WO2022068191A1 - 基于空气模法的光滑倾斜底面微结构阵列表面制备方法 - Google Patents

基于空气模法的光滑倾斜底面微结构阵列表面制备方法 Download PDF

Info

Publication number
WO2022068191A1
WO2022068191A1 PCT/CN2021/090483 CN2021090483W WO2022068191A1 WO 2022068191 A1 WO2022068191 A1 WO 2022068191A1 CN 2021090483 W CN2021090483 W CN 2021090483W WO 2022068191 A1 WO2022068191 A1 WO 2022068191A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstructure
array
template
polymer
auxiliary
Prior art date
Application number
PCT/CN2021/090483
Other languages
English (en)
French (fr)
Inventor
李健
曾繁林
王腊梅
傅饶
刘港
罗杰
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to JP2021574350A priority Critical patent/JP7202743B2/ja
Priority to DE112021000024.1T priority patent/DE112021000024T5/de
Priority to GB2115392.9A priority patent/GB2598852B/en
Priority to US17/604,444 priority patent/US11655144B2/en
Publication of WO2022068191A1 publication Critical patent/WO2022068191A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00087Holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00388Etch mask forming

Definitions

  • the invention relates to the technical field of functional surface preparation, in particular to an air mold forming method for preparing a smooth inclined bottom surface microstructure array surface, which is suitable for the preparation of a polymer smooth inclined bottom surface microstructure array surface, and is especially suitable for smooth and inclined bottom surface microstructure array surfaces under simple conditions. Preparation of slanted bottom microstructured array surfaces.
  • the microstructure array surface with a smooth inclined bottom surface refers to a microstructured surface with a smooth inclined bottom surface at the bottom of the surface microstructure. Such a surface can be used as a textured friction pair and can also be used to guide the directional movement of droplets. It has potential application value in recent years. has received widespread attention.
  • the surface of the microstructure array with a smooth inclined bottom usually needs to ensure the surface quality of the bottom of the microstructure. Since the microstructure is in the micrometer scale, it is difficult to achieve by mechanical processing methods and chemical etching methods. In order to realize the preparation of the microstructure of the inclined bottom surface, the diamond grinding tool grinding method is generally used, but this method is difficult to realize the control of the opening shape of the microstructure, and the grinding surface quality is difficult to guarantee.
  • the gas mold method (ZL200910024713.0) is a polymer material forming method that controls the shape of the microstructure by adjusting the gas pressure, and can be used to prepare micro-nano lenses. The formation of the microstructure in this method has better flexibility.
  • the bubble growth in the gas model method shows a certain degree of fit when it encounters the solid wall. wall characteristics, and the polymer forming also acts as a smooth confinement wall. Under this idea, if the confinement wall is set as an inclined surface, the preparation of a smooth inclined bottom surface microstructure can be realized.
  • the gas-mode method combined with a template with inclined structures is expected to achieve smooth inclined-bottom microstructured array surfaces.
  • the present invention proposes a preparation method of the smooth inclined bottom microstructure array surface based on the air mold method.
  • the object of the present invention is to provide an air mold method based on pre-spreading of auxiliary microstructure polymer template for smooth inclined bottom microstructure array surface, so as to realize the smooth inclined bottom microstructure array surface of polymer material under simple conditions. Control equipment.
  • a kind of air mold method based on auxiliary microstructure template pre-spreading for preparing smooth inclined bottom surface microstructure array surface according to the following steps:
  • the pressure of the vacuum drying oven is set according to the designed pressure value, and then the polymer material is heated and cured, and the surface is separated to realize the preparation of the surface of the microstructure array with a smooth inclined bottom surface.
  • step (1) it is necessary to first prepare a surface with a micro-hole array, which can be prepared by a traditional micro-machining method such as a laser direct writing method.
  • the diameter of the laser spot used is between 5 microns and 100 microns.
  • the overlap ratio of the laser spot is between 30% and 90%, and the area of the micropore to be processed is scanned, and the number of scans is between 5 and 20 times.
  • the shape of the opening can be a special shape or even a rectangular shape.
  • step (1) of the above method an auxiliary microstructure polymer template is prepared, and plasma treatment is performed on the auxiliary microstructure polymer template.
  • plasma treatment equipment to improve the surface energy, and the plasma is 13.56MHz.
  • the radio frequency plasma, the plasma power is between 100W and 600W, and the processing time is 10s to 600s.
  • uniformly spreading a layer of liquid polymer film to be formed on the plasma-treated auxiliary microstructure polymer template is: the liquid polymer material PDMS (polydimethylpolysiloxane) ) on the treated auxiliary microstructure polymer template and spread the polymer to the required thickness, the thickness of the polymer film obtained by spreading the polymer material can be controlled by the glue machine, and the rotation speed of the glue machine is set It is 200 rpm to 4000 rpm, the glue mixing time is set to 10s to 60s, the thickness of the polymer film is in the range of 1 to 100 ⁇ m, and the spreading area of the polymer material can completely cover the surface of the microporous array.
  • the liquid polymer material PDMS polydimethylpolysiloxane
  • step (2) placing the gap beads in the blank space on the surface of the microwell array is as follows: prepare the gap beads with the same diameter as the thickness of the polymer film, and place them in three positions in the blank space near the edge of the microwell array surface. For the gap balls, 5 to 100 gap balls are placed in each position, and the three positions for placing the gap balls are scattered and arranged, and the connection between the three positions forms an acute triangle.
  • the auxiliary microstructure polymer template spread with the liquid polymer film is placed on the gap beads on the surface of the microporous array, and the state is maintained and sent to the vacuum drying box:
  • the auxiliary microstructure polymer template of the polymer film is placed on the gap beads on the surface of the microwell array, so that the liquid polymer is in contact with the surface of the microwell array. Alignment situation, by adjusting the auxiliary microstructure polymer template, the microstructure on the template is aligned with the holes on the surface of the microwell array, and finally the liquid sealing of the gas in the microwell is realized, and the microwell array is maintained during the subsequent operation.
  • Surface level to restrict the flow of the liquid polymer film keep the liquid polymer film in sufficient contact and level with the surface of the microporous array, and send it to a vacuum drying oven for processing.
  • the pressure of the vacuum drying box is set according to the designed pressure value, and then the polymer material is heated and cured, and the surface is separated to realize the preparation of the surface of the microstructure array with a smooth inclined bottom surface: according to the depth of the micropore h, the polymer film Thickness h 1 , the range of the pressure P of the vacuum drying oven is calculated as h 1 P 0 /(h+h 1 )-4 ⁇ /h 1 ⁇ P ⁇ P 0 -hP 0 /(h+2h 1 /3), where P 0 is the atmospheric pressure, ⁇ is the surface tension of the forming material, the vacuum drying box is evacuated to the calculated pressure value P; the temperature is adjusted to 60 °C for 2 hours to solidify the formed polymer film; The prepared surface of the microstructured array with smooth inclined bottom surface attached to the auxiliary microstructured polymer template was isolated from the microporous template.
  • the pre-spreading of the liquid polymer is realized by the auxiliary microstructure template, so that the prepared surface has the bottom shape characteristics of the auxiliary microstructure polymer template and the opening shape characteristics of the air-molded microporous template at the same time.
  • the insufficiently smooth structure on the auxiliary microstructure polymer template is completely filled with the forming polymer, which can effectively improve the surface quality of the microstructure.
  • Fig. 1 The realization process of the surface preparation method of the smooth inclined bottom microstructure array based on the air mold method
  • Figure 2 The placement of the clearance balls on the surface of the micropore
  • Figure 3 is a schematic diagram of the template and the final prepared sample structure
  • the air mold method based on the pre-spreading of the auxiliary microstructure polymer template for preparing the surface of the smooth inclined bottom microstructure array is shown in Figure 1, which mainly includes five steps: preparing the micropore array surface; preparing the auxiliary microstructure polymer template, and Plasma treatment of the microstructured polymer template to increase the surface energy; pre-spreading the liquid forming polymer on the auxiliary microstructured polymer template; contacting the spread liquid forming polymer with the surface of the microporous array to form a liquid seal; Vacuum forming, curing and separation operations are carried out to realize the preparation of microstructures by air molding method.
  • a microhole array surface 1 needs to be prepared by a certain method.
  • the surface preparation method can be prepared by traditional micromachining methods such as laser direct writing processing method and photolithography processing method, and the prepared microhole depth is greater than the microhole width.
  • laser direct writing the laser beam is directly applied to the smooth surface, so that the material in the local area of the smooth surface can be removed, and specific holes can be obtained by repeating the material removal process and controlling the laser beam to scan a specific path; photolithography is used.
  • the mask plate is first customized, and then the photoresist is coated on a certain smooth substrate, and then the pattern of the mask plate is projected onto the photoresist through the photolithography exposure system, so that the photoresist has performance changes.
  • the microporous array surface is obtained by the development, hardening, etching, degumming and other processes.
  • the second step is to prepare an auxiliary microstructure polymer template 3, which has template grooves 4 in the auxiliary microstructure polymer template 3, and perform plasma treatment on the microstructure template to increase the surface energy to obtain the plasma-treated auxiliary microstructure polymer.
  • Template 5 The process of preparing the auxiliary microstructure polymer template is as follows: firstly, the through-groove array with the inclined bottom is prepared by the micro-imprint method or the diamond grinding method, and then the prepared through-groove array at the inclined bottom is copied by the replication molding method. come out.
  • the third step is to pre-spread the shaped polymer liquid 6 on the plasma-treated auxiliary microstructured polymer template 5 .
  • a layer of shaped polymer liquid 6 with a thickness of 1 to 100 ⁇ m is coated on the plasma-treated auxiliary microstructured polymer template 5 through a glue machine. 1 ⁇ L ⁇ V ⁇ 100 ⁇ L) was poured onto the plasma-treated auxiliary microstructured polymer template 5, and the liquid polymer film was spread to a desired thickness (1-100 ⁇ m) by a glue dispenser.
  • the fourth step is to contact the spread formed polymer liquid 6 with the microporous array surface 1 to form a liquid seal.
  • the plasma-treated auxiliary microstructure polymer template 5 of the spread forming polymer liquid 6 is placed on the gap bead, so that the spread forming polymer liquid 6 is in contact with the surface 1 of the microporous array.
  • the shaped polymer forms a specific shape under the action of surface tension and gas pressure, that is, the shaped polymer liquid 7 between the plasma-treated auxiliary microstructured polymer template 5 and the micropore array surface 1 is formed. Further, the alignment of the auxiliary microstructure polymer template with the surface of the microwell array is observed in real time through a microscope, and the template groove 4 on the template is aligned with the microwell 2 on the surface of the microwell array by adjusting the auxiliary microstructure polymer template. The residual gas inside the pores is sealed by the polymer.
  • the fifth step is to perform vacuum forming, curing and separation operations on the formed polymer to realize the preparation of microstructures by air mold method.
  • the microwell array surface 1 of the previous step is kept horizontal and sent to vacuum drying together with the shaped polymer liquid 7 between the auxiliary microstructure polymer template and the microwell array surface and the plasma-treated auxiliary microstructure polymer template 5
  • the range of the pressure P of the vacuum drying box is calculated as hP 0 /(h+h 1 )-4 ⁇ /h 1 ⁇ P ⁇ hP 0 /( h+2h 1 /3), where P 0 is the atmospheric pressure, ⁇ is the surface tension of the forming polymer, and the vacuum drying oven is evacuated to the calculated pressure value P, so that the forming polymer liquid is deformed into the forming polymer after the vacuum treatment material liquid 8.
  • Example 1 (forming polymer liquid 6 selects polydimethylpolysiloxane PDMS, auxiliary microstructure polymer template 3 selects PDMS template, micropore array surface selects microstructure 1060 aluminum plate surface, and gap ball selects PS with a diameter of 20 microns small ball)
  • the ordinary micro-hole array surface 1 is prepared by laser direct writing method.
  • the surface of the substrate is made of 1060 aluminum plate.
  • the diameter of the laser spot used is 20 microns.
  • the distance is 10 ⁇ m, the area of the micro-hole to be processed is scanned, and the number of scans is 10 times.
  • the micro-hole is a rectangular hole with a width of 50 ⁇ m, a depth of 100 ⁇ m, a hole length of 100 ⁇ m, and a period of 150 ⁇ m.
  • a through-inclined bottom groove array with a width of 100 ⁇ m, a deepest depth of 20 ⁇ m and a period of 150 ⁇ m was processed by a diamond grinding tool; the aforementioned through-inclined bottom groove array was replicated into polydimethylpolysiloxane by replication molding PDMS (purchased from Dow Corning, USA, trade name Sylgard 184A) penetrates through the inclined bottom groove array template, and the prepared PDMS through inclined bottom groove array template is placed in a plasma atmosphere to achieve plasma treatment, and the plasma is 13.56MHz
  • the plasma power is 200W
  • the treatment time is 20s
  • the unstructured surface of the treated PDMS template is attached to a flat silicon wafer to improve the stiffness of the template.
  • auxiliary microstructure PDMS template for coating the liquid PDMS film could be obtained.
  • the prepared microporous 1060 aluminum plate was placed horizontally, and 10 PS beads with a diameter of 20 ⁇ m were placed in each of the three positions on the edge of the microporous 1060 aluminum plate, and the PDMS-assisted microstructure template with the liquid PDMS film was spread Placed on the interstitial bead so that the PDMS film seals the residual gas inside the microwell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

本发明公开了基于空气模法的光滑倾斜底面微结构阵列表面制备方法,涉及功能表面制备技术领域。先制备出具有微孔阵列的表面;再制备出一辅助微结构聚合物模板,并对辅助微结构聚合物模板进行等离子体处理;经等离子体处理后的辅助微结构聚合物模板上均匀地铺展一层待成形的液态聚合物薄膜;在微孔阵列表面的空白处放置间隙小球;将铺展有液态聚合物薄膜的辅助微结构聚合物模板放置于微孔阵列表面上的间隙小球上,保持该状态送入真空干燥箱;进而加热固化聚合物材料,分离表面从而实现光滑倾斜底面微结构阵列表面的制备。本发明通过空气模法成形,使辅助微结构聚合物模板上的不够光滑的结构被成形聚合物填充完整,可有效提升微结构表面质量。

Description

基于空气模法的光滑倾斜底面微结构阵列表面制备方法 技术领域
本发明涉及功能表面制备技术领域,特指一种制备光滑倾斜底面微结构阵列表面的空气模成形方法,其适用于聚合物光滑倾斜底面微结构阵列表面的制备,尤其适用于简易条件下的光滑倾斜底面微结构阵列表面的制备。
背景技术
光滑倾斜底面微结构阵列表面是指表面微结构的底部呈现光滑倾斜底面的微结构表面,这样的表面可用作织构摩擦副,也可用于引导液滴定向运动,具有潜在的应用价值,近年来得到了广泛的关注。
光滑倾斜底面微结构阵列表面通常需要保证微结构底部的表面质量,由于微结构为微米尺度,通过机械加工的方法和化学刻蚀方法难以实现。为实现倾斜底面微结构的制备,一般采用金刚石磨具磨削方法,但该方法难以实现微结构开口形状的控制,而且磨削的表面质量难以保证。气体模方法(ZL200910024713.0)是通过调节气体压强来控制微结构形状的聚合物材料成形方法,可用于制备微纳透镜,该方法中的微结构形状的形成具有较好的柔性。经过分析发现,气体模方法中气泡长大遇到固体壁面时表现出一定的贴体性,形成的形状既具有气泡的特征,可实现对微结构开头形状的控制,又具有限制气泡长大的壁的特征,而且聚合物成形还可起到光滑限制壁的作用。在这一思路下,若限制壁设置为倾斜表面,此时可实现光滑倾斜底面微结构的制备。
总之,气体模方法与具有倾斜结构的模板结合,有望实现光滑倾斜底面微结构阵列表面。为实现光滑倾斜底面微结构阵列表面的制备,本发明提出一种基于空气模法的光滑倾斜底面微结构阵列表面制备方法。
发明内容
本发明的目的是提供一种用于光滑倾斜底面微结构阵列表面的基于辅助微结构聚合物模板预铺展的空气模法,实现简易条件下的聚合物材料的光滑倾斜底面微结构阵列表面的可控制备。
本发明按下述技术方案实现:
一种用于制备光滑倾斜底面微结构阵列表面的基于辅助微结构模板预铺展的空气模法,按照下述步骤进行:
(1)制备出具有微孔阵列的表面;再制备出一辅助微结构聚合物模板,并对辅助微结构聚合物模板进行等离子体处理;
(2)经等离子体处理后的辅助微结构聚合物模板上均匀地铺展一层待成形的液态聚合物薄膜;在微孔阵列表面的空白处放置间隙小球;
(3)将铺展有液态聚合物薄膜的辅助微结构聚合物模板放置于微孔阵列表面上的间隙小球上,保持该状态送入真空干燥箱;
(4)根据设计的压强值设置真空干燥箱压强,进而加热固化聚合物材料,分离表面从而实现光滑倾斜底面微结构阵列表面的制备。
上述方法步骤(1)中,需要首先制备出具有微孔阵列的表面,可通过传统的微加工方法如激光直写加工方法制备,采用的激光光斑直径在5微米~100微米之间,扫描时激光光斑的搭接率在30%~90%之间,对待加工的微孔区域实现面扫描,扫描次数在5次~20次之间,制备的微孔深度大于微孔宽度,制备的微孔为封闭型孔,开口形状可以是异形形状甚至是长方形形状。
上述方法步骤(1)中,制备出一辅助微结构聚合物模板,并对辅助微结构聚合物模板进行等离子体处理是:首先通过微压印方法或金刚石磨具磨削方法制备出倾斜底部的贯通槽阵列,再通过复制模塑法将制备的倾斜底面的贯通槽阵列复制出来,并进一步采用等离子体处理设备对复制的贯通槽阵列表面进行等离子体处理,提升表面能,等离子体为13.56MHz的射频等离子体,等离子体功率为100W~600W之间,处理时间为10s~600s。
上述方法步骤(2)中,在经等离子体处理后的辅助微结构聚合物模板上均匀地铺展一层待成形的液态聚合物薄膜是:将液态聚合物材料PDMS(聚二甲聚硅氧烷)滴放于处理后的辅助微结构聚合物模板上并使聚合物铺展到所需的厚度,可通过匀胶机来控制聚合物材料铺展得到的聚合物薄膜的厚度,匀胶机旋转速度设置为200转/分~4000转/分,匀胶时间设置为10s~60s,聚合物薄膜厚度范围为1~100μm,聚合物材料铺展面积能够完全覆盖微孔阵列表面。
上述方法步骤(2)中,在微孔阵列表面的空白处放置间隙小球是:准备直径与聚合物薄膜厚度相同的间隙小球,在靠近微孔阵列表面边缘的空白处的三个位置放置间隙小球,每个位置放置间隙小球5~100颗,放置间隙小球的三个位置分散布置,三个位置间的连线形成锐角三角形。
上述方法步骤(3)中,将铺展有液态聚合物薄膜的辅助微结构聚合物模板放置于微孔阵列表面上的间隙小球上,保持该状态送入真空干燥箱是:将铺展有液态聚合物薄膜的辅助微结构聚合物模板放置于微孔阵列表面上的间隙小球上,使液态聚合物与微孔阵列表面接触,同时通过显微镜实时观察辅助微结构聚合物模板与微孔阵列表面的对准情况,通过调整辅助微结构聚合物模板使模板上的微结构与微孔阵列表面上的孔对准,最终实现微孔内的气体的液封,并在后续操作过程中保持微孔阵列表面水平,以限制液态聚合物薄膜的流动,保持这种液态聚合物薄膜与微孔阵列表面间的充分接触和水平状态,送入真空干燥箱以备处理。
上述方法步骤(3)中,根据设计的压强值设置真空干燥箱压强,进而加热固化聚合物材料,分 离表面从而实现光滑倾斜底面微结构阵列表面的制备是:根据微孔深度h、聚合物薄膜厚度h 1,计算出真空干燥箱的压强P的范围为h 1P 0/(h+h 1)-4σ/h 1<P<P 0-hP 0/(h+2h 1/3),其中P 0为大气压强,σ为成形材料表面张力,对真空干燥箱抽真空至计算的压强值P;调节温度至60℃保温2小时使成形聚合物薄膜固化;待固化过程结束后自然冷却,从微孔模板上分离出制备的附着于辅助微结构聚合物模板上的光滑倾斜底面微结构阵列表面。
本发明具有如下技术优势:
通过辅助微结构模板实现液态聚合物的预铺展,使制备表面同时具备辅助微结构聚合物模板的底部形状特征和空气模法的微孔模板的开口形状特征。
通过空气模法成形,使辅助微结构聚合物模板上的不够光滑的结构被成形聚合物填充完整,可有效提升微结构表面质量。
附图说明
图1基于空气模法的光滑倾斜底面微结构阵列表面制备方法实现流程;
图2间隙小球在微孔表面上的放置方式;
图3模板与最终制备样品结构示意图;
1微孔阵列表面,2微孔,3辅助微结构聚合物模板,4模板凹槽,5等离子体处理后的辅助微结构聚合物模板,6成形聚合物液体,7辅助微结构聚合物模板与微孔阵列表面间的成形聚合物液体,8抽真空处理后的成形聚合物液体,9光滑倾斜底面微结构阵列表面,10间隙小球,11间隙小球间形成的锐角三角形,12光滑倾斜底面微结构。
具体实施方式
下面结合图1-图3说明本发明提出的具体工艺的实施细节和工作情况。
制备光滑倾斜底面微结构阵列表面的基于辅助微结构聚合物模板预铺展的空气模法如附图1所示,主要包括五个步骤:制备微孔阵列表面;制备辅助微结构聚合物模板,并对微结构聚合物模板进行等离子体处理提升表面能;在辅助微结构聚合物模板上预铺展液态成形聚合物;将铺展好的液态成形聚合物与微孔阵列表面接触形成液封;对成形聚合物进行抽真空成形、固化和分离操作,实现空气模法微结构制备。
首先需要通过一定的方法制备出微孔阵列表面1,该表面的制备方法可采用传统的微加工方法如激光直写加工方法和光刻加工方法制备,制备的微孔深度大于微孔宽度。采用激光直写加工时直接通过激光束作用于光滑表面,使光滑表面局部区域材料得以去除,通过多次重复的材料去除过程并控制激光束扫描特定路径即可获取特定的孔;采用光刻加工方法时,首先定制掩模板,再在一定的光滑基 材上涂覆光刻胶,进而将掩模板的图案通过光刻曝光系统投影到光刻胶上,使光刻胶产生性能变化,经后续的显影、坚膜、腐蚀、去胶等工艺获取微孔阵列表面。
其次是制备出辅助微结构聚合物模板3,在辅助微结构聚合物模板3有模板凹槽4,并对微结构模板进行等离子体处理提升表面能以获取等离子体处理后的辅助微结构聚合物模板5。制备辅助微结构聚合物模板的过程是:首先通过微压印方法或金刚石磨具磨削方法制备出倾斜底部的贯通凹槽阵列,再通过复制模塑法将制备的倾斜底部的贯通槽阵列复制出来。
第三步是在经等离子体处理后的辅助微结构聚合物模板5上预铺展成形聚合物液体6。在等离子体处理后的辅助微结构聚合物模板5上通过匀胶机涂覆一层1~100μm厚的成形聚合物液体6,对于通常处于液态的聚合物,将微量成形聚合物液体6(体积为1μL<V<100μL)倾倒于等离子体处理后的辅助微结构聚合物模板5上,通过匀胶机使液态聚合物薄膜铺展到所需的厚度(1~100μm)。
第四步是将铺展好的成形聚合物液体6与微孔阵列表面1接触形成液封。准备直径与成形聚合物液体6厚度相同的间隙小球10,在靠近微孔阵列表面1边缘的空白处的三个位置放置间隙小球10,如附图2所示,每个位置放置间隙小球5~100颗,放置间隙小球10的三个位置分散布置,三个位置间的连线形成间隙小球间形成的锐角三角形11。而后将铺展好的成形聚合物液体6的等离子体处理后的辅助微结构聚合物模板5放置于间隙小球上,使铺展好的成形聚合物液体6与微孔阵列表面1接触,此时液态成形聚合物在表面张力和气体压强的作用下形成特定的形状,即形成等离子体处理后的辅助微结构聚合物模板5与微孔阵列表面1间的成形聚合物液体7。进一步通过显微镜实时观察辅助微结构聚合物模板与微孔阵列表面的对准情况,通过调整辅助微结构聚合物模板使模板上的模板凹槽4与微孔阵列表面上的微孔2对准,使微孔内部的残留气体被聚合物密封起来。
第五步是对成形聚合物进行抽真空成形、固化和分离操作,实现空气模法微结构制备。将上一步骤的微孔阵列表面1保持水平放置并连同辅助微结构聚合物模板与微孔阵列表面间的成形聚合物液体7和等离子体处理后的辅助微结构聚合物模板5送入真空干燥箱,根据微孔2深度h、成形聚合物液体6厚度h 1,计算出真空干燥箱的压强P的范围为hP 0/(h+h 1)-4σ/h 1<P<hP 0/(h+2h 1/3),其中P 0为大气压强,σ为成形聚合物表面张力,对真空干燥箱抽真空至计算的压强值P,使成形聚合物液体变形为抽真空处理后的成形聚合物液体8。调节温度至60℃保温2小时使辅助微结构聚合物模板与微孔阵列表面间的成形聚合物液体7固化;待固化过程结束后自然冷却,从微孔阵列表面1上分离出制备的附着辅助微结构聚合物模板上的光滑倾斜底面微结构阵列表面9,其上具有光滑倾斜底面微结构12阵列。如附图3所示,光滑倾斜底面微结构阵列表面9的光滑倾斜底面微结构12(C-C截面)既具有微孔阵列表面的微孔开口特征(A-A截面),又具有辅助微结构模板的底部结构特征(B-B截面)。
实施例1(成形聚合物液体6选用聚二甲聚硅氧烷PDMS,辅助微结构聚合物模板3选用PDMS模板,微孔阵列表面选用微结构1060铝板表面,间隙小球选用直径20微米的PS小球)
采用激光直写加工法制备普通的微孔阵列表面1,其中基材表面选用1060铝板,采用的激光光斑直径为20微米,扫描时激光光斑的搭接率为50%,即连续的两光斑间的距离为10微米,对待加工的微孔区域实现面扫描,扫描次数为10次,加工后微孔为长方形孔,宽度为50μm,深度为100μm,孔长100μm,周期为150μm。在1060铝板上通过金刚石磨具加工宽度为100μm,最深深度为20μm,周期150μm的贯通倾斜底面凹槽阵列;将前述贯通倾斜底面凹槽阵列通过复制模塑法复制为聚二甲聚硅氧烷PDMS(购置于美国道康宁公司,商品名Sylgard 184A)贯通倾斜底面凹槽阵列模板,将制备的PDMS贯通倾斜底面凹槽阵列模板置于等离子体氛围中对其实现等离子体处理,等离子体为13.56MHz的射频等离子体,等离子体功率为200W,处理时间为20s,并将处理后的PDMS模板的无结构面附着在一平直硅片上以提升模板的刚度。再在PDMS模板上滴加50μL成形聚合物PDMS,通过匀胶机使硅片的旋转速度1000转/分,此时可获取涂敷液态PDMS薄膜的辅助微结构PDMS模板。将制备的微孔1060铝板水平放置,在微孔1060铝板边缘空白处的三个位置的每个位置放置10粒直径为20μm的PS小球,再将铺展有液态PDMS薄膜的PDMS辅助微结构模板放置在间隙小球上,使PDMS薄膜密封住微孔内部的残留气体。保持水平状态将微凹槽1060铝板连同PDMS辅助微结构模板和液态PDMS送入到真空干燥箱内,设置真空干燥箱压强为真空压强为85000Pa,根据该压强值抽真空,加热到60℃并保温2小时,结束后自然冷却,并从微孔阵列表面上分离出聚合物薄膜,即可获得具有宽度为50μm,最深深度为20μm的光滑倾斜底面微结构阵列表面。

Claims (7)

  1. 一种用于制备光滑倾斜底面微结构阵列表面的基于辅助微结构模板预铺展的空气模法,其特征在于按照下述步骤进行:
    (1)制备出具有微孔阵列的表面;再制备出一辅助微结构聚合物模板,并对辅助微结构聚合物模板进行等离子体处理;
    (2)经等离子体处理后的辅助微结构聚合物模板上均匀地铺展一层待成形的液态聚合物薄膜;在微孔阵列表面的空白处放置间隙小球;
    (3)将铺展有液态聚合物薄膜的辅助微结构聚合物模板放置于微孔阵列表面上的间隙小球上,保持该状态送入真空干燥箱;
    (4)根据设计的压强值设置真空干燥箱压强,进而加热固化聚合物材料,分离表面从而实现光滑倾斜底面微结构阵列表面的制备。
  2. 根据权利要求1所述的一种用于制备光滑倾斜底面微结构阵列表面的基于辅助微结构模板预铺展的空气模法,其特征在于步骤(1)中,需要首先制备出具有微孔阵列的表面,可通过传统的微加工方法如激光直写加工方法制备,采用的激光光斑直径在5微米~100微米之间,扫描时激光光斑的搭接率在30%~90%之间,对待加工的微孔区域实现面扫描,扫描次数在5次~20次之间,制备的微孔深度大于微孔宽度,制备的微孔为封闭型孔,开口形状可以是异形形状甚至是长方形形状。
  3. 根据权利要求1所述的一种用于制备光滑倾斜底面微结构阵列表面的基于辅助微结构模板预铺展的空气模法,其特征在于步骤(1)中,制备出一辅助微结构聚合物模板,并对辅助微结构聚合物模板进行等离子体处理是:首先通过微压印方法或金刚石磨具磨削方法制备出倾斜底部的贯通槽阵列,再通过复制模塑法将制备的倾斜底面的贯通槽阵列复制出来,并进一步采用等离子体处理设备对复制的贯通槽阵列表面进行等离子体处理,提升表面能,等离子体为13.56MHz的射频等离子体,等离子体功率为100W~600W之间,处理时间为10s~600s。
  4. 根据权利要求1所述的一种用于制备光滑倾斜底面微结构阵列表面的基于辅助微结构模板预铺展的空气模法,其特征在于步骤(2)中,在经等离子体处理后的辅助微结构聚合物模板上均匀地铺展一层待成形的液态聚合物薄膜是:将液态聚合物材料PDMS(聚二甲聚硅氧烷)滴放于处理后的辅助微结构聚合物模板上并使聚合物铺展到所需的厚度,可通过匀胶机来控制聚合物材料铺展得到 的聚合物薄膜的厚度,匀胶机旋转速度设置为200转/分~4000转/分,匀胶时间设置为10s~60s,聚合物薄膜厚度范围为1~100μm,聚合物材料铺展面积能够完全覆盖微孔阵列表面。
  5. 根据权利要求1所述的一种用于制备光滑倾斜底面微结构阵列表面的基于辅助微结构模板预铺展的空气模法,其特征在于步骤(2)中,在微孔阵列表面的空白处放置间隙小球是:准备直径与聚合物薄膜厚度相同的间隙小球,在靠近微孔阵列表面边缘的空白处的三个位置放置间隙小球,每个位置放置间隙小球5~100颗,放置间隙小球的三个位置分散布置,三个位置间的连线形成锐角三角形。
  6. 根据权利要求1所述的一种用于制备光滑倾斜底面微结构阵列表面的基于辅助微结构模板预铺展的空气模法,其特征在于步骤(3)中,将铺展有液态聚合物薄膜的辅助微结构聚合物模板放置于微孔阵列表面上的间隙小球上,保持该状态送入真空干燥箱是:将铺展有液态聚合物薄膜的辅助微结构聚合物模板放置于微孔阵列表面上的间隙小球上,使液态聚合物与微孔阵列表面接触,同时通过显微镜实时观察辅助微结构聚合物模板与微孔阵列表面的对准情况,通过调整辅助微结构聚合物模板使模板上的微结构与微孔阵列表面上的孔对准,最终实现微孔内的气体的液封,并在后续操作过程中保持微孔阵列表面水平,以限制液态聚合物薄膜的流动,保持这种液态聚合物薄膜与微孔阵列表面间的充分接触和水平状态,送入真空干燥箱以备处理。
  7. 根据权利要求1所述的一种用于制备光滑倾斜底面微结构阵列表面的基于辅助微结构模板预铺展的空气模法,其特征在于步骤(3)中,根据设计的压强值设置真空干燥箱压强,进而加热固化聚合物材料,分离表面从而实现光滑倾斜底面微结构阵列表面的制备是:根据微孔深度h、聚合物薄膜厚度h 1,计算出真空干燥箱的压强P的范围为h 1P 0/(h+h 1)-4σ/h 1<P<P 0-hP 0/(h+2h 1/3),其中P 0为大气压强,σ为成形材料表面张力,对真空干燥箱抽真空至计算的压强值P;调节温度至60℃保温2小时使成形聚合物薄膜固化;待固化过程结束后自然冷却,从微孔模板上分离出制备的附着于辅助微结构聚合物模板上的光滑倾斜底面微结构阵列表面。
PCT/CN2021/090483 2020-09-29 2021-04-28 基于空气模法的光滑倾斜底面微结构阵列表面制备方法 WO2022068191A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021574350A JP7202743B2 (ja) 2020-09-29 2021-04-28 空気成形法に基づく滑らかな傾斜底面の微細キャビティアレイ表面を作製するための方法
DE112021000024.1T DE112021000024T5 (de) 2020-09-29 2021-04-28 Verfahren zur herstellung einer mikrostruktur-anordnung-oberfläche mit einer geneigten glatten bodenfläche basierend auf dem luftformverfahren
GB2115392.9A GB2598852B (en) 2020-09-29 2021-04-28 Method for preparing micro-cavity array surface with inclined smooth bottom surface based on air molding method
US17/604,444 US11655144B2 (en) 2020-09-29 2021-04-28 Method for preparing micro-cavity array surface product with inclined smooth bottom surface based on air molding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011048792.1 2020-09-29
CN202011048792.1A CN112299363B (zh) 2020-09-29 2020-09-29 基于空气模法的光滑倾斜底面微结构阵列表面制备方法

Publications (1)

Publication Number Publication Date
WO2022068191A1 true WO2022068191A1 (zh) 2022-04-07

Family

ID=74489405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090483 WO2022068191A1 (zh) 2020-09-29 2021-04-28 基于空气模法的光滑倾斜底面微结构阵列表面制备方法

Country Status (2)

Country Link
CN (1) CN112299363B (zh)
WO (1) WO2022068191A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112299363B (zh) * 2020-09-29 2024-03-19 江苏大学 基于空气模法的光滑倾斜底面微结构阵列表面制备方法
US11655144B2 (en) 2020-09-29 2023-05-23 Jiangsu University Method for preparing micro-cavity array surface product with inclined smooth bottom surface based on air molding method
CN113199683A (zh) * 2021-04-28 2021-08-03 桂林电子科技大学 一种提升太阳电池表面光能俘获的微纳结构及制备方法
CN113477285A (zh) * 2021-07-21 2021-10-08 杜林� 一种微液滴阵列芯片系统及方法
CN114454507B (zh) * 2022-01-26 2023-09-26 江苏大学 一种倾斜微孔阵列的倒置气体膨胀成形方法
CN114477078B (zh) * 2022-04-08 2022-07-15 中国科学技术大学 一种一体式跨尺度微纳米柱阵列的加工方法及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438421A (en) * 1991-04-24 1995-08-01 Alps Electric Co., Ltd. Orientation film of liquid crystal having bilaterally asymmetric ridges separated by grooves
US5476700A (en) * 1993-10-29 1995-12-19 Kabushiki Kaisha Meiki Seisakusho Disc base and mold for molding the disc base
CN101481079A (zh) * 2009-02-11 2009-07-15 江苏大学 一种微纳米透镜阵列的制备方法
CN101734612A (zh) * 2009-12-18 2010-06-16 东南大学 Mems封装用圆片级玻璃微腔的制造方法
CN103030099A (zh) * 2012-12-25 2013-04-10 江苏大学 一种制备超疏油表面的气体辅助成形法
US20150197455A1 (en) * 2011-12-08 2015-07-16 Inmold Biosystems A/S Spin-on-glass assisted polishing of rough substrates
CN107089635A (zh) * 2017-04-13 2017-08-25 吉林大学 一种气动调控浸润性的表面、制备方法及其在液滴收集方面的应用
CN107176588A (zh) * 2017-06-19 2017-09-19 鲁东大学 一种中空微通道结构的制备方法
CN112299363A (zh) * 2020-09-29 2021-02-02 江苏大学 基于空气模法的光滑倾斜底面微结构阵列表面制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849558B2 (en) * 2002-05-22 2005-02-01 The Board Of Trustees Of The Leland Stanford Junior University Replication and transfer of microstructures and nanostructures
CN101024482A (zh) * 2007-03-27 2007-08-29 吉林大学 一种构筑三维微结构的方法
CN108640081B (zh) * 2018-05-07 2019-11-12 徐小女 一种微结构的制备方法
CN111175861B (zh) * 2020-01-17 2021-06-15 中国科学院长春光学精密机械与物理研究所 多焦距曲面复眼透镜的设计与制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438421A (en) * 1991-04-24 1995-08-01 Alps Electric Co., Ltd. Orientation film of liquid crystal having bilaterally asymmetric ridges separated by grooves
US5476700A (en) * 1993-10-29 1995-12-19 Kabushiki Kaisha Meiki Seisakusho Disc base and mold for molding the disc base
CN101481079A (zh) * 2009-02-11 2009-07-15 江苏大学 一种微纳米透镜阵列的制备方法
CN101734612A (zh) * 2009-12-18 2010-06-16 东南大学 Mems封装用圆片级玻璃微腔的制造方法
US20150197455A1 (en) * 2011-12-08 2015-07-16 Inmold Biosystems A/S Spin-on-glass assisted polishing of rough substrates
CN103030099A (zh) * 2012-12-25 2013-04-10 江苏大学 一种制备超疏油表面的气体辅助成形法
CN107089635A (zh) * 2017-04-13 2017-08-25 吉林大学 一种气动调控浸润性的表面、制备方法及其在液滴收集方面的应用
CN107176588A (zh) * 2017-06-19 2017-09-19 鲁东大学 一种中空微通道结构的制备方法
CN112299363A (zh) * 2020-09-29 2021-02-02 江苏大学 基于空气模法的光滑倾斜底面微结构阵列表面制备方法

Also Published As

Publication number Publication date
CN112299363B (zh) 2024-03-19
CN112299363A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2022068191A1 (zh) 基于空气模法的光滑倾斜底面微结构阵列表面制备方法
WO2022068448A1 (zh) 一种基于空气模法的近圆柱面微凹槽阵列表面制备方法
CN108452855B (zh) 微流控芯片的加工方法
US20100164146A1 (en) Imprinting mold and pattern formation method
WO2017150628A1 (ja) 微細立体構造形成方法、及び微細立体構造
JP2008311617A (ja) ナノ構造体およびナノ構造体の製造方法
WO2022068441A1 (zh) 一种基于结构浸蘸-原位拖拽成形的超疏油表面制备方法
Liu et al. Large-area micro/nanostructures fabrication in quartz by laser interference lithography and dry etching
CN108242398A (zh) 在晶片表面形成复杂曲面的方法
CN110244514B (zh) 一种表面具有纳米孔结构的光刻胶及其制备方法
JP7202743B2 (ja) 空気成形法に基づく滑らかな傾斜底面の微細キャビティアレイ表面を作製するための方法
WO2007029810A1 (ja) 3次元モールドの製造方法、微細加工物の製造方法、微細パターン成形品の製造方法、3次元モールド、微細加工物、微細パターン成形品及び光学素子
JP2017183416A (ja) インプリント装置、および物品の製造方法
CN111167529B (zh) 一种基于溶液辅助蒸发制作自封闭微纳米流控系统的方法
JP7202756B2 (ja) 空気成形法に基づく近円柱面を有する微細溝アレイ表面を作製するための方法
Li et al. Thick SU8 microstructures prepared by broadband UV lithography and the applications in MEMS devices
JP2003236799A (ja) スプレーコーティングによるレジスト膜の成膜方法とこれを実施したレジスト膜の成膜装置
Sato et al. Microfabrication of Si by KOH Etchant Using Etching Mask Amorphized by Ar Ion Beam.
Rasoga et al. Wafer-level fabrication of nanocones structures by UV-nanoimprint and cryogenic deep reactive ion process
WO2002031600A1 (en) Deep grayscale etching of silicon
JP2017019149A (ja) インプリント用モールド、および、その離型処理方法
JP2004268206A (ja) 被加工基板の湿式エッチング方法
CN116252236A (zh) 半导体器件和晶圆表面沉积层的去除方法
KR100835703B1 (ko) 유체의 이동을 온도에 의해 조절할 수 있는 다공질 실리콘 박막
JPH073632Y2 (ja) レーザcvd装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202115392

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210428

ENP Entry into the national phase

Ref document number: 2021574350

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21873854

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21873854

Country of ref document: EP

Kind code of ref document: A1