WO2022068441A1 - 一种基于结构浸蘸-原位拖拽成形的超疏油表面制备方法 - Google Patents

一种基于结构浸蘸-原位拖拽成形的超疏油表面制备方法 Download PDF

Info

Publication number
WO2022068441A1
WO2022068441A1 PCT/CN2021/112955 CN2021112955W WO2022068441A1 WO 2022068441 A1 WO2022068441 A1 WO 2022068441A1 CN 2021112955 W CN2021112955 W CN 2021112955W WO 2022068441 A1 WO2022068441 A1 WO 2022068441A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
polymer material
columnar structure
nano columnar
nano
Prior art date
Application number
PCT/CN2021/112955
Other languages
English (en)
French (fr)
Inventor
金卫凤
陈薇玫
李健
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2022068441A1 publication Critical patent/WO2022068441A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00206Processes for functionalising a surface, e.g. provide the surface with specific mechanical, chemical or biological properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00111Tips, pillars, i.e. raised structures

Definitions

  • the invention relates to the technical field of functional surface preparation, in particular to a structural dip-in-situ drag forming method for preparing superoleophobic surfaces, which is suitable for the preparation of polymer superoleophobic surfaces, and is especially suitable for superoleophobic surfaces under simple conditions. Preparation of oleophobic surfaces.
  • a superoleophobic surface refers to a surface that enables droplets with low surface tension to exhibit a large contact angle on their surface. Due to this function, superoleophobic surfaces have received extensive attention in recent years.
  • Superoleophobic surfaces usually fulfill their functions in a special structural form.
  • the patent 201210569918.9, 201210569815.2
  • the preparation of the secondary groove structure to realize the superoleophobic function of the surface is based on one-step forming, by selectively dipping the microstructured surface with polydimethylpolysiloxane PDMS (Sylgard 184, Dow Corning) and pressing the microstructured surface dipped in PDMS onto the surface.
  • the secondary groove structure is realized on the smooth surface.
  • the capillary forming method uses a primary microstructure to guide a thin layer of PDMS to achieve a secondary groove structure, but due to the need to control the thickness of the PDMS, the height of the realized groove structure is limited at this time, which easily leads to the failure of superoleophobic surface performance .
  • the present invention proposes a method based on structural dip-in-situ drag forming.
  • the purpose of the present invention is to provide a structural dip-in-situ drag forming method for preparing superoleophobic surfaces, so as to realize the controllable preparation of superoleophobic surfaces of polymer materials under simple conditions.
  • a structural dip-in-situ drag forming method for preparing a superoleophobic surface is carried out according to the following steps:
  • the surface of the micro-nano columnar structure of common polymer materials is prepared by the replication molding method or the hot pressing method, and the surface of the micro-nano structure is treated by plasma to improve the surface energy of the surface;
  • step (1) it is necessary to first prepare the surface of the micro-nano columnar structure of the common polymer material, which can be prepared by the replication molding method of the thermosetting polymer material.
  • the surface of nano-columnar structure; or prepared by the thermoforming process of thermoplastic polymer material the thermoplastic polymer material is pressed onto the hole template, and the hole template is heated to realize microstructure forming, and the thermoplastic polymer material is removed after cooling to obtain Micro-pillar structure surface.
  • step (1) of the above method it is necessary to perform plasma treatment on the surface of the obtained micro-nano columnar structure to increase the surface energy and enhance the bonding strength between the secondary groove structure to be formed and the columnar structure.
  • the treatment process is to prepare the micro-nano columnar structure.
  • the columnar structure is placed in the vacuum chamber of a general plasma processing machine, and the micro-nano columnar surface is irradiated with a 13.56MHz radio frequency plasma.
  • the plasma power is between 100W and 600W, and the processing time is 10s to 600s.
  • step (2) it is necessary to coat the silanized auxiliary smooth surface with a polymer of a certain thickness, and the process is: at first, a layer of monosilane with little surface energy is deposited on the auxiliary smooth surface by vacuum vapor deposition method. , and then drop the liquid polymer material PDMS on the treated auxiliary smooth surface and spread the polymer to the required thickness.
  • the thickness of the polymer material can be controlled by the glue dispenser.
  • the rotation speed of the glue dispenser is set to 600 rpm to 4000 rpm, the glue mixing time is set to 10s to 60s, and the thickness of the polymer material ranges from 1 to 10 ⁇ m.
  • step (2) of the above method the surface of the micro-nano columnar structure after plasma treatment needs to be dipped into the polymer material, and the surface of the micro-nano columnar structure is lifted so that the dipped polymer material is simultaneously mixed with the micro-nano columnar structure and the polymer material.
  • the auxiliary smooth plane contacts and realizes necking, and then the polymer material is cured, and finally the surface of the secondary groove structure is obtained.
  • step (2) of the above method the requirement for lifting the surface of the micro-nano columnar structure is that the lifting height of the surface of the micro-nano columnar structure is 3-10 times the thickness of the aforementioned liquid polymer material.
  • the elevation height of the surface of the micro/nano columnar structure refers to the distance between the micro/nano columnar structure and the auxiliary smooth surface.
  • step (2) the polymer material is cured and the curing method is selected according to the properties of the material, and the thermal curing method is selected when the thermal curing material is used. ⁇ 120 minutes, cool slowly with the oven.
  • the prepared secondary groove structure is at the top of the micro-nano columnar structure, which can ensure the distance from the root position of the micro-nano columnar structure when the oil is in contact.
  • the drag method is used to realize the deformation of the material, and the uncertainty caused by the deformation of the micro-nano structure under pressure in the two-step forming method is removed.
  • Fig. 1 is based on the structure dipping-in-situ drag forming superoleophobic preparation method flow
  • the structural dip-in-situ drag forming method for preparing superoleophobic surface is shown in Figure 1, which mainly includes two steps: preparing a common micro-nano structure surface; Surface of the groove structure.
  • the preparation method of the surface can adopt the replication molding method or the hot pressing deformation method.
  • the replication molding method a hole template that is structurally complementary to the surface 1 of the micro-nano columnar structure of the common polymer material to be processed is first prepared.
  • the surface 1 of the micro-nano columnar structure of common polymer material can be obtained by demolding treatment.
  • the hot pressing deformation method a hole template complementary to the surface 1 of the micro-nano columnar structure of the common polymer material to be processed is first prepared.
  • thermoplastic polymer sheet is deformed by heating, and the heating temperature is selected as the softening temperature of the polymer material. After reaching the softening temperature, the temperature is kept for 5 minutes, and then the hole template is cooled to room temperature.
  • Nano-pillar structure surface 1 is selected as the softening temperature of the polymer material. After reaching the softening temperature, the temperature is kept for 5 minutes, and then the hole template is cooled to room temperature.
  • the surface of the prepared ordinary micro-nano columnar structure needs to be hydrophilized to improve the bonding strength between the secondary groove structure to be formed and the existing structure.
  • the process is: the surface of the prepared micro-nano columnar structure is sent to the plasma irradiation part in the cavity of the plasma treatment machine, the cavity is evacuated, and a small amount of inert gas is injected to generate plasma at a higher voltage, and the plasma effect On the surface of the micro-nano columnar structure, the surface energy of the surface is increased to form a hydrophilic layer 4 .
  • the plasma-treated surface of the micro-nano columnar structure is taken out of the vacuum chamber for use.
  • auxiliary smooth surface 2 Prepares an auxiliary smooth surface 2, and carry out silanization treatment on the auxiliary smooth surface 2.
  • the treatment process is: place the auxiliary smooth surface 2 in a watch glass, and drop 1 microliter into the space not occupied by the auxiliary smooth surface in the watch glass.
  • Silane put the prepared watch glass together with the auxiliary smooth surface 2 into the vacuum drying box, vacuumize and heat it to 80 degrees Celsius, keep it for 1 hour, and then naturally cool down, take out the auxiliary smooth surface 2, and attach the monosilane hydrophobic layer 3 on it to reduce
  • the bonding strength between the secondary groove structure to be prepared and the auxiliary smooth surface 2 is small, which is beneficial to the subsequent separation process.
  • a layer of liquid polymer film 5 with a thickness of 1 to 10 ⁇ m is coated on the auxiliary smooth surface 2 after hydrophobization treatment by a glue machine.
  • V ⁇ 20 ⁇ L) is poured onto the smooth and flat surface 2 with the hydrophobic layer 3, and the liquid polymer film is spread to the desired thickness (1-10 ⁇ m) by a glue dispenser.
  • the necked liquid polymer 6 is heated and solidified and separated from the auxiliary smooth surface 2 to obtain a surface 7 with a secondary groove structure.
  • the existing analysis results show that (Ahuja A, Taylor J A, Lifton V, Sidorenko A A, Salamon T R, Lobaton E J, Kolodner P, Krupenkin T N. Nanoonails: A Simple Geometrical Approach to Electrically Tunable Superlyophobic Surfaces. Langmuir 2008 , 24:9-14. and Tuteja A, Choi W, Ma M, Mabry J M, Mazzella S A, Rutledge G C, McKinley G H, Cohen R E. Designing Superoleophobic Surfaces. Science 2007, 318:1618-1622. ), such surfaces can achieve superoleophobic properties.
  • Embodiment 1 liquid polymer film 5 selects PDMS, and smooth flat surface 2 selects smooth Si surface
  • the common micro-nano columnar structure surface 1 was prepared by the replication molding method, in which the template was a hole array template, the holes were circular holes, the hole diameter was 50 ⁇ m, and the hole spacing was 100 ⁇ m.
  • the process is as follows: take a small amount of polydimethylpolysiloxane PDMS (purchased from Dow Corning, USA, trade name Sylgard 184A) and pour it on the template, and then send the template on which the PDMS is spread to a vacuum drying box and place it in a 60 °C environment for reaction After 2 hours, the PDMS replica was removed from the template after curing, and the replica was the surface of the ordinary micro-nano columnar structure.
  • the surface of the obtained PDMS micro-nano columnar structure was treated by a 13.56MHz radio frequency plasma at a power of 200W for 3 minutes to improve the hydrophilicity of the surface of the micro-nano columnar structure.
  • the surface of the smooth silicon wafer is silanized, and the monosilane used is 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane, and the treated surface has a hydrophobic thin layer. Then drop a small amount of PDMS (volume ⁇ 20 ⁇ L) on the smooth silicon wafer, and make the silicon wafer rotate at a speed of 2000 r/min through a glue spinner. At this time, a smooth and flat silicon wafer coated with a liquid PDMS film can be obtained.
  • the PDMS microstructured surface was removed from the silicon wafer surface after 2 hours.
  • the microstructured surface prepared at this time is the microstructured surface with secondary grooves.
  • the secondary groove structure can effectively control the spreading of the oil between the microstructures, so as to build a composite interface between the oil and the microstructure, so that the oil is in a Cassie contact state on the surface of the microstructure, that is, it has two
  • the microstructured surface of the sub-groove structure has superoleophobic properties. Therefore, the surfaces with secondary groove microstructures prepared in this example theoretically have superoleophobic properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Micromachines (AREA)

Abstract

本发明公开了一种基于结构浸蘸-原位拖拽成形的超疏油表面制备方法,涉及功能表面制备技术领域。按照下述步骤进行:(1)通过复制模塑法或热压成形法制备出普通的聚合物材料微纳柱状结构表面,并通过等离子体处理微纳结构表面,提升表面的表面能;(2)在经硅烷化处理的辅助光滑平面上涂覆一定厚度的聚合物材料;将经等离子体处理后的微纳柱状结构表面浸蘸到聚合物材料内,抬升微纳柱状结构表面使所浸蘸的聚合物材料同时与微纳柱状结构和辅助光滑平面接触并实现缩颈,对聚合物材料进行固化处理,分离表面从而实现二次凹槽结构的制备。本发明制备的二次凹槽结构在微纳柱状结构的顶端,可使油液接触时距离微纳柱状结构根部位置的距离得到保证。

Description

一种基于结构浸蘸-原位拖拽成形的超疏油表面制备方法 技术领域
本发明涉及功能表面制备技术领域,特指一种制备超疏油表面的结构浸蘸-原位拖拽成形方法,其适用于聚合物超疏油表面的制备,尤其适用于简易条件下的超疏油表面的制备。
背景技术
超疏油表面是指能够使表面张力较小的液滴能够在其表面呈现大接触角的表面。由于具有这一功能,超疏油表面在近年来得到了广泛的关注。
超疏油表面通常以特殊的结构形式来实现其功能。为实现表面的超疏油功能,专利(201210569918.9,201210569815.2)提出了系列的超疏油表面制备方法,实现文献(Ahuja A,Taylor J A,Lifton V,Sidorenko A A,Salamon T R,Lobaton E J,Kolodner P,Krupenkin T N.Nanonails:A Simple Geometrical Approach to Electrically Tunable Superlyophobic Surfaces.Langmuir 2008,24:9-14.和Tuteja A,Choi W,Ma M,Mabry J M,Mazzella S A,Rutledge G C,McKinley G H,Cohen R E.Designing Superoleophobic Surfaces.Science 2007,318:1618-1622.)所述的二次凹槽结构的制备,以实现表面的超疏油功能。二步成形法(201210569918.9)是在一步成形的基础上,通过微结构表面选择性浸蘸聚二甲聚硅氧烷PDMS(Sylgard 184,Dow Corning)并将浸蘸有PDMS的微结构表面压置在光滑表面实现二次凹槽结构,采用这种方法实现凹槽结构时要求精确控制浸蘸的PDMS量,PDMS量太大容易堵塞一次结构,PDMS量太小则难以实现二次凹槽结构。此外,二步成形法中的压力作用会导致已有微结构变形,从而使方法失效。毛细成形法(201210569815.2)采用一次微结构引导薄层PDMS实现二次凹槽结构,但由于需要控制PDMS的厚度,此时实现的凹槽结构的高度有限,这容易导致超疏油表面性能的失效。
总之,已有的多种超疏油表面制备方法,但就目前制备超疏油表面方法来看,二步成形法的二次成形PDMS量偏小容易导致制备的超疏油表面失效,毛细成形法中PDMS量偏小时形成的结构高度太小不容易保证超疏油性能。为实现超疏油表面的制备,本发明提出一种基于结构浸蘸-原位拖拽成形方法。
发明内容
本发明的目的是提供一种用于制备超疏油表面的结构浸蘸-原位拖拽成形方法,实现简易条件下的聚合物材料的超疏油表面的可控制备。
本发明按下述技术方案实现:
一种用于制备超疏油表面的结构浸蘸-原位拖拽成形方法,按照下述步骤进行:
(1)通过复制模塑法或热压成形法制备出普通的聚合物材料微纳柱状结构表面,并通过等离子体处理微纳结构表面,提升表面的表面能;
(2)在经硅烷化处理的辅助光滑平面上涂覆一定厚度的聚合物材料;将经等离子体处理后的微纳柱状结构表面浸蘸到聚合物材料内,抬升微纳柱状结构表面使所浸蘸的聚合物材料同时与微纳柱状结构和辅助光滑平面接触并实现缩颈,对聚合物材料进行固化处理,分离表面从而实现二次凹槽结构的制备。
上述方法步骤(1)中,需要首先制备普通的聚合物材料微纳柱状结构表面,可通过热固性聚合物材料的复制模塑法制备,将液态热固性聚合物材料倾倒于孔模板上加热固化获取微纳柱状结构表面;或者通过热塑性聚合物材料的热压成形工艺制备,将热塑性聚合物材料加压到孔模板上,并对孔模板加热实现微结构成形,冷却后取下热塑性聚合物材料即获取微柱结构表面。
上述方法步骤(1)中,需要对获取的微纳柱状结构表面进行等离子体处理以提升表面能,增强待成形二次凹槽结构与柱状结构间的结合强度,处理过程是将制备的微纳柱状结构置于一般的等离子体处理机器的真空腔内,采用13.56MHz的射频等离子体辐照微纳柱状表面,等离子体功率为100W~600W之间,处理时间为10s~600s。
上述方法步骤(2)中,需要在经硅烷化处理的辅助光滑平面上涂覆一定厚度的聚合物,过程是:首先通过真空气相沉积法在辅助光滑表面上沉积一层表面能小的甲硅烷,再将液态聚合物材料PDMS滴放于处理后的辅助光滑表面上并使聚合物铺展到所需的厚度,可通过匀胶机来控制聚合物材料的厚度,匀胶机旋转速度设置为600转/分~4000转/分,匀胶时间设置为10s~60s,聚合物材料厚度范围为1~10μm。
上述方法步骤(2)中,需要将经等离子体处理后的微纳柱状结构表面浸蘸到聚合物材料内,抬升微纳柱状结构表面使所浸蘸的聚合物材料同时与微纳柱状结构和辅助光滑平面接触并实现缩颈,进而对聚合物材料进行固化处理,最终获取二次凹槽结构表面。
上述方法步骤(2)中,抬升微纳柱状结构表面的要求是:微纳柱状结构表面的抬升高度为前述液体聚合物材料厚度的3~10倍。
上述方法步骤(2)中,微纳柱状结构表面的抬升高度是指微纳柱状结构与辅助光滑表面之间的距离。
上述方法步骤(2)中,对聚合物材料进行固化处理根据材料的性能来选择固化方法,使用热固化材料时选用热固化方法,对液体聚合物PDMS升温至60℃~90℃,保温60分钟~120分钟,随炉缓冷。
本发明具有如下技术优势:
(1)制备的二次凹槽结构在微纳柱状结构的顶端,可使油液接触时距离微纳柱状结构根部位置的距离得到保证。
(2)采用拖拽法实现材料的变形,去除二步成形法中微纳结构在压力作用下变形带来的不确定性。
附图说明
图1基于结构浸蘸-原位拖拽成形超疏油制备方法流程;
1微纳柱状结构表面,2辅助光滑表面,3甲硅烷疏水层,4亲水层,5液态聚合物薄膜,6缩颈液态聚合物,7具有二次凹槽结构的超疏油表面。
具体实施方式
下面结合图1说明本发明提出的具体工艺的实施细节和工作情况。
制备超疏油表面的结构浸蘸-原位拖拽成形方法如附图1所示,主要包括两个步骤:制备普通的微纳结构表面;在普通的微纳结构表面上构造出具有二次凹槽结构的表面。
首先需要通过一定的方法制备出普通聚合物材料微纳柱状结构表面1,该表面的制备方法可采用复制模塑法或热压变形法。采用复制模塑法时首先要制备出与待加工的普通聚合物材料微纳柱状结构表面1在结构上互补的孔模板,通过在模板上浇注能够实现固化的聚合物材料并使其聚合固化,再进行脱模处理即可获取普通聚合物材料微纳柱状结构表面1。采用热压变形法时,首先要制备出与待加工的普通聚合物材料微纳柱状结构表面1在结构上互补的孔模板,通过将热塑性聚合物片材下压在模板上,并对孔模板加热使热塑性聚合物片材变形,加热温度选择为聚合物材料的软化温度,达到软化温度后保温保压5分钟,之后冷却孔模板至室温,再进行脱模处理即可获取普通聚合物材料微纳柱状结构表面1
为实现基于结构浸蘸-原位拖拽成形方法,需要对制备的普通微纳柱状结构表面进行亲水化处理,以提升待成形的二次凹槽结构与已有结构间的结合强度,实现过程是:将制备的微纳柱状结构表面送入等离子体处理机器腔体内的等离子体辐照部位,对腔体抽真空,并注入少量惰性气体,在较高电压下产生等离子体,等离子体作用于微纳柱状结构表面,使表面的表面能提升,形成亲水层4。将经等离子体处理后的微纳柱状结构表面从真空腔取出待用。准备一辅助光滑表面2,对该辅助光滑表面2进行硅烷化处理,处理过程是:将辅助光滑表面2放置于表面皿内,在表面皿内未被辅助光滑表面占用的空间滴加1微升甲硅烷,并将准备好表面皿连同辅助光滑表面2送入真空干燥箱,抽真空并加热到80摄氏度,保温1小时自然冷却后取出辅助光滑表面2,其上附着甲硅烷疏水层3,减小待制备的 二次凹槽结构与辅助光滑表面2之间的结合强度,利于后续的分离工序。
在疏水化处理后的辅助光滑表面2上通过匀胶机涂覆一层1~10μm厚的液态聚合物薄膜5,对于通常处于液态的聚合物,将微量液态聚合物薄膜5(体积为1μL<V<20μL)倾倒于具有疏水层3的光滑平直表面2上,通过匀胶机使液态聚合物薄膜铺展到所需的厚度(1~10μm)。将已准备好的具有亲水层4的微纳柱状结构表面1与辅助光滑表面2上的液态聚合物薄膜5接触,之后抬升微纳柱状结构表面1,使液态聚合物薄膜在微纳柱状结构表面的拖拽作用下变形,形成缩颈液态聚合物6,对缩颈液态聚合物6加热固化并从辅助光滑表面2上分离下来,即可获取具有二次凹槽结构的表面7。已有的分析结果表明(Ahuja A,Taylor J A,Lifton V,Sidorenko A A,Salamon T R,Lobaton E J,Kolodner P,Krupenkin T N.Nanonails:A Simple Geometrical Approach to Electrically Tunable Superlyophobic Surfaces.Langmuir 2008,24:9-14.和Tuteja A,Choi W,Ma M,Mabry J M,Mazzella S A,Rutledge G C,McKinley G H,Cohen R E.Designing Superoleophobic Surfaces.Science 2007,318:1618-1622.),此类表面可实现超疏油性能。
实施例1(液态聚合物薄膜5选用PDMS,光滑平直表面2选用光滑Si表面)
采用复制模塑法制备普通的微纳柱状结构表面1,其中模板选用孔阵列模板,孔为圆形孔,孔径为50μm,孔间距为100μm,复制模塑采用的材料为PDMS,复制模塑的过程为:取少量聚二甲聚硅氧烷PDMS(购置于美国道康宁公司,商品名Sylgard 184A)倾倒于模板上,再将铺展PDMS的模板送到真空干燥箱中置于60℃的环境下反应2小时,经固化后从模板上取下PDMS复制品,该复制品即为普通微纳柱状结构表面。将获得的PDMS微纳柱状结构表面通过13.56MHz的射频等离子体在功率为200W时处理3分钟,提升微纳柱状结构表面的亲水性。
对光滑硅片表面进行硅烷化处理,所用的甲硅烷为1H,1H,2H,2H-全氟癸基三乙氧基甲硅烷,处理后的表面具有疏水薄层。再在光滑硅片上滴少量PDMS(体积<20μL),通过匀胶机使硅片的旋转速度达2000转/分,此时可获取涂敷液态PDMS薄膜的光滑平直硅片。将获得的微纳柱状结构表面沉浸到PDMS薄膜中并迅速抬升至50μm,保持该状态并将光滑平直的硅片表面连同微纳柱状结构表面送入真空干燥箱中升温至60℃,经过固化2小时后从硅片表面上取下PDMS微结构表面。此时制备出的微结构表面即为具有二次凹槽的微结构表面。根据已有的理论和实验结果(Tuteja A,Choi W,Ma M,Mabry J M,Mazzella S A,Rutledge G C,McKinley G H,Cohen R E.Designing Superoleophobic Surfaces.Science 2007,318:1618-1622.),二次凹槽结构能够有效地控制油液在微结构间的铺展,从而构建出油液与微结构间的复合界面,使油液在微结构表面上处于Cassie接触状态,即具有二次凹槽结构的微结构表面具有超疏油性能。因此,本实施例中所制备的具有二次凹槽微结构的表面理论上具 有超疏油性能。

Claims (8)

  1. 一种用于制备超疏油表面的结构浸蘸-原位拖拽成形方法,其特征在于按照下述步骤进行:
    (1)通过复制模塑法或热压成形法制备出普通的聚合物材料微纳柱状结构表面,并通过等离子体处理微纳结构表面,提升表面的表面能;
    (2)在经硅烷化处理的辅助光滑平面上涂覆一定厚度的聚合物材料;将经等离子体处理后的微纳柱状结构表面浸蘸到聚合物材料内,抬升微纳柱状结构表面使所浸蘸的聚合物材料同时与微纳柱状结构和辅助光滑平面接触并实现缩颈,对聚合物材料进行固化处理,分离表面从而实现二次凹槽结构的制备。
  2. 根据权利要求1所述的一种用于制备超疏油表面的结构浸蘸-原位拖拽成形方法,其特征在于步骤(1)中,需要首先制备普通的聚合物材料微纳柱状结构表面,可通过热固性聚合物材料的复制模塑法制备,将液态热固性聚合物材料倾倒于孔模板上加热固化获取微纳柱状结构表面;或者通过热塑性聚合物材料的热压成形工艺制备,将热塑性聚合物材料加压到孔模板上,并对孔模板加热实现微结构成形,冷却后取下热塑性聚合物材料即获取微柱结构表面。
  3. 根据权利要求1所述的一种用于制备超疏油表面的结构浸蘸-原位拖拽成形方法,其特征在于步骤(1)中,需要对获取的微纳柱状结构表面进行等离子体处理以提升表面能,增强待成形二次凹槽结构与柱状结构间的结合强度,处理过程是将制备的微纳柱状结构置于一般的等离子体处理机器的真空腔内,采用13.56MHz的射频等离子体辐照微纳柱状表面,等离子体功率为100W~600W之间,处理时间为10s~600s。
  4. 根据权利要求1所述的一种用于制备超疏油表面的结构浸蘸-原位拖拽成形方法,其特征在于步骤(2)中,需要在经硅烷化处理的辅助光滑平面上涂覆一定厚度的聚合物,过程是:首先通过真空气相沉积法在辅助光滑表面上沉积一层表面能小的甲硅烷,再将液态聚合物材料PDMS滴放于处理后的辅助光滑表面上并使聚合物铺展到所需的厚度,可通过匀胶机来控制聚合物材料的厚度,匀胶机旋转速度设置为600转/分~4000转/分,匀胶时间设置为10s~60s,聚合物材料厚度范围为1~10μm。
  5. 根据权利要求1所述的一种用于制备超疏油表面的结构浸蘸-原位拖拽成形方法,其特征在于步骤(2)中,需要将经等离子体处理后的微纳柱状结构表 面浸蘸到聚合物材料内,抬升微纳柱状结构表面使所浸蘸的聚合物材料同时与微纳柱状结构和辅助光滑平面接触并实现缩颈,进而对聚合物材料进行固化处理,最终获取二次凹槽结构表面。
  6. 根据权利要求1所述的一种用于制备超疏油表面的结构浸蘸-原位拖拽成形方法,其特征在于步骤(2)中,抬升微纳柱状结构表面的要求是:微纳柱状结构表面的抬升高度为前述液体聚合物材料厚度的3~10倍。
  7. 根据权利要求1所述的一种用于制备超疏油表面的结构浸蘸-原位拖拽成形方法,其特征在于步骤(2)中,微纳柱状结构表面的抬升高度是指微纳柱状结构与辅助光滑表面之间的距离。
  8. 根据权利要求1所述的一种用于制备超疏油表面的结构浸蘸-原位拖拽成形方法,其特征在于步骤(2)中,对聚合物材料进行固化处理根据材料的性能来选择固化方法,使用热固化材料时选用热固化方法,对液体聚合物PDMS升温至60℃~90℃,保温60分钟~120分钟,随炉缓冷。
PCT/CN2021/112955 2020-09-29 2021-08-17 一种基于结构浸蘸-原位拖拽成形的超疏油表面制备方法 WO2022068441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011046931.7 2020-09-29
CN202011046931.7A CN112250033A (zh) 2020-09-29 2020-09-29 一种基于结构浸蘸-原位拖拽成形的超疏油表面制备方法

Publications (1)

Publication Number Publication Date
WO2022068441A1 true WO2022068441A1 (zh) 2022-04-07

Family

ID=74233418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112955 WO2022068441A1 (zh) 2020-09-29 2021-08-17 一种基于结构浸蘸-原位拖拽成形的超疏油表面制备方法

Country Status (2)

Country Link
CN (1) CN112250033A (zh)
WO (1) WO2022068441A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250033A (zh) * 2020-09-29 2021-01-22 江苏大学 一种基于结构浸蘸-原位拖拽成形的超疏油表面制备方法
CN113148944B (zh) * 2021-02-02 2022-08-05 南京航空航天大学 一种用于蘑菇头微柱阵列制造的精密蘸取机构及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110244189A1 (en) * 2006-03-23 2011-10-06 Lucent Technologies Inc. Super-phobic surface structures
CN103011063A (zh) * 2012-12-25 2013-04-03 江苏大学 一种制备超疏油表面的毛细成形法
CN103030104A (zh) * 2012-12-25 2013-04-10 江苏大学 一种制备超疏油表面的二步成形法
CN104445058A (zh) * 2014-10-23 2015-03-25 北京科技大学 Ps小球和金纳米颗粒的微纳复合系统的有序组装方法
CN105386090A (zh) * 2015-11-09 2016-03-09 广东工业大学 一种具有内凹微孔的超疏油金属表面的制备方法
CN112250033A (zh) * 2020-09-29 2021-01-22 江苏大学 一种基于结构浸蘸-原位拖拽成形的超疏油表面制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678038B2 (en) * 2001-07-25 2017-06-13 The Trustees Of Princeton University Nanochannel arrays and their preparation and use for high throughput macromolecular analysis
JP4466074B2 (ja) * 2003-12-26 2010-05-26 株式会社日立製作所 微細金属構造体とその製造方法、並びに微細金型とデバイス
CN105216295A (zh) * 2015-10-29 2016-01-06 广东工业大学 一种聚合物超疏油表面的制备方法
CN108545694B (zh) * 2018-06-21 2020-06-30 西安建筑科技大学 一种具有奇异微结构的超疏水薄膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110244189A1 (en) * 2006-03-23 2011-10-06 Lucent Technologies Inc. Super-phobic surface structures
CN103011063A (zh) * 2012-12-25 2013-04-03 江苏大学 一种制备超疏油表面的毛细成形法
CN103030104A (zh) * 2012-12-25 2013-04-10 江苏大学 一种制备超疏油表面的二步成形法
CN104445058A (zh) * 2014-10-23 2015-03-25 北京科技大学 Ps小球和金纳米颗粒的微纳复合系统的有序组装方法
CN105386090A (zh) * 2015-11-09 2016-03-09 广东工业大学 一种具有内凹微孔的超疏油金属表面的制备方法
CN112250033A (zh) * 2020-09-29 2021-01-22 江苏大学 一种基于结构浸蘸-原位拖拽成形的超疏油表面制备方法

Also Published As

Publication number Publication date
CN112250033A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2022068441A1 (zh) 一种基于结构浸蘸-原位拖拽成形的超疏油表面制备方法
WO2022068191A1 (zh) 基于空气模法的光滑倾斜底面微结构阵列表面制备方法
CN105777206B (zh) 一种制备超薄有机硅膜的方法
CN103030104A (zh) 一种制备超疏油表面的二步成形法
US20150175467A1 (en) Mold, method for producing a mold, and method for forming a mold article
CN108452855B (zh) 微流控芯片的加工方法
CN101481079B (zh) 一种微纳米透镜阵列的制备方法
TWI526407B (zh) 形成含有玻璃組成份之方法
CN103753984B (zh) 印章、印章的制备方法以及液滴阵列的制备方法
EP3718987B1 (en) Production method of a ceramic compact
US10398041B2 (en) Making a hydrophobic surface for an object
CN111977611B (zh) 一种微纳跨尺度聚合物喷针的制造方法
CN103588165B (zh) 一种三维跨尺度碳电极阵列结构及其制备方法
CN105731364A (zh) 基于表面氧化控制转移印刷的pdms弹性体微纳加工方法
JP6085068B2 (ja) 同時回転および振動を使用したコーティング材料分布
CN105731365A (zh) 基于交联控制转移印刷的pdms弹性体微纳加工方法
CN108646520B (zh) 基于接近式紫外曝光和生长薄膜法制备纳米通道的方法
CN103395739A (zh) 一种微凹面镜的制备方法
CN103724639A (zh) 一种利用热喷涂模板法制备超疏水聚合物表面的方法
KR101583605B1 (ko) 마이크로-나노 패턴이 형성된 폴리머 미세 유체 채널 및 그 제조방법
CN104708800A (zh) 制作环烯烃类聚合物微流控芯片中微纳结构的软压印方法
JP2010158889A5 (zh)
JP2019177304A (ja) 流体デバイス用複合部材およびその製造方法
KR101221332B1 (ko) 3차원 형상제어기반 단분산성 고분자 마이크로 입자의 제조 방법
WO2023142479A1 (zh) 一种倾斜微孔阵列的倒置气体膨胀成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874103

Country of ref document: EP

Kind code of ref document: A1