JP6001664B2 - 坩堝、結晶成長装置および結晶成長方法 - Google Patents

坩堝、結晶成長装置および結晶成長方法 Download PDF

Info

Publication number
JP6001664B2
JP6001664B2 JP2014527034A JP2014527034A JP6001664B2 JP 6001664 B2 JP6001664 B2 JP 6001664B2 JP 2014527034 A JP2014527034 A JP 2014527034A JP 2014527034 A JP2014527034 A JP 2014527034A JP 6001664 B2 JP6001664 B2 JP 6001664B2
Authority
JP
Japan
Prior art keywords
solution
crucible
seed crystal
crystal
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014527034A
Other languages
English (en)
Other versions
JPWO2014017648A1 (ja
Inventor
克明 正木
克明 正木
久芳 豊
豊 久芳
堂本 千秋
千秋 堂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JPWO2014017648A1 publication Critical patent/JPWO2014017648A1/ja
Application granted granted Critical
Publication of JP6001664B2 publication Critical patent/JP6001664B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1052Seed pulling including a sectioned crucible [e.g., double crucible, baffle]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、溶液調整部材を備えた坩堝、その坩堝を用いた結晶成長装置、およびその坩堝を用いて結晶を成長させる結晶成長方法に関するものである。
現在注目されている結晶として、炭素と、珪素の化合物である炭化珪素(Silicon carbide:SiC)がある。炭化珪素は、バンドギャップがシリコンと比べて広く、絶縁破壊に至る電界強度が大きい(耐電圧特性がよい)こと、熱伝導性が高いこと、耐熱性が高いこと、耐薬品性に優れること、および耐放射線性に優れることなどの種々の利点から注目を集めており、原子力を含む重電、自動車および航空を含む運輸、ならびに家電などといった幅広い分野で注目されている。炭化珪素の結晶は、例えば溶液成長法または昇華法によって、種結晶の表面に成長させることができる。炭化珪素の結晶を溶液成長法で成長させる方法は、例えば特開2000−264790号公報に示されている。
炭化珪素からなる結晶を溶液成長法で成長させる研究・開発において、種結晶の下面に成長させる結晶を大型化または長尺化しようとしたときに、結晶の成長速度を上げることが課題の1つとなっていた。本発明は、このような事情に鑑みて案出されたものであり、結晶の成長速度を上げることが可能な坩堝、その坩堝を用いた結晶成長装置および結晶成長方法を提供することを目的とする。
本発明の一実施形態にかかる坩堝は、炭素を含む珪素の溶液を内部に収容し、上方から種結晶の下面を前記溶液に接触させた後、前記種結晶を引き上げることによって、前記種結晶の下面に前記溶液から炭化珪素の結晶を成長させる溶液成長法に使用する坩堝であって、使用時に底面と前記溶液の液面との間に位置するように内壁面に固定された、上方に配置される前記種結晶の内側に重なる貫通孔を有する溶液調整部材を備えた、炭素からなる坩堝である。
本発明の一実施形態にかかる結晶成長装置は、上述の坩堝と、種結晶を保持して前記坩堝の開口部から前記種結晶を入れたり引き上げたりが可能な保持部材とを有する。
本発明の一実施形態にかかる結晶成長方法は、上述の坩堝、種結晶を保持して前記坩堝の開口部から前記種結晶を入れたり引き上げたりが可能な保持部材、および該保持部材によって上面が保持されている炭化珪素からなる前記種結晶を準備する工程と、前記坩堝の内部に、前記溶液調整部材よりも上方に液面が位置するように、炭素を含む珪素の溶液を収容する工程と、前記保持部材によって前記坩堝の開口部から前記種結晶を入れて、該種結晶の下面を前記溶液に接触させる工程と、前記種結晶を下面が前記溶液調整部材の前記貫通孔に重なるように配置した状態で前記保持部材によって前記種結晶を引き上げて、該種結晶の下面に炭化珪素の結晶を成長させる工程とを備える。
本発明によれば、溶液成長法で炭化珪素の結晶を成長させる際に、坩堝の内部の溶液について種結晶の下面に炭素が多く含まれる対流を当たりやすくして、種結晶の下面に成長する結晶の成長速度を上げることができるという効果を奏する。
本発明の実施形態に係る坩堝を搭載した、本発明の実施形態に係る結晶成長装置の一例を示す図であり、上下方向に切断した断面図に相当する。 図1に示す坩堝および保持部材を拡大した拡大断面図であり、図3のA−A’線で切断したときの断面に相当する。 図1および図2に示す坩堝を平面透視したときの平面図である。 図1に示す坩堝において溶液成長法で種結晶の下面に結晶を成長させるときに発生する対流を模式的に示す断面図である。 本発明の実施形態に係る坩堝の変形例を示す図であり、図3のA−A’線で切断したときの断面に相当する。 本発明の実施形態に係る坩堝の変形例を示す図であり、図3のA−A’線で切断したときの断面に相当する。 本発明の実施形態に係る坩堝の変形例を示す図であり、図3のA−A’線で切断したときの断面に相当する。 本発明の実施形態に係る坩堝の変形例を示す図であり、坩堝を平面透視したときの平面図である。 本発明の実施形態に係る坩堝の変形例を示す図であり、図3のA−A’線で切断したときの断面に相当する。 本発明の実施形態に係る坩堝の変形例を示す図であり、図3のA−A’線で切断したときの断面に相当する。 本発明の実施形態に係る坩堝の変形例を示す図であり、図3のA−A’線で切断したときの断面に相当する。 本発明の実施形態に係る結晶成長方法の一工程を説明する断面図であり、図3のA−A’線で切断したときの断面に相当する。 本発明の実施形態に係る結晶成長方法の一工程を説明する断面図であり、図3のA−A’線で切断したときの断面に相当する。 本発明の実施形態に係る結晶成長方法の一工程を説明する断面図であり、図3のA−A’線で切断したときの断面に相当する。 本発明の実施形態に係る結晶成長方法の一工程を説明する断面図であり、図3のA−A’線で切断したときの断面に相当する。
本発明に係る坩堝、結晶成長装置および結晶成長方法の一実施形態について、図1〜図4を参照しつつ説明する。なお、図1は、本実施形態に係る結晶成長装置を模式的に示した断面図であり、結晶成長装置の概略を示している。図2は、本実施形態に係る坩堝および保持部材を上下方向に切断した縦断面の一部を拡大して示しており、坩堝および保持部材の構造を示している。図3は、溶液を除いた、本実施形態に係る坩堝の上面を示しており、坩堝および溶液調整部材の形状などを示している。図4は、本実施形態に係る坩堝1内の対流の様子の一例を示している。
<坩堝>
本発明の一実施形態に係る坩堝1は、炭素を含む珪素の溶液2を内部に収容し、上方から種結晶3の下面3Bを溶液2に接触させた後、種結晶3を引き上げることによって、種結晶3の下面3Bに溶液2から炭化珪素の結晶3’を成長させる溶液成長法に用いられるものである。坩堝1は、坩堝1に溶液2が収容された際に、坩堝1の底面1Bと溶液2の液面2Aとの間に位置するように内壁面1Aに固定された、上方に配置される種結晶3の内側に重なる貫通孔4aを有する溶液調整部材4を備えたものである。本実施形態の坩堝1は、図1に示すような結晶成長装置100に搭載されて用いられるものである。なお、本発明の一実施形態に係る結晶成長装置100は、坩堝1および保持部材5を有している。
保持部材5は、図1および図2に示すように、下端面5Aに、接着材等を介して種結晶3を固定して保持している。すなわち、保持部材5は、接着材を間に挟んだ状態で種結晶3の上に位置している。接着材としては、例えばカーボン接着材を用いることができる。なお、以下の説明で適宜参照するように、図1において、下方向をD1方向、上方向をD2方向としている。
保持部材5は、種結晶3を保持するための下端面5Aを有している。下端面5Aは、四角形状などの多角形状、または円形状などの平面視形状である。そのため、保持部材5は、例えば多角柱状または円柱状などの棒状、直方体状などの立体形状である。
保持部材5は、適宜、材料を選択することができ、例えば、酸化ジルコニウム、酸化マグネシウムなどの溶液2よりも融点が高い酸化物、または炭素からなる材料を用いることができる。
保持部材5が炭素からなる場合には、保持部材5としては、例えば炭素の多結晶体または炭素を焼成した焼成体などを用いることができる。なお、炭素からなるとは、炭素のみからなるものに限るものではない。炭素からなるとは、例えば炭素を98質量%以上含んでいればよく、炭素の他にアルミニウム、銅、マグネシウムなど微量の不純物などを含んでいてもよい。
種結晶3としては、例えば炭化珪素の単結晶または多結晶などを用いることができる。種結晶3は、厚みが例えば0.1mm以上10mm以下となるように設定することができる。
種結晶3は、平面視したときの外形が、例えば多角形状または円形状であるものが用いられる。種結晶3の最大の横幅寸法は、例えば5mm以上20cm以下となるように設定することができる。
種結晶3は、図2に示すように、保持部材5の下端面5Aよりも大きい上面3Aを有している。すなわち、種結晶3は、上面3Aの面積が、保持部材5の下端面5Aの面積よりも大きいものが用いられる。種結晶3は、上面3Aの一部が接着材を介して、保持部材5の下端面5Aに固定されている。種結晶3の上面3Aの面積は、例えば、下端面5Aに対して110%以上400%以下となるように設定することができる。
種結晶3は、保持部材5の下端面5Aに対して上面3Aのどの位置で固定されていてもよい。種結晶3の中心を含む領域が下端面5Aと重なるように種結晶3を固定した場合には、種結晶3をバランスよく保持することができる。そのため、例えば、溶液2の液面2Aに対して種結晶3の下面3Bを安定して水平に維持して結晶成長を行なうことができる。
次に、坩堝1について説明する。坩堝1は、炭素からなる。坩堝1は、成長させる炭化珪素の単結晶の原料を内部で融解させる器としての機能を担っている。本実施形態では、坩堝1の中で、融解した珪素を溶媒としてその中に炭素を溶解させた溶液2を貯留する。本実施形態では、溶液成長法を採用しており、この坩堝1の内部で熱的平衡に近い状態を作り出すことによって結晶の成長を行なう。
坩堝1の内部には、溶液2が配置されている。溶液2は、種結晶3の下面3Bに成長させる炭化珪素の結晶を形成する元素である炭素を、同じく炭化珪素の結晶を形成する元素である珪素の溶液中に溶解したものである。溶質となる元素の溶解度は、溶媒となる元素の温度が高くなるほど大きくなる。このため、種結晶3の下面3Bの温度を溶液2の温度よりも少し低くすることによって、高温下の溶媒に多くの溶質を溶解させた溶液2の温度が種結晶3の付近で低くなり、熱的な平衡を境に溶質が析出するようになる。この熱的平衡による析出を利用して、種結晶3の下面3Bに、炭化珪素の結晶を成長させることができる。
本実施形態の坩堝1は、内壁面1Aに固定された溶液調整部材4を備えている。本実施形態の溶液調整部材4は、板状に形成されている。溶液調整部材4は、溶液2の温度よりも高い融点を持つ材料を用いて、溶液2中にできるだけ溶け出さないものであればよい。また、溶液調整部材4は、例えば、炭素からなる材料、または酸化ジルコニウムなどの溶液2よりも融点が高い酸化物などを用いることができる。坩堝1および溶液調整部材4が炭素からなる場合には、両者を例えばカーボン接着材で固定したり、一体的に形成したものを使用したりすることができる。
溶液調整部材4の厚みは、溶解して消失しない程度に設定すればよい。溶液調整部材4の厚みは、例えば、1mm以上5cm以下となるように設定することができる。また、溶液調整部材4の厚みは、例えば、底面1Bと液面2Aとの距離の2%以上15%以下となるように設定することができる。溶液調整部材4は、厚みが坩堝1の厚みよりも薄く、且つ種結晶3の厚みよりも厚くてもよい。
溶液調整部材4は、坩堝1の使用時に、底面1Bと溶液2の液面2Aとの間に位置するように配置されている。溶液調整部材4は、例えば、底面1Bからの高さが、底面1Bから液面2Aまでの高さの30%以上95%以下となるように配置される。なお、液面2Aの高さは、例えば種結晶3を溶液2に接触させるときの高さを用いることができる。
溶液調整部材4は、図3に示すように、上方に配置される種結晶3の内側に重なる貫通孔4aを有している。すなわち、種結晶3および溶液調整部材4を上方または下方から透視(平面透視)したときに、貫通孔4aは、種結晶3の内側に位置している。種結晶3の内側とは、種結晶3を平面視したときの外周よりも内側のことを指す。貫通孔4aの平面視形状としては、例えば四角形状などの多角形状、または円形状などを用いることができる。貫通孔4aを平面視したときの貫通孔4aの面積は、種結晶3の下面3Bの面積に対して、例えば60%以上90%以下となるように設定することができる。また、貫通孔4aの面積は、開口部1aの面積に対して、例えば20%以上40%以下となるように設定することができる。
本実施形態の坩堝1は、溶液調整部材4に、種結晶3の内側に重なる貫通孔4aを有している。溶液調整部材4によって遮られた対流が貫通孔4aに集中し、図4に示すように、溶液調整部材4の下側に位置する溶液2から貫通孔4aを通って上方に流れる対流CCが発生しやすくなる。
ここで、溶液2内において過飽和となり析出した炭素が下方にたまりやすいことから、溶液2内の炭素の濃度分布は、下方において上方に比べて濃度が高くなっている。そのため、対流CCによって、炭素を多く含む下方の溶液2を種結晶3の下面3Bに当たりやすくすることができる。その結果、種結晶3の下面3Bに炭化珪素の結晶を成長しやすくすることができ、結晶の成長速度を高めることができる。
また、図4に示すように、種結晶3の下面3Bに炭素を多く含む対流CCが当たりやすくなるため、溶液2全体に炭素が均一に混ざっている場合と比較して、例えば内壁面1Aと液面2Aとの界面付近に雑晶が成長することを抑制することができる。すなわち、溶液調整部材4によって、溶液調整部材4の上方に位置する溶液2に雑晶が発生することを抑制することができる。その結果、雑晶によって結晶の成長が阻害されにくくすることができるため、種結晶3の下面3Bに結晶をより長い時間成長させることができる。
貫通孔4aは、図3に示すように、種結晶3および溶液調整部材4を平面透視したときに、上方に配置される種結晶3の下面3Bの中心に重なるとともに、下面3Bの半分以上に重なるように位置していてもよい。ここで「下面3Bの中心」とは下面3Bを平面視したときの図形の中心を指し、「下面3Bの半分以上」とは下面3Bの面積の半分以上を指すものである。
このように貫通孔4aを設定することによって、当該貫通孔4aを通る、炭素を多く含む対流CCの流れを、下面3Bの中心に向けやすくすることができる。その結果、下面3Bの中心に向かって流れる対流CCが下面3Bの中心部から周囲に広がり、下面3Bに対して均一に当てることができることから、下面3Bに平坦度の高い結晶を成長させることができる。その結果、下面3Bに成長する結晶にバンチング等が発生することを抑制することができる。なお、貫通孔4aの平面視形状は、種結晶3の下面3Bの平面視形状と相似形に設定してもよい。
(坩堝の変形例1)
本実施形態に係る坩堝の一変形例について、図5を参照しつつ説明する。図5は、本実施形態に係る坩堝1の変形例を示す断面図であり、坩堝1の断面の構造を示している。
溶液調整部材4は、図5に示すように、坩堝1の使用時に、底面1Bと溶液2の液面2Aとの中間位置Th1よりも上方に位置するとともに、液面2Aから種結晶3の厚みTh2よりも下方に位置していてもよい。溶液調整部材4がこのような高さに位置することによって、貫通孔4aと種結晶3との距離を近くすることができ、貫通孔4aを通る対流CCの下面3Bに対する当て方を制御しやすくすることができる。
(坩堝の変形例2)
本実施形態に係る坩堝の他の変形例について、図6を参照しつつ説明する。図6は、本実施形態に係る坩堝1の変形例を示す断面図であり、坩堝1の断面の構造を示している。
貫通孔4aは、図6に示すように、横断面積が、上方向に向かうにつれて小さくなっていてもよい。このように、貫通孔4aが、上方向に向かうにつれて横断面積が小さくなっていることによって、下面3Bに当たるまでに溶液2の水平方向に対流CCの流れが拡散されることを抑制した状態で対流CCを下面3Bに当てることができる。その結果、下面3Bにおいて、より速く結晶を成長させることができる。なお、貫通孔4aの「横断面積」とは、貫通孔4aを鉛直方向に配置したときに「水平方向で切った断面積」を指す。
(坩堝の変形例3)
本実施形態に係る坩堝のさらに他の変形例について、図7を参照しつつ説明する。図7は、本実施形態に係る坩堝1の変形例を示す断面図であり、坩堝1の断面の構造を示している。
溶液調整部材4は、図7に示すように、複数の部材で構成されたものであってもよい。複数の溶液調整部材4は、上下方向に互いに間隔をあけて配置されており、平面視したときにそれぞれの貫通孔4a同士が重なるように配置されている。溶液調整部材4同士の間隔は、溶液調整部材4同士の間で対流が起きにくい間隔であればよく、例えば2mm以上10mm以下となるように設定すればよい。このように複数の溶液調整部材4を配置することによって、貫通孔4aを通る対流CCを制御しやすくすることができる。
さらに、複数の溶液調整部材4は、図7に示すように、複数の溶液調整部材4のうち上下に隣接する2つの溶液調整部材4において、上下に重なる貫通孔4aは、上側に位置する溶液調整部材4の貫通孔4aの開口が、下側に位置する溶液調整部材4の貫通孔4aの開口よりも上側の開口(貫通孔の横幅)が小さくなっていることが好ましい。このようにして、上方に位置する貫通孔4aほど貫通孔4aが小さくなるように配置していくことによって、対流CCの指向性を高めることができる。
(坩堝の変形例4)
本実施形態に係る坩堝のさらに他の変形例について、図8および図9を参照しつつ説明する。図8は、本実施形態に係る坩堝1の変形例を示す平面図であり、溶液2を除いた坩堝1を上方から見たときの構造を示している。図9は、本実施形態に係る坩堝1の変形例を示す断面図であり、坩堝1の断面の構造を示している。
溶液調整部材4は、溶液調整部材4の一部分のみで内壁面1Aに固定されてもよい。すなわち、平面透視したときに、溶液調整部材4と坩堝1の内壁面1Aとの間にはすき間4bがあってもよい。このようにすき間4bがあることによって、対流によってすき間4bから溶液2をD1方向(下方向)へ流すことができ、貫通孔4aから溶液2をD2方向(上方向)へと流すことができる。その結果、貫通孔4aから種結晶3の下面3Bへ流れる溶液2の量を大きくすることができ、下面3Bにより速く結晶を成長させることができる。
すき間4bは、複数のすき間4bが、隣り合うすき間4b同士間のそれぞれの距離が均等になるように配されていてもよい。すなわち、複数のすき間4bが、周方向に等間隔で配置されていてもよい。このように複数のすき間4bを配置することによって、貫通孔4aからすき間4bに流れる溶液2に対して、平面方向に溶液2の流れの極端なむらが発生することを低減することができる。その結果、貫通孔4aから流出する対流を種結晶3の下面3Bに均一に当てやすくすることができる。
すき間4bは、坩堝1および溶液調整部材4を上方から平面視したときに、貫通孔4aに沿った形状であってもよい。このようにすき間4bを貫通孔4aに沿った形状にすることによって、平面方向に溶液2の流れの極端なむらが発生することを低減することができ、対流を下面3Bに均一に当てやすくすることができる。
すき間4bは、貫通孔4aの縁からすき間4bの縁までの距離が均等になるように形成されてもよい。このようにすき間4bが形成されることによって、平面方向に溶液2の流れの極端なむらが発生するのを低減することができる。
溶液調整部材4を上方から平面視したときに、すき間4bの坩堝1の内壁面1Aに沿った長さは、溶液調整部材4の坩堝1への固定部の内壁面1Aに沿った長さよりも大きくてもよい。このように、すき間4bの内壁面1Aに沿った長さを固定部の長さよりも大きくすることによって、平面方向に溶液2の流れの極端なむらが発生することを低減することができる。
坩堝1を上方から平面視したときに、すき間4bの面積は、坩堝1の開口部1aの面積に対して、合計で例えば20%以上50%以下となるように設定することができる。また、すき間4bの面積は、貫通孔4aの面積よりも大きくなるように設定してもよい。
溶液調整部材4は、柱状に形成されていてもよい。溶液調整部材4の厚みは、例えば坩堝1の底面1Bと使用時の溶液2の液面2Aとの距離の50%以上に設定されてもよい。このように、溶液調整部材4の厚みを底面1Bと液面2Aとの距離の半分以上に設定することによって、貫通孔4aと種結晶3との距離を近くすることができ、貫通孔4aから流出する溶液2の流れを下面3Bに当てやすくすることができる。
溶液調整部材4の厚みは、特に底面1Bと液面2Aとの距離の60%以上に設定されていてもよい。このように、溶液調整部材4の厚みが設定されることによって、貫通孔4aからすき間4bへ、そしてすき間4bから貫通孔4aへと溶液2が対流するときに、全体的に溶液2の流路を小さくすることができる。その結果、溶液2中の局所的な渦の発生を低減することができ、例えば局所的に溶液2中の炭素が滞留することを低減し、溶液2中の炭素を下面3Bに供給しやすくすることができる。なお、結晶の成長を妨げないように、溶液調整部材4の最大厚みは、例えば底面1Bと液面2Aとの距離の85%以下に設定されている。また、このような場合には、溶液調整部材4は、下面3dの一部が坩堝1の底面1Bでも固定されていてもよい。
溶液調整部材4は、溶液調整部材4の上面4cと溶液2の液面2Aとの距離が溶液調整部材4の下面4dと坩堝1の底面1Bとの距離よりも小さくなるように位置してもよい。すなわち、溶液調整部材4は、液面2A側に寄った状態で内壁面1Aに固定されてもよい。このように、溶液調整部材4が坩堝1内の液面2A側に配置されていることによって、溶液2の種結晶3の下面3B側での流路を小さくすることができる。その結果、種結晶3の下面3Bの直下において不規則な対流が生じるスペースを小さくすることができ、不規則な対流の発生を低減し、下面3B直下の溶液2が滞留することを低減することができる。
(坩堝の変形例5)
本実施形態に係る坩堝のさらに他の変形例について、図10を参照しつつ説明する。図10は、本実施形態に係る坩堝1の変形例を示す断面図であり、坩堝1の断面の構造を示している。
貫通孔4aは、横断面積が上方向に向かうにつれて大きくなるように形成されていてもよい。このように貫通孔4aが上方向に向かうにつれて横断面積が徐々に大きくなっていることによって、貫通孔4aの横断面積が変化しない場合と比較して、貫通孔4aの上面4cの開口で急に溶液2の流路が拡がることを低減することができる。その結果、上面4cの開口の縁で溶液2中に局所的な渦が発生することを低減することができる。
(坩堝の変形例6)
本実施形態に係る坩堝のさらに他の変形例について、図11を参照しつつ説明する。図11は、本実施形態に係る坩堝1の変形例を示す断面図であり、坩堝1の断面の構造を示している。
貫通孔4aは、種結晶3および溶液調整部材4aを平面透視したときに、貫通孔4aの中心が上方に配置される種結晶3の下面3Bの中心と重ならないように位置していてもよい。このように、貫通孔4aを、平面視したときに下面3Bの中心からずらして配置することによって、下面3Bの縁部に炭素を多く含む対流を当てやすくすることができ、種結晶3の下面3Bの縁部から内側に向かって結晶をステップフロー成長させることができる。なお、この場合、貫通孔4aは、種結晶3と溶液調整部材4を平面透視したときに、貫通孔4aの中心が種結晶3の下面3Bの中心から下面3Bの縁までの距離の中点よりも下面3bの縁側に位置するように配置されていてもよい。
なお、本発明は上述の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。
<結晶成長装置>
次に、本実施形態に係る結晶成長装置100の各構成について図1を参照しつつ説明する。結晶成長装置100は、主に坩堝1および保持部材5を有するものである。坩堝1は、坩堝容器6の内部に配置されている。坩堝容器6は、坩堝1を保持する機能を担っている。この坩堝容器6と坩堝1との間には、保温材7が配置されている。この保温材7は、坩堝1の周囲を囲んでいる。保温材7は、坩堝1からの放熱を抑制し、坩堝1の温度を安定して保つことに寄与している。なお、坩堝1は回転可能に設けられていてもよい。
坩堝1には、加熱機構8によって、熱が加えられる。本実施形態の加熱機構8は、電磁誘導によって坩堝1を加熱する誘導加熱方式を採用しており、コイル9および交流電源10を含んでいる。
コイル9は、導体によって形成され、坩堝1の周囲を囲むように巻かれている。交流電源10は、コイル9に交流電流を流すためのものであり、より大きな交流電流を流すことによって、坩堝1内の設定温度までの加熱時間を短縮することができる。なお、本実施形態では、坩堝1を誘導加熱方式で加熱している場合であるが、坩堝1の厚さを薄くすることで、この電磁場によって溶液2自体に誘導電流を流して発熱させてもよい。
坩堝1の溶液2には、搬送機構11によって種結晶3が坩堝1の開口部から入れられて、溶液2の液面に種結晶3の下面が接触するように搬入される。この搬送機構11は、種結晶3の下面に成長した結晶を引き上げて坩堝1から搬出する機能も担っている。搬送機構11は、保持部材5、および動力源12を含んでいる。この保持部材5を介して、種結晶3の搬入および種結晶3の下面に成長した結晶の搬出が行なわれる。種結晶3は、保持部材5の下端面に取り付けられており、この保持部材5は、動力源12によって上下方向(D1、D2方向)の移動が制御される。すなわち、保持部材5は、下端面にて種結晶3を保持して、坩堝1の開口部から種結晶3を入れたり引き上げたりすることを可能にしている。なお、保持部材5は回転可能に設けられていてもよい。
結晶成長装置100では、加熱機構8の交流電源10と、搬送機構11の動力源12とが制御部13に接続されて制御されている。つまり、結晶成長装置100は、制御部13によって、溶液2の加熱および温度制御と、種結晶3の搬入出とが連動して制御されている。制御部13は、中央演算処理装置およびメモリなどの記憶装置を含んでおり、例えば公知のコンピュータからなる。
本実施形態の結晶成長装置100の搬送機構11には、上述した保持部材5が取り付けられている。そして、保持部材5の下端面に固定された種結晶3の下面を溶液2に接触させて、種結晶3の下面に結晶を成長させることができる。
このように上述の坩堝1を有する結晶成長装置100は、炭素を含む珪素の溶液2について、種結晶3の下面に炭素が多く含まれる溶液2の対流を当たりやすくして、種結晶3の下面に炭化珪素の結晶を速く成長させることができる。
<結晶成長方法>
次に、本発明の一実施形態にかかる結晶成長方法を説明する。本発明の一実施形態にかかる結晶成長方法は、準備工程、溶液収容工程、接触工程および結晶成長工程を有している。なお、図12は、結晶成長方法の準備工程の一例を示す図であり、坩堝1、種結晶3および保持部材5を示している。図13は、結晶成長方法の溶液収容工程の一例を示す図であり、坩堝1の内部に溶液2を収容した様子を示している。図14は、結晶成長方法の接触工程の一例を示す図であり、溶液2の液面2Aに種結晶3の下面3Bを接触させた様子を示している。図15は、結晶成長方法の結晶成長工程の一例を示す図であり、種結晶3の下面3Bに結晶3’が成長している様子を示している。
(準備工程)
準備工程では、図12に示すように、上述した坩堝1と、坩堝1の開口部1aから内部に種結晶3を入れたり引き上げたりが可能な保持部材5と、保持部材5によって保持されている上面3Aを有する、炭化珪素からなる種結晶3を準備する。
(溶液収容工程)
次に、図13に示すように、溶液調整部材4よりも上方に液面2Aが位置するように、坩堝1の内部に溶液2を収容する。溶液2を坩堝1に収容する方法としては、坩堝1内に珪素を主成分とする粒子を入れて、坩堝1または当該粒子を加熱機構8で加熱して粒子を溶解させる。この際、炭素の粒子を混ぜたり、坩堝1の一部から炭素が溶け出したりすることによって、炭素を含む珪素の溶液2が坩堝1の内部に収容されることとなる。
(接触工程)
その後、図14に示すように、保持部材5によって坩堝1の開口部1aから内部に種結晶3を入れて、種結晶3の下面3Bを溶液2の液面2Aに接触させる。このとき、種結晶3を一度、溶液2内にすべて浸漬してメルトバックを行なってもよい。
(結晶成長工程)
しかる後、図15に示すように、種結晶3および溶液調整部材4を平面透視したとき、種結晶3の下面3Bを溶液調整部材4の貫通孔4aに重なるように配置した状態で、下面3Bに炭化珪素の結晶を成長させる。そして、少しずつ保持部材5を上方に引き上げることによって、下面3Bに結晶3’をD1方向(下方向)に連続して成長させることができる。なお、種結晶3は、上述した接触工程にて、下面3bを溶液2に接触させると同時に溶液調整部材4の貫通孔4aに重なるように配置させてもよいし、下面3bを溶液2に接触させた後に貫通孔4aに重なるように配置させてもよい。また、下面3Bに結晶3’が成長している場合には、成長につれて結晶3’の下端面が下面3Bに相当するものとなる。
本実施形態の結晶成長方法では、上述の坩堝1を用いて、種結晶3の下面3Bに結晶3’を成長させることから、種結晶3の下面3Bに炭素が多く含まれる溶液2の対流を当たりやすくして、下面3Bに対する結晶3’の成長速度を上げることができる。その結果、下面3Bに成長させる結晶3’の生産性を向上させることができる。なお、坩堝1または保持部材5を回転させながら結晶3’を成長させてもよい。
(結晶成長方法の変形例)
結晶成長工程において、図15に示すように、溶液調整部材4よりも下方に位置する溶液2の温度T1を、溶液調整部材4よりも上方に位置する溶液2の温度T2に比べて高くしてもよい。ここで、溶液調整部材4が上下方向に複数存在する場合には、温度T1として最下端に位置する溶液調整部材4よりも下方に位置する溶液2の温度を用いることができ、温度T2として最上端に位置する溶液調整部材4よりも上方に位置する溶液2の温度を用いることができる。
温度T1を温度T2に比べて高くすることによって、溶液2内において温度差を持たせることができる。溶液2内にこのような温度差が存在すると、高い温度T2の方から低い温度T1の方へ対流が発生しやすくすることができる。その結果、種結晶3の下面3Bに向かう対流を強くすることができ、下面3Bに成長する結晶3’の成長速度を上げることができる。

Claims (6)

  1. 炭素を含む珪素の溶液を内部に収容し、上方から種結晶の下面を前記溶液に接触させた後、前記種結晶を引き上げることによって、前記種結晶の下面に前記溶液から炭化珪素の結晶を成長させる溶液成長法に使用する坩堝であって、
    使用時に底面と前記溶液の液面との間に位置するように内壁面に固定された、上方に配置される前記種結晶の内側に重なる貫通孔を有する溶液調整部材を備え、
    前記貫通孔は、横断面積が上方向に向かうにつれて小さくなっている、炭素からなる坩堝。
  2. 炭素を含む珪素の溶液を内部に収容し、上方から種結晶の下面を前記溶液に接触させた後、前記種結晶を引き上げることによって、前記種結晶の下面に前記溶液から炭化珪素の結晶を成長させる溶液成長法に使用する坩堝であって、
    使用時に底面と前記溶液の液面との間に位置するように内壁面に固定された、上方に配置される前記種結晶の内側に重なる貫通孔を有する複数の溶液調整部材を備え、
    複数の前記溶液調整部材は、上下方向に互いに間隔をあけて、それぞれの前記貫通孔が重なるように配置されており、
    複数の前記溶液調整部材のうち上下に隣接する2つの前記溶液調整部材において上下に重なる前記貫通孔は、上側に位置する前記貫通孔の上側の開口が、下側に位置する前記貫通孔の上側の開口よりも小さい、炭素からなる坩堝。
  3. 前記貫通孔は、上方に配置される前記種結晶の下面の中心に重なるとともに、前記種結晶の下面の半分以上に重なる請求項1または2に記載の坩堝。
  4. 請求項1〜のいずれかに記載の坩堝と、
    種結晶を保持して前記坩堝の開口部から前記種結晶を入れたり引き上げたりが可能な保持部材とを有する結晶成長装置。
  5. 請求項1〜のいずれかに記載の坩堝、種結晶を保持して前記坩堝の開口部から前記種結晶を入れたり引き上げたりが可能な保持部材、および該保持部材によって上面が保持されている炭化珪素からなる前記種結晶を準備する工程と、
    前記坩堝の内部に、前記溶液調整部材よりも上方に液面が位置するように、炭素を含む珪素の溶液を収容する工程と、
    前記保持部材によって前記坩堝の開口部から前記種結晶を入れて、該種結晶の下面を前記溶液に接触させる工程と、
    前記種結晶を下面が前記溶液調整部材の前記貫通孔に重なるように配置した状態で前記保持部材によって前記種結晶を引き上げて、該種結晶の下面に炭化珪素の結晶を成長させる工程とを備える結晶成長方法。
  6. 前記炭化珪素の結晶を成長させる工程において、前記溶液調整部材よりも下方に位置する前記溶液の温度を、前記溶液調整部材よりも上方に位置する前記溶液の温度に比べて高くする請求項に記載の結晶成長方法。
JP2014527034A 2012-07-27 2013-07-26 坩堝、結晶成長装置および結晶成長方法 Expired - Fee Related JP6001664B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012166634 2012-07-27
JP2012166634 2012-07-27
PCT/JP2013/070369 WO2014017648A1 (ja) 2012-07-27 2013-07-26 坩堝、結晶成長装置および結晶成長方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016170517A Division JP6262819B2 (ja) 2012-07-27 2016-09-01 坩堝、結晶成長装置および結晶成長方法

Publications (2)

Publication Number Publication Date
JPWO2014017648A1 JPWO2014017648A1 (ja) 2016-07-11
JP6001664B2 true JP6001664B2 (ja) 2016-10-05

Family

ID=49997452

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014527034A Expired - Fee Related JP6001664B2 (ja) 2012-07-27 2013-07-26 坩堝、結晶成長装置および結晶成長方法
JP2016170517A Expired - Fee Related JP6262819B2 (ja) 2012-07-27 2016-09-01 坩堝、結晶成長装置および結晶成長方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016170517A Expired - Fee Related JP6262819B2 (ja) 2012-07-27 2016-09-01 坩堝、結晶成長装置および結晶成長方法

Country Status (3)

Country Link
US (1) US20150211147A1 (ja)
JP (2) JP6001664B2 (ja)
WO (1) WO2014017648A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662211B (zh) * 2012-09-04 2017-04-05 新日铁住金株式会社 单晶的制造装置、用于该制造装置的坩埚以及单晶的制造方法
KR101966696B1 (ko) * 2017-08-31 2019-08-13 한국세라믹기술원 용액성장법에서 단결정 성장속도를 증가시키기 위한 도가니 내장형 구조부재
CN117265635A (zh) * 2022-05-27 2023-12-22 眉山博雅新材料股份有限公司 一种连接装置
CN116136029B (zh) * 2023-04-04 2023-06-09 北京青禾晶元半导体科技有限责任公司 一种碳化硅晶体的生长装置和生长方法
CN116397332A (zh) * 2023-05-19 2023-07-07 通威微电子有限公司 一种碳化硅生长坩埚、装置及生长工艺

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2813592B2 (ja) * 1989-09-29 1998-10-22 住友シチックス株式会社 単結晶製造方法
JPH03197386A (ja) * 1989-12-26 1991-08-28 Showa Denko Kk 化合物半導体単結晶の製造方法
JP2943430B2 (ja) * 1990-10-05 1999-08-30 住友電気工業株式会社 単結晶の製造方法および製造装置
JPH05345700A (ja) * 1992-06-12 1993-12-27 Sanyo Electric Co Ltd 炭化ケイ素単結晶の液相エピタキシャル成長装置
JP2001106600A (ja) * 1999-10-12 2001-04-17 Mitsubishi Cable Ind Ltd 炭化硅素結晶の液相成長方法
JP5012655B2 (ja) * 2008-05-16 2012-08-29 三菱電機株式会社 単結晶成長装置
JP5304600B2 (ja) * 2009-11-09 2013-10-02 トヨタ自動車株式会社 SiC単結晶の製造装置及び製造方法
JP5439353B2 (ja) * 2010-12-27 2014-03-12 新日鐵住金株式会社 SiC単結晶の製造装置及びそれに用いられる坩堝
KR20130002616A (ko) * 2011-06-29 2013-01-08 에스케이이노베이션 주식회사 탄화규소 단결정 성장 장치 및 그 방법
JP5888647B2 (ja) * 2012-02-24 2016-03-22 国立研究開発法人産業技術総合研究所 結晶成長装置及び結晶成長方法
JP5828810B2 (ja) * 2012-07-18 2015-12-09 新日鐵住金株式会社 溶液成長法に用いられるSiC単結晶の製造装置、当該製造装置に用いられる坩堝及び当該製造装置を用いたSiC単結晶の製造方法

Also Published As

Publication number Publication date
US20150211147A1 (en) 2015-07-30
JP2017014105A (ja) 2017-01-19
JPWO2014017648A1 (ja) 2016-07-11
WO2014017648A1 (ja) 2014-01-30
JP6262819B2 (ja) 2018-01-17

Similar Documents

Publication Publication Date Title
JP6262819B2 (ja) 坩堝、結晶成長装置および結晶成長方法
US9777396B2 (en) Method for producing crystal
KR20160022830A (ko) 단결정 제조장치 및 단결정 제조방법
JP2005179080A (ja) 単結晶の製造方法および製造装置
JP6174013B2 (ja) 保持体、結晶成長方法および結晶成長装置
JP5936191B2 (ja) 結晶の製造方法
JP6231375B2 (ja) 坩堝、結晶製造装置および結晶の製造方法
JP6290973B2 (ja) 保持体、結晶製造装置および結晶の製造方法
JP5568034B2 (ja) 半導体単結晶の製造装置および製造方法
JP6039480B2 (ja) 保持体、結晶製造装置および結晶の製造方法
JP6051109B2 (ja) 種結晶保持体、結晶製造装置および結晶の製造方法
JP2014122133A (ja) 結晶の製造方法
JP2021084827A (ja) SiC単結晶成長用伝熱部材、SiC単結晶成長用坩堝、SiC単結晶の製造方法
JP6068603B2 (ja) 結晶成長装置
JP6279930B2 (ja) 結晶製造装置および結晶の製造方法
JP6259053B2 (ja) 結晶の製造方法
RU2534103C1 (ru) Устройство для выращивания монокристаллов из расплава методом чохральского
JP5964094B2 (ja) 結晶成長装置および結晶成長方法
JP5777437B2 (ja) 単結晶基板およびそれを用いた半導体素子
JP2014088290A (ja) 結晶の製造方法
JP2018035063A (ja) 結晶成長装置、結晶成長方法および結晶成長用坩堝
JP2015086106A (ja) 坩堝、結晶製造装置および結晶の製造方法
RU2531514C1 (ru) Нагреватель устройства для выращивания монокристаллов из расплава методом чохральского
JP2016183105A (ja) 結晶成長装置、結晶成長方法および結晶成長用坩堝
JP5823889B2 (ja) 種結晶およびその製造方法、並びに結晶成長装置および結晶成長方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160901

R150 Certificate of patent or registration of utility model

Ref document number: 6001664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees