1コンデンサまたは前記第2コンデンサの電圧の80%以上の値となる条件、または、出力力率が0.8以上となる条件、のうち少なくとも一方の条件を満たすように運転することを特徴とする3レベルインバータ。 - 請求項1または請求項2に記載した3レベルインバータにおいて、
前記第1ダイオード及び前記第2ダイオードが、炭化珪素からなるショットキーバリアダイオードであることを特徴とする3レベルインバータ。 - 請求項1〜3の何れか1項に記載した3レベルインバータにおいて、
前記直流電源と、前記第1コンデンサ及び前記第2コンデンサの直列回路との間に、前記直流電源の電圧変動を補償して前記直列回路の両端電圧を安定化する電圧変動補償回路を備えたことを特徴とする3レベルインバータ。 - 請求項1〜4の何れか1項に記載した3レベルインバータにおいて、
前記第1半導体スイッチ及び前記第2半導体スイッチを第1モジュールに収納し、前記第3半導体スイッチ及び前記第4半導体スイッチを第2モジュールに収納し、前記第1ダイオード及び前記第2ダイオードを第3モジュールに収納し、前記第1〜第3モジュール間を低インダクタンスの導体バーにより接続したことを特徴とする3レベルインバータ。 - 請求項1〜4の何れか1項に記載した3レベルインバータにおいて、
前記第1半導体スイッチ及び前記第2半導体スイッチを第1モジュールに収納し、前記第3半導体スイッチ,前記第1ダイオード,前記第4半導体スイッチ及び前記第2ダイオードを第4モジュールに収納し、前記第1モジュールと前記第4モジュールとの間を低インダクタンスの導体バーにより接続したことを特徴とする3レベルインバータ。 - 請求項1〜4の何れか1項に記載した3レベルインバータにおいて、
前記第1半導体スイッチ及び前記第2半導体スイッチを第1モジュールに収納し、前記第3半導体スイッチ及び前記第1ダイオードを第5モジュールに収納し、前記第4半導体スイッチ及び前記第2ダイオードを第6モジュールに収納し、前記第1,第5,第6モジュール間を低インダクタンスの導体バーにより接続したことを特徴とする3レベルインバータ。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/076859 WO2015049743A1 (ja) | 2013-10-02 | 2013-10-02 | 3レベルインバータ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6086157B2 true JP6086157B2 (ja) | 2017-03-01 |
JPWO2015049743A1 JPWO2015049743A1 (ja) | 2017-03-09 |
Family
ID=52778356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015540306A Active JP6086157B2 (ja) | 2013-10-02 | 2013-10-02 | 3レベルインバータ |
Country Status (5)
Country | Link |
---|---|
US (1) | US9705313B2 (ja) |
EP (1) | EP2966768A4 (ja) |
JP (1) | JP6086157B2 (ja) |
CN (1) | CN105379098B (ja) |
WO (1) | WO2015049743A1 (ja) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3014734B8 (en) * | 2013-06-28 | 2022-04-27 | BYD Company Limited | Power system for electric vehicle,electric vehicle and motor controller |
WO2015049743A1 (ja) * | 2013-10-02 | 2015-04-09 | 富士電機株式会社 | 3レベルインバータ |
JP6160780B2 (ja) * | 2014-08-26 | 2017-07-12 | 富士電機株式会社 | 3レベル電力変換装置 |
CA2959451C (en) * | 2014-08-29 | 2018-12-04 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Inverter |
JP6240334B2 (ja) * | 2014-08-29 | 2017-11-29 | 東芝三菱電機産業システム株式会社 | コンバータおよびそれを用いた電力変換装置 |
JP6304017B2 (ja) * | 2014-12-18 | 2018-04-04 | 三菱電機株式会社 | 半導体装置 |
RU2671947C1 (ru) * | 2015-06-23 | 2018-11-08 | Ниссан Мотор Ко., Лтд. | Инвертор с возможностью заряда |
JP6613883B2 (ja) * | 2015-12-25 | 2019-12-04 | 富士電機株式会社 | 3レベル電力変換回路 |
JP6690280B2 (ja) * | 2016-02-12 | 2020-04-28 | 株式会社豊田自動織機 | 半導体モジュール |
JP6714834B2 (ja) * | 2016-04-06 | 2020-07-01 | 富士電機株式会社 | 3レベル電力変換回路 |
EP3442108B1 (en) * | 2016-04-08 | 2020-12-30 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Multilevel power converter |
JP6662163B2 (ja) * | 2016-04-14 | 2020-03-11 | 富士電機株式会社 | 3レベルチョッパ装置 |
JP6602263B2 (ja) * | 2016-05-30 | 2019-11-06 | 株式会社東芝 | 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機 |
JP6575450B2 (ja) * | 2016-07-15 | 2019-09-18 | 株式会社デンソー | 回転電機装置 |
DE102017100530A1 (de) * | 2017-01-12 | 2018-07-12 | Danfoss Silicon Power Gmbh | Drei-Stufen-Leistungsmodul |
WO2018135159A1 (ja) * | 2017-01-18 | 2018-07-26 | 富士電機株式会社 | 3レベル・インバータ |
JP2018182944A (ja) * | 2017-04-18 | 2018-11-15 | 富士電機株式会社 | 電力変換装置 |
CN109391161A (zh) * | 2017-08-10 | 2019-02-26 | 台达电子企业管理(上海)有限公司 | 电力电子变换单元及系统 |
JP6977469B2 (ja) * | 2017-10-18 | 2021-12-08 | 富士電機株式会社 | 炭化珪素mosfetインバータ回路 |
DE102019203982B4 (de) * | 2019-03-22 | 2020-12-31 | Siemens Aktiengesellschaft | Schalteinrichtung für einen Gleichspannungsstromkreis |
CN110401357A (zh) * | 2019-07-30 | 2019-11-01 | 江苏舾普泰克自动化科技有限公司 | 一种低损耗节能型船用逆变器 |
CN111030550B (zh) | 2019-11-25 | 2022-05-17 | 华为技术有限公司 | 一种电机驱动器及动力系统 |
CN111064371B (zh) * | 2019-12-26 | 2024-04-05 | 杭州电子科技大学 | 混合五电平双向dc/dc变流器及其电压匹配调制方法 |
US10965221B1 (en) * | 2020-09-01 | 2021-03-30 | King Abdulaziz University | Switched capacitor based boost inverter topology with a higher number of levels and higher voltage gain |
US11159095B1 (en) * | 2020-11-12 | 2021-10-26 | King Abdulaziz University | 11-level boost active neutral point clamped inverter topology with higher voltage gain |
US20220294365A1 (en) * | 2021-03-12 | 2022-09-15 | Wisconsin Alumni Research Foundation | Current source inverter using bidirectional switches with bidirectional power flow capability |
JP7550730B2 (ja) | 2021-07-02 | 2024-09-13 | 三菱電機株式会社 | 半導体装置、半導体モジュール、及び、電力変換装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010252450A (ja) * | 2009-04-13 | 2010-11-04 | Fuji Electric Systems Co Ltd | 電力変換装置 |
JP2013102674A (ja) * | 2011-10-14 | 2013-05-23 | Meidensha Corp | マルチレベル電力変換器 |
JP5339018B1 (ja) * | 2012-10-02 | 2013-11-13 | 富士電機株式会社 | 電力変換器、この電力変換器を備えるインバータ装置 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE523523C2 (sv) * | 2001-09-21 | 2004-04-27 | Abb Ab | Strömriktare samt förfarande för styrning därav |
TW200709544A (en) * | 2005-08-29 | 2007-03-01 | Ind Tech Res Inst | Transformer-free power conversion circuit for parallel connection with commercial electricity system |
DE502006006287D1 (de) * | 2006-02-01 | 2010-04-08 | Abb Research Ltd | Schaltzelle sowie umrichterschaltung zur schaltung einer vielzahl von spannungsniveaus |
DE102006016502A1 (de) * | 2006-04-07 | 2007-10-18 | Siemens Ag | Wechselrichter |
US7602228B2 (en) * | 2007-05-22 | 2009-10-13 | Semisouth Laboratories, Inc. | Half-bridge circuits employing normally on switches and methods of preventing unintended current flow therein |
DE102009002332A1 (de) * | 2009-04-09 | 2010-10-14 | Infineon Technologies Ag | Mehrstufenumrichter mit selbstleitenden Transistoren |
JP5369922B2 (ja) | 2009-06-15 | 2013-12-18 | 富士電機株式会社 | 3レベル電力変換装置 |
JP5457449B2 (ja) * | 2009-06-19 | 2014-04-02 | 三菱電機株式会社 | 電力変換装置 |
JP2011109789A (ja) * | 2009-11-17 | 2011-06-02 | Fuji Electric Holdings Co Ltd | 電力変換装置 |
EP2413489B1 (en) * | 2010-07-30 | 2013-09-11 | Vinotech Holdings S.à.r.l. | Highly efficient half-bridge DC/AC converter |
JP2012044824A (ja) * | 2010-08-23 | 2012-03-01 | Fuji Electric Co Ltd | 電力変換装置 |
KR101510181B1 (ko) * | 2010-09-06 | 2015-04-10 | 삼성전자 주식회사 | 전원공급회로 |
EP2456059B1 (en) * | 2010-11-17 | 2018-05-23 | ABB Schweiz AG | Switching branch modul for a three-level converter and method for controlling that switching branch |
CN201947194U (zh) * | 2010-12-28 | 2011-08-24 | 威海华东电源有限公司 | 并联boost单相并网逆变器 |
DE102011017082B4 (de) * | 2011-04-14 | 2021-05-20 | Texas Instruments Deutschland Gmbh | Stromversorgungseinheit und Verfahren für ihren Betrieb |
JP5800133B2 (ja) | 2011-07-07 | 2015-10-28 | 富士電機株式会社 | 電力変換装置およびこれを用いたインバータ装置 |
US8675379B2 (en) * | 2011-08-08 | 2014-03-18 | General Electric Company | Power converting apparatus having improved electro-thermal characteristics |
JP5849586B2 (ja) * | 2011-10-06 | 2016-01-27 | 富士電機株式会社 | 3レベル電力変換回路システム |
JP5726055B2 (ja) | 2011-12-01 | 2015-05-27 | 三菱電機株式会社 | 電力変換装置 |
CN102611342B (zh) * | 2012-03-13 | 2014-10-08 | 华为技术有限公司 | 三电平逆变器 |
CN110022078B (zh) * | 2012-03-30 | 2021-05-04 | 富士电机株式会社 | 电力变换装置 |
JP6098207B2 (ja) * | 2013-02-13 | 2017-03-22 | 富士電機株式会社 | 電力変換装置 |
DE102013104081B3 (de) * | 2013-04-23 | 2014-05-15 | Semikron Elektronik Gmbh & Co. Kg | 3-Level-Stromrichterhalbbrücke |
WO2015049743A1 (ja) * | 2013-10-02 | 2015-04-09 | 富士電機株式会社 | 3レベルインバータ |
-
2013
- 2013-10-02 WO PCT/JP2013/076859 patent/WO2015049743A1/ja active Application Filing
- 2013-10-02 EP EP13895036.5A patent/EP2966768A4/en not_active Ceased
- 2013-10-02 CN CN201380075396.XA patent/CN105379098B/zh active Active
- 2013-10-02 JP JP2015540306A patent/JP6086157B2/ja active Active
-
2015
- 2015-10-07 US US14/877,318 patent/US9705313B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010252450A (ja) * | 2009-04-13 | 2010-11-04 | Fuji Electric Systems Co Ltd | 電力変換装置 |
JP2013102674A (ja) * | 2011-10-14 | 2013-05-23 | Meidensha Corp | マルチレベル電力変換器 |
JP5339018B1 (ja) * | 2012-10-02 | 2013-11-13 | 富士電機株式会社 | 電力変換器、この電力変換器を備えるインバータ装置 |
Also Published As
Publication number | Publication date |
---|---|
US9705313B2 (en) | 2017-07-11 |
US20160028224A1 (en) | 2016-01-28 |
EP2966768A1 (en) | 2016-01-13 |
CN105379098A (zh) | 2016-03-02 |
EP2966768A4 (en) | 2017-03-01 |
CN105379098B (zh) | 2018-09-21 |
WO2015049743A1 (ja) | 2015-04-09 |
JPWO2015049743A1 (ja) | 2017-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6086157B2 (ja) | 3レベルインバータ | |
US20170294850A1 (en) | Multilevel converter | |
US8861235B2 (en) | Power converting apparatus | |
US9479075B2 (en) | Multilevel converter system | |
US10250159B2 (en) | Five-level inverter topology with high voltage utilization ratio | |
JP6454936B2 (ja) | 電力変換装置、およびそれを用いたパワーコンディショナ | |
EP3174190A1 (en) | Three level converter | |
JP5369922B2 (ja) | 3レベル電力変換装置 | |
US20110242866A1 (en) | Power semiconductor device and power conversion system using the device | |
US10554150B2 (en) | Three-level inverter | |
US9431918B2 (en) | Grounding scheme for modular embedded multilevel converter | |
EP2728734A1 (en) | A three-level neutral-point-clamped inverter | |
JP5929277B2 (ja) | 3レベル電力変換装置 | |
US10312825B2 (en) | Five-level half bridge inverter topology with high voltage utilization ratio | |
KR20140013863A (ko) | 3-레벨 중성점 클램핑 다이오드 인버터 회로 및 이의 펄스폭 제어 방법 | |
US9602024B2 (en) | DC/AC converter, power generation plant and operating method for a DC/AC converter | |
JP5726055B2 (ja) | 電力変換装置 | |
US11848620B2 (en) | Three-level power conversion device | |
CN109075718B (zh) | 功率调节和ups模块 | |
EP2840699A2 (en) | Multilevel converter system | |
JP6455793B2 (ja) | 電力変換装置、及びそれを用いたパワーコンディショナ | |
US11750109B2 (en) | Power conversion device | |
JP5488244B2 (ja) | パワー半導体モジュール | |
Etxeberria-Otadui et al. | Analysis of IGCT current clamp design for single phase H-bridge converters | |
Davidson | Power loss investigation in low power current source inverters using wideband gap devices for solar energy applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170117 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6086157 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |