JP6085068B2 - 同時回転および振動を使用したコーティング材料分布 - Google Patents

同時回転および振動を使用したコーティング材料分布 Download PDF

Info

Publication number
JP6085068B2
JP6085068B2 JP2016536117A JP2016536117A JP6085068B2 JP 6085068 B2 JP6085068 B2 JP 6085068B2 JP 2016536117 A JP2016536117 A JP 2016536117A JP 2016536117 A JP2016536117 A JP 2016536117A JP 6085068 B2 JP6085068 B2 JP 6085068B2
Authority
JP
Japan
Prior art keywords
coating material
axis
process conditions
layer
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016536117A
Other languages
English (en)
Other versions
JP2017501022A (ja
Inventor
リャボーヴァ,エルミラ
リャボーヴ,バレンチン
Original Assignee
アドヴェニラ エンタープライジーズ,インコーポレイテッド
アドヴェニラ エンタープライジーズ,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アドヴェニラ エンタープライジーズ,インコーポレイテッド, アドヴェニラ エンタープライジーズ,インコーポレイテッド filed Critical アドヴェニラ エンタープライジーズ,インコーポレイテッド
Publication of JP2017501022A publication Critical patent/JP2017501022A/ja
Application granted granted Critical
Publication of JP6085068B2 publication Critical patent/JP6085068B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

[関連出願の相互参照]
[0001] 本出願は、本明細書にその全体が参照により組み込まれる2013年12月3日に出願された「COATING MATERIAL DISTRIBUTION USING SIMULTANEOUS ROTATION AND VIBRATION」と題された米国仮特許出願第14/095,854の利益を35 USC 119に基づき主張する。
[技術分野]
[0002] 本開示は全体として、複雑な表面上にコーティング材料を堆積するための方法およびシステムに関連し、具体的には、コーティング材料を堆積し、同時回転および振動を使用して複雑な表面上にコーティング材料を再分布するための方法およびシステムに関連する。
[背景]
[0003] 現在、種々の薄層堆積技術が利用可能である。しかしながら、これらの技術のほとんどは、粗い表面、湾曲した表面、あるいは表面の平面から離れて延在する種々の突起またはその他のフィーチャを有する表面というよりは、むしろ平坦な表面上にコーティング材料を堆積するように設計されている。従来型の薄層堆積技術の一般的な例としては、スピンコーティングおよびロールコーティングが含まれる。これらの技術が平坦ではない表面に使用された場合には、コーティングされた層は多くの場合不均一であるか、少なくとも非共形(non-conformal)である。主要表面の平面から離れて延在する小さなフィーチャの表面などの、いくつかの表面は、堆積工程が完了した後であっても一切のコーティング材料が堆積されていないままの可能性がある。例えばプラズマ堆積法およびスパッタ法などのその他の従来型の堆積技術は、視線(line-of-sight)の要件に悩まされるものである。これらの技術が使用された場合には、コーティングされた表面は、直接露出されなければならず、また多くの場合コーティング装置に対して直角なものでなければならない。いまだ、化学蒸着などのその他の堆積技術は、これらの技術において使用される前駆体は接触直後に表面と反応することから、制御が困難である。そのため、前駆体濃度が高い領域は、その他の領域よりも高い堆積速度を有し、その結果非共形のコーティングをもたらす。全表面上にコーティング材料を均一に再分布するのは困難、あるいは不可能であり得る。
[0004] 同時振動および回転を用いてコーティング材料を分布するための方法およびシステムが提供される。振動中に生成される慣性力および回転中に生成される遠心力は、すでに表面上に堆積されたコーティング材料を再分布し、その結果均一および/または共形層(コンフォーマル層)をもたらす。コーティングされた表面は、種々の形状および粗さを有することができ、複雑な表面と称され得る。コーティング材料の初期層は、浸漬、噴射、スピンコーティングまたはその他の同様の技術を用いて部品の複雑な表面上に堆積され得る。コーティング材料は、部品に対する振動軸および回転軸の配向、回転速度ならびに振動周波数および振幅などの特に選択されたプロセス条件を用いて、部品の同時回転および振動により再分布される。いくつかの実施形態では、再分布工程は、複雑な表面の異なる部分における均一な分布を確実とするために異なるプロセス条件を用いて1回以上繰り替えされてよい。
[0005] いくつかの実施形態では、部品の複雑な表面上にコーティング材料を堆積するための方法は、複雑な表面の少なくとも一部上にコーティング材料の初期層を堆積することと、改質層を形成するために初期層に設けられたコーティング材料を再分布することと、を含む。このコーティング材料の再分布は、部品を同時に回転および振動させることを含む。
[0006] いくつかの実施形態では、初期層を堆積することは浸漬、噴射またはスピンコーティングの1つを含む。しかしながら、未硬化層の形成のためのその他の堆積技術もまた範囲内である。コーティング材料はチキソトロピック流体であってよい。より一般的には、コーティング材料は非ニュートン流体であってよい。いくつかの実施形態では、コーティング材料はゾルゲル前駆体である。いくつかの実施形態では、コーティング材料の粘度はコーティング材料の再分布中に増加する。
[0007] いくつかの実施形態では、部品はコーティング材料の再分布中に第1軸の周りまたは付近を回転する。部品は、コーティング材料の再分布中に第1軸に沿って振動されてもよい。複雑な表面は、第1軸に実質的に直角に延在する第1部分および第1軸に実質的に平行に延在する第2部分を含み得る。回転および振動の組み合わせは、コーティング材料が両方の部分(すなわち、第1部分および第2部分)に同時に沿って再分布されることを可能にする。
[0008] いくつかの実施形態では、部品はコーティング材料の再分布中に第1軸の周りまたは付近を回転する。部品は、コーティング材料の再分布中に第2軸に沿って振動され得る。第2軸は第1軸に対して直角である。これらの実施形態では、複雑な表面は第1軸に実質的に直角かつ第2軸に実質的に直角に延在する部分を含み得る。
[0009] いくつかの実施形態では、部品は、第1軸が第2軸に対して直角となるように、コーティング材料の再分布中に第1軸および第2軸に沿って同時に振動される。より一般的には第1軸は第2軸とは一致しない。
[0010] いくつかの実施形態では、部品は、第1軸が第2軸と直角になるように、コーティング材料の再分布中に第1軸の周りまたは付近および第2軸の周りまたは付近で同時に回転する。より一般的には、第1軸は第2軸とは一致しない。いくつかの実施形態では、第1軸は第2軸と平行である。異なる回転軸には異なる速度が使用されてよい。
[0011] いくつかの実施形態では、部品は、第1段階中にコーティング材料を再分布している間に第1軸の周辺または周りを回転する。部品もまた、第2段階中にコーティング材料を再分布している間に第2軸の周辺または周りを回転する。第1段階は、第2段階と時間的に重なり合わない。第1軸は、第2軸に実質的に直角であってよい。
[0012] いくつかの実施形態では、部品は、第1段階中にコーティング材料を再分布する間に第1軸に沿って振動する。部品は、第2段階中にコーティング材料を再分布する間に第2軸に沿っても振動し得る。第2段階は、第1段階とは重なり合わない可能性がある。第1軸は、第2軸に実質的に直角であってよい。
[0013] いくつかの実施形態では、改質層は初期層よりも複雑な表面の大部分を覆う。つまり、初期層は部品の複雑な表面上に広がり、改質表面層を形成する際に覆う領域を増やす。いくつかの実施形態では、方法は複雑な表面上のコーティング材料を硬化することも含む。硬化することは、部品を同時に回転および振動させながら実施される。いくつかの実施形態では、初期層を堆積させることは、部品がコーティング材料に浸されている間回転または振動することを含む。方法は、部品の表面形状、複雑な表面の表面状態およびコーティング材料の性質に基づき回転および振動プロフィールを決定することも含む。例えば、回転および振動プロフィールは部品に対する1つ以上の振動および回転軸の配向、振動および回転の持続時間ならびに振動および回転条件における変化を含んでよい。
[0014] 部品をコーティング材料内に浸漬することにより複雑な表面の少なくとも一部上にコーティング材料の初期層を堆積することを含む、部品の複雑な表面上にコーティング材料を堆積するための方法も提供される。方法は、改質層を形成するために初期層内に設けられるコーティング材料を再分布することも含む。コーティング材料の再分布は、部品を同時に回転および振動させることを含む。具体的には、部品は約100RPM〜600RPMの回転速度で回転し得る。同時に、部品は約5Hz〜50Hzの周波数で振動し得る。
[0015] これらの実施形態およびその他の実施形態は、図を参照して以下に詳細に説明される。
[0016] いくつかの実施形態による複雑な表面を有する部品の概略図である。 [0017] いくつかの実施形態による、部品の複雑な表面上にコーティング材料を堆積するための方法に対応するプロセスフローチャートである。 [0018] いくつかの実施形態による、部品の表面上に初期層を形成した後の部品の概略図である。 [0019] いくつかの実施形態による、コーティング材料を堆積するための方法を完了した後の図3Aに示される部品の概略図である。 [0020] 部品のフィーチャに対する振動および回転軸の配向の一例である。 [0021] 図4Aに示される部品のフィーチャに対する振動および回転軸の配向のさらなる一例である。 [0021] 図4Aに示される部品のフィーチャに対する振動および回転軸の部品の配向のさらなる一例である。 [0022] いくつかの実施形態による、少なくとも1つの回転軸および1つ以上の振動軸を用いて部品の複雑な表面上にコーティング材料を堆積するための装置の概略図である。 [0023] いくつかの実施形態による、少なくとも2つの回転軸用いて部品の複雑な表面上にコーティング材料を堆積するための別の装置の概略図である。 [0024] いくつかの実施形態による、少なくとも2つの回転軸および少なくとも2つの振動軸を用いて部品の複雑な表面上にコーティング材料を堆積するためのさらなる別の装置の概略上面図である。 [0024] いくつかの実施形態による、少なくとも2つの回転軸および少なくとも2つの振動軸を用いて部品の複雑な表面上にコーティング材料を堆積するためのさらなる別の装置の概略側面図である。 [0025] 部品の振動および回転を用いてコーティングされた部品の断面の写真である。 [0025] 部品の振動および回転を用いてコーティングされた部品の断面の写真である。 [0025] 部品の振動および回転を用いてコーティングされた部品の断面の写真である。 [0025] 部品の振動および回転を用いてコーティングされた部品の断面の写真である。 [0025] 部品の振動および回転を用いてコーティングされた部品の断面の写真である。 [0025] 部品の振動および回転を用いてコーティングされた部品の断面の写真である。 [0025] 部品の振動および回転を用いてコーティングされた部品の断面の写真である。 [0025] 部品の振動および回転を用いてコーティングされた部品の断面の写真である。 [0026] 部品の振動および回転を用いてコーティングされた別の部品の断面の写真である。 [0026] 部品の振動および回転を用いてコーティングされた別の部品の断面の写真である。 [0026] 部品の振動および回転を用いてコーティングされた別の部品の断面の写真である。 [0026] 部品の振動および回転を用いてコーティングされた別の部品の断面の写真である。 [0026] 部品の振動および回転を用いてコーティングされた別の部品の断面の写真である。
[0027] 以下の記載では、提示される概念の十分な理解を提供するために、種々の具体的な詳細が示される。提示される概念は、これらの具体的な詳細の一部または全てがなくとも実行可能である。別の場合では、記述された概念を不必要にわかりにくくしないように、周知のプロセス工程は詳細に記載されていない。いくつかの概念は、具体的な実施形態とあわせて記述される一方で、これらの実施形態は限定を意図するものではないことが理解される。
[序論]
[0028] 上述のように、均一および/または共形の層を堆積することは、受け取る側の層が平坦でない場合には問題が生じ得る。本明細書の目的のため、複数の平面部分(例えば、3次元フィーチャにより形成される部分)を含む非平面表面および/または複数の非平面表面は、複雑な表面と称され得る。以下により正確な定義が記される。例えば、コーティング材料が複雑な表面上に堆積された場合には、重力が材料を高い点から低い点に移動させ、不均一な分布をもたらし得る。別の例では、表面の一部が、例えば上面から延在する小さな開口部により形成される場合には、コーティング材料はこの開口部の周りに集まることができるが、表面張力、粘度およびその他の現象によりこの開口部内に容易に入り込むことはない。さらに別の例では、開口部は、この開口部の側壁上に均一な層を形成することよりもむしろ、開口部がコーティング材料で完全に満たされ得る。従来型の堆積技術では、すでに塗布されたコーティング材料の再分布は一般的に重力、直線状のエッジでのせん断、またはその他の同様の技術に限定される。
[0029] 同時振動および回転を使用してコーティング材料を分布するための方法およびシステムが提供される。コーティング材料の初期層は、十分に均一ではない可能性があり、かつ/またはコーティングを必要とする表面の全体を覆うことができない可能性がある。初期層は、部品をコーティング材料に浸漬する、部品上に材料を噴射するまたはその他の技術などの種々の技術を用いて堆積され得る。部品はその後、この初期に形成された層を再分布し改質層を形成するために、同時振動および回転にさらされる。回転が初期に形成された層に作用する遠心力を生成する間、振動は慣性力を生成する。これらの力の方向および大きさは、部品に対する振動および回転軸の配向、回転速度、ならびに振動周波数および振幅などの種々のプロセス条件を用いて具体的に制御される。これらのプロセス条件は、表面形状および表面状態(例えば、表面粗さ)、使用されるコーティング材料(例えば、粘度、表面張力、密度、チキソトロピー性)、ならびにその他の要因に基づき選択され得る。いくつかの実施形態では、プロセス条件は複雑な表面上のコーティング材料の再分布中に変動し得る。例えば、振動および/回転軸の配向は、プロセス中に少なくとも1回変更し得る。さらには、慣性力および遠心力は重力と組み合わされてよく、いくつかの実施形態では、複雑な表面上に材料を分布するために空気力と組み合わされてよい。
[0030] 単一の工程で回転および振動を組み合わせることに加え、多軸回転および/または多軸振動が使用可能である。いくつかの実施形態では、部品の表面上への材料の再分布中に、部品は2つ以上の異なる軸の周りまたは付近を回転可能である。そのため、部品および部品の表面上にすでに堆積されたコーティング材料は、各回転により生成された遠心力の組み合わせである多方向の遠心力にさらされる。これらの多方向の遠心力は、プロセスが継続するに従って配向を変更し得る。さらには、多方向の遠心力は、振動により生成される慣性力と組み合わされる。
[0031] 同じまたは別の実施形態において、部品は、部品の表面上の材料の再分布中に2つ以上の非平行軸沿いに振動することができ、それによりコーティング材料を多方向の慣性力にさらす。これらの多方向の慣性力の方向は、例えば、異なる軸には異なる周波数を用いるか、または同じ周波数の振動周期をオフセットすることにより代わり得る。さらには多方向の慣性力は、回転により生成される遠心力と組み合わせられる。
[0032] 本明細書では、「複雑な物体」または「複雑な表面を有する物体」または文法的等価物は、少なくとも1つの複雑な表面を有するいかなる物体をいう。「複雑な表面」は、非平面表面、どの角度で交わってもよい2つ以上の平面の組み合わせ、物体の別の平面と関連する少なくとも1つの3次元的内部または外部フィーチャ(例えば、開口部、突起)、またはこれらの種々の組み合わせであってよい。複雑な表面の一例は、球体または球体の一部(例えば、シリンダ状物体の端面を形成する半球形)の表面である。シリンダ側壁は、複雑な表面の別の例である。角錐は、その平面が90°以外の角度で交わる複雑な物体の一例であり、立方体はその平面が90°の角度で交わる複雑な物体の一例である。それを加えることにより非複雑な表面を複雑な表面に変えることができる3次元フィーチャの例には、1つ以上の突起部、陥没、孔、オリフィス、表面チャネル、内部チャネル、プラトー、起伏、屈曲、押出し、溝、メサパターンおよびプレナム、ならびにこれらの組合せが含まれる。多くの場合、これらの特徴は高アスペクト比を有し、アスペクト比は例えば、少なくとも約2、少なくとも約5、少なくとも約10または少なくとも約100でさえある。この明細書の目的のため、アスペクト比は、フィーチャの深度(例えば、直径)に直角な主要寸法に対する深度の比として規定される。
[0033] 図1は、いくつかの実施形態による、複雑な表面を有する部品100の概略図である。具体的に部品100は、上面102a、側面102b(複数部分により形成される)および底面102c(これもまた複数部分により形成される)を有する。これらの表面102a〜102cは、上記の定義の元では複雑な表面と見なされない可能性がある。いくつかの実施形態では、部品100は丸い物体であり、側面102bは複雑な表面と見なされ得る。さらには、表面102a〜102cは、全て外側表面であり簡単にコーティングがなされ得る。しかしながら、部品100は簡単にコーティングされない内側表面を有するフィーチャを多く有する。本明細書の目的のため、内側表面は物体の外部境界から離れて延在する表面と規定される。特に、部品100は上面102aから離れて延在する複数の開口部104を有する。開口部104は、例えば、図1に示されるようにそれらのインレットの両側に面取りした面を有し得る。上面102a上にコーティング材料を塗布するために従来型のコーティング技術が使用された場合には、材料は十分に開口部104内に浸透せずこれらの開口部の側壁をコーティングしない可能性がある。従来の方法のいくつかの欠陥および提案される方法の予期されない結果は、下記の実験結果の項に示される。さらには、部品100は外部空洞106を含み、その表面に直接的(例えば、視線での)コーティングは届かない可能性がある。
[0034] 複雑な表面は複雑性の計数により特徴づけられ得る。本明細書で使用されるように、「複雑性の係数」「複雑性係数」または文法的等価物は、別の平面上の表面の最も大きい2次元の突起した面積に対する全表面積の比率である。平面の複雑性の係数は1である。複雑な表面の複雑性の係数は1以上である。例えば、球形の複雑性の係数は4である(すなわち、4πRの表面積がπRの突起した面積で割られる)。同様に、半球形は、球形と同じ突起した面積を有するが表面は半分のみであることから、複雑性は2である。いくつかの実施形態では、表面の複雑性係数は少なくとも約2であるか、より具体的には、少なくとも約3、あるいは少なくとも約4、少なくとも約5または少なくとも約6でさえある。種々のコンピュータ援用製図(CAD)ツールは、複雑な表面の計算に使用可能である。
[0035] 上記記載は、巨視的規模で複雑な表面を説明する。つまり、特に注目されない限りは、表面の複雑性の推定に関して1ミリ未満のフィーチャは一切無視されている。特に注目される場合には、複雑な表面は顕微鏡スケール(ミクロン)およびナノスケール(ナノメートル)上で特徴づけられることも可能である。一般的に、多くの表面は、典型的には顕微鏡スケールまたはナノスケールで測定される、ある程度の表面粗さ(R)を有する。この粗さは、オブジェクトの作成に使用された組成物および製造方法のため、ランダムであってよい。粗さは、表面上に顕微鏡スケールおよびナノスケールのフィーチャを意図的に形成した結果であってもよい。それぞれの場合において表面粗さは、個別に見られた際にはそれ自体が複雑な表面を有する顕微鏡スケール的またはナノスケール的な複雑な物体である表面フィーチャによりもたらされる。これらは、考慮される有効表面を増加させることから、表面の複雑性係数に寄与するものでもある。
[0036] 本明細書に記載される方法およびシステムで形成されたコーティングされた層は、約1μm〜1000μmの厚さを有し得る(例えば、約1μm〜500μm、約1μm〜250μm、約1μm〜100μmまたは約1μm〜10μm)。コーティングされた層は共形であってよく、共形層とは表面に関連するフィーチャに一致する層と規定される。例えば共形層は、粗い表面に一致しても均一な厚さを維持する。代替的には、層は部品表面の粗い表面にかかわらず、平坦な上面を形成することができる。いくつかの実施形態では、共形層は表面の粗さと比較したその厚さにより規定される。一般的には、薄層は厚さ(T)が粗さの半分未満(R/2)であれば共形である。厚さ(T)が粗さの2倍(2R)より大きい場合には、薄層は一般的には平坦な表面または平坦化した表面である。つまり、堆積された層は表面の粗さを平坦化する。共形または平坦な層を差別化するその他のパラメータは、コーティング材料の粘度、表面張力、材料の再分布および硬化に使用されるプロセス条件である。いくつかの実施形態では、初期的に平坦である層は共形層に再分布される。
[0037] いくつかの実施形態では、コーティング材料は複雑な表面の一部のみを覆う。プロセスパラメータは、コーティング材料が利用可能な表面積の全てにわたり分布されないような方法で選択され得る。例えば、一部の領域はコーティング材料が付着しないように維持される必要がある。マスキング層やその他の保護技術を使用する代わりに、プロセスパラメータ(振動および回転パラメータを含む)は、コーティング材料の特定の領域への分布を回避するような方法で選択され得る。
[0038] いくつかの実施形態では、上述される方法およびシステムを使用して多層構造が形成され得る。例えば、多層構造を形成するために同一または異なるコーティング材料を使用したプロセスが複数回繰り替えされ得る。多層構造における層の厚さおよび/または組成物は異なり得る。
[0039] 本明細書の目的のため、「均一な薄層」という用語または文法的等価物は、均一な厚さを有する薄層をいう。薄層は、層全体に対して厚さが予め選択された値(例えば、1%〜20%、例えば5%未満)未満で変動する場合には均一な厚さを有する。基板材料、表面仕上げおよび粗さ、ならびにコーティングの種類を含むがこれらの限定されない種々の要因は、層の均一性に影響し得る。
[0040] いくつかの実施形態では、コーティングされた層は物体の表面に対して共有結合される。共有結合(covalent attachment)中に形成された共有結合(covalent bond)は、2つの材料の原子間で電子対を共有することを含む化学結合である。共有結合は、コーティング中および/またはコーティングされた表面上の材料の硬化中に確立されてよい。共有結合は、表面への材料の向上した接着をもたらす。さらには、表面に対するコーティング材料の向上した接着は、表面上の化学反応性の高い基または原子の数を増加させるためにコーティングの塗布の前に表面を処理することにより、生じさせることができる。これらの化学反応性の高い基および原子は、コーティング流体における1つ以上のコンポーネントと反応し、その結果として表面前処理が無い場合よりも、表面により多い共有結合で取り付けられる。例えば、プラズマ処理が使用され得る。多層フィルムスタックが作られる場合には、コーティング層のそれぞれは次の層を形成するコーティング溶液を加える前にプラズマにより処理されることができるか、あるいはいくつかの層はスタック組成物に基づき選択的に処理されることができる。このように、層間および多層スタックとオブジェクトの表面間の増加した接着が達成可能である。要するに、この処理は層間および多層スタックとオブジェクトの表面間のつながりの密度を増加させることによりコーティングの性能を増幅させる。
[コーティング材料の例]
[0041] 記載の方法およびシステムを使用して、種々のコーティング材料が堆積され得る。いくつかの実施形態では、コーティング材料には有機ポリマー、有機モノマーおよびゾルゲル前駆体が含まれ得る。コーティング材料は、例えば1つ以上のゾルゲル金属前駆体および/または1つ以上のゾルゲル半金属前駆体を含み得る。コーティング材料は、極性プロトン性溶媒および/または極性非プロトン性溶媒も含み得る。そのようなコーティング材料における極性プロトン性溶媒または極性非プロトン性溶媒の濃度は、1〜25容量%であり得る。
[0042] ゾルゲル金属前駆体およびその他の金属含有前駆体における金属は、遷移金属、ランタニド、アクチニド、アルカリ土類金属、IIIA族〜VA族の金属のうちの1つであってよい。これらの金属の種々の組み合わせもまた、同じコーティング材料でも使用可能である。これらの金属の種々の組み合わせもまた、同じコーティング材料ないで使用され得る。具体例としては、アルミニウム(Al)、チタニウム(Ti)、モリブデン(Mo)、スズ(Sn)、マンガン(Mn)、ニッケル(Ni)、クロミウム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ジルコニウム(Zr)、イットリウム(Y)、カドミウム(Cd)、リチウム(Li)、サマリウム(Sm)、エルビウム(Er)、ハフニウム(Hf)、インジウム(In)、セリウム(Ce)、カルシウム(Ca)およびマグネシウム(Mg)が含まれる。ゾルゲル半金属前駆体における半金属は、1つ以上のボロン(B)、シリコン(Si)、ゲルマニウム(Ge)、ヒ素(As)、アンチモン(Sb)、テルル(Te)、ビスマス(Bi)およびポロニウム(Po)あるいはこれらとその他の半金属または金属との組み合わせであってよい。いくつかの実施形態では、ゾルゲル金属前駆体は、有機金属化合物、金属有機塩類および金属無機塩類から選択される金属化合物であってよい。ゾルゲル半金属前駆体は、有機半金属化合物、半金属有機塩類および半金属無機塩類から選択される半金属化合物であってよい。1つ以上の金属または半金属が使用される場合には、一方はアルコキシドなどの有機化合物であってよく、もう一方は有機または無機塩類などであってよい。
[0043] いくつかの実施形態では、コーティング材料において使用される極性プロトン性溶媒は有機酸またはアルコールである(例えば、メタノールまたはエタノールなどの低級アルキルアルコール)。水もまたコーティング材料内に存在し得る。いくつかの実施形態では、極性非プロトン性溶媒はハロゲン化アルカン、アルキルエーテル、アルキルエステル、ケトン、アルデヒド、アルキルアミド、アルキルアミン、アルキルニトリル、またはアルキルスルホキシドであってよい。そのような極性非プロトン性溶媒の具体例は、メチルアミン、エチルアミン、およびジメチルホルムアミドを含む。いくつかの実施形態では、金属および/または半金属前駆体の重合のための触媒として使用される酸または塩基は、極性非プロトン性溶媒の添加の前または後に添加可能である。
[0044] 過剰な量の極性非プロトン溶媒は、コーティング材料のゲル化を引き起こし得る。従って、極性非プロトン性溶媒の量は各用途に対して実験的に決定され得る。極性非プロトン性溶媒の量は混合中にゲル化を引き起こす量より少ないが、コーティング材料にせん断力が加えられるとコーティング材料のゲル化が起こるのに十分な量でなくてはならない(例えば、複雑な表面上のコーティング材料の再分布中)。
[0045] いくつかの実施形態では、コーティング材料は、せん断減粘性溶液、ディラタント溶液、レオペクチック溶液またはチキソトロピック溶液であり得る、非ニュートン溶液である。本明細書で使用される、「せん断減粘性」とは溶液にせん断力が加えられるにつれ非線形に減少する動的粘度を有する溶液をいい、「ディラタント」とは溶液にせん断力が加えられるにつれ非線形に増加する動的粘度を有する溶液をいい、「レオペクチック」とは応力の持続時間と共に増加する動的粘度を有する溶液をいい、「チキソトロピック」とは応力の持続時間と共に減少する動的粘度を有する溶液をいう。
[0046] いくつかの実施形態では、コーティング材料は再分布工程を完了した後に表面上にゲル化層を形成する。本明細書で使用される「ゲル化層」という用語または文法的等価物は、コーティング材料内の金属および/または半金属ゾルゲル前駆体が十分に大きいかつ/または架橋したポリマーを形成する層を意味する。そのような層は、重力のみによる更なる層の再分布を防止する十分に高い粘度を有し得る。ゲル化層は、有機モノマーなどの重合可能な部分および架橋性オリゴマーまたはポリマーを含むことができる。例としては、メラミン(またはレゾルシノール)およびホルムアルデヒド間の塩基触媒反応に続く酸化および熱処理を含む。
[0047] いくつかの実施形態では、コーティング材料は金属または半金属に共有結合する(例えば、有機リンカーを介して)1つ以上の架橋性モノマーを含む。例は、線形または環状オルガノシランの混合物を産出するために、有機溶媒内でナトリウムまたはナトリウムカリウム合金と反応するジオルガノジクロロシランを含む。架橋性部分が使用される場合には、コーティング材料は重合開始剤をも含み得る。光誘起性開始剤の例は、チタノセン、ベンゾフェノン/アミン、チオキサントン/アミン、ベンゾインエーテル、アシルホスフィン酸化物、ベンジルケタール、アセトフェノンおよびアルキルフェノンを含む。さらには、紫外UVA(315〜400nm)およびUVB(280〜315nm)ならびに赤外IR(700nm〜1mm)領域において対応する波長を有する放射線誘導性開始剤が使用可能である。具体例としては、熱誘導性開始剤が含まれる。
[0048] コーティング材料が堆積されると、全てまたはほとんどの溶媒が層から取り除かれ得る。溶媒は、周囲温度での蒸発、上昇した温度にさらすことによる蒸発(例えば、UV、可視またはIR放射線を用いて)、または真空化により除去可能である。溶媒蒸発条件は、任意の未反応のまたは部分的に反応した金属および/または半金属前駆体の重合にも使用可能である。
[0049] コーティング材料内の金属および/または半金属前駆体の総量は、材料は表面上に堆積され表面上に分布された場合には、約5〜40容量%であってよい。いくつかの実施形態では、量は約5〜25容量%であり、より具体的には約5〜15容量%である。極性プロトン性溶媒は、コーティング材料内の溶媒のほとんどを構成する。
[プロセス実施例]
[0050] 図2は、いくつかの実施形態による、部品の複雑な表面上にコーティング材料を堆積するための方法200に対応するプロセスフローチャートを示す。一般的に、方法200は工程204中に複雑な方面の少なくとも一部上にコーティング材料の初期層を堆積した後に工程206中に初期層内に設けられたコーティング材料を再分布して改質層を形成することを含む。これらの工程の1つまたは両方は、追加のコーティング材料の堆積および/または遠心力、慣性力、重力および求心力の異なる組み合わせを使用してコーティング材料を再分布するために繰り替えされてよい。
[0051] 方法200は、例えば図2に示されるようなその他の工程も含み得る。例えば、複雑な表面は工程202中に前処理されてよく、特定のプロセス条件(工程204および/または工程206中に使用されるもの)は、工程203中に決定されてよく、コーティング材料は工程212中に硬化されてよい。しかしながら、これらの工程の一部は任意の工程であり、いくつかの実施形態では実施されない可能性がある。さらには、方法200は図2に示されず、当業者に理解されるようなその他の工程を含み得る。記述される工程は特に記載がない限りは任意の順番で並べてもよい。例えば、図2に示される工程203は工程202の前または工程204の前に実施されてよい。方法200の種々の態様が以下に詳細に説明される。
[0052] いくつかの実施形態では、方法200は任意工程202中に基板の前処理を行うことにより開始し得る。例えば、プラズマ前処理はこの工程中に用いられ得る。前処理は、例えば、表面張力の変更および/または特定の材料を添加または除去することによる表面の機能化するために、表面性能を改質するように使用可能である。複雑な表面の少なくとも一部は、大気プラズマまたは酸素プラズマと接触し得る。プラズマは、プラズマ処理装置またはより具体的には、プラズマヘッドから提供され得る。プラズマヘッドは静止していてよく、プラズマに対して表面の様々な部分をさらすために、部品は1つ以上の軸の周りまたは付近を回転可能である。代替的には、6つの回転軸を有するプラズマヘッドなどの、可動プラズマヘッドが使用可能である。
[0053] 表面の前処理(例えば、プラズマを使用して)は、表面を機能化し得、それにより表面とコーティング材料との間により一層共有結合が形成されることにつながる。そのため、前処理は接着性を向上させるために使用され得る。いくつかの実施形態では、多層構造(またはスタック)が形成された場合には、堆積された層のそれぞれは別の層を堆積する前に処理され得る。例えば、第1層表面の堆積後の処理は、第1層上に堆積された第2層の接着性を増加させるために使用され得る。
[0054] いくつかの実施形態では、工程202は複雑な表面上に活性化溶液(例えば、酸または塩基)を堆積することを含み得る。例えば、部品は活性化溶液内に浸され得る。部品は、溶液内に浸されながらかつ/または容器から取り除かれる際に回転および/または振動され得る。
[0055] いくつかの実施形態では、方法200は任意工程203中にプロセル条件(後の工程で使用されるもの)を含み得る。例えば、工程204および/または工程206中に使用されるプロセス条件は、工程203中に決定され得る。表面形状、表面状態(材料、仕上がりなど)、コーティング材料特性(例えば、表面張力、粘度、比重)、コーティング装置の性能、およびその他の類似の要因などの種々の要因は、適切なプロセス条件を決定するために考慮され得る。プロセス条件は、コーティング装置を作動させるための命令を含み得、命令は各工程のタイミング、各行程中の各回転および振動軸に対する部品の配向、回転および振動プロセス条件(例えば、回転速度、方向、振動周波数、振幅など)、コーティング材料条件(例えば、粘度、密度)などである。上述のように、工程203の出力は工程204および/または工程206を実施するためのレシピであってよい。いくつかの実施形態では、工程203の出力は、工程206が異なるプロセス条件を使用して1回以上繰り返されるべきであることを示し得る。例えば、部品は上面および上面から離れて延在する開口部を含み得る。(1)開口部内へのコーティング材料の導入、(2)コーティング材料の開口部の深度に沿った分布および(3)開口部の周辺の周りへのコーティング材料の分布のために、工程206は複数回実施され得る。これらの工程のそれぞれは、異なるセットのプロセス条件を使用することができ、それにより異なる時にコーティング材料上に作用する遠心力および慣性力の異なる組み合わせを作り出す。100〜1000RPMでの円形回転、またはより具体的には200〜500RPMでの円形回転であり、ステップ関数変化または回転軸の傾斜角の連続的な変化のいずれかを有する円形回転は、シリンダ状部品の表面上にコーティング材料を分布するために使用され得る。
[0056] 工程203は、コンピュータシステムを使用して実施可能である。部品、コーティング装置および/またはコーティング溶液に関する情報は、このコンピュータシステムによって受信可能であり、コーティング装置を作動させるための命令のセットの開発に使用される。いくつかの実施形態では、部品のCADは工程203の実行中にコンピュータシステムにより使用可能である。
[0057] 方法204は、工程204中に複雑な表面の少なくとも一部の上にコーティング材料の初期層を堆積することを始めることができる。コーティング材料は、浸漬、噴射、スピンコーティングまたはその他の同様の技術を用いて最初に堆積することができる。いくつかの実施形態では、部品の外側表面のほとんどはコーティング材料を受容する一方で、外側表面に一部は工程204の終わりでコーティング材料により覆われていないままであり得る。複雑な表面のこれらのコーティングされていない部分は、工程206中にコーティングを受容し得る。そのため、工程204中に堆積されたコーティング材料はその後工程206中に新しい領域に分布され得る。さらには、工程204中に堆積されたコーティング材料の層は十分に均一ではない可能性がある。例えば、複雑な表面のいくつかの部分はより厚い層を有する一方で、その他の部分はより薄い層を有し得る。工程206中、これらのより厚い層の部分からのコーティング材料は、より薄い層の部分に移動され得る。
[0058] 図3Aは、いくつかの実施形態による、その外側表面の一部の上に初期コーティング層312が堆積された初期にコーティングされた部品300の概略図である。参照番号302は、その上に一切のコーティング材料を有さない部分(例えば、コーティング材料に浸漬する前の部分)を示す。そのため、初期にコーティングされた部品300は、部品302と部品300の外側表面上に堆積された初期コーティング層312の組み合わせとして見なされ得る。初期コーティング層312では、内側表面のほとんどはコーティング材料の一切を有さないままであり得る。部品302は、上面304に対して直角に延在する2つ開口部302aおよび302bを有し、底面308に直角に延在する1つの開口部306を有する。さらには図3Aに示されるように、部品302は開口部302a、302bおよび306を相互に連結させる内側空洞310を含み得る。この部品302は、プロセス中のウェハを支持するための静電チャックまたは、パッシブまたは電極のいずれであれ、プロセスガスを運ぶためのシャワーヘッド(ガス分布板)を概念的に示し得る。
[0059] 部品302をコーティング材料内に浸漬した後は、上面304、底面308、およびその他の外側表面は初期コーティング層312により覆われる。しかしながら、全体のプロセス中の本段階においては、開口部302a、302bおよび306の内側表面および内側空洞310は、コーティング材料の一切を有さないままである。いくらかの材料が開口部302a、302bおよび306内および/または内側空洞310に入ったとしても、例えば、図3Cに示され以下にさらに説明されるように、材料の分布は均一ではない可能性がある。
[0060] 本段階におけるコーティング材料の不均一な分布は、コーティング材料特性、表面特性およびプロセス条件などの種々の要因が原因であり得る。例えば、部品302がコーティング材料内に浸漬された場合には、コーティング材料に作用する2つの主要な力は一般的には表面張力および重力であり、これらはコーティング材料の均一な分布を提供するのに十分ではない可能性がある。いくつかの実施形態では、部品302は工程204中に回転および振動され得るが、遠心力および/または慣性力はいまだ十分ではない可能性がある。例えば、部品がコーティング材料内に浸されたままである場合には回転速度および振動周波数は限定的であり得る。
[0061] 再び図2を参照するに、方法300は工程206中に、部品の複雑表面上の初期層内に設けられたコーティング材料の再分布を開始し得る。このコーティング材料の再分布は改質層をつくる。改質層は、初期層によりこれまで覆われていなかった部品のさらなる表面を覆い得る。そのため、改質層の平均的な厚さは、初期層の平均的な厚さよりも薄くあり得る。さらには、改質層の厚さは、初期層の厚さよりもより著しく均一であり得る。
[0062] 図3Bは、いくつかの実施形態による、1度以上工程206を実施した後の完全にプロセスされた部品320の概略図である。ここで部品320は、外側表面304および308ならびに内側表面を均一に覆う改質層322を有する(すなわち、開口部302a、302bおよび306ならびに内側空洞310の表面)。図3Aと図3Bを比較するに、初期層312内のコーティング材料は再配置され(例えば、材料の一部を内側表面上に移動することにより)かつ外側表面304および308上の初期層を薄くさせることにより、改質層322を形成する。
[0063] 工程206中にコーティング材料を再分布することは、コーティング材料に作用し、コーティング材料が複雑な表面上に再分布されることを引き起こす力の組み合わせのセットを作るための部品の同時回転おおび振動を含む。上述のように、部品の回転はコーティング材料に作用する遠心力を作り出す。これらの遠心力は、1つ以上の回転軸に対して直角に向けられる。物体の振動は、おなじくコーティング材料に作用する慣性力を作り出す。これらの力は、1つ以上の振動軸に平行に向けられる。遠心力および振動力に加えて、重力はコーティング材料に対して連続的に作用する。最後に、オブジェクトが非真空環境において回転され振動された場合には、空気抵抗力が作られ、それによりコーティング材料の再分布をさらに引き起こす。全体として、コーティング材料による部品のより共形で均一な被覆を作り出すために、工程206中に力の複雑なセットが同時にコーティング材料に付与されてよい。振動および回転パラメータは、所望の結果を達成するために特に制御可能である。そのような制御の種々の例が以下に説明される。
[0064] 任意の軸の周りでの回転に使用される回転速度は、約1rpm〜5000rpmであってよい。いくつかの実施形態では、回転速度の下限は約2、3、4、5、6、7、8、9、10、25、50、75、100、125、150、200、250、500、750、1,000、1,500または2,000rpmであってよく、一方で回転速度の上限は4500、4000、3500、3000、2500、2000、1500、1000、500、250または100rpmであってよい。回転速度範囲はこれらの上限および下限の任意の組み合わせであってよい。いくつかの例示的な範囲は、約3〜1000rpmの回転速度、約3〜500rpmの回転速度、約4〜1000rpmの回転速度、約4〜500rpmの回転速度、約5〜1000rpmの回転速度、約5〜500rpmの回転速度、約10〜1000rpmの回転速度、約10〜500rpmの回転速度、約25〜1000rpmの回転速度、約25〜500rpmの回転速度、約50〜1000rpmの回転速度、約50〜500rpmの回転速度、約100〜1000rpmの回転速度、約100〜500rpmの回転速度、約150〜1000rpmの回転速度、または約150〜500rpmの回転速度である。
[0065] 工程206中の回転数は、適用により約1〜5000またはそれ以上の回転数であってよい。回転速度の下限が2、3、4、5、6、7、8、9、10、25、50、75、100、125、150、200、250、500、750、1,000、1,500または2,000回転数であっていい一方で、回転速度の上限は4500、4000、3500、3000、2500、2000、1500、1000、500、250または100回転数であってよい。いくつかの実施形態では、部品は完全に1周はしないが、軸の周りで前後に転向する。転向角は、約5°〜355°であってよく、より具体的には約10°〜350°であってよい(例えば90°〜270°など)。転向の周波数は約1Hz〜100Hzであってよい(より具体的には約5Hz〜50Hz)。
[0066] 振動周波数は、約1Hz〜100Hzであってよい(より具体的には約5Hz〜50Hz)。振動の振幅は、孔の深度より大きくてよく、半導体プロセス装置をコーティングする場合には、振幅は約1〜50ミリメートルであってよい。
[0067] いくつかの実施形態では、工程206中にコーティング材料を再分布する間、部品は第1軸の周りまたは付近を回転する。さらには、部品は同じ第1軸沿いに振動され得る。上述のように、振動が第1軸沿いに向けられる慣性力を生成する一方で、部品の回転は第1軸に対して直角にかつ第1軸から離れるように向けられる遠心力を生成する。そのため、遠心力と慣性力の両方がコーティング材料上に作用する場合には、コーティング材料は2つの異なる方向に強制され、それは平面および非平面上にコーティングを分布するのに有益であり得る。例えば、これらの力の一方は、開口部のインレットにコーティング材料を運び得る一方で、もう一方の力がコーティング材料を開口部内に誘導し得る。この回転および振動の組み合わせを用いた部品の異なる表面上のコーティング材料の分布は、図4A〜4Cを参照して以下により詳細に説明される。
[0068] 図4Aは、いくつかの実施形態による、部品400の上面402に直角に延在する開口部404を有する部品400の概略図である。X、Y、Z方向は基準を設けるために示されている。これらの軸は部品に対して固定されているが、図4B〜4Cを参照して以下にさらに記載されるように装置に対して移動し得る。図4Aに示される例では、部品400はZ軸の周りまたは付近を回転し、Z軸沿いに振動する。回転は、Z軸から材料を分布する。具体的には、図示された例では、回転は上面402上のコーティング材料をZ軸から離れるよう(例えば、開口部404へ)誘導し得る遠心力を作り出す。同時に、振動はZ軸沿いの材料をその現在の位置から離れるように分布する。そのため、いくらかのコーティング材料が開口部404のインレット付近に集められた場合には、振動はこの材料が開口部404内に入ることを支援することができる。上述のように、慣性力および遠心力は重力と組み合わせられ得る。図4Aに示される例は、重力はZ軸沿いに誘導され得、それによりコーティング材料が開口部内に入ることをさらに支援する。
[0069] いくつかの実施形態では、コーティング材料を再分布しながら、部品は第1軸の周りまたは付近で回転する。しかしながら部品は、第1軸に対して直角または第1軸に対して少なくとも平行ではない第2軸沿いに振動する。回転軸および振動軸が平行ではない場合には、部品の回転は部品に対する振動軸の配向を変更するが、このことは図4Bおよび4Cを参照して以下にさらに説明される。この特徴は、複雑な表面上でのコーティング材料の分布の制御のために使用され得る。
[0070] 特に、図4Bは図4Aに示される部品400と類似する部品410の概略図である。部品410もまた上面412に対して直角に延在する開口部414を有する。しかしながら、部品410はX軸の周りを回転する。上述のように、X、YおよびZ軸は部品に対して固定されているが、部品を回転および振動させるために使用される装置に関連して変更可能である。図4Aに示される場合においては、振動軸はZ軸に平行である。しかしながら、部品410はX軸に対して90°に転向されていることから(回転の一部として)、振動軸は図4Cに示されるようにY軸に平行となる。全体として、部品410はX軸の周りまたは付近で回転していることから、その振動軸もまたX軸の周りまたは付近で回転する(すなわち、Y−Z平面内で)。いくつかの実施形態では、遠心力を提供することに加えてまたは遠心力を提供する代わりに、回転/傾転は振動により作られた慣性力の制御に使用可能である。
[0071] いくつかの実施形態では、振動は互いに平行ではない2つ以上の軸沿いに実施され得る。例えば、これらの軸の1つは別の1つの軸に足して直交し得る。この多軸振動は、1つ以上の多数の振動軸に対して平行および/または直交し得る回転軸の周りまたは付近の部品を回転しながら実行され得る。同様に、回転は2つ以上の異なる軸沿いに実施され得る。多数の回転軸は互いに平行または平行でなくてよい。例えば、これらの軸の1つは、別の1つの軸に対して直交し得る。この多軸回転は、1つ以上の多数の回転軸に対して平行および/または直交し得る振動軸の周りまたは付近の部品を振動しながら実行され得る。さらには、部品は同時に、複数の非平行振動軸沿いに振動されまた複数の回転軸の付近またはまわりで回転され得る。このような多軸回転は、種々のジンバル型装置を用いて達成可能である。
[0072] 図2を再び参照するに、工程206は決定ブロック208に示されるように1回以上繰り返されてよい。各新しい工程206は、異なるプロセスパラメータを使用して実施されてよい。例えば、1回の工程206から別の回の工程206にわたり、回転速度、回転軸配向、振動周波数、振幅、振動軸配向およびその他の同様のプロセスパラメータが変更し得る。要するに、表面全体にわたるコーティング材料の均一な分布を確実にするために工程206の一連の流れが具体的に構成され得る。例えば、部品が図3Aにおける部品300に類似した1つ以上の開口部を有する場合は、最初の工程206は開口部内にコーティング材料を導入するように設計され得る一方で、後続の1回以上の工程206はこれらの開口部内に導入されたコーティング材料を分布するように設計され得る。工程203中に導き出されたレシピは、複数回にわたる再分布工程206中におけるプロセスパラメータの変更に使用され得る。
[0073] さらには、工程206および208は、決定ブロック210に示されるように1回以上繰り替えされてよい。例えば、コーティング材料の最初の再分布の後、工程206中に部品の外側表面上に追加のコーティング材料が追加されてよく、その後別の再分布工程208が続く。これらの繰り返しの回数は、部品の内側表面に対する内側表面の比率に依存する。比率が大きいほど、適正な量の材料で全ての表面を覆うためにより多い回数の繰り返しが使用されてよい。
[0074] いくつかの実施形態では、コーティング材料の粘度は工程206中(すなわち、コーティング材料の再分布中)に増加する。この粘度の増加は、溶媒の喪失、部分的な硬化および/またはその他の現象に起因し得る。さらには、遠心力および/または慣性力がコーティング材料に対してもはや作用していない場合には、工程206の完了直後にコーティング材料の粘度は増加し得る。この増加は、コーティング材料のチキソトロピー性に起因し得る。
[0075] いくつかの実施形態では、決定ブロック210に示されるように、追加のコーティング材料はいくつかの初期分布を実施した後に部品に追加され得る。つまり、工程204は、工程206を少なくとも1回完了させた後に、1回以上実施されてよい。例えば、部品はコーティング材料内に浸漬されてよく、またほとんどの材料が開口部内に入るような方法で再分布され得る。同一または別の実施例において、材料の一部は再分布中に部品から失われ得る(例えば、液だれにより)。部品は、追加のコーティング材料を設けるためにコーティング材料内に二回目の浸漬をされてよい。いくつかの実施形態では、異なる工程204間でプロセスパラメータが変動し得る。例えば、最初の工程204中により粘度の低いコーティング材料が使用可能であり、後続の工程中でより粘度の高いコーティングが使用可能である。
[0076] 方法200は、工程212中に複雑な表面上のコーティング材料を硬化させることも含む。硬化は、加熱、放射および/または空気流による蒸発を含み得る。いくつかの実施形態では、硬化は、硬化中に表面上のコーティング材料の分布を維持することを確実とするために、部品を同時に回転および/または振動させながら実施され得る。いくつかの実施形態では、工程212は反応ガスが導入可能なオーブンまたはチャンバ内で実施されてよい。いくつかの実施形態では、ユニットは、例えばUV照射サブユニット、可視照射サブユニット、およびIR照射サブユニットなどの少なくとも1つのサブユニットを含み得る。放射の波長、強度、持続時間の少なくとも1つは工程212中に変更し得る。レーザベースの硬化も使用可能である。
[装置例]
[0077] 図5Aはいくつかの実施形態による、部品502を1つの軸504aの周りを回転させ、部品502を2つの他の軸504bおよび504cに沿って振動させるように構成されるプロセス装置500の概略図である。示された実施例では、回転軸504aは、振動軸の1つ(例えば、軸504c)に対して平行である。しかしながら、当業者であれば範囲内にはその他の実施例もあることを理解する。部品502は丸い物体(例えば、ウェハ、ウェハチャック、ウェハをプロセスするためのシャワーヘッド)として示される。一般的に、部品502は任意の形状または形態を有してよい。部品502は、サポート506内に強固に保持されている。サポート506は、コーティング材料の初期層を堆積した後に係合され得る。代替的には、サポート506は初期層を堆積させる前に係合され得る。サポート506は、軸504aの周りまたは付近の本体508に対して回転するように構成される。本体504は、この工程を実施するためのモータを含み得る。本体504は、軸504bおよび504cに沿って本体を振動するように構成される振動テーブル上に配置される。いくつかの実施形態では、プロセス装置は部品および1つ以上の振動装置(例えば、振動テーブル)の回転のために使用される1つ以上のモータの動作を制御するためのコントローラも含む。
[0078] 図5Bは、いくつかの実施形態による、別のプロセス装置520の概略図である。装置520は部品522が軸524bの周りを回転するように歯車526および528を含む。この回転の軌道は、点線による円で示される。装置520は、部品522が軸524bの周りを回転している最中に、部品522が軸524aの周りでもまた回転し得る。例えば、軸524bの周りの歯車528の回転が軸524bの周りでの部品522の回転を引き起こすような方法で、部品522は歯車528に結合した別の歯車(図示されず)上に位置決めされてよい。装置520の全体は、図5Aに図示されるものと類似した振動テーブル上に位置決め可能である。
[0079] 図5Cおよび5Dは、いくつかの実施形態による、別のプロセス装置530の概略上面図および概略側面図である。部品532は、部品532を軸536の周りまたは付近で回転させるように構成されるプラットホーム534上で支持される。プラットホーム534自体は、基部540に対する軸534の周りまたは付近で回転するように構成されている。基部540は、図5Aに示されたものと類似した振動テーブル上に位置決めされてよい。
[実験結果]
[0080] 複雑な表面上にコーティング材料を分布するために振動と回転を組み合わせることの影響を判定するために一連の実験が実施された。1つの実験では、ガス供給開口部を有するシャワーヘッドのコーティング材料分布に関する検査が行われた。図6Aは、コーティング材料分布を示すシャワーヘッドの断面図の写真である。より具体的には、図6Aは、シャワーヘッドの基板に面する表面から延在する1つの開口部を示すシャワーヘッドのごく一部の写真である。開口部は、直径約0.5ミリメートルであり、深度は約2ミリメートルである。開口部は、基板に面する表面をシャワーヘッドの内側空洞と接続する。シャワーヘッドは、アルミニウム製であり陽極酸化表面を有する。酸化イットリウム層は、陽極酸化表面にわたりプラズマ堆積を用いて、陽極酸化表面上の基板に面する表面にわたり、かつある程度は、開口部内において形成される。しかしながら、プラズマ堆積は視線技術(line-of-sight technique)であり、複雑な表面に良好な被覆率を提供するものではない。さらには、酸化イットリウム層は典型的には気孔が多く不均一でありデブリを収集しやすくまたガス抜けも起こりやすい。また、陽極酸化アルミニウム層は、シャワーヘッドの動作中に漏れ出し得る汚染を多く含む。
[0081] コーティング材料分布は、基板に面する表面上の硬化された材料の厚さ、開口部に入る2つの先細りになったインレット、開口部の側壁、内部空洞の一部から分析される。コーティングは、酸化アルミニウムおよび酸化シリコン(すなわち、AlOx−SiOyナノコンポジット材料)の組み合わせを含んだ。コーティング工程は、100mm/分の液浸および引き出し線速度を用いて水平なフェースダウンの液浸を用いた浸漬コーティングを含む。浸漬コーティングの後は、部品は同時に16Hzで振動され900ROMで約60秒間回転された。部品はその後約20分間オーブンで乾燥された。
[0082] 検査対象の全ての領域においてコーティング材料は均一で共形な層を形成したと決定され、それらの層は図6Aにおいて参照番号600a〜600cで特定され、図6B〜6Hで拡大図として示される。異なる点の厚さの値は、以下の表で示される。
Figure 0006085068
[0083] 具体的には、領域600aは上面に隣接する開口部内に入るインレットに対応する。この領域が最初にコーティング材料を受容した(すなわち、コーティング材料の再分布前)可能性のある領域であることに留意されたい。図6Bは領域600aの拡大図を示す。図6Bではより小さい領域602が特定され、図6Cにおいて拡大図として示されている。参照番号604はシャワーヘッドのアルミニウム基部に対応する。参照番号608は、アルミニウム基部上に堆積された酸化イットリウム層に対応する。図6A〜6Cに示された全ての層の中で、酸化イットリウム層は色が最も薄い。酸化イットリウム層は、図6に示される部分の中で最も共形であるように見えるが、例えば、図6Aおよび6Bで示されるように、この層は開口部の側壁上からすぐに消えることが理解される。陽極酸化層は、参照番号606で特定され、アルミニウム基部層(参照番号604)または酸化イットリウム層(参照番号608)よりも濃い色を有する。陽極酸化層は、アルミニウム基部(参照番号604)と酸化イットリウム層(参照番号608)との間に堆積される。しかしながら、図6Cから分かるように、陽極酸化層はアルミニウム基部を一貫して被覆することはない。最後に、参照番号610はコーティング材料を特定する。コーティング材料は、図6Cから明らかに分かるように、酸化イットリウム層上に共形層を形成するものである。
[0084] 図6Aの領域600bは開口部の側壁に対応する。図6Dでは領域600bの拡大図が示される。図は、酸化イットリウム層(参照番号608)の厚さは開口部の奥底で素早く消えることを示す。さらには、酸化イットリウム層は極めて粗い表面を有する。酸化イットリウム層の不均一な厚さおよび表面粗さにも関わらず、コーティング層(参照番号610)は共形な被覆を提供し続ける。共形の被覆は図6Eに示される領域620の拡大図においてよりよく見ることができる。
[0085] 図6Aにおける領域600c〜600eは、内側空洞側からの開口部に入るインレットに対応する。これらの領域は隠れており、視線堆積技術では一般的にはアクセスできない。図6Fでは領域600cの拡大図が示され、図6Gでは領域600dの拡大図が示され、最後に図6Hでは領域600eの拡大図が示される。予想の如く、これらの領域ではほんのわずかの酸化イットリウム層が存在するか、または全く存在しない。しかしながら、コーティング材料はこれらの隠れた領域においてでもアルミニウムの陽極酸化に対する共形の保護を提供し続ける。アルミニウム基部、陽極酸化層およびプラズマ堆積された酸化イットリウム層を有する静電チャックにより同様の試験結果が達成された。
[0086] 別の実験では、コーティング材料はむきだしのアルミニウム表面、より具体的には、ビードブラスト処理が施されたアルミニウム表面上に付与された。異なる設計の開口部(すなわち2段階開口部)を有するシャワーヘッドが本実験で検証された。コーティング材料は、検査された複雑な表面の全てにわたり均一および共形な層を再び形成したということが特定された。コーティングは、AlOx−SiOyナノコンポジット材料を含む。コーティングはまず100mm/分の液浸および引き出し線速度をおいて垂直な浸漬コーティングいて付与された。後続のステップは、10Hzにおける振動およびフェースアップでの300RPMにおける第1回転と、それに続くフェースダウンでの500RPMにおける第2回転を含む。硬化は対流式オーブンで30分間実施された。
[0087] 図7Aにおいて参照番号700b〜700cで特定されたその表面のいくらかの領域は、図7B〜7Eにおいて拡大図として示され、これらの図を参照してより詳細に説明される。具体的には、領域700b〜700dは上面に隣接する開口部に入るインレットに対応する。図7Bは領域700bの拡大図を示し、図7cは領域700cの拡大図を示し、また図7Dは領域700dの拡大図を示す。表面粗さがあるに関わらず、これらの領域のそれぞれにコーティング材料の共形層が形成される。さらには、領域700eは開口部の側壁に対応し、図7Eはその拡大図を示す。領域700cは視線内には無いが、狭い開口部内の比較的深いところにあり、コーティング材料の共形層としても受容される。
[結論]
[0088] 明確な理解を目的として、上述の概念をいくらか詳細に説明したが、添付の請求項の範囲内である一定の変更および改変が行われ得ることは明らかである。プロセス、システムおよび装置の実行には多くの代替的な方法があることを理解されたい。従って、本実施形態は例示的であり、限定的ではないと見なされたい。

Claims (19)

  1. コーティング材料を堆積するための方法であって、前記方法は、
    部品の表面の少なくとも一部上にコーティング材料の初期層を堆積することと、
    前記部品を同時に回転および振動させることを含む第1のプロセス条件セットを使用して改質層を形成するために前記初期層に前記コーティング材料を再分布することと、
    前記部品を同時に回転および振動させることを含む第2のプロセス条件セットを使用して前記改質層における前記コーティング材料を再分布することであって、前記第1プロセス条件のセットを使用して前記コーティング材料を再分布することは、前記第2プロセス条件のセットを使用して前記コーティング材料を再分布することよりも前記コーティング材料に作用する遠心力および慣性力の異なる組み合わせを作り出す、再分布することと、
    前記第1プロセス条件のセットおよび前記第2プロセス条件のセットを決定することであって、前記第1プロセス条件のセットにおける回転軸に対する前記部品の配向は前記第2プロセス条件のセットにおける回転軸に対する前記部品の配向と異なる、決定することと、
    を含む方法。
  2. 前記初期層の堆積の前に前記部品の前記表面上に活性化溶液を堆積することをさらに含む、
    請求項1に記載の方法。
  3. 前記表面上に前記活性化溶液を堆積することは、前記部品の前記表面が前記活性溶液内に浸されながら前記部品が振動および回転することを含む、
    請求項に記載の方法。
  4. 前記第1プロセス条件のセットおよび前記第2プロセス条件のセットを決定することは、前記部品のコンピュータ援用製図(CAD)に基づき実施される、
    請求項1に記載の方法。
  5. 前記初期層を堆積した後および前記初期層内で前記コーティング材料を再分布する前に、前記表面の少なくともいくらかが前記コーティング材料により覆われていないままである、
    請求項1に記載の方法。
  6. 前記コーティング材料はチキソトロピックである、
    請求項1に記載の方法。
  7. 前記初期層内での前記コーティング材料の再分布中に、前記コーティング材料により覆われた前記表面の前記一部が増加する、
    請求項1に記載の方法。
  8. 前記改質層の厚さは、前記初期層の厚さよりもより均一である、
    請求項1に記載の方法。
  9. 前記第1プロセス条件のセットは、前記初期層内での前記コーティング材料の再分布中に前記コーティング材料上で作用可能な1つ以上の重力または空気力の主要因である、
    請求項1に記載の方法。
  10. 前記第1プロセス条件のセットにおける振動周波数は、前記第2プロセス条件のセットにおける振動周波数とは異なる、
    請求項1に記載の方法。
  11. 前記初期層における前記コーティング材料の再分布後および前記改質層における前記コーティング材料の再分布前に、前記部品の前記表面の少なくとも前記一部に追加のコーティング材料を堆積することをさらに含む、
    請求項1に記載の方法。
  12. 前記追加のコーティング材料は、前記コーティング材料よりもより粘度が高い、
    請求項11に記載の方法。
  13. 前記表面上の前記コーティング材料を硬化することをさらに含む、
    請求項1に記載の方法。
  14. 硬化することは、前記部品を同時に回転および振動しながら実施される、
    請求項13に記載の方法。
  15. 波長または強度の少なくとも1つは、前記コーティング材料の硬化中に変更される、請求項13に記載の方法。
  16. コーティング材料を堆積するための方法であって、前記方法は、
    部品の表面の少なくとも一部上にコーティング材料の初期層を堆積することと、
    前記部品を同時に回転および振動させることを含む第1のプロセス条件セットを使用して改質層を形成するために前記初期層に前記コーティング材料を再分布することと、
    前記部品を同時に回転および振動させることを含む第2のプロセス条件セットを使用して前記改質層における前記コーティング材料を再分布することを含み、
    前記第1プロセス条件のセットを使用して前記コーティング材料を再分布することは、前記第2プロセス条件のセットを使用して前記コーティング材料を再分布することよりも前記コーティング材料に作用する遠心力および慣性力の異なる組み合わせを作り出し、
    前記第1のプロセス条件セットを使用して前記コーティング材料を再分布する一方で、前記部品は第1軸沿いおよび第2軸沿いに同時に振動され、前記第1軸は前記第2軸と平行ではない、
    方法。
  17. 前記第1軸は前記第2軸に対して直角である、
    請求項16に記載の方法。
  18. 前記部品は第1周波数を使用して前記第1軸沿いに振動され、前記部品は第2周波数を使用して前記第2軸沿いに振動され、前記第1周波数は前記第2周波数とは異なる、
    請求項16に記載の方法。
  19. 前記部品は第1周波数を使用して前記第1軸沿いに振動され、前記部品は第2周波数を使用して前記第2軸沿いに振動され、前記第1周波数は前記第2周波数と同一であり、前記第1軸沿いの振動の振動サイクルは第2軸沿いの振動の振動サイクルに対してオフセットである、
    請求項16に記載の方法。
JP2016536117A 2013-12-03 2014-10-16 同時回転および振動を使用したコーティング材料分布 Expired - Fee Related JP6085068B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/095,854 2013-12-03
US14/095,854 US8889222B1 (en) 2013-12-03 2013-12-03 Coating material distribution using simultaneous rotation and vibration
PCT/US2014/060804 WO2015084490A1 (en) 2013-12-03 2014-10-16 Coating material distribution using simultaneous rotation and vibration

Publications (2)

Publication Number Publication Date
JP2017501022A JP2017501022A (ja) 2017-01-12
JP6085068B2 true JP6085068B2 (ja) 2017-02-22

Family

ID=51870091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016536117A Expired - Fee Related JP6085068B2 (ja) 2013-12-03 2014-10-16 同時回転および振動を使用したコーティング材料分布

Country Status (7)

Country Link
US (2) US8889222B1 (ja)
JP (1) JP6085068B2 (ja)
KR (1) KR101702277B1 (ja)
CN (1) CN105873686B (ja)
CA (1) CA2932103C (ja)
RU (1) RU2610496C1 (ja)
WO (1) WO2015084490A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8889222B1 (en) 2013-12-03 2014-11-18 Advenira Enterprises, Inc. Coating material distribution using simultaneous rotation and vibration
JP6643767B2 (ja) * 2018-01-16 2020-02-12 株式会社オリジン 塗布済対象物製造方法及び塗布物質展延装置
CN108970868B (zh) * 2018-08-09 2020-11-06 清华大学 一种船舶用索并联机器人超跨度喷涂轨迹规划方法
FR3097142B1 (fr) * 2019-06-11 2022-05-27 Commissariat Energie Atomique Procédé de dépôt
DE102021113999A1 (de) 2021-05-31 2022-12-01 MTU Aero Engines AG Verfahren zum beschichten eines bauteils einer strömungsmaschine

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU803992A1 (ru) 1978-11-10 1981-02-15 Дагестанский Политехническийинститут Устройство дл нанесени пастообразныхМАТЕРиАлОВ HA СТРуНы
SU997832A1 (ru) 1981-09-29 1983-02-23 Предприятие П/Я Р-6533 Устройство дл нанесени покрыти на пластины
US4597995A (en) * 1985-03-29 1986-07-01 American Cast Iron Pipe Company High speed pipe lining method and apparatus
JP2997382B2 (ja) 1993-09-16 2000-01-11 シャープ株式会社 塗布装置
KR960005669A (ko) * 1994-07-21 1996-02-23 이헌조 흑백브라운관의 형광막 형성방법 및 장치
JPH1034055A (ja) * 1996-07-25 1998-02-10 Seiko Epson Corp 塗布膜形成装置及び塗布膜形成方法
US5803971A (en) * 1997-01-13 1998-09-08 United Technologies Corporation Modular coating fixture
US5925410A (en) * 1997-05-06 1999-07-20 Micron Technology, Inc. Vibration-enhanced spin-on film techniques for semiconductor device processing
JP4053690B2 (ja) * 1998-06-19 2008-02-27 東京エレクトロン株式会社 成膜装置
JP3445937B2 (ja) * 1998-06-24 2003-09-16 東京エレクトロン株式会社 多段スピン型基板処理システム
JP2000197842A (ja) * 1999-01-07 2000-07-18 Toshiba Corp 塗布装置、吐出手段及び塗布方法
US6174651B1 (en) * 1999-01-14 2001-01-16 Steag Rtp Systems, Inc. Method for depositing atomized materials onto a substrate utilizing light exposure for heating
US6569243B2 (en) * 2000-02-23 2003-05-27 Odawara Automation, Inc. Method and apparatus for coating an electric coil including vibration
JP2002326047A (ja) 2001-05-01 2002-11-12 Ricoh Co Ltd 塗工装置と電子写真感光体の製造装置及び製造方法
JP3655576B2 (ja) * 2001-07-26 2005-06-02 株式会社東芝 液膜形成方法及び半導体装置の製造方法
JP4165100B2 (ja) * 2002-03-26 2008-10-15 セイコーエプソン株式会社 液滴吐出装置と液滴吐出方法、およびデバイス製造装置とデバイス製造方法並びにデバイス
EG23499A (en) * 2002-07-03 2006-01-17 Advanced Plastics Technologies Dip, spray, and flow coating process for forming coated articles
JP3685158B2 (ja) * 2002-07-09 2005-08-17 セイコーエプソン株式会社 液状物の吐出方法および液状物の吐出装置
US20040047994A1 (en) * 2002-09-09 2004-03-11 Robert Becker Method and apparatus for the removal of excess coating material from a honeycomb body
US8337937B2 (en) * 2002-09-30 2012-12-25 Abbott Cardiovascular Systems Inc. Stent spin coating method
US8013089B2 (en) * 2002-12-06 2011-09-06 E. I. Du Pont De Nemours And Company Fluoropolymer composition for lining adhesion to a surface
JP2005011996A (ja) * 2003-06-19 2005-01-13 Tokyo Electron Ltd 塗布処理方法及び塗布処理装置
GB2404886B (en) * 2003-08-09 2006-04-12 Rolls Royce Plc Coating method
JP4113480B2 (ja) * 2003-08-29 2008-07-09 東京エレクトロン株式会社 基板処理装置及び基板処理方法
US7452568B2 (en) * 2005-02-04 2008-11-18 International Business Machines Corporation Centrifugal method for filing high aspect ratio blind micro vias with powdered materials for circuit formation
JP4258663B2 (ja) * 2005-04-15 2009-04-30 セイコーエプソン株式会社 塗布装置および成膜装置
CN2867520Y (zh) * 2005-12-22 2007-02-07 奥迪恩科技股份有限公司 一种光盘制造装置
DE102006042632A1 (de) * 2006-08-31 2008-03-20 Holder, Jochen Verfahren zur Beschichtung von Bauteilen mit einem Lack
EP2098484A1 (en) * 2008-02-15 2009-09-09 Imec Synthesis of zeolite crystals and formation of carbon nanostructures in patterned structures
WO2011155299A1 (ja) * 2010-06-09 2011-12-15 シャープ株式会社 レベリング処理装置およびこれを備えた塗布膜製造装置ならびに塗布膜製造方法
RU2604631C1 (ru) * 2011-05-26 2016-12-10 Адвенира Энтерпрайзис, Инк. Способ нанесения покрытия на объект
US8889222B1 (en) 2013-12-03 2014-11-18 Advenira Enterprises, Inc. Coating material distribution using simultaneous rotation and vibration

Also Published As

Publication number Publication date
CN105873686A (zh) 2016-08-17
KR101702277B1 (ko) 2017-02-03
RU2610496C1 (ru) 2017-02-13
JP2017501022A (ja) 2017-01-12
CA2932103A1 (en) 2015-06-11
WO2015084490A1 (en) 2015-06-11
CA2932103C (en) 2016-11-22
US20150151327A1 (en) 2015-06-04
US9272306B2 (en) 2016-03-01
KR20160084488A (ko) 2016-07-13
CN105873686B (zh) 2018-08-24
US8889222B1 (en) 2014-11-18

Similar Documents

Publication Publication Date Title
JP6085068B2 (ja) 同時回転および振動を使用したコーティング材料分布
JP5872102B1 (ja) オブジェクトを塗布するためのシステム及びプロセス
AU2012258531A1 (en) System and process for coating an object
JP6352922B2 (ja) 交互積層法の制御及び効率を改良するための方法、材料及び装置
CN112313012B (zh) 厚度限制式电喷雾沉积
US8168255B2 (en) Coating method and manufacturing method of photochromic lens
JP2005218994A (ja) 塗布方法及び眼鏡レンズの製造方法
WO2014201407A1 (en) Formation of superhydrophobic surfaces
US20160260623A1 (en) Method and Apparatus for Planarization of Substrate Coatings
WO2022068441A1 (zh) 一种基于结构浸蘸-原位拖拽成形的超疏油表面制备方法
TW201528369A (zh) 基板上之自組裝單分子膜或周期性有機矽酸鹽的旋轉塗佈用系統及方法
JP4616415B2 (ja) 撥水性膜、及びその製造方法
CN110383112A (zh) 透镜和透镜的制造方法
JP5933724B2 (ja) 支持ウェハを被覆する装置及び方法
JP5015020B2 (ja) 少なくとも1つの窪み領域を備える支持体の表面にポリマ層を堆積する方法
JP2011161434A (ja) 撥水性及び親水性の領域を有するパターン化膜、及びその製造方法

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170126

R150 Certificate of patent or registration of utility model

Ref document number: 6085068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees