WO2023142479A1 - 一种倾斜微孔阵列的倒置气体膨胀成形方法 - Google Patents

一种倾斜微孔阵列的倒置气体膨胀成形方法 Download PDF

Info

Publication number
WO2023142479A1
WO2023142479A1 PCT/CN2022/116205 CN2022116205W WO2023142479A1 WO 2023142479 A1 WO2023142479 A1 WO 2023142479A1 CN 2022116205 W CN2022116205 W CN 2022116205W WO 2023142479 A1 WO2023142479 A1 WO 2023142479A1
Authority
WO
WIPO (PCT)
Prior art keywords
template
polymer material
layer
forming method
gas expansion
Prior art date
Application number
PCT/CN2022/116205
Other languages
English (en)
French (fr)
Inventor
金卫凤
李健
居信
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2023142479A1 publication Critical patent/WO2023142479A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • B29K2083/005LSR, i.e. liquid silicone rubbers, or derivatives thereof

Definitions

  • the invention relates to the technical field of preparation of porous polymer materials, in particular to an inverted gas expansion forming method of inclined micropore arrays, which is suitable for the preparation of regular and complex porous polymer materials, especially through the combination of material addition and deformation to achieve complex rules. Preparation of porous polymer materials.
  • Porous polymer material refers to a material with a porous structure inside the polymer material. Due to the good formability, light weight and good stability of the polymer material, the porous polymer material can be prepared into a porous membrane. It has potential application value in the fields of biomedicine, chemical engineering, environmental engineering, and catalytic sensing.
  • porous polymer materials are prepared by polymer foaming process or template replication.
  • the polymer foaming process is to add a certain foaming agent inside the polymer, trigger the foaming agent before the polymer is polymerized, and generate a large number of bubbles inside the polymer. After the polymer is polymerized, these bubbles are sealed in the polymer material so that Realize the preparation of porous polymer materials.
  • the polymer foaming process has high production efficiency, but the distribution of micropores in the prepared porous polymer is random, and it is difficult to be used to prepare deterministic polymer inner channels.
  • the template replication method is to first prepare a template with a certain structure, and then pour the liquid polymer material onto the template to replicate the structure on the template; it is also possible to press the thermoplastic polymer material on the template and heat the polymer material to replicate out template structure.
  • the method of template replication can produce a deterministic porous structure, and the production efficiency is also high, but the separation between the template and the product after replication needs to be considered, so the structure on the template can only be a simple columnar, cone-shaped, etc. that are easy to demould
  • the structure of the prepared product is relatively simple.
  • Chinese patent 200910024713.0 discloses a gas mold method, which can form a porous structure on the surface of the polymer.
  • the formed porous structure can be adjusted by adjusting the forming pressure, but the formed porous structure is limited to the surface of the polymer material. Moreover, the formed pore structure can only adjust the size of the pores, and it is difficult to form complex channel-like pore structures.
  • the present invention provides a material-adding-deformation preparation method of porous polymer materials, which realizes the controllable preparation of porous polymer materials under simple conditions.
  • the present invention achieves the above-mentioned technical purpose through the following technical means.
  • An inverted gas expansion forming method of an inclined microhole array comprising the following steps:
  • the template has a microwell array structure
  • the side of the template with the microhole array structure is in contact with the liquid polymer on the auxiliary plate, and the template is supported by a positioning block;
  • the steps can be repeated to obtain products with perforated channels.
  • the depth of the microholes in the microhole array structure is greater than the diameter of the microholes, and the diameter of the microholes ranges from 10 ⁇ m to 300 ⁇ m, wherein the microholes are blind holes.
  • the thickness of the liquid polymer film is 20 ⁇ m to 500 ⁇ m.
  • the vacuum is evacuated to the vacuum pressure P, and the value of P is 0.01MPa-0.1MPa.
  • the liquid polymer is a heat-curable or light-curable polymer material, preferably polydimethylsiloxane.
  • the polydimethylsiloxane curing condition is that the heating temperature is higher than 60° C. and the temperature is kept for 2 hours to realize polymerization and curing.
  • micropores are oval, circular, square or triangular.
  • the product obtained is a porous polymer material with channels perpendicular to the membrane.
  • the product obtained is a porous polymer material with channels inclined to the membrane.
  • the obtained product is a porous polymer material with tortuous channels.
  • the micropores on the second layer of cured polymer material in the second layer of cured polymer material are formed in the following manner: the micropore structure on the template and the micropores on the first layer of cured polymer material At the same time, bubbles are generated in the liquid polymer, and the upper and lower bubbles are connected to form micropores on the second layer of solidified polymer material.
  • the method of the present invention prepares porous polymer materials through the additive-deformation preparation method without additional additives, and there is no problem of demoulding, and micropores with defined hole shapes and positions can be prepared.
  • the method of the present invention can realize the layer-by-layer on-demand preparation of porous polymer materials with complex structures through the additive-deformation preparation method, break through the limitation of micropores confined to the surface of the air molding method, and realize the preparation of deep hole arrays with complex structures.
  • Bubbles are generated between the microporous structure on the template and the micropores on the first layer of cured polymer material, and the upper and lower bubbles are connected to form micropores on the second layer of cured polymer material, which can be adjusted by controlling the vacuum pressure bubble shape.
  • Fig. 1 is the process flow chart of the preparation method of the material-adding-deformation preparation method of the porous polymer material involved in the embodiment of the present invention
  • Fig. 2 is the porous polymer material sample prepared by the technological process of Fig. 1;
  • Figure 3 is a schematic diagram of the porous structure within the porous polymer material.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • an inverted gas expansion forming method of an inclined microhole array comprises the steps of:
  • Positioning block 3 is placed on auxiliary plate 1;
  • Template 5 is placed on positioning block 3;
  • Template 5 is placed on positioning block 3 and adjusted to a suitable position
  • the template 5 with microhole arrays can be prepared by traditional microprocessing methods such as laser direct writing and photolithography.
  • the material used is preferably glass material, which facilitates subsequent microhole alignment operations.
  • the diameter of the template microhole 6 ranges from 10 ⁇ m to 300 ⁇ m, the depth of the prepared microhole is greater than the width or diameter of the microhole, the prepared microhole is a closed hole, that is, a blind hole, and the shape of the opening can be a special shape or even a rectangle.
  • a heat-curable or light-curable liquid polymer 2 is selected as the forming raw material, wherein the curable polymer is preferably polydimethylsiloxane (PDMS), and its general curing process is to heat to above 60°C and Keep warm for 2 hours.
  • PDMS polydimethylsiloxane
  • the thickness of the liquid polymer obtained by spreading the polymer material can be controlled by a glue homogenizer.
  • Liquid polymer The thickness ranges from 20 to 500 ⁇ m, and the spreading area of the liquid polymer can completely cover the microhole array template.
  • the positioning block 3 having a thickness slightly smaller than that of the liquid polymer 2 is prepared, and the material may preferably be a cured polymer material that has the same composition as the liquid polymer 2 but has been cured.
  • the positioning block on the auxiliary plate 1 and place three positioning blocks 3 , it is required that the microwell array template can be placed on the positioning block 3 , and the positions of the positioning block 3 and the microwells 6 on the template 5 do not interfere.
  • the microwell array surface of the template 5 is in contact with the liquid polymer 2 and the positioning block 3 at the same time, so that the liquid polymer 2 can liquid-seal the air in the microwell 6 on the microwell array template 5, and keep it in the subsequent operation process.
  • the auxiliary surface 1 is horizontal to limit the flow of liquid polymer 2 .
  • the positioning block 3 can also be attached to the blank area on the microwell array template 5 at first, and then the positioning block is placed on the auxiliary surface 1 and keeps the air in the microwells 6 on the microwell array template 5 liquid seal.
  • the fifth step is to keep the full contact and horizontal state between the liquid polymer 2 and the template 5, send the system into a vacuum drying oven, and evacuate the vacuum drying oven to a vacuum pressure P, and the value of P ranges from 0.01MPa to 0.1MPa
  • the vacuum can be evacuated to 0.09MPa, and the function of evacuation is to realize the formation of the micropores 8 on the first layer of cured polymer material.
  • the liquid polymer is polymerized and solidified by heating or light to form a cured first layer of cured polymer material 7.
  • the mode of polymerization and solidification is selected according to the curing process of the selected liquid polymer instruction manual.
  • PDMS Polydimethylsiloxane
  • the cycle step after separating the template is similar to the previous forming step, except that the polymer material after the previous forming and solidification is replaced by the auxiliary surface.
  • the polymer forming is the microporous structure on the template and the micropores on the previous forming and curing polymer material
  • bubbles are generated in the liquid polymer, and the upper and lower bubbles are connected to form micropores on the second layer of solidified polymer material; and the position of the template is fine-tuned when the template 5 is placed, so as to realize the micropores on the template 5 and the previous forming and solidification.
  • the specific positional relationship between micropores on the final polymer material is realized under the monitoring under the microscope.
  • the template 5 and the polymer material after the last shaping and curing are fixed.
  • the positions between the template microholes 6 on the template 5 and the microholes 8 on the first layer of cured polymer material 7 after the last shaping and curing can meet the design requirements, and there are many kinds.
  • the micropore on the microhole array template and the polymer material after last shaping solidify The micropores on the top occupy the same position on the plane in the horizontal direction, forming an up-and-down alignment relationship;
  • the micropores on the microhole array template produce a certain lateral displacement relative to the micropores on the polymer material after the last shaping and solidification;
  • the pipeline 16 the right figure of accompanying drawing 3
  • the lateral displacement between the micropores on the microhole array template and the micropores on the polymer material after the last shaping and solidification changes according to the change of the forming sequence.
  • the preparation process of the porous polymer material is prepared layer by layer.
  • the porous structure of each layer is determined by the polymer material, the position of the microhole array template and the vacuum after the last shaping and solidification of the previous step.
  • the vacuum degree of the drying oven and the number of layers of the prepared porous polymer material are determined according to the set design thickness of the porous polymer material.
  • plasma treatment may be performed after the preparation of the polymer material of the previous layer is completed.
  • Embodiment (PDMS is selected for liquid polymer 2)
  • PDMS template is selected for the auxiliary microstructure polymer template
  • the microstructure 1060 aluminum plate surface is selected for the surface of the microhole array
  • PS pellets with a diameter of 20 ⁇ m are selected for the interstitial balls
  • Ordinary microhole array templates were prepared by laser direct writing method.
  • the template material was 1060 aluminum plate.
  • the microholes were circular holes with a diameter of 100 ⁇ m, a depth of 100 ⁇ m, and a period of 200 ⁇ m.
  • a transparent PDMS microwell array template was prepared by the air mold method, and after the microwell array template was prepared, the PDMS microwell template was glued on K9 glass, thereby forming a porous array template 5 that met the transparency requirement.
  • auxiliary surface 1 Use smooth K9 glass as the auxiliary surface 1, spread liquid PDMS with a thickness of 200 ⁇ m on the auxiliary plate 1, heat to 60°C and keep it warm for 2 hours to solidify the liquid PDMS, and cut the obtained PDMS into several small pieces as positioning blocks 3 for later use .
  • Smooth K9 glass is used as the auxiliary surface 1, and liquid PDMS with a thickness of 200 ⁇ m is spread on the auxiliary surface 1, the previously prepared positioning block 3 is placed on the K9 glass, and the previously prepared template 5 is placed on the positioning block 3, and the The system is sent into a vacuum drying oven, evacuated to 0.08MPa, heated to 60°C and kept for 2 hours to solidify the liquid PDMS, and separate from the template to obtain the first layer of cured polymer material 7 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

一种倾斜微孔阵列的倒置气体膨胀成形方法,包括如下步骤:使模板上带有微孔阵列结构的一侧与辅助平板上的液态聚合物接触,且模板由定位块支撑;再将模板与辅助平板保持该配合状态送入真空干燥箱;调节真空干燥箱压强并加热或光照固化液态聚合物,形成第一层固化的聚合物材料;在第一层固化的聚合物材料上带有微孔的面上涂覆液态聚合物薄膜并放置定位块;将带微孔阵列结构的模板放置于定位块上,其中,模板上带有微孔阵列结构侧与涂覆的液态聚合物接触,配合组成成形系统;将成形系统送入真空干燥箱,抽真空并加热或者光照使液态聚合物薄膜固化得到第二层固化的聚合物材料;重复上述步骤得到带孔通道的产品。

Description

一种倾斜微孔阵列的倒置气体膨胀成形方法 技术领域
本发明涉及多孔聚合物材料制备技术领域,特指一种倾斜微孔阵列的倒置气体膨胀成形方法,其适用于规则复杂多孔聚合物材料的制备,尤其通过增材-变形结合的方式实现规则复杂多孔聚合物材料的制备。
背景技术
多孔聚合物材料是指在聚合物材料内部具有孔状结构的材料,由于聚合物材料具有良好的可成形性、轻质和较好的稳定性,多孔聚合物材料可制备成多孔膜材,在生物医药领域、化学化工领域、环境工程领域、催化传感领域具有潜在的应用价值。
一般情况下,多孔聚合物材料通过聚合物发泡工艺或模板复制的方式来制备。聚合物发泡工艺是在聚合物内部添加一定的发泡剂,在聚合物聚合前引发发泡剂从而在聚合物内部产生大量气泡,待聚合物聚合后这些气泡被封闭在聚合物材料内从而实现多孔聚合物材料的制备。聚合物发泡工艺具有较高的生产效率,但所制备的多孔聚合物内微孔的分布具有随机性,难以用于制备确定性的聚合物内通道。模板复制方式是首先准备一定结构的模板,然后将液态聚合物材料浇注到模板上从而把模板上的结构复制出来;也可以将热塑性聚合物材料压在模板上,通过加热来使聚合物材料复制出模板结构。模板复制的方式能够制备出确定性的多孔结构,生产效率也很高,但需要考虑复制后模板与产品的分离问题,所以模板上的结构只能是简单的柱状、锥状等容易脱模的结构,所制备的产品结构特征较为单一。中国专利200910024713.0公开了一种气体模方法,可以在聚合物表面上形成孔状结构,所形成的孔状结构可通过调节成形压强来调节,但是所形成的孔状结构仅限于聚合物材料表面,而且所形成的孔结构也仅能调节孔的尺寸而难以形成复杂通道类孔状结构。
发明内容
针对现有技术中存在不足,本发明提供了一种多孔聚合物材料的增材-变形制备方法,实现简易条件下的多孔聚合物材料的可控制备。
本发明是通过以下技术手段实现上述技术目的的。
一种倾斜微孔阵列的倒置气体膨胀成形方法,包括如下步骤:
模板上带有微孔阵列结构;
在辅助平板上涂覆液态聚合物薄膜并在辅助平板上放置定位块;
模板上带有微孔阵列结构的一侧与辅助平板上的液态聚合物接触,且模板由定位块支撑;
将模板与辅助平板保持该配合状态送入真空干燥箱;
调节真空干燥箱压强并加热或光照固化液态聚合物,固化后的聚合物为第一层固化的聚合物材料;
在第一层固化的聚合物材料上带有微孔的面上涂覆液态聚合物薄膜并放置定位块;
将带微孔阵列结构的模板放置于定位块上,其中,模板上带有微孔阵列结构侧与涂覆的液态聚合物接触,配合组成成形系统;
将成形系统送入真空干燥箱,抽真空并加热或者光照使液态聚合物薄膜固化得到第二层固化的聚合物材料;
可以重复步骤得到带孔通道的产品。
上述方案中,所述微孔阵列结构中微孔孔深大于微孔直径,微孔直径取值范围在10μm到300μm,其中,微孔为盲孔。
上述方案中,液态聚合物薄膜的厚度为20μm~500μm。
上述方案中,抽真空至真空压强P,P的取值在0.01MPa~0.1MPa。
上述方案中,所述液态聚合物为可热固化或光固化的聚合物材料,优选聚二甲基硅氧烷。
上述方案中,聚二甲基硅氧烷固化条件是加热温度大于60℃并保温2小时实现聚合固化。
上述方案中,微孔为椭圆形、圆形、方形或者三角形。
上述方案中,得到的产品为具有垂直于薄膜的通道的多孔聚合物材料。
上述方案中,得到的产品为具有倾斜于薄膜的通道的多孔聚合物材料。
上述方案中,得到的产品为具有曲折型通道的多孔聚合物材料。
上述方案中,所述第二层固化的聚合物材料中的第二层固化聚合物材料上的微孔的成形方式为:模板上的微孔结构与第一层固化聚合物材料上的微孔同时在液态聚合物内产生气泡,上下气泡连通形成第二层固化聚合物材料上的微孔。
本发明具有如下技术优势:
1.本发明方法通过增材-变形制备方法制备多孔聚合物材料不需要额外的添加剂,不存在脱模面临的问题,可制备出确定孔形和确定位置的微孔。
2.本发明方法通过增材-变形制备方法可实现复杂结构多孔聚合物材料的逐层按需制备,突破空气模法的微孔局限在表面的限制,可实现复杂结构深孔阵列的制备。
3.模板上的微孔结构与第一层固化聚合物材料上的微孔之间同时产生气泡,上下气泡连通形成第二层固化聚合物材料上的微孔,通过控制抽真空的压强从而调整气泡形状。
附图说明
图1为本发明实施例涉及到的多孔聚合物材料的增材-变形制备方法制备工艺流程图;
图2为通过图1工艺流程制备的多孔聚合物材料样品;
图3为多孔聚合物材料内的多孔结构示意图。
附图标记:
1-辅助平板;2-液态聚合物;3-定位块;4-模板板材;5-模板;6-模板微孔;7-第一层固化的聚合物材料;8-第一层固化聚合物材料上的微孔;9-第二层固化的聚合物材料;10-第二层固化聚合物材料上的微孔;11-第三层固化的聚合物材料;12-第三层固化聚合物材料上的微孔;13-具有倾斜于薄膜通道的多孔聚合物;14-倾斜于薄膜的通道,15-具有曲折型通道的多孔聚合物材料;16-曲折型通道;17-具有垂直薄膜通道的多孔聚合物材料;18垂直薄膜通道。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“轴向”、“径向”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面结合图1-图3说明本发明提出的具体工艺的实施细节和得到的产品。
结合附图1所示,一种倾斜微孔阵列的倒置气体膨胀成形方法,包括步骤为:
(1)在模板板材4上制备出具有模板微孔6阵列的模板5;
(2)准备一光滑平直表面作为辅助平板1;
(3)在辅助平板1上铺展液态聚合物2;
(4)在辅助平板1上放置定位块3;
(5)将模板5放置于定位块3上;
(6)将辅助平板1、液态聚合物2、定位块3连同微孔阵列的模板5构成的系统送入真空干燥箱,抽真空实现微孔成形从而形成第一层固化聚合物材料上的微孔8,并加热或光照使聚合物聚合固化获得第一层固化的聚合物材料7;
(7)将固化的聚合物材料7从微孔阵列模板5上分离下来;
(8)在第一层固化的聚合物材料7上铺展液态聚合物2并放置定位块3;
(9)将模板5放置于定位块3上并调整到合适位置;
(10)将组装好的成形系统送入真空干燥箱,抽真空实现微孔成形获得第二层固化聚合物材料上的微孔10,加热或光照使聚合物聚合固化为第二层固化的聚合物材料9;
(11)将成形固化后的聚合物材料从微孔阵列模板5上分离下来,若满足厚度要求则获得最终产品,未满足要求则以获得的成形固化后的聚合物材料代替步骤(8)中用来铺展液态聚合物的聚合物材料7并重复(8)到(11)步骤直到满足产品厚度要求为止。
在第一步中,制备带微孔阵列的模板5可通过传统的微加工方法如激光直写加工方法和光刻加工方法制备,所使用的材料优选玻璃材料,方便后续的微孔对准操作;也可先加工出带微孔阵列的模板,而后通过两次复制模塑法或空气模法制备出透明聚合物微孔阵列模板5,将模板背面固定在一玻璃片上,以提升微孔阵列模板的刚度并方便后续的微孔对准操作。模板微孔6的直径取值范围在10μm到300μm之间,制备的微孔深度大于微孔宽度或直径,制备的微孔为封闭型孔即盲孔,开口形状可以是异形形状甚至是长方形。
第二步,选择可热固化或光固化的液态聚合物2作为成形原材料,其中的可固化聚合物优选聚二甲基硅氧烷(PDMS),其一般的固化工艺为加热到60℃以上并保温2小时。将可热固化或光固化的液态聚合物滴放于辅助表面上并使聚合物铺展到所需的厚度,可通过匀胶机来控制聚合物材料铺展得到的液态聚合物的厚度,液态聚合物厚度范围为20~500μm,液态聚合物铺展面积能够完全覆盖微孔阵列模板。
第三步和第四步,准备厚度略小于液态聚合物2厚度的定位块3,材质可优选与液态聚合物2成分一致但经过固化后的固化聚合物材料。在辅助平板1上放置定位块放置三块定位块3,要求微孔阵列模板能够放置在定位块3上,且定位块3与模板5上的微孔6位置不发生干涉。将模板5的微孔阵列面同时与液态聚合物2和定位块3接触,使液态聚合物2将微孔阵列模板5上的微孔6内的空气液封起来,并在后续操作过程中保持辅助表面1水平,以限制液态聚合物2的流动。在这个步骤中,也可首先将定位块3贴附在微孔阵列模板5上的 空白区域,再将定位块放置于辅助表面1上并保持微孔阵列模板5上的微孔6内的空气的液封。
第五步,保持液态聚合物2与模板5间的充分接触和水平状态,将系统送入真空干燥箱,对真空干燥箱抽真空至真空压强P,P的取值范围在0.01MPa到0.1MPa之间,优选地,可抽真空至0.09MPa,抽真空的作用是实现第一层固化聚合物材料上的微孔8成形。待压强稳定后通过加热或光照的方式使液态聚合物聚合固化形成固化的第一层固化的聚合物材料7,聚合固化的方式依据所选用的液态聚合物使用说明书的固化工艺选取,对于优选的聚二甲基硅氧烷(PDMS),可加热到60℃以上并保温2小时实现聚合固化。
分离模板后的循环步骤与前述的成形步骤相似,只是将上一次成形固化后的聚合物材料替代辅助表面,聚合物成形是模板上的微孔结构和上一次成形固化聚合物材料上的微孔同时在液态聚合物内产生气泡,上下气泡连通形成第二层固化聚合物材料上的微孔;并在放置模板5时对模板位置进行微调,以实现模板5上的微孔与上一次成形固化后的聚合物材料上的微孔之间的特定位置关系。微调位置的过程在显微镜下监控下实现,位置满足设计要求后将模板5与上一次成形固化后的聚合物材料固定住。模板5上的模板微孔6与上一次成形固化后的第一层固化的聚合物材料7上的第一层固化聚合物材料上的微孔8之间的位置满足设计要求可以有多种,例如:当设计的具有垂直薄膜通道的多孔聚合物材料17内的孔为垂直薄膜管道18(附图3左图)时,微孔阵列模板上的微孔与上一次成形固化后的聚合物材料上的微孔在水平方向的平面上占据同样的位置,形成上下对准关系;当设计的具有倾斜于薄膜通道的多孔聚合物材料13内的孔为倾斜薄膜管道14(附图1最终产品图)时,微孔阵列模板上的微孔相对于上一次成形固化后的聚合物材料上的微孔产生一定的横向位移;当设计的具有曲折型通道的多孔聚合物材料15内的孔为曲折管道16(附图3右图)时,微孔阵列模板上的微孔与上一次成形固化后的聚合物材料上的微孔间的横向位移根据成形层序的变化而变化。
多孔聚合物材料制备过程是逐层制备的,如附图1所示,每一层的孔状结构决定于前一步骤的上一次成形固化后的聚合物材料、微孔阵列模板的位置和真空干燥箱的真空度,所制备的多孔聚合物材料层数根据设定的多孔聚合物材料设计厚度来确定。为了实现后一层聚合物材料与前一层聚合物材料之间的结合强度,可在前一层聚合物材料制备结束后进行等离子体处理。
实施例(液态聚合物2选用PDMS,辅助微结构聚合物模板选用PDMS模板,微孔阵列表面选用微结构1060铝板表面,间隙小球选用直径20μm的PS小球)
采用激光直写加工法制备普通的微孔阵列模板,其中模板材料选用1060铝板,加工后微 孔为圆形孔,孔直径为100μm,深度为100μm,周期为200μm;加工好微孔阵列模板后通过空气模法制备出透明PDMS微孔阵列模板,制备好微孔阵列模板后将PDMS微孔模板粘在K9玻璃上,从而形成满足透明要求的多孔阵列模板5。采用光滑K9玻璃作为辅助表面1,在辅助平板1上铺展厚度为200μm的液态PDMS,加热到60℃并保温2小时使液态PDMS固化,并将得到的PDMS切成若干小块作为定位块3备用。采用光滑K9玻璃作为辅助表面1,在辅助表面1上铺展厚度为200μm的液态PDMS,将前面准备的定位块3放置在K9玻璃上,再将前面制备的模板5放置于定位块3上,将系统送入到真空干燥箱,抽真空至0.08MPa,加热到60℃并保温2小时使液态PDMS固化,从模板上分离下来从而得到第一层固化的聚合物材料7。再获得的第一层固化的聚合物材料7上铺展200μm厚的液态PDMS,再放置定位块,再将微孔阵列模板5放置在定位块上,并调整模板5上的模板微孔6和前一次成形的第一层固化的聚合物材料7上第一层固化聚合物材料上的微孔8的相对位置,使它们相互稍微偏离,送入真空干燥箱抽真空至0.08MPa,经加热到60℃并保温2小时固化厚获得的三层孔结构如附图2所示。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种倾斜微孔阵列的倒置气体膨胀成形方法,其特征在于,包括如下步骤:
    模板上带有微孔阵列结构;
    在辅助平板上涂覆液态聚合物薄膜并在辅助平板上放置定位块;
    模板上带有微孔阵列结构的一侧与辅助平板上的液态聚合物接触,且模板由定位块支撑;
    将模板与辅助平板保持该配合状态送入真空干燥箱;
    调节真空干燥箱压强并加热或光照固化液态聚合物,固化后的聚合物为第一层固化的聚合物材料;
    在第一层固化的聚合物材料带有微孔的面上涂覆液态聚合物薄膜并放置定位块;
    将带微孔阵列结构的模板放置于定位块上,其中,模板上带有微孔结构侧与涂覆的液态聚合物接触,配合组成成形系统;
    将成形系统送入真空干燥箱,抽真空并加热或者光照使液态聚合物薄膜固化得到第二层固化的聚合物材料;
    重复步骤得到满足厚度要求的带孔通道的产品。
  2. 根据权利要求1所述的倾斜微孔阵列的倒置气体膨胀成形方法,其特征在于,在所述微孔阵列结构中,孔深大于微孔直径,微孔直径取值范围在10μm到300μm,其中,微孔为盲孔。
  3. 根据权利要求1所述的倾斜微孔阵列的倒置气体膨胀成形方法,其特征在于,液态聚合物薄膜的厚度为20μm~500μm。
  4. 根据权利要求1所述的倾斜微孔阵列的倒置气体膨胀成形方法,其特征在于,抽真空至真空压强P,P的取值在0.01MPa~0.1MPa。
  5. 根据权利要求1所述的倾斜微孔阵列的倒置气体膨胀成形方法,其特征在于,所述液态聚合物为可热固化或光固化的聚合物材料,优选聚二甲基硅氧烷。
  6. 根据权利要求5所述的倾斜微孔阵列的倒置气体膨胀成形方法,其特征在于,聚二甲基硅氧烷固化条件为加热温度大于60℃并保温2小时实现聚合固化。
  7. 根据权利要求1所述的倾斜微孔阵列的倒置气体膨胀成形方法,其特征在于,微孔为椭圆形、圆形、方形或者三角形。
  8. 根据权利要求1所述的倾斜微孔阵列的倒置气体膨胀成形方法,其特征在于,得到的产品为具有垂直于薄膜的通道的多孔聚合物材料或者具有倾斜于薄膜的通道的多孔聚合物材料。
  9. 根据权利要求1所述的倾斜微孔阵列的倒置气体膨胀成形方法,其特征在于,得到的产品为具有曲折型通道的多孔聚合物材料。
  10. 根据权利要求1所述的倾斜微孔阵列的倒置气体膨胀成形方法,其特征在于,所述第二层固化的聚合物材料中的第二层固化聚合物材料上的微孔的成形方式为:模板上的微孔结构与第一层固化聚合物材料上的微孔同时在液态聚合物内产生气泡,上下气泡连通形成第二层固化聚合物材料上的微孔。
PCT/CN2022/116205 2022-01-26 2022-08-31 一种倾斜微孔阵列的倒置气体膨胀成形方法 WO2023142479A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210092212.1 2022-01-26
CN202210092212.1A CN114454507B (zh) 2022-01-26 2022-01-26 一种倾斜微孔阵列的倒置气体膨胀成形方法

Publications (1)

Publication Number Publication Date
WO2023142479A1 true WO2023142479A1 (zh) 2023-08-03

Family

ID=81410599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116205 WO2023142479A1 (zh) 2022-01-26 2022-08-31 一种倾斜微孔阵列的倒置气体膨胀成形方法

Country Status (2)

Country Link
CN (1) CN114454507B (zh)
WO (1) WO2023142479A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114454507B (zh) * 2022-01-26 2023-09-26 江苏大学 一种倾斜微孔阵列的倒置气体膨胀成形方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024482A (zh) * 2007-03-27 2007-08-29 吉林大学 一种构筑三维微结构的方法
CN103030099A (zh) * 2012-12-25 2013-04-10 江苏大学 一种制备超疏油表面的气体辅助成形法
US20180039170A1 (en) * 2015-02-27 2018-02-08 Canon Kabushiki Kaisha Nanonimprint liquid material, method for manufacturing nanoimprint liquid material, method for manufacturing cured product pattern, method for manufacturing optical component, and method for manufacturing circuit board
CN112225172A (zh) * 2020-09-29 2021-01-15 江苏大学 一种基于空气模法的近圆柱面微凹槽阵列表面制备方法
CN112299363A (zh) * 2020-09-29 2021-02-02 江苏大学 基于空气模法的光滑倾斜底面微结构阵列表面制备方法
CN114454507A (zh) * 2022-01-26 2022-05-10 江苏大学 一种倾斜微孔阵列的倒置气体膨胀成形方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2404959A1 (de) * 2010-07-08 2012-01-11 Cognis IP Management GmbH Makroporen enthaltende Polymerschaumstoffe als Akustikdämmungs-Materialien
KR101852924B1 (ko) * 2011-11-04 2018-04-30 삼성전자주식회사 혼성 다공성 구조체, 이를 포함하는 분리막 및 혼성 다공성 구조체의 제조 방법
CN103231518B (zh) * 2013-03-22 2015-03-11 南京航空航天大学 一种聚二甲基硅氧烷阵列微孔薄膜制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024482A (zh) * 2007-03-27 2007-08-29 吉林大学 一种构筑三维微结构的方法
CN103030099A (zh) * 2012-12-25 2013-04-10 江苏大学 一种制备超疏油表面的气体辅助成形法
US20180039170A1 (en) * 2015-02-27 2018-02-08 Canon Kabushiki Kaisha Nanonimprint liquid material, method for manufacturing nanoimprint liquid material, method for manufacturing cured product pattern, method for manufacturing optical component, and method for manufacturing circuit board
CN112225172A (zh) * 2020-09-29 2021-01-15 江苏大学 一种基于空气模法的近圆柱面微凹槽阵列表面制备方法
CN112299363A (zh) * 2020-09-29 2021-02-02 江苏大学 基于空气模法的光滑倾斜底面微结构阵列表面制备方法
CN114454507A (zh) * 2022-01-26 2022-05-10 江苏大学 一种倾斜微孔阵列的倒置气体膨胀成形方法

Also Published As

Publication number Publication date
CN114454507A (zh) 2022-05-10
CN114454507B (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
WO2023142479A1 (zh) 一种倾斜微孔阵列的倒置气体膨胀成形方法
CA2829331C (en) 3d microfluidic devices based on open-through thermoplastic elastomer membranes
CN101481079B (zh) 一种微纳米透镜阵列的制备方法
CN102975318B (zh) 一种同时含有方形、弧形通道pdms芯片的制备方法
CN102921480B (zh) 一种利用紫外固化光胶制作微流控芯片的方法
Tanaka et al. Microcasting with agarose gel via degassed polydimethylsiloxane molds for repellency-guided cell patterning
CN106711049B (zh) 一种多孔基板及其制作方法、薄膜晶体管的制作方法
WO2008078442A1 (ja) 分離膜及びその製造方法
CN104199130B (zh) 一种pdms透镜的制作方法
CN112225172B (zh) 一种基于空气模法的近圆柱面微凹槽阵列表面制备方法
CN102785316A (zh) 一种制备具有曲率可控圆弧形截面的高温树脂阳模的方法
CN109797096B (zh) 数字pcr芯片及其制备方法、制备装置、使用方法
CN204515178U (zh) 一种内表面具有微凸结构阵列的反射元件
KR20160014504A (ko) 패럴린 박막을 포함하는 미세유체소자의 제조방법 및 이에 의해 제조된 미세유체소자
CN103434060A (zh) 一种微流控芯片模具
WO2017128563A1 (zh) 吸音材料颗粒的制备方法和吸音材料颗粒
CN108545692B (zh) 一种通道内壁涂覆聚对二甲苯的微流控芯片制作方法
WO2017035947A1 (zh) 一种快速聚合物微结构等温平板热压印工艺
WO2023109661A1 (zh) 一种微纳米复合结构的制作方法
US20220195129A1 (en) Method for producing microparticles
CN111717886B (zh) 微结构制备装置及方法
RU2528842C1 (ru) Способ изготовления деталей из полимерного ультрадисперсного пористого материала
US11117314B2 (en) Method and apparatus for 3D-printing gels
CN108466415B (zh) 湿法隔膜膜片制备装置及制备方法
JP7202756B2 (ja) 空気成形法に基づく近円柱面を有する微細溝アレイ表面を作製するための方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923283

Country of ref document: EP

Kind code of ref document: A1